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ABSTRACT

Data enrichment is the act of extending a local database with
new attributes from external data sources. In this paper, we
study a novel problem—how to progressively crawl the deep
web (i.e., a hidden database) through a keyword-search API
to enrich a local database in an effective way. This is chal-
lenging because these interfaces often limit the data access
by enforcing the top-k constraint or limiting the number of
queries that can be issued within a time window. In response,
we propose SmartCrawl, a new framework to collect re-
sults effectively. Given a query budget b, SmartCrawl first
constructs a query pool based on the local database, and
then iteratively issues a set of most beneficial queries to the
hidden database such that the union of the query results
can cover the maximum number of local records. The key
technical challenge is how to estimate query benefit, i.e., the
number of local records that can be covered by a given query.
A simple approach is to estimate it as the query frequency in
the local database. We find that this is ineffective due to i) the
impact of |∆D|, where |∆D| represents the number of local
records that cannot be found in the hidden database, and ii)
the top-k constraint enforced by the hidden database. We
study how to mitigate the negative impacts of the two factors
and propose effective optimization techniques to improve
performance. The experimental results show that on both
simulated and real-world hidden databases, SmartCrawl
significantly increases coverage over the local database as
compared to the baselines.

1 INTRODUCTION

Data scientists spend more than 80% of their time on data
preparation [2]—the process of turning raw data into a form
suitable for subsequent analysis. This process involves many
tasks such as data collection, data cleaning, and data enrich-
ment. In this paper, we focus on data enrichment, the act
of extending a local database with new attributes extracted
from external data sources. As a simple example, a data sci-
entist collected a list of newly opened restaurants and she
wants to know the category and the rating of each restaurant.
Data enrichment can uncover new insights about the data. A
natural use case of data enrichment is to augment a training

set with new features. Enriched data can also be used for
error detection [11].

Data enrichment is not a new research topic. Existingwork
mainly focuses on the use of web tables (i.e., HTML tables)
to enrich data via table augmentation [14, 22, 23, 34, 45, 46].
However, data scientists often do not have the Web Tables
corpus downloaded. They just have a website in mind for
data enrichment. The challenge is that the data in the website
is hidden behind a restrictive query interface. This is often
called the deep web.

An important class of deepwebsites is those hidden behind
keyword search interfaces. For instance, IMDb [5], Sound-
Cloud [7], ACMDigital Library [9], GoodReads [3], DBLP [1],
Spotify [8], along with a multitude of modern websites, ex-
pose paginated data records through a keyword search in-
terface. The results of the search API, including the above
examples, are commonly based on conjunctive keyword
search, where each result contains all the keywords. Ab-
stractly, search APIs to these hidden databases take a set
of keywords as input, identify results that contain all the
keywords, and return the top-k records using an unknown

ranking function.
The challenge is that the data scientist wants to enrich

her local data quickly. However search APIs can be rate
limited, or simply have a cap on the number of search calls
that can be issued. For example, the Yelp API is restricted
to 25,000 free requests per day [10] and the Google Maps

API only allows 2,500 free requests per day [4]. Thus, it is
important to judiciously choose a specific set of queries so
that once issued, the returned hidden records can cover the
most records in the user’s local database.
We call this problem CrawlEnrich. Let a local record be

covered by a query if and only if the query result contains a
hidden record that refers to the same real-world entity as the
local record1. Given a local databaseD, a hidden databaseH
that provides a search API, a fixed query budget b of the
number of API calls, the goal of CrawlEnrich is to issue a set
of b queries to H such that the union of the query results
can cover as many records in D as possible.

1To focus on the algorithmic problem, we assume that, if a hidden record in
the query result refers to the same real-world entity as the local record, it is
possible to identify the match by using existing entity resolution techniques.



We find that even simple variants of this problem, as de-
scribed in this paper, is challenging. The obvious approach,
which we call NaiveCrawl, is to generate a search query
for each record in the local database D. This maximizes the
likelihood that every matching record in the hidden database
will eventually returned, and is used by tools such as Open-
Refine [6] to crawl data. However, the number of queries
increases with the size of the local database. Further, these
queries may not be robust to data errors. For instance, if the
query for the restaurant “Lotus of Siam” is incorrectly issued
as “Lotus of Siam 12345”, then the search query will likely
not return the matching record.
The challenge of the naive approach is two-fold. First,

queries should not be overly precise, meaning that a search
query should not be generated for only a single local record.
This wastes API calls that could have covered more local
records. On the other hand, queries should not be overly
general by trying to cover too many local records, because
the covering hidden records may not be in the top-k results
of an overly general query.
The fundamental issue is query-benefit estimation: how

can we estimate the expected number of local records that
will be covered by a given search query? This expected num-
ber is called query benefit. Once query benefits are estimated,
the problem is reduced to a well-known Maximum Cover-
age problem, where a greedy algorithm can give both good
theoretical and empirical performance [32].
To this end, we develop SmartCrawl, a framework that

iteratively selects queries to maximally cover the local data-
base. It first constructs a query pool from D, and then iter-
atively selects the query with the largest estimated benefit
from the pool, issues it to H until the budget b is exhausted.
The key technical challenge is the benefit estimation.

We start with a simple approach, called QSel-Simple. This
approach uses query frequency w.r.t. the local database D as
an estimation of query benefit, where the query frequency
w.r.t.D is defined as the number of records inD that contain
the query. For example, consider a query q = “Noodle House”.
If there are 100 records in D that contain “Noodle" as well
as “House", QSel-Simple will estimate the query benefit as
100. We analytically compare QSel-Simple with the ideal
approach (called QSel-Ideal), which selects queries based
on true query benefits. Obviously, QSel-Ideal is hypothet-
ical and cannot be achieved in reality. The purpose of the
comparison aims to investigate that Under which conditions

are QSel-Simple and QSel-Ideal equivalent? What factors

may lead QSel-Simple to perform worse than QSel-Ideal?

For those factors, are there ways to improve QSel-Simple’s

performance? Answering these questions not only provide
insights on QSel-Simple’s performance, but also guides us
to develop a set of optimization techniques.

We identify two factors that may significantly affect QSel-
Simple’s performance, and we prove that QSel-Simple and

QSel-Ideal are equivalent under certain assumptions. Fur-
thermore, we discuss effective optimizations for QSel-Simple
when breaking each assumption.
Factor 1: Impact of |∆D|. The first factor is whetherD can
be fully covered byH or not. If not, we denote ∆D = D−H

as the set of the records in D that cannot be found in H .
Recall that in the previous example, QSel-Simple sets the
benefit of q = “Noodle House” to 100. However, if all the 100
records cannot be found in H (i.e., they are in ∆D), there
will be no benefit to issue the query. Therefore, we need to
use the query frequency w.r.t. D − ∆D rather than w.r.t. D
to estimate query benefit. For this reason, we first study how
to bound the performance gap between QSel-Simple and
QSel-Ideal, where the former uses query frequency w.r.t.D
and the latter uses query frequency w.r.t.D−∆D. If |∆D| is
big, then the performance gap can be large, thus we propose
effective techniques to mitigate the negative impact of |∆D|.
Factor 2: Top-k Constraint. The second factor is whether
the selected queries will be affected by the top-k constraint
or not. We say a query will be affected by the top-k constraint
if it can match more than k records in the hidden database. In
this case, the hidden database will sort these matched records
according to an unknown ranking function and only return
the top-k records as a query result. Intuitively, QSel-Simple
tends to select very frequent keywords (e.g., “Restaurant”)
as a query, but this kind of query is also more likely to be
affected by the top-k constraint. For this example, it may
return many unrelated restaurants to the local database. To
solve this problem, our main idea is to leverage deep web
sampling [13, 17–20, 27, 41, 47, 48]. We first create a sample
of the hidden database offline [47], then apply the sample to
predict which queries will be affected by the top-k constraint,
and finally develop new estimators for the affected queries.
Note that the sample only needs to be created once and
can be reused by any user who wants to enrich their local
database with the hidden database.

We call the new query selection approachQSel-Est, which
equipped with the above optimization techniques. In the
experiments, we find that, when compared to QSel-Simple,
QSel-Est improves SmartCrawl across a wide range of
experimental settings and local databases. SmartCrawl also
outperforms NaiveCrawl by up to 7×, and is more robust
to data errors in the local database.

To summarize, our main contributions are:

• To the best of our knowledge, we are the first to study
the CrawlEnrich problem. We formalize the problem
and propose SmartCrawl to solve the problem.

• We present a simple query selection strategy called
QSel-Simple and identify two factors (i.e., ∆D and the
top-k constraint) that may affect its performance.

• We analyze how |∆D| has a negative impact on the
performance of QSel-Simple, and propose effective
techniques to mitigate the negative impact.
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Figure 1: A running example (k = 2, θ = 1
3 ). There

are four record pairs (i.e., ⟨d1,h1⟩, ⟨d1,h1⟩, ⟨d3,h3⟩, and
⟨d4,h4⟩) that refer to the same real-world entity. Each

arrow points from a query to its result. (Please ignore

Figure 1(b) for now and we will discuss it later in Sec-

tion 5).

• We study how to break the top-k constraint using
a deep web sample and develop novel estimators to
further improve QSel-Simple’s performance.

• We conduct extensive experiments over simulated and
real hidden databases. The results show that SmartCrawl
outperforms baselines by up to 7× and is more robust
to data errors.

The remaining of the paper is organized as follows. We for-
malize the problem in Section 2, and present the SmartCrawl
framework in Section 3. Section 4 and Section 5 discuss the
impact of |∆D| and the top-k constraint, respectively. The
experimental results are shown in Section 6. We review the
related work in Section 7 and conclude the paper in Section 8.

2 PROBLEM FORMALIZATION

In this section, we formulate the CrawlEnrich problem and
discuss the challenges. Without loss of generality, we model
a local database and a hidden database as two relational
tables. Consider a local database D with |D| records and
a hidden database H with |H | (unknown) records. Each
record describes a real-world entity. We call each d ∈ D a
local record and each h ∈ H a hidden record. Local records
can be accessed freely; hidden records can be accessed only
by issuing queries through a keyword-search interface.
Let q denote a keyword query consisting of a set of key-

words (e.g., q = “Thai Cuisine”). The keyword-search inter-
face returns top-k hidden records q(H)k of a keyword query
q. We say a local record d is covered by the query q if and

Table 1: Illustration of notations for the running ex-

ample. (Please ignore q(Hs ) for now.)

Known before issuing q Unknown before issuing q
Q q(D) q(Hs ) q(H) q(H)k q(D)cover

q1 {d1} ϕ {h1} {h1} {d1}

q2 {d2} ϕ {h2} {h2} {d2}

q3 {d3} {h3} {h3} {h3} {d3}

q4 {d4} ϕ {h4} {h4} {d4}

q5 {d1,d3,d4} {h3,h6}
{h1,h3,h4

{h3,h9} {d3}
h6,h7,h9}

q6 {d1,d2,d3} {h3} {h1,h2,h3} {h2,h3} {d2,d3}

q7 {d1,d4} ϕ {h1,h4} {h1,h4} {d1,d4}

only if there exists h ∈ q(H)k such that d and h refer to the
same real-world entity. Since top-k results are returned, we
can cover multiple records using a single query. To make
the best use of resource access, our goal is to cover as many
records as possible.

This paper focuses on the crawling part. A full end-to-end
data enrichment system would need additional function-
alities such as schema matching (i.e., match the schemas
between a local database and a hidden database) and entity
resolution (i.e., check whether a local record and a hidden
record refer to the same real-world entity). However, they can
be treated as an orthogonal issue. We have discussed how to
apply existing schema-matching and entity-resolution tech-
niques to build an end-to-end data enrichment system in the
demo paper [42]. Therefore, we assume that schemas have
been aligned and we treat entity resolution as a black box.
Problem Statement. We model H and D as two sets2. We
define the intersection between D andH as

D ∩H = {d ∈ D | h ∈ H ,match(d,h) = True}

match(d,h) returns True if d and h refer to the same real-
world entity; otherwise, match(d,h) returns False. This in-
tersection contains all the local records that can be covered
by H . Note that D may not be a subset of H .
Let q(D)cover denote the set of local records that can be

covered by q. The goal is to select a set Qsel of queries within
the budget such that |

⋃
q∈Qsel q(D)cover | is maximized.

Problem 1 (CrawlEnrich). Given a budget b, a local data-
base D, and a hidden database H , the goal of CrawlEnrich is

to select a set of queries, Qsel, to maximize the coverage of D,

i.e.,

max
��� ⋃
q∈Qsel

q(D)cover

��� s .t . |Qsel | ≤ b

Unfortunately,CrawlEnrich is an NP-Hard problem, which
can be proved by a reduction from the maximum-coverage
problem (a variant of the set-cover problem) [32]. In fact,
what makes this problem exceptionally challenging is that
2Since the data in a hidden database H is of high-quality, it is reasonable to assume
that H has no duplicate record. For a local database D, if it has duplicate records, we
will remove them before matching it with H or treat them as one record.
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the greedy algorithm that can be used to solve the maximum-
coverage problem is not applicable (see the “chicken-and-egg”
dilemma in Section 3.2).

In this paper, we consider the widely used keyword-search

interface, and defer other interfaces (e.g., form-like search,
graph-browsing) to future work.
Keyword-search Interface. A keyword search interface
accepts a query and returns the top-k of the matched hidden
records to the user. We say a query overflows when the actual
matched record number is larger than k and only the top-k
records are exposed to the user; on the other hand, a query
is a solid one if the matched record number is smaller than
or equal to k, i.e., all the matched records are returned.

For the keyword matching rule, we investigated a number
of deep websites to understand the keyword-search inter-
face in real-world scenarios. We find that most of them (e.g.,
IMDb, DBLP, ACM Digital Library, GoodReads, Spotify, and
SoundCloud) adopt the conjunctive keyword search inter-
face. That is, they only return the records that contain all the
query keywords (we do not consider stop words as query
keywords). Thus we assume the keyword-search interface
is a conjunctive one. In the experiments, we found that our
approach also performed well without the assumption. This
is because that even if a keyword-search interface violates
this assumption, it tends to rank the records that contain all
the query keywords to the top.

Definition 2.1 (Conjunctive Keyword Search). Each record

is modeled as a document, denoted by document(·), which
concatenates all

3
the attributes of the record. Given a query,

we say a record h (resp. d) satisfies the query if and only if

document(h) (resp. document(d)) contains all the keywords in
the query.

Let q(H) (q(D)) denote the set of records inH (D) that
satisfy q. The larger |q(H)| (|q(D)|) is, the more frequently
the query q appears in H (D). We call |q(H)| (|q(D)|) the
query frequency w.r.t H (D).
Due to the top-k constraint, a search interface enforces

a limit on the number of returned records, thus if |q(H)| is
larger than k , it will rank the records in q(H) based on an
unknown ranking function and return the top-k records. We
consider deterministic query processing, i.e., the result of a
query keeps the same whenever it is executed. Definition 2.2
formally defines the keyword-search interface.

Definition 2.2 (Keyword-search Interface). Given a keyword

query q, the keyword-search interface of a hidden database H

with the top-k constraint will return q(H)k as the query result:

q(H)k =

{
q(H) if |q(H)| ≤ k

The top-k records in q(H) if |q(H)| > k

where q is called a solid query if |q(H)| ≤ k ; otherwise, it is
called an overflowing query.
3If a keyword-search interface does not index all the attributes (e.g., rating and zip
code attributes are not indexed by Yelp), we concatenate the indexed attributes only.

Intuitively, for a solid query, we can trust its query result
because it has no false negative; however, for an overflow-
ing query, it means that the query result is not completely
returned.
Example 2.3. Figure 1 shows an example. Figure 1(a) rep-

resents a local database. Figure 1(c) represents a hidden data-
base and the correspondence (grey line) between queries and
returned top-k records (k = 2).
Consider q5 = “House” in Table 1. Since d1,d3,d4

contain “House”, we have q5(D) = {d1,d3,d4}. Since
h1,h3,h4,h6,h7,h9 contain “House”, we have q5(H) =

{h1,h3,h4,h6,h7,h9}. Note that k = 2. As shown in Fig-
ure 1(c), only h3,h9 are returned for q5, thus q5(H)k =

{h3,h9}. We can see that q5(H)k covers one local record
d3. Therefore, q5(D)cover = {d3}.

Suppose b = 2. We aim to select two queries qi ,qj
from {q1,q2, · · · ,q7} in order to maximize |qi (D)cover ∪
qj (D)cover |. We can see that the optimal solution should se-
lect q6 and q7 since |q6(D)cover ∪q7(D)cover | = 4 reaches the
maximum. The key challenge is how to decide which queries
should be selected in order to cover the largest number of
local records.

3 SMARTCRAWL FRAMEWORK

Wepropose the SmartCrawl framework to solve theCrawlEn-
rich problem. The framework has two stages: i) Query Pool
Generation initializes a query pool by extracting keyword
queries from D; ii) Query Selection iteratively selects the
most beneficial query to maximize local database coverage
until the budget is exhausted.

3.1 Query Pool Generation

Let Q denote a query pool. If a query q does not appear in
any local record, i.e., |q(D)| = 0, we do not consider the
query. GivenD, there is a finite number of queries that need
to be considered, i.e., Q = {q | |q(D)| ≥ 1}.

Let |d | denote the number of distinct keywords in d . Since
each local record can produce 2 |d | − 1 queries, the total
number of all possible queries is still very large, i.e., |Q| =∑
d ∈D 2 |d | − 1. Thus, we adopt a heuristic approach to gen-

erate a subset of Q as the query pool.
There are two basic principles underlying the design of

the approach. First, we hope the query pool be able to take
care of every local record. Second, we hope the query pool
to include the queries that can cover multiple local records
at a time.
• To satisfy the first principle, SmartCrawl adopts the same
method as NaiveCrawl. That is, for each local record,
SmartCrawl generates a very specific query to cover the
record. Let Qnaive denote the collection of the queries
generated in this step. We have |Qnaive | = |D|.

• To satisfy the second principle, SmartCrawl finds the
queries such that |q(D)| ≥ t . We can efficiently generate
these queries using Frequent Pattern Mining algorithms
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(e.g., [24]). Specifically, we treat each keyword as an item,
then use a frequent pattern mining algorithm to find the
itemsets that appear in D with frequency no less than t ,
and finally converts the frequent itemsets into queries.
From the above two steps, SmartCrawl will generate a

query pool as follows:

Q = Qnaive ∪
{
q | |q(D)| ≥ t

}
.

Furthermore, we remove the queries dominated by the others
in the query pool. We say a query q1 dominates a query q2 if
|q1(D)| = |q2(D)| and q1 contains all the keywords in q2.
Example 3.1. The seven queries, {q1,q2, · · · ,q7}, in Fig-

ure 1(c) are generated using the method above. Suppose
t = 2. Based on the first principle, we generate Qnaive =

{q1,q2,q3,q4}, where each query uses the full restaurant
name; based on the second principle, we first find the item-
sets {“House”, “Thai”, “Noodle House”, “Noodle”} with fre-
quency no less than 2, and then remove “Noodle” since this
query is dominated by “Noodle House”, and finally obtain
q5 = “House”, q6 = “Thai”, and q7 = “Noodle House”.
Threshold Selection.Here, t is a threshold, which balances
the trade-off between the number of generated queries and
the time spend in generating the queries. A user needs to gen-
erate a set of at least b queries, but the upper bound depends
on the user’s time constraint. In the experiment, we set t to
a value so that our frequent pattern mining algorithm will
generate around 5b queries. We empirically find when using
this threshold, the performance is close to the performance
when generating the queries in an exhaustive way, and save
the query generation efforts at the mean time.

3.2 Query Selection

After the query pool is generated, SmartCrawl enters the
query-selection stage. Section 1 briefly introduces three ap-
proaches: QSel-Ideal, QSel-Simple, and QSel-Est. They
start with the same query pool but use different query selec-
tion strategies.
Let us first take a look at how QSel-Ideal works. QSel-

Ideal assumes that we know the true benefit of each query
in advance. As shown in Algorithm 1, QSel-Ideal iteratively
selects the query with the largest benefit from the query
pool, where the benefit is defined as |q(D)cover |. That is, in
each iteration, the query that covers the largest number of
uncovered local records will be selected. After a query q∗ is
selected, the algorithm issues q∗ to the hidden database, and
gets the query result. Then, it removes the matched records
from D and updates |q(D)cover | for each q accordingly, and
goes to the next iteration.
Example 3.2. Suppose QSel-Ideal needs to select b =

2 queries. Consider q(D)cover in Table 1. We can see
|q1(D)cover | = 1, |q2(D)cover | = 1, |q3(D)cover | =

1, |q4(D)cover | = 1, |q5(D)cover | = 1, |q6(D)cover | =
2, |q7(D)cover | = 2. At the first iteration, both q6 and q7
has the maximum |q(D)cover |. Suppose we break the tie

Algorithm 1: QSel-Ideal Algorithm
Input: Q,D,H ,b
Result: Iteratively select the query with the largest benefit.

1 while b > 0 and D , ϕ do

2 for each q ∈ Q do

3 benefit(q) = |q(D)cover |;
4 end

5 Select q∗ with the largest benefit from Q;
6 Issue q∗ to the hidden DB, and then get the result q∗(H)k ;
7 D = D − q∗(D)cover; Q = Q − {q∗}; b = b − 1;
8 end

Algorithm 2: QSel-Simple Algorithm
1 Replace Line 3 in Algorithm 1 with the following lines:
2 benefit(q) = |q(D)|;

by choosing the smallest query id. Thus, q6 will be se-
lected. After issuing the query q6, we can cover d2 and
d3. QSel-Ideal removes d2 and d3 from D, and then ob-
tains |q1(D)cover | = 1, |q2(D)cover | = 0, |q3(D)cover | =
0, |q4(D)cover | = 1, |q5(D)cover | = 0, |q7(D)cover | = 2. At
the second iteration, q7 has the maximum |q(D)cover |, thus
it will be selected. After issuing the query q7, we can cover
d1 and d4. Now, the budget is exhausted and QSel-Ideal
terminates. In the end, QSel-Ideal selects q6 and q7, which
covers d1,d2,d3,d4.
Chicken-and-Egg Dilemma. In reality, however, QSel-
Ideal suffers from a “chicken and egg” dilemma. It cannot get
the true benefit of each query until the query is issued, but it
needs to know the true benefit in order to decide which query
to issue. To overcome the dilemma, we use the estimated
benefits to determine which query should be issued.

A simple solution is to use the query frequency w.r.t. q(D)

as the estimated benefit. Algorithm 2 depicts the pseudo-code
of QSel-Simple. We can see that QSel-Simple differs from
QSel-Ideal only in the benefit calculation part. Intuitively,
QSel-Simple tends to select high-frequent keyword queries.
Example 3.3. Suppose QSel-Simple needs to select b = 2

queries. Consider q(D) in Table 1. We can see |q1(D)| =

1, |q2(D)| = 1, |q3(D)| = 1, |q4(D)| = 1, |q5(D)| =

3, |q6(D)| = 3, |q7(D)| = 2. At the first iteration, both
q5 and q6 has the maximum |q(D)|. We select q5 since it
has a smaller query id. After issuing the query q5, we can
cover q5(D)cover = {d3}. QSel-Simple removes d3 from
D, and then obtains |q1(D)| = 1, |q2(D)| = 1, |q3(D)| =

0, |q4(D)| = 1, |q6(D)| = 2, |q7(D)| = 2. At the second itera-
tion, both q6 and q7 has the maximum |q(D)|. We select q6
since it has a smaller query id. After issuing the query q6,
we can cover d2 and d3. Now, the budget is exhausted and
QSel-Simple terminates. In the end, QSel-Simple selects q5
and q6, which covers d2,d3.
QSel-Ideal vs. QSel-Simple. As discussed in the intro-
duction, the QSel-Simple’s performance may be affected by
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two factors, the impact of |∆D| and the top-k constraint. We
prove that if D can be fully covered by H (Assumption 1)
andH does not enforce the top-k constraint (Assumption 2),
then QSel-Simple and QSel-Ideal are equivalent (i.e., they
select the same set of queries). The formal proof can be found
in Lemma 3.4.

Assumption 1 (Factor 1). We assume thatD can be fully
covered byH . That is, for each d ∈ D, there exist a hidden
record h ∈ H such that d = h.

Assumption 2 (Factor 2). We assume thatH does not
enforce a top-k constraint. That is, for each query q ∈ Q, we
have that q(H)k = q(H).

Lemma 3.4. If Assumptions 1 and 2 hold, then QSel-Ideal
and QSel-Simple are equivalent.

Proof. All the proofs can be found in the appendix. □

In our running example (Figure 1), Assumption 1 holds
since all the four restaurants in the local database can be
found in the hidden database, but Assumption 2 does not hold
since only top-2 records are returned for each query. Due to
the violation of Assumption 2, QSel-Ideal and QSel-Simple
are not equivalent. Therefore, as shown in Examples 3.2
and 3.3, they select a different set of queries, respectively.

So far, we have not seen how the violation of Assumption 1
could have a negative impact on the QSel-Simple’s perfor-
mance. We will answer this question in Section 4 and also
propose an effective technique tomitigate its negative impact.
To further reduce the performance gap between QSel-Ideal
and QSel-Simple, we relax both assumptions in Section 5,
and propose novel benefit estimation approaches to handle
the general situation.

4 IMPACT OF |∆D|

In this section, we assume that Assumptions 2 holds, i.e., no
top-k constraint, but Assumption 1 does not, i.e., ∆D , 0.
We want to explore how |∆D| will affect the performance
gap between QSel-Simple and QSel-Ideal. For example,
suppose |D| = 10, 000 and |∆D| = 10. How big the perfor-
mance gap (between QSel-Simple and QSel-Ideal) can be?
Is it likely that QSel-Ideal covers a much larger number of
records than QSel-Simple? We first answer these questions
in Section 4.1, and then propose an effective technique to
mitigate the negative impact of |∆D| in Section 4.2.

4.1 Understand the Impact of |∆D|

Rather than directly reason about the performance gap be-
tween QSel-Ideal and QSel-Simple, we construct a new
algorithm, called QSel-Bound, as a proxy. We first bound
the performance gap between QSel-Ideal and QSel-Bound,
and then compare the performance between QSel-Bound
and QSel-Simple.
As the same as QSel-Simple, QSel-Bound selects the

querywith the largest |q(D)| at each iteration. The difference
between them is how to react to the selected query. Suppose

Algorithm 3: QSel-Bound Algorithm
Input: Q, D, H, b
Result: SmartCrawlb covers at least (1 − |∆D|

b ) · Nideal records.
1 while b > 0 and D , ϕ do

2 for each q ∈ Q do

3 benefit(q) = |q(D) |;
4 end

5 Issue q∗ to H, and then get the query result q∗(H)k ;
6 q∗(∆D) = q∗(D) − q∗(D)cover ;
7 if |q∗(∆D)| = 0 then
8 D = D − q∗(D)cover ; Q = Q − {q∗ };
9 else

10 D = D − q∗(∆D); // Note that q∗ is not removed;
11 end

12 b− = 1;
13 end

Table 2:Wemake two changes to the running example

in Figure 1 tailored for Section 4. i)We removeh4 from
the hidden database. With this change, the local data-

base cannot be fully covered by H (since d4 cannot be
found inH ). ii) We remove the top-k constraint. With

this change, q(H) and q(H)k have no difference.

Known before issuing q Unknown before issuing q
Q q(D) q(H) = q(H)k q(D)cover

q1 {d1} {h1} {d1}

q2 {d2} {h2} {d2}

q3 {d3} {h3} {d3}

q4 {d4} ϕ ϕ

q5 {d1,d3,d4} {h1,h3,h6,h7,h9} {d1,d3}

q6 {d1,d2,d3} {h2,h3} {d2,d3}

q7 {d1,d4} {h1} {d1}

the selected query is q∗. There are two situations about q∗.
(1) |q(D)| is equal to the true benefit. In this situation, QSel-
Bound will behave the same as QSel-Simple. (2) |q(D)| is
not equal to the true benefit. In this situation, QSel-Bound
will keep q∗ in the query pool and remove q(∆D) from D.
To know which situation q∗ belongs to, QSel-Bound first
issues q∗ to the hidden database and then checks whether
q∗(D) = q∗(D)cover holds. If yes, it means that |q∗(∆D)| = 0,
thus q∗ belongs to the first situation; otherwise, it belongs
to the second one. Algorithm 3 depicts the pseudo-code of
QSel-Bound. Intuitively, QSel-Bound does not want an
incorrectly selected query to affect the benefits of the follow-
ing queries. Thus, if it finds a query incorrectly selected (i.e.,
q∗(D) , q∗(D)cover), it will put it back to the query pool.

Example 4.1. Consider the running example in Figure 1.
Since Section 4 focuses on when D cannot be fully covered
by H , we make two changes to the example (see Table 2).
Consider q(D) in Table 2. We can see that |q1(D)| =

1, |q2(D)| = 1, |q3(D)| = 1, |q4(D)| = 1, |q5(D)| = 3,
|q6(D)| = 3, |q7(D)| = 2. We will illustrate how QSel-
Bound works at the first iteration. The remaining itera-
tions are similar. At the first iteration, since |q5(D)| = 3
has the maximum benefit, QSel-Bound selects q5 and issues
it to the hidden database. The returned result is q5(H)k =
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{h1,h3,h6,h7,h9}, which covers |q5(D)cover | = {d2,d3}. How-
ever, since q5(D) , q5(D)cover, then the query belongs to
the second situation (see Line 9-10 in Algorithm 3). We com-
pute q5(∆D) = q5(D) − q5(D)cover = {d4}, and then set D
to D − q5(∆D) = {d1,d2,d3}. Since d4 has been removed
from D, we obtain |q1(D)| = 1, |q2(D)| = 1, |q3(D)| = 1,
|q4(D)| = 0, |q5(D)| = 2, |q6(D)| = 3, |q7(D)| = 1. After
that, QSel-Bound starts the second iteration. Note that at
the first iteration, q5 is not removed from the query pool.
Thus, q5 may be selected again in the remaining iterations.

To compare the performance of QSel-Ideal and
QSel-Bound, let Qsel = {q1,q2, · · · ,qb } and Q ′

sel =
{q′1,q

′
2, · · · ,q

′
b } denote the set of the queries selected by

QSel-Ideal and QSel-Bound, respectively. Let Nideal and
Nbound denote the number of local records that can be cov-
ered by QSel-Ideal and QSel-Bound, respectively i.e.,

Nideal = | ∪q∈Qsel q(D)cover |, Nbound = | ∪q′∈Q′
sel
q′(D)cover |.

We find thatNbound ≥ (1− |∆D |

b )·Nideal. The following lemma
proves the correctness.

Lemma 4.2. Given a query pool Q, the worst-case per-
formance of QSel-Bound is bounded w.r.t. QSel-Ideal, i.e.,
Nbound ≥ (1 − |∆D |

b ) · Nideal.

Proof Sketch. The proof consists of two parts. In the first
part, we prove that the first

(
b − |∆D|

)
queries selected by

QSel-Ideal must be selected by QSel-Bound, i.e., {qi | 1 ≤

i ≤ b − |∆D|} ⊆ Q ′
sel . This can be proved by induction. In

the second part, we prove that the first
(
b − |∆D|

)
queries

selected by QSel-Ideal can cover at least (1 − |∆D |

b ) · Nideal
local records. This can be proved by contradiction. □

The lemma indicates that when |∆D| is relatively small
w.r.t. b, QSel-Bound performs almost as good as QSel-Ideal.
For example, consider a local database having |∆D| = 10
records not in the hidden database. Given a budget b = 1000,
if QSel-Ideal covers Nideal = 10, 000 local records, then
QSel-Bound can cover at least (1 − 10

1000 ) · 10, 000 = 9, 900
local records, which is only 1% smaller than Nideal.
QSel-Boundvs. QSel-Simple.Note that bothQSel-Simple
and QSel-Bound are applicable in practice since they select
queries based on |q(D)|, but we empirically find that QSel-
Simple tends to perform better. The reason is that, to ensure
the theoretical guarantee, QSel-Bound is forced to keep
some queries, which have already been selected, into the
query pool (see Line 10 in Algorithm 3). These queries may
be selected again in later iterations and thus waste the bud-
get. Because of this, although the worse-case performance of
QSel-Bound can be bounded, we still stick to QSel-Simple.

4.2 Mitigate the Negative Impact of |∆D|

When |∆D| is small, QSel-Simple has a similar performance
with QSel-Ideal; however, when |∆D| is very large, QSel-
Simple may perform much worse than QSel-Ideal. Thus,
we study how to mitigate the negative impact of |∆D|.

We aim to find the local records in ∆D and then remove
them from D. In other words, we want to identify which
local record cannot be covered by H . We first use a toy
example to illustrate our key insight, and then present our
technique in detail.
Consider a local database with a list of restaurant names

(e.g., “Thai Pot”, “Thai House”) and a list of conference names
(e.g., “SIGMOD 2019”, “SIGMOD 2018”). Suppose the user
wants to enrich the local database with a hidden restaurant
database (e.g., Yelp). Here, all the conference names are in
∆D since they do not match any hidden record. Suppose
“SIGMOD” is selected and issued to the hidden database,
and the query result is empty. It indicates that Yelp has no
hidden record that contains “SIGMOD”. Therefore, all the
local records that contain “SIGMOD” cannot be covered by
Yelp. We can safely remove them from D. This optimiza-
tion technique will help us avoid selecting many worthless
queries (such as “SIGMOD 2019” and “SIGMOD 2018”) in
future iterations.

The above example shows a special case of our technique
when the query result is empty. In the general situation, our
technique works as follows. (1) Issue a selected query to a
hidden database and get the query result q(H), (2) use q(H)

to cover D and obtain q(D)cover , and (3) predict that the
local records in q(D) − q(D)cover cannot be covered byH .
The correctness can be proved by contradiction. Assume
that there exists a record d ∈ q(D) − q(D)cover which can
be covered by h ∈ H . This is impossible because since d
satisfies q, then h also satisfies q, thus h will be retrieved by
q. Therefore, we can deduce that d ∈ q(D)cover should hold,
which contradicts that d ∈ q(D) − q(D)cover .

Example 4.3. Consider the example in Table 2. Suppose
q5 is selected. (1) Issue q5 to the hidden database and get
the query result q5(H) = {h1,h3,h6,h7,h9}, (2) use q5(H) to
cover D and obtain q5(D)cover = {d1,d3}, and (3) compute
q5(D) − q5(D)cover = {d4} and predict that d4 cannot be
covered by H . Thus, we remove d4 from D. Now, D has
only d1 left. Note that without this optimization technique,
D has both d1 and d4 left, where the existence of d4 will have
a negative impact on the estimated benefits of future queries.

5 TOP-K CONSTRAINT

In this section, we study how to further improveQSel-Simple
by breaking the top-k constraint. Our key idea is to leverage
a hidden database sample to estimate query benefits. Recall
that there are two types of queries: solid query and overflow-
ing query. We first present how to use a hidden database
sample to predict query type (solid or overflowing) in Sec-
tion 5.1, and then propose new estimators to estimate query
benefits for solid queries in Section 5.2 and for overflowing
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Table 3: Summary of query-benefit estimators.

Unbiased Biased

Solid
|q(D)∩q(Hs ) |

θ |q(D)|

Overflow |q(D) ∩ q(Hs )| ·
k

|q(Hs ) |
|q(D)| · kθ

|q(Hs ) |

queries in Section 5.3, respectively. Table 3 summarizes the
proposed estimators and Table 4 illustrates how they work
for the running example.

5.1 Query Type Prediction

Sampling from a hidden database is a well-studied topic in
the DeepWeb literature [13, 17–20, 27, 41, 47, 48].We create a
hidden database sample offline, and reuse it for any user who
wants to match their local database with the hidden database.
LetHs denote a hidden database sample and θ denote the cor-
responding sampling ratio. There are a number of sampling
techniques that can be used to obtainHs and θ [13, 47, 48].
In this paper, we treat deep web sampling as an orthogonal
issue and assume that Hs and θ are given. We implement
an existing deep web sampling technique [47] in the experi-
ments and evaluate the performance of SmartCrawl using
the sample created by the technique (Section 6.3).
Given a query q, we aim to predict whether q is solid or

overflowing before issuing it. In other words, the goal is to
predict whether |q(H)| is greater than k or not. Since Hs

is a random sample of H , then we have |q(H)| ≈
|q(Hs ) |

θ .
Thus, if |q(Hs ) |

θ ≤ k , q will be predicated as a solid query;
otherwise, it will be predicated as an overflowing query.

Example 5.1. Consider the running example in Figure 1.
Figure (b) shows a hidden database sampleHs with the sam-
pling ratio of θ = 1

3 . Table 1 shows q(Hs ) for each query.
Suppose k = 2.
For q1 = “Thai Noodle House”, since |q(Hs ) |

θ = 0
1/3 ≤ k ,

it is predicated as a solid query. This is a correct predic-
tion. For q5 = “House”, since |q(Hs ) |

θ = 2
1/3 = 6 > k , it is

predicated as an overflowing query. This is also a correct
prediction. In summary, q1,q2,q4,q7 are predicted as solid
queries and q3,q5,q6 are predicted as overflowing queries.
The only wrong prediction is to predict q3 as a solid query.

5.2 Estimators For Solid Queries

We study how to estimate query benefits for solid queries.
We first propose an unbiased estimator, i.e., in expectation
the estimator’s estimated query benefit is equal to the true
query benefit.
Unbiased Estimator. The query’s true benefit is defined as:

benefit(q) = |q(D)cover | = |q(D) ∩ q(H)k |. (1)
According to the definition of solid queries in Definition 2.2,
if q is a solid query, all the hidden records that satisfy the
query can be returned, i.e., q(H)k = q(H). Thus, the benefit
of a solid query is

benefit(q) = |q(D) ∩ q(H)|. (2)

Table 4: An illustration of query-benefit estimators for

the running example (q(D) and q(Hs ) are copied from

Table 1). According to Example 5.1, q1,q2,q4,q7 are pre-
dicted as solid queries; q3,q5,q6 are predicted as over-

flowing queries. Unbiased, Biased, and True represent
true benefit, unbiased estimator’s estimated benefit,

and biased estimator’s estimated benefit, respectively.

Q q(D) q(Hs ) Unbiased Biased True

q1 {d1} ϕ 0 1 1
q2 {d2} ϕ 0 1 1
q4 {d4} ϕ 0 1 1
q7 {d1,d4} ϕ 0 2 2
q3 {d3} {h3} 2 2

3 1
q5 {d1,d3,d4} {h3,h6} 1 1 1
q6 {d1,d2,d3} {h3} 2 2 2

Interestingly, the benefit estimation problem can be modeled
as a selectivity estimation problem, which aims to estimate
the selectivity of the following SQL query:

SELECT d, h FROM D, H

WHERE d = h AND d satisfies q.

An unbiased estimator of the selectivity based on the hidden
database sample Hs is:

benefit(q) ≈
|q(D) ∩ q(Hs )|

θ
, (3)

We prove the estimator is unbiased in Lemma 5.2.

Lemma 5.2. Given a solid query q, then |q(D)∩q(Hs ) |

θ is an
unbiased estimator of |q(D) ∩ q(H)|.

Example 5.3. Recall that q1,q2,q4,q7 are predicted as solid
queries (Example 5.1). Table 4 illustrates how to use the
proposed unbiased estimator to estimate their benefits. For
q1, we have q1(D) = {d1} and q(Hs ) = ϕ, thus the estimated
benefit is |q1(D)∩q(Hs ) |

θ = 0
1
3
= 0. Similarly, for q2,q4,q7, their

estimated benefits are 0 as well.

From the above example, we can see that the unbiased
estimator does not performwell. This is because that for solid
queries, |q(D)| is typically small, thus |q(D) ∩ q(Hs )| tends
to be zero. Therefore, the query benefit will be estimated as
0, which is not useful for query selection.
Biased Estimator. We propose another estimator to over-
come this limitation. The benefit of a solid query is shown
in Equation 2. We can rewrite it as

benefit(q) = |q(D) − q(∆D)| = |q(D)| − |q(∆D)|. (4)
Many hidden databases (e.g., Yelp, IMDb) often have a

very good coverage of the entities in some domain (e.g.,
Restaurant, Movie, etc.). As a result, ∆D could be small, and
thus |q(∆D)|, as a subset of ∆D, is even much smaller. Even
if∆D is big, we can use the technique proposed in Section 4.2
to reduce its size. For these reasons, we omit |q(∆D)| and
derive the following estimator:

benefit(q) ≈ |q(D)|, (5)
8



where the bias of the estimator is |q(∆D)|. In the experi-
ments, we compare the biased estimator with the unbiased
one, and find that the biased one tends to perform better,
especially for a small sampling ratio.
Example 5.4. Table 4 illustrates how to use the proposed

biased estimator to estimate the benefits of q1,q2,q4,q7. For
q1, as q1(D) = {d1}, we have benefit(q1) ≈ |q1(D)| = 1.
Similarly, for q2,q4,q7, we have benefit(q2) ≈ |q2(D)| = 1,
benefit(q4) ≈ |q4(D)| = 1, and benefit(q7) ≈ |q7(D)| = 2.
We can see that this estimator’s estimated benefit is the same
as the true benefit for all the queries.

5.3 Estimators For Overflowing Queries

We study how to estimate query benefits for overflowing
queries. Intuitively, the benefit of an overflowing query can
be affected by three variables: |q(D)|, |q(H)|, and k . How
should we systematically combine them together in order
to derive an estimator? We call this problem breaking the

top-k constraint. Note that the ranking function of a hidden
database is unknown, thus the returned top-k records cannot

be modeled as a random sample of q(H). Next, we present
the basic idea of our solution through an analogy.
Basic Idea. Suppose there are a list of N balls that are sorted
based on an unknown ranking function. Suppose the first k
balls in the list are black and the remaining ones are white.
If we randomly draw a set of n balls without replacement
from the list, how many black balls will be chosen in draws?
This is a well studied problem in probability theory and
statistics. The number of black balls in the set is a random
variable X that follows a hypergeometric distribution, where
the probability of X = i (i.e., having i black balls in the set) is

P(X = i) =

(k
i
) (N−k

n−i
)(N

n
) . (6)

It can be proved that the expected number of black balls is

E[X ] =

n∑
i=0

i · P(X = i) = n
k

N
. (7)

Intuitively, every draw chooses k
N black ball in expectation.

After n draws, n k
N black ball(s) will be chosen. For example,

in Figure 2, there are 10 balls in the list and the top-4 are
black. If randomly choosing 5 balls from the list, the expected
number of the black balls that are chosen is 5 × 4

10 = 2.

Breaking the Top-k Constraint.We apply the idea to our
problem. Recall that the benefit of an overflowing query
is defined as benefit(q) = |q(D) ∩ q(H)k |, where q(H)k
denotes the top-k records in q(H). We model q(H) as a list
of balls, q(H)k as black balls, q(D) − q(H)k as white balls,
and q(D) ∩ q(H) as a set of balls randomly drawn from
q(H). Then, estimating the benefit of a query is reduced
as estimating the number of black balls in draws. Based on
Equation 7, we have

E[benefit(q)] = n ·
k

N
= |q(D) ∩ q(H)| ·

k

|q(H)|
(8)

Figure 2: Analogy: breaking the top-k constraint.

The equation holds under the assumption thatq(D)∩q(H)

is a random sample ofq(H). Ifq(D)∩q(H) is a biased sample
(i.e., each black ball and white ball have different weights
to be sampled), the number of black balls in draws follow
Fisher’s noncentral hypergeometric distribution. Suppose the
probability of choosing each ball is proportional to its weight.
Let ω1 and ω2 denote the weights of each black and white
ball, respectively. Letω = ω1

ω2
denote the odds ratio. Then, the

expected number of black balls in draws can be represented
as a function of ω. As an analogy, a higher weight for black
balls means that top-k records are more likely to cover a local
table than non-top-k records. Since a local table is provided
by a user, it is hard for a user to specify the parameter ω,
thus we assume ω = 1 (i.e., q(D) ∩q(H) is a random sample
of q(H)) in the paper.
Estimators. Note that Equation 8 is not applicable in prac-
tice because q(H) and |q(D) ∩ q(H)| are unknown. We esti-
mate them based on the hidden database sample Hs .
For |q(H)|, which is the number of hidden records that

satisfy q, the unbiased estimator is.

|q(H)| ≈
|q(Hs )|

θ
. (9)

For |q(D)∩q(H)|, which is the number of hidden records
that satisfy q and are also in D, we have studied how to
estimate it in Section 5.2. The unbiased estimator (see Equa-
tion 3) is

|q(D) ∩ q(H)| ≈
|q(D) ∩ q(Hs )|

θ
(10)

The biased estimator (see Equation 5) is

|q(D) ∩ q(H)| ≈ |q(D)| (11)
By plugging Equations 9 and 10 into |q(D)∩q(H)| · k

|q(H)|
,

we obtain the first estimator for an overflowing query:

benefit(q) ≈ |q(D) ∩ q(Hs )| ·
k

|q(Hs )|
(12)

This estimator is derived from the ratio of two unbiased
estimators. Since E[XY ] ,

E[X ]

E(Y ) , Equation 12 is not an unbi-
ased estimator, but it is conditionally unbiased (Lemma 5.5).
For simplicity, we omit “conditionally” if the context is clear.

Lemma 5.5. Given an overflowing query q, if q(D)∩q(H)

is a random sample of q(H), then |q(D) ∩ q(Hs )| ·
k

|q(Hs ) |
is

a conditionally unbiased estimator of the true benefit given
|q(Hs )| regardless of the underlying ranking function.

Example 5.6. Recall that q3,q5,q6 are predicted as over-
flowing queries (Example 5.1). Table 4 illustrates how to
use the above unbiased estimator (Equation 12) to estimate
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their benefits. For q3, since q3(D) = {d3} and q3(Hs ) = {h3},
then we have |q3(D) ∩ q3(Hs )| = 1 and |q3(Hs )| = 1. By
plugging them into Equation 12, we have benefit(q3) ≈

|q3(D) ∩ q3(Hs )| ·
k

|q3(Hs ) |
= 1 · 2

1 = 2. Similarly, for q5,q6,
we have benefit(q5) ≈ |q5(D) ∩ q5(Hs )| ·

k
|q5(Hs ) |

= 1 · 22 = 1
and benefit(q6) ≈ |q6(D) ∩ q6(Hs )| ·

k
|q6(Hs ) |

= 1 · 2
1 = 2.

By plugging Equations 9 and 11 into |q(D)∩q(H)| · k
|q(H)|

,
we obtain another estimator:

benefit(q) ≈ |q(D)| ·
kθ

|q(Hs )|
(13)

This estimator is biased, where the bias is

bias = |q(∆D)| ·
k

|q(H)|
(14)

Lemma 5.7. Given an overflowing query q, if q(D)∩q(H)

is a random sample of q(H), then |q(D)| · kθ
|q(Hs ) |

is a biased
estimator where the bias is |q(∆D)| · k

|q(H)|
regardless of the

underlying ranking function.
As discussed in Section 5.2, q(∆D) is often very small in

practice. Since q is an overflowing query, then k
|q(H)|

< 1.
Hence, the bias of the estimator is small as well.
Example 5.8. Consider q3,q5,q6 again. Table 4 illustrates

how to use the above unbiased estimator (Equation 14) to
estimate their benefits. For q3, since q3(D) = {d3} and
|q3(Hs )| = {h3}, then we have |q3(D)| = 1 and |q(Hs )| = 1.
By plugging them into Equation 14, we have benefit(q3) ≈
|q3(D)| · kθ

|q3(Hs ) |
= 1 ·

2·1/3
1 = 2

3 . Similarly, for q5,q6, we
have benefit(q5) ≈ |q5(D)| · kθ

|q5(Hs ) |
= 3 ·

2·1/3
2 = 1 and

benefit(q6) ≈ |q6(D)| · kθ
|q6(Hs ) |

= 3 · 2·1/3
1 = 2.

Putting Everything Together (QSel-Est). We can now
put everything together. We call this new query selection
approach QSel-Est, which improves QSel-Simple using the
optimization techniques proposed in Sections 4 and 5. Exam-
ple 5.9 illustrates howQSel-Est (biased estimator) works. For
QSel-Est (unbiased estimator), the query-selection process
is similar. In Appendix B, we discuss some implementation
details, such as how to handles small sample size and how
to implement QSel-Est efficiently.

Example 5.9. Table 4 (the ‘Biased’ column) shows the esti-
mated benefits. Suppose b = 2. In the first iteration, QSel-
Est selects q6 which has the largest estimated benefit. The
returned result can cover two local records q6(D)cover =
{d1,d4}. QSel-Est removes the covered records from D and
re-estimates the benefit of each query w.r.t. the newD. In the
second iteration, QSel-Est selects q7 which has the largest
estimated benefit among the remaining queries. The returned
result can cover q7(D)cover = {d2,d3}. Since the budget is
exhausted, QSel-Est stops the iterative process and returns
the crawled hidden records {d1,d2,d3,d4}. We can see that
in this running example, QSel-Est gets the optimal solution.

Table 5: A summary of parameters

Parameters Domain Default

Hidden Database (H ) 100,000 100,000
Local Database (D) 1, 10, 102, 103, 104 10,000
Result# Limit (k) 1, 50, 100, 500 100
∆D = D −H [1000, 3000] 0
Budget (b) 1% - 20% of |D| 20% of |D|

Sample Ratio (θ ) 0.1% - 1% 0.5%
error% 0% - 50% 0%

6 EXPERIMENTS

We conduct extensive experiments to evaluate the perfor-
mance of SmartCrawl over simulated and real hidden
databases. We aim to examine five major questions: (1)
How well does SmartCrawl perform compared to Naive-
Crawl? (2) How well does QSel-Est perform compared
to QSel-Simple? (3) Which estimator (biased or unbiased)
is preferable? (4) Is SmartCrawl more robust to data er-
rors compared to NaiveCrawl? (5) Does SmartCrawl still
perform well over a hidden database with a conjunctive (non-
conjunctive) keyword-search interface?

6.1 Experimental Settings

We first provide the experimental settings of simulated and
real-world hidden databases, and then present the implemen-
tation of different crawling approaches.

6.1.1 Simulated Hidden Database. We designed a simu-
lated experiment based on DBLP4. The simulated scenario is
as follows. Suppose a data scientist collects a list of papers
in some domains (e.g., database, data mining, AI), and she
wants to know the BibTex URL of each paper from DBLP.
Local and Hidden Databases. The DBLP dataset has 5
million records.We construct a local database which contains
papers whose authors have published on top conference. We
first got the list of the authors who have published papers in
SIGMOD, VLDB, ICDE, CIKM, CIDR, KDD, WWW, AAAI,
NIPS, and IJCAI, and then collected their papers. We used
sampled data from this dataset as the local database. We
assumed that a local database D was randomly drawn from
the union of the publications of the authors. SinceD may not
be fully covered byH , we assumed that a hidden database
consists of two parts:H −D andH ∩D, whereH ∩D was
randomly drawn from D, and H −D was randomly drawn
from the entire DBLP dataset.
Keyword Search Interface.We implemented a search en-
gine over the hidden database. The search engine built an
inverted index on title, venue, and authors attributes (stop
wordswere removed). Given a query over the three attributes,
it ranked the publications that contain all the keywords of
the query by year, and returned the top-k records.

4http://dblp.dagstuhl.de/xml/release/
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Evaluation Metrics. We used coverage to measure the per-
formance of each approach, which is defined as the total num-
ber of local records that are covered by the hidden records
crawled. The relative coverage is the percentage of the local
records in D − ∆D that are covered by the hidden records
crawled.
Parameters. Table 5 summarized all the parameters as well
as their default values used in our paper. In addition to the pa-
rameters that have already been explained above, we added
a new parameter error% to evaluate the robustness of dif-
ferent approaches to data errors. Suppose error% = 10%. We
will randomly select 10% records from D. For each record,
we removed a word, added a new word, or replaced an ex-
isting word with a new word with the probability of 1/3,
respectively.

6.1.2 Real Hidden Database. We evaluated SmartCrawl
over the Yelp’s hidden database and the Spotify’s hidden
database, respectively. Note that Spotify Search API [8] uses
conjunctive keyword search but Yelp does not force queries
to be conjunctive [10]. This experiment aims to examine how
well SmartCrawl performs compared to baselines over real-
world hidden databases, with/without conjunctive-keyword-
search assumptions.
Local Database. We constructed a local database based on
the Yelp dataset5. The dataset contains 36,500 records in
Arizona, where each record describes a local business. We
randomly chose 3000 records as a local database.

We downloaded an Amazon Music dataset6 as a local data-
base for Spotify. The original dataset contains 55,959 song
tracks. We selected a subset of tracks from 12 popular artists
(Ed Sheeran, Taylor Swift, Beyonce, Kelly Clarkson, Elvis
Presley, Lady Gaga, Justin Bieber, Hilary Duff, Nelly Furtado,
Whitney Houston, Lana Del Rey, and U2). The size of the
local database is 2808.
Hidden Database.We treated all the Arizona’s local busi-
nesses in Yelp as our hidden database. Yelp provided a keyword-
search style interface to allow the public user to query its
hidden database. A query contains keyword and location
information. We used ‘AZ’ as location information, and thus
we only needed to generate keyword queries. For each API
call, Yelp returns the top-50 related results.
We treated all the music tracks in the Spotify database

as the hidden database. Unlike Yelp, Spotify provides a con-
junctive keyword search interface. It allows public users to
search over albums, tracks, artists information with keyword
queries. We used keywords from track titles for the query-
pool generation. We used their track search service. For each
API call, Spotify returns the top-50 results
Hidden Database Sample. We adopted an existing tech-
nique [47] to construct a hidden database sample along with
the sampling ratio. The technique needs an initialized query

5https://www.yelp.com/dataset_challenge
6https://sites.google.com/site/anhaidgroup/useful-stuff/data

pool. We extracted all the single keywords from the 36500
records as the query pool. A 0.2% sample with size 500 was
constructed by issuing 6483 queries.
We applied the same sampling approach to Spotify. We

used the keywords from the whole Amazon Music dataset
to initialize a query pool. A 0.25% sample with size 500 was
constructed by issuing 7017 queries.
EvaluationMetric.Wemanually labeled the data by search-
ing each local record over Yelp (Spotify) and identifying its
matching hidden record. Since entity resolution is an in-
dependent component of our framework, we assumed that
once a record is crawled, the entity resolution component can
perfectly find its matching local record (if any). Let Hcrawl
denote a set of crawled hidden records. We compared the
recall of different approaches, where the recall is defined as
the percentage of the matching record pairs between D and
Hcrawl out of all matching record pairs between D and H .

6.1.3 Implementation of Different Approaches. Naive-
Crawl. For DBLP dataset, NaiveCrawl concatenated the
title, venue, and author attributes of each local record as a
query and issued the queries to a hidden database in a ran-
dom order. For Yelp dataset, NaiveCrawl concatenated the
business name and city attributes.
HiddenCrawl. Deep web crawling has been extensively
studied in the literature [12, 26, 28, 30, 33, 35, 37, 38]. They
aim to crawl the hidden database data as more as possible
rather than cover the content relating to the local database.
We compared with the state-of-the-art approach (keyword-
search interface) HiddenCrawl [33]. To make the compar-
ison fairer, we assume that the hidden database sample is
available for HiddenCrawl so that it can leverage it to gen-
erate a query pool.
SmartCrawl-S, SmartCrawl-U, SmartCrawl-B.We
consider three variants of SmartCrawl. They adopted the
same query pool generation method (Section 3.1), but differ-
ent query selection strategies. SmartCrawl-S used QSel-
Simple, which issues queries only based on the query fre-
quency w.r.t. the local database (Algorithm 2). SmartCrawl-
U used QSel-Est (unbiased), which estimates query benefits
based on the unbiased estimator. SmartCrawl-B used QSel-
Est, which estimates query benefits based on the biased esti-
mator. Note that both SmartCrawl-U and SmartCrawl-B
implemented the optimization technique in Section 4.2 to
mitigate the negative impact of ∆D.
IdealCrawl. IdealCrawl used the same query pool as
SmartCrawl but select queries using the ideal greedy algo-
rithm QSel-Ideal (Algorithm 1) based on true benefits.

6.2 Simulation Experiments

We evaluated the performance of SmartCrawl and com-
pared it with the approaches mentioned above in a large
variety of situations.
Sampling Ratio.We first examine the impact of sampling
ratios on the performance of SmartCrawl. Figure 3 shows
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Figure 3: Comparisons of different approaches with various sampling ratios θ (DBLP).
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Figure 4: Comparisons of different approaches with various local database size |D| (DBLP).
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Figure 6: Comparisons of different approaches with various |∆D| size (DBLP).

the result. In Figure 3(a), we set the sampling ratio to 0.2%,
leading to the sample size of 100, 000 × 0.2% = 200. We can
see that with such a small sample, SmartCrawl-B still had
a similar performance with IdealCrawl and covered about
2× more records than HiddenCrawl and about 4× more
records than NaiveCrawl.

We found that SmartCrawl-B outperformed SmartCrawl-
S. This shows that the biased estimator is very effective; but
for SmartCrawl-S, since it only considered the query fre-
quency w.r.t. the local database, it tended to issue many
overflowing queries which have low benefits.

Furthermore, we can see that SmartCrawl-U did not have
a good performance on such a small sample, even worse
than HiddenCrawl. In fact, we found that SmartCrawl-
U tended to select queries randomly because many queries

had the same benefit values. This phenomenon was further
manifested in Figure 3(b), which increased the sampling ratio
to 1%. In Figure 3(c), we set the budget to 2000, varied the
sampling ratio from 0.1% (sample size=100) to 1% (sample
size=1000), and compared the number of covered records of
each approach. We can see that as the sampling ratio was
increased to 1%, SmartCrawl-B is very close to IdealCrawl,
where IdealCrawl covered 92% of the local database while
SmartCrawl covered 89%.

In summary, this experimental result shows that (1) biased
estimators are muchmore effective than unbiased estimators;
(2) biased estimators work well even with a very small sam-
pling ratio 0.1%; (3) SmartCrawl-B outperformed Hidden-
Crawl and NaiveCrawl by a factor of 2 and 4, respectively;
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Figure 7: Comparing the robustness of SmartCrawl-

B and NaiveCrawl (DBLP).

(4) SmartCrawl-B outperformed SmartCrawl-S due to the
proposed optimization techniques.
Local Database Size. The main reason that HiddenCrawl
performed so well in the previous experiment is that the
local database D is relatively large compared to the hid-
den database ( |D |

|H |
= 10%). In this experiment, we varied

the local database size and examined how this affected the
performance of each approach.

Figure 4(a) shows the result when |D| has only 100 records.
We can see that HiddenCrawl only covered 2 records af-
ter issuing 50 queries, while the other approaches (except
SmartCrawl-S) all covered 39 more records. SmartCrawl-
S also did not perform well either since it did not consider
the top-k constraint and selected many overflowing queries.
Another interesting observation is that even for such a small
local database, SmartCrawl-B can still outperform Naive-
Crawl due to the accurate benefit estimation as well as the
selection of more general queries (e.g., “SIGMOD”).
Figure 4(b) shows the result for |D | = 1000. We can see

that HiddenCrawl performed marginally better than before
but still worse than the alternative approaches. We varied the
local database size |D| from 10 to 10000, and set the budget
to 20% of |D|.
The comparison of the relative coverage of different ap-

proaches is shown in Figure 4(c). We can see that as |D|

increased, all the approaches except NaiveCrawl showed
improved performance. This is because the larger |D| is, the
more local records an issued query can cover. But for Naive-
Crawl, its performance remained the same. The reason is
that NaiveCrawl issued overly specific queries. With the
same query budget b, it covered b local records regardless of
whether |D| increased or not.
Result Number Limit. Next, we investigate the impact of
k on different approaches.

Figure 5(a) shows the result when k = 50. In this case,
SmartCrawl-B can cover about 3.5 times more records
than NaiveCrawl after issuing 2000 queries. In other words,
for SmartCrawl-B, each query covered 3.5 local records
on average while NaiveCrawl only covered one record
per query. When we increased k to 500 (Figure 5(b)), we
found that SmartCrawl-B covered 99% of the local database
(|D| = 10000) with only 1400 queries while NaiveCrawl
can only cover 14% of the local database.
Figure 5(c) compared different approaches by varying k .

We can see that IdealCrawl, SmartCrawl-B, and Naive-
Crawl achieved the same performance when k = 1, while
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Figure 8: Comparisons of SmartCrawl-B, Naive-

Crawl, and HiddenCrawl (Spotify).

HiddenCrawl and SmartCrawl-S can hardly cover any
records. As k increased, NaiveCrawl kept unchanged be-
cause it covered one local record at a time regardless of
k , while the other approaches all got the performance im-
proved. The performance gap between SmartCrawl-B and
SmartCrawl-S got smaller as k grew. This is because
SmartCrawl-S ignored the top-k constraint. As k grows,
the impact of the ignorance of the top-k constraint will be
reduced.
Impact of |∆D|.We explore the impact of |∆D| on different
approaches. Figure 6(a), (b), (c) show the results when |∆D|

is 5%, 20%, and 30% of |∆D|. We can see that increasing |∆D|

will make all approaches perform less effectively. However,
SmartCrawl-B still outperformed all the other approaches
since it mitigated the negative impact of |∆D| and considered
the top-k constraint.
Robustness to Data Errors.We compared SmartCrawl-B
with NaiveCrawl when the local database contains data
errors. Figure 7(a),(b) show the results for the cases when
adding 5% and 50% data errors to the local databases, respec-
tively. We find that SmartCrawl-B is more robust to data
errors. For example, in the case of error% = 5%, SmartCrawl-
B and NaiveCrawl can use 2000 queries to cover 8775 and
1914 local records, respectively. When error% was increased
to 50%, SmartCrawl-B can still cover 8463 local records
(only missing 3.5% compared to the previous case) while
NaiveCrawl can only cover 1031 local records (46% less
than the previous case). This is because that the queries se-
lected by NaiveCrawl typically contain more keywords.
The more keywords a query contains, the more likely it will
be affected by data errors. We have also observed this inter-
esting phenomenon in the next section.

6.3 Real-world Hidden Databases

We evaluate the performance of SmartCrawl using real-
world hidden databases, Spotify and Yelp, where Spotify uses
a conjunctive keyword search interface, but Yelp’s keyword
search interface may return the hidden records that partially
match the query.
We first compare the performance of SmartCrawl-B,

NaiveCrawl, and HiddenCrawl over the Spotify hid-
den database. Figure 9 shows the recall of each approach
by varying the budget from 200 to 2000. We can see
that SmartCrawl-b achieved the best recall among the
three approaches. This further validate the effectiveness of
SmartCrawl-b in a real-world hidden database.
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So far, we have evaluated the performance of
SmartCrawl under the conjunctive keyword-search
assumption. One natural question is that how well
SmartCrawl would perform without the assumption. To
answer this question, we compare the performance of
SmartCrawl-B, NaiveCrawl, and HiddenCrawl on the
Yelp dataset. We have three observations from the figure.
Firstly, SmartCrawl-B can achieve the recall above 80% by
issuing 1800 queries while NaiveCrawl only achieved a
recall of 60%. This shows that for a real-life hidden database,
it is still the case that only issuing very specific queries
is less effective than issuing both specific and general
queries. Secondly, HiddenCrawl performed poorly on this
dataset because the local database |D| is small. This further
validated that the ineffective of existing deep web crawling
techniques. Thirdly, NaiveCrawl got a recall smaller than
SmartCrawl-B even after issuing all the queries (one for
each local record). This is because NaiveCrawl is not as
robust as SmartCrawl-B to tolerate data errors.

7 RELATEDWORK

Deep Web. There are three lines of work about deep web
related to our problem: deep web crawling [12, 26, 28, 30, 33,
35, 37, 38], deep web integration [15, 25, 31, 44], and deep
web sampling [13, 17–20, 27, 41, 47, 48].

Deep web crawling studies how to crawl a hidden database
through the database’s restrictive query interface. The main
challenge is how to automatically generate a (minimum) set
of queries for a query interface such that the retrieved data
can have good coverage of the underlying database. Along
this line of research, various types of query interfaces were
investigated, such as keyword search interface [12, 26, 33]
and form-like search interface [28, 30, 35, 37, 38]. Unlike
these work, our goal is to have a good coverage of a local
database rather than the underlying hidden database.

Deep web integration [15, 25, 31, 44] studies how to inte-
grate a number of deep web sources and provide a unified
query interface to search the information over them. Dif-
ferently, our work aims to match a hidden database with
a collection of records rather than a single one. As shown
in our experiments, the NaiveCrawl solution that issues
queries to cover one record at a time is highly ineffective.

Deep web sampling studies how to create a random sam-
ple of a hidden database using keyword-search interfaces [13,
47, 48] or form-like interfaces [17, 17, 41]. In this paper, we

treat deep web sampling as an orthogonal problem and as-
sume that a random sample is given. It would be a very
interesting line of future work to investigate how sampling
and SmartCrawl can enhance each other.
Data Enrichment. There are some works on data enrich-
ment with web table [14, 22, 23, 29, 34, 45, 46], which study
how to match with a large number (millions) of small web
tables. In contrast, our work aims to match with one hidden
database with a large number (millions) of records. Knowl-
edge fusion studies how to enrich a knowledge base using
Web content (e.g., Web Tables, Web pages) [21]. They as-
sume that all the Web content have been crawled rather than
study how to crawl a deep website progressively. There are
also some works on entity set completion [36, 39, 40, 43, 49].
Unlike our work, they aim to enrich data with new rows
(rather than new columns). We plan to extend SmartCrawl
to support this scenario in the future.
Blocking Techniques in ER. There are many blocking
techniques in ER, which study how to partition data into
small blocks such that matching records can fall into the
same block [16]. CrawlEnrich is similar in spirit to this prob-
lem by thinking of a top-k query result as a block. However,
existing blocking techniques are not applicable because they
do not consider the situation when a database can only be
accessed via a restrictive query interface.

8 CONCLUSION

This paper studied a novel problem called CrawlEnrich. We
proposed the SmartCrawl framework, which progressively
selects a set of queries to maximize the local database cov-
erage. The key challenge is how to select the best query
at each iteration. We started with a simple query selection
algorithm called QSel-Simple, and found it ineffective be-
cause it ignored two key factors: the impact of ∆D and the
top-k constraint. We theoretically analyzed the negative im-
pacts of these factors, and proposed a new query selection
algorithm called QSel-Est. Our detailed experimental evalu-
ation has shown that (2) the biased estimators are superior to
the unbiased estimators; (1) QSel-Est is more effective than
QSel-Simple in various situations; (3) SmartCrawl can sig-
nificantly outperform NaiveCrawl and HiddenCrawl over
both simulated and real hidden databases; (4) SmartCrawl
is more robust than NaiveCrawl to data errors.

This paper has shown that it is a promising idea to lever-
age the deep web for data enrichment. There are many in-
teresting problems that can be studied in the future. First,
the proposed estimators require a hidden database sample
to be created upfront. For example, how to create a sam-
ple at runtime such that the upfront cost can be amortized
over time. Second, we would like to extend SmartCrawl
by supporting not only keyword-search interfaces but also
other popular query interfaces such as form-based search
and graph-browsing. Third, we want to study how to crawl
a hidden database for other purposes such as data cleaning
and row population.
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APPENDIX

A PROOFS

Proof of Lemma 3.4

In order to prove that QSel-Ideal and QSel-Est are equiv-
alent, we only need to prove that Algorithm 1 (Line 3) and
Algorithm 2 (Lines 2-6). Since Q only contains solid queries,
there is no need to predict whether a query is solid or over-
flowing, thus we only need to prove that Algorithm 1 (Line
3) and Algorithm 2 (Line 3) set the same value to benefit(q)
when q is solid.

For Algorithm 1 (Line 3), it sets benefit(q) = |q(D)cover |.
For Algorithm 2 (Line 3), it sets benefit(q) = |q(D)| =

|q(D)cover |+|q(∆D)|. SinceD ⊆ H , thenwe have |q(∆D)| =

0. Thus, the above two equations are equal. Hence, the lemma
is proved.

Proof of Lemma 4.2

Part I.Weprove by induction that the first
(
b−|∆D|

)
queries

selected by QSel-Ideal must be selected by QSel-Bound,
i.e.,

{qi | 1 ≤ i ≤ b − |∆D|} ⊆ Q ′
sel .

Basis: Obviously, the statement holds for b ≤ |∆D|.
Inductive Step: Assuming that the statement holds for b = k ,
we next prove that it holds for b = k + 1.

Consider the first selected query q′1 in Q ′
sel. There are two

situations about q′1.
(1) If benefit(q′1) = |q′1(D)|, thenwe have |q′1(D)| = |q′1(D)cover |.

Since q′1 is the first query selected from the query pool by
QSel-Bound, then we have

q′1 = argmax
q∈Q

|q(D)|.

Since |q′1(D)| = |q′1(D)cover |, and |q(D)| ≥ |q(D)cover | for
all q ∈ Q, we deduce that

q′1 = argmax
q∈Q

|q(D)cover | = argmax
q∈Q

benefit(q).

Since q1 = argmaxq∈Q benefit(q), then we have q′1 = q1 in
this situation. Since the budget is now decreased to k , based
on the induction hypothesis, we can prove that the lemma
holds.
(2) If benefit(q′1) , |q′1(D)|, since b ≥ |∆D| and each

q′ ∈ Q ′
sel can cover at most one uncovered local record in

∆D, there must exist q′ ∈ Q ′
sel that does not cover any

uncovered local record in ∆D. Let q′i denote the first of such
queries. We next prove that q′i = q1.
Let Di denote the local database at the i-th iteration of

QSel-Bound. For any query selected before q′i , they only
remove the records in ∆D and keep D − ∆D unchanged,
thus we have that

Di − ∆D = D − ∆D . (15)
Based on Equation 15, we can deduce that ,

|q(Di )cover | = |q(D)cover | for any q ∈ Q. (16)

Since q′i has the largest estimated benefit, we have

q′i = argmax
q∈Q

|q(Di )|. (17)

Because q′i does not cover any uncovered record in ∆D, we
can deduce that

|q′i (Di )| = |q′i (Di )cover |. (18)

For any query q ∈ Q, we have

|q(Di )| ≥ |q(Di )cover |. (19)

By plugging Equations 18 and 19 into Equation 17, we obtain

q′i = argmax
q∈Q

|q(Di )cover |. (20)

By plugging Equation 16 into Equation 20, we obtain

q′i = argmax
q∈Q

|q(D)cover | = argmax
q∈Q

benefit(q).

Since q1 = argmaxq∈Q benefit(q), then we have q′i = q1 in
this situation. As the budget is now decreased to k , based
on the induction hypothesis, we can prove that the lemma
holds.
Since both the basis and the inductive step have been

performed, by mathematical induction, the statement holds
for b.
Part II. We prove by contradiction that the first

(
b − |∆D|

)
queries selected by QSel-Ideal can cover at least (1− |∆D |

b ) ·

Nideal local records. Assume this it not correct. Let N1 denote
the number of local records covered by the first

(
b − |∆D|

)
queries, and N2 denote the number of local records covered
by the remaining |∆D| queries. Then, we have

N1 < (1 −
|∆D|

b
) · Nideal. (21)

N1 + N2 = Nideal (22)
We next prove that these two equations cannot hold at the
same time. For QSel-Ideal, the queries are selected in the
decreasing order of true benefits, thus we have

N1

b − ∆D
≥

N2

∆D
. (23)

By plugging Equation 22 into Equation 23, we obtain
N1

b − ∆D
≥

Nideal − N1

∆D

Algebraically:

N1 ≥ (1 −
|∆D|

b
) · Nideal,

which contradicts Equation 21. Thus, the assumption is false,
and the first

(
b − |∆D|

)
queries selected by QSel-Ideal

can cover at least (1 −
|∆D |

b ) · Nideal local records. Based
on the proof in Part I, since QSel-Bound will also select
these queries, the lemma is proved.
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Proof of Lemma 5.2

Let A = q(D) ∩ q(H) ⊆ H . The indicator function of a
subset A of H is defined as

1A(h) =

{
1, if h ∈ A

0, otherwise

The expected value of the estimated benefit is:

E
[q(D) ∩ q(Hs )

θ

]
= E

[∑
h∈Hs

1A(h)

θ

]
= |H | · E

[ 1
|Hs |

∑
h∈Hs

1A(h)
]

Since sample mean is an unbiased estimator of population
mean, then we have

E
[ 1
|Hs |

∑
h∈Hs

1A(h)
]
=

1
|H |

∑
h∈H

1A(h)

By combing the two equations, we finally get

E
[q(D) ∩ q(Hs )

θ

]
= |H | ·

1
|H |

∑
h∈H

1A(h) =
∑
h∈H

1A(h)

= |A| = |q(D) ∩ q(H)|

Since q is a solid query, we have the true benefit of the query
is:

benefit(q) = |q(D) ∩ q(H)|.

We can see that the estimator’s expected value is equal to
the true benefit, thus the estimator is unbiased.

Proof of Lemma 5.5

Since |q(Hs )| is given, it can be treated as a constant value.
Thus, we have

E
[
|q(D) ∩ q(Hs )| ·

k

|q(Hs )|

]
=

k

|q(Hs )|
· E

[
|q(D) ∩ q(Hs )|

]
(24)

Based on Lemma 5.2, we obtain

E
[
|q(D) ∩ q(Hs )|

]
= θ |q(D) ∩ q(H)| (25)

By plugging Equation 26 into Equation 24, we have that
the expected value of our estimator is:

kθ

|q(Hs )|
|q(D) ∩ q(H)| =

k

|q(H)|
|q(D) ∩ q(H)|, (26)

which is equal to the true benefit when q(D) ∩ q(H) is a
random sample of q(H) (See Equation 8).

Proof of Lemma 5.7

The expected value of the estimator is

E
[
|q(D)| ·

kθ

|q(Hs )|
] = kθ · |q(D)| ·

1
E[|q(Hs )|]

= kθ · |q(D)| ·
1

|q(H)|θ
=
k · |q(D)|

|q(H)|

Therefore, the bias of the estimator is:

Figure 10: An illustration of the indexing techniques

for efficient implementations of our estimators.

bias =
k · |q(D)|

|q(H)|
− |q(D) ∩ q(H)| ·

k

|q(H)|

= |q(∆D)| ·
k

|q(H)|
(27)

B IMPLEMENTATION DETAILS

This section presents implementation details of QSel-Est.
We first discuss how to handle small sample size in Sec-
tion B.1, and then propose efficient techniques to implement
QSel-Est in Section B.2.

B.1 Inadequate Sample Size

The performance of QSel-Est depends on the size of a hid-
den database sample. If the sample size is not large enough,
some queries in the pool may not appear in the sample, i.e.,
|q(Hs )| = 0, thus the sample is not useful for these queries.
To address this issue, we model the local database as another
random sample of the hidden database, where the sampling
ratio is denoted by α = θ |D |

|Hs |
, and use this idea to predict the

query type (solid or overflowing) and estimate the benefit of
these queries.
• Query Type. For the querieswith |q(Hs )| = 0, since |q(Hs ) |

θ =

0 ≤ k , the current QSel-Est will always predict them as
solid queries. With the idea of treatingD as a random sam-
ple, QSel-Est will continue to check whether |q(D) |

α > k
holds. If yes, QSel-Est will predict q as an overflowing
query instead.

• Query Benefit. For the queries with |q(Hs )| = 0, as shown
in Table 3, the estimator |q(D)| · kθ

|q(Hs ) |
will not work since

|q(Hs )| appears in the denominator. By using the same
idea as above, QSel-Est replaces Hs and θ with D and α ,
respectively, and obtains the estimator, kα , to deal with
the special case.

B.2 Efficient Implementation

This section discusses how to implement QSel-Est efficiently.
How to compute |q(D)| efficiently? We build an inverted

index on D to compute |q(D)| efficiently. Given a query q,
to compute |q(D)|, we first find the inverted list of each key-
word in the query, and then get the intersection of the lists,
i.e., |q(D)| = |

⋂
w ∈q I (w)|. Figure 10(a) shows the inverted

index built on the local database of the running example.
Given the query q7 = “Noodle House", we get the inverted
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lists I (Noodle) = {d1,d4} and I (House) = {d1,d3,d4}, and
then compute q3(D) = I (Noodle) ∩ I (House) = {d1,d4}.

How to update |q(D)| efficiently?We build a forward in-
dex onD to update |q(D)| efficiently. A forward index maps
a local record to all the queries that the record satisfies. Such
a list is called a forward list. To build the index, we initialize
a hash map F and let F (d) denote the forward list for d . For
each query q ∈ Q, we enumerate each record d ∈ q(D)

and add q into F (d). For example, Figure 10(b) illustrates the
forward index built on the local database in our running
example. Suppose d3 is removed. Since F (d3) = {q3,q5,q6}
contains all the queries thatd3 satisfies, only {q3,q5,q6} need
to be updated.
How to select the largest |q(D)| efficiently? QSel-Est
iteratively selects the query with the largest |q(D)| from a
query pool, i.e., q∗ = argmaxq∈Q |q(D)|. Note that |q(D)| is
computed based on the up-to-date D (that needs to remove
the covered records after each iteration).

We propose an on-demand updating mechanism to reduce
the cost. The basic idea is to update |q(D)| in-place only
when the query has a chance to be selected. We use a hash
map U , called delta-update index, to maintain the update
information of each query. Figure 10(c) illustrates the delta-
update index. For example,U (q) = 1means that |q(D)| should
be decremented by one.

Initially, QSel-Est creates a priority queue P for the query
pool, where the priority of each query is the estimated ben-
efit, i.e., P(q) = |q(D)|. Figure 10(c) illustrates the priority
queue.

In the 1st iteration, QSel-Est pops the top query q∗1 from
the priority queue and treats it as the first query that needs
to be selected. Then, it stores the update information intoU
rather than update the priority of each query in-place in the
priority queue. For example, in Figure 10(c), suppose q5 is
popped. Since q5 can cover d3, then d3 will be removed from
D. We get the forward list F (d3) = {q3,q5,q6}, and then set
U (q3) = 1,U (q5) = 1, andU (q6) = 1.

In the 2nd iteration, it pops the top query q∗2 from the
priority queue. But this time, the query may not be the one
with the largest estimated benefit. We consider two cases
about the query:

(1) If U (q∗2) = 0, then q∗ does not need to be updated, thus
q∗ mush have the largest estimated benefit. QSel-Est
returns q∗2 as the second query that needs to be selected;

(2) If U (q∗2) , 0, we update the priority of q∗2 by inserting q∗2
with the priority of P(q∗2) −U (q∗2) into the priority queue,
and setU (q∗2) = 0.

If it is Case (2), QSel-Est will continue to pop the top queries
from the priority queue until Case (1) holds.

In the remaining iterations, QSel-Est will follow the same
procedure as the 2nd iteration until the budget is exhausted.
Algorithm 4 depicts the pseudo-code of our efficient im-

plementation of QSel-Est.

Algorithm 4: QSel-Est Algorithm (Biased Estimators)
Input: Q,D,H ,Hs ,θ ,b,k
Result: Iteratively select the query with the largest estimated

benefit.
1 Build inverted indices I1 and I2 based on D andHs ,

respectively;
2 for each q ∈ Q do

3 |q(D)| = | ∩w ∈q I1(w)|; |q(Hs )| = | ∩w ∈q I2(w)|;
4 end

5 Initialize a forward index F , where F (d) = ϕ for each d ∈ D;
6 for each q ∈ Q do

7 for each d ∈ q(D) do

8 Add q into F (d);
9 end

10 end

11 Let P denote an empty priority queue;
12 for each q ∈ Q do

13 if
|q(Hs ) |

θ ≤ k then P .push(
〈
q, |q(D)|

〉
) ;

14 else P .push(
〈
q, |q(D)| · kθ

|q(Hs ) |

〉
) ;

15 end

16 Initialize a hash mapU , whereU (q) = 0 for each q ∈ Q;
17 while b > 0 and D , ϕ do

18

〈
q∗, old_priority

〉
= P.pop();

19 if |U (q∗)| ! = 0 then
20 if

|q∗(Hs ) |

θ ≤ k then

21 new_priority = |q∗(D)| − |U (q∗)|

22 else

23 new_priority =
(
|q∗(D)| − |U (q∗)|

)
· kθ
|q∗(Hs ) |

24 end

25 P .push(
〈
q, new_priority

〉
); |U (q∗)| = 0 ;

26 continue;
27 end

28 Issue q∗ to the hidden database, and then get the result
q∗(H)k ;

29 if q∗ is a solid query then Dremoved = q∗(D) ;
30 else Dremoved = q∗(D)cover ;
31 for each d ∈ D

removed
do

32 for each q ∈ F (d) do
33 U (q) + = 1;
34 end

35 end

36 D = D − Dremoved; Q = Q − {q}; b = b − 1;
37 end

At the initialization stage (Lines 1-15), QSel-Est needs to
(1) create two inverted indices based on D and Hs with the
time complexity of O

(
|D||d | + |Hs | |h |

)
; (2) create a forward

index with the time complexity of O(|Q||q(D)|); (3) create a
priority queue with the time complexity of O(|Q| log(|Q|));
(4) compute the query frequency w.r.t. D and Hs with the
time complexity of O

(
costq · |Q|

)
, where costq denotes the

average cost of using the inverted index to compute |q(D)|
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and |q(Hs )|, which is much smaller than the brute-force
approach (i.e., costq ≪ |D||q | + |Hs | |q |).

At the iteration stage (Lines 16-37), QSel-Est needs to (1)
selectb queries from the query pool with the time complexity
of O

(
b · t · log |Q|

)
, where t denotes the average number of

times that Case Two (Line 19) happens over all iterations;
(2) apply on-demand updating mechanism to each removed
record with the total time complexity of O

(
|D||F (d)|), where

|F (d)| denotes the average number of queries that can cover
d , which is much smaller than |Q|.

By adding up the time complexity of each step, we can see
that our efficient implementation of QSel-Est can be orders
of magnitude faster than the naive implementation.
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