
AQP++: Connecting ApproximateQuery Processing With
Aggregate Precomputation for Interactive Analytics

Jinglin Peng
♢

Dongxiang Zhang
♢†

Jiannan Wang
♢

Jian Pei
¶♢

Simon Fraser University
♢

National University of Defense Technology
†

JD.com
¶

{jinglin_peng, jnwang, jpei}@sfu.ca zhangdongxiang12@nudt.edu.cn

ABSTRACT
Interactive analytics requires database systems to be able to an-

swer aggregation queries within interactive response times. As the

amount of data is continuously growing at an unprecedented rate,

this is becoming increasingly challenging. In the past, the database

community has proposed two separate ideas, sampling-based ap-

proximate query processing (AQP) and aggregate precomputation

(AggPre) such as data cubes, to address this challenge. In this paper,

we argue for the need to connect these two separate ideas for inter-

active analytics. We propose AQP++, a novel framework to enable

the connection. The framework can leverage both a sample as well

as a precomputed aggregate to answer user queries. We discuss the

advantages of having such a unified framework and identify new

challenges to fulfill this vision. We conduct an in-depth study of

these challenges for range queries and explore both optimal and

heuristic solutions to address them. Our experiments using two

public benchmarks and one real-world dataset show that AQP++
achieves a more flexible and better trade-off among preprocessing

cost, query response time, and answer quality than AQP or AggPre.

1 INTRODUCTION
Data analytics is essential to enable data-driven decision making.

Batch analytics is often run offline and may take several hours or

even days to generate results. In comparison, interactive analytics

aims to answer queries within interactive response times (e.g., less

than 1s depending on a user’s tolerance for waiting time), allowing

human analysts to rapidly iterate between hypotheses and evidence.

In this paper, we focus on interactive analytics. Specifically, we aim

to enable database systems to answer aggregation queries on large-

scale datasets interactively.

Due to the high demand for human-in-the-loop data analytics,

interactive analytics was recently attracted a lot of attentions [54].

One way to achieve interactive analytics is to build a fast query

engine using modern database techniques [7, 43, 48, 67]. As the

amount of data continues to grow at an unprecedented pace, this is

becoming increasingly challenging. Complementary to building a

Acknowledgements.We thank Liwen Sun and Bolin Ding for their comments on the

paper. This work was supported in part by the NSERC Discovery Grant program, the

Canada Research Chair program, the NSERC Strategic Grant program, the NSERC CRD

Grant program, the NSERC Engage Grant program, and an SFU Presidents Research

Start-up Grant. All opinions, findings, conclusions and recommendations in this paper

are those of the authors and do not necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183747

fast query engine, another way is to avoid scanning all of the data

associated with a query [9]. In the past, two separate ideas have
been proposed by database community to achieve this goal.

One is sampling-based approximate query processing (AQP) [4, 6,
15, 56]), which creates a random sample of data and uses the sample

to estimate query results. The other is aggregate precomputation
(AggPre) such as data cubes [30, 32, 34, 53], which precomputes the

answers to some aggregation queries and then uses the precom-

puted aggregates to speed up query performance. In comparison,

although both approaches can answer queries fast, they achieve the

goal via different trade-offs. Essentially, AQP varies sample size to

balance the trade-off between answer quality and query response

time; AggPre varies the size of precomputed aggregates to balance

the trade-off between preprocessing cost (i.e., the time and space

used to calculate and store aggregates) and query response time.

AQP has been extensively studied in the past [3, 4, 13, 15, 27, 29,

33, 37, 56, 57] and there has been a resurgence of interest in recent

years [5, 6, 17, 19, 24, 42, 44, 45, 45, 52, 55, 59, 69, 71, 72]. However,

to the best of our knowledge, none of existing AQPwork has sought
for a general framework to connect AQP with AggPre (see Section 2

for a detailed comparison).

There are (at least) two strong motivations for building such a

connection. Firstly, it is often the case that a data warehouse has

already precomputed the answers to a large number of aggregation

queries (e.g., data cubes). Suppose one wants to apply AQP to the

data warehouse in order to reduce the query response time.Without

building the connection with AggPre, AQP will miss the opportunity

to leverage the (free) precomputed aggregates to improve its query

performance. Secondly, as mentioned above, AQP and AggPre imple-

ment interactive analytic through different trade-offs (i.e., answer

quality vs. response time, preprocessing cost vs. response time).

Connecting AQP with AggPre will allow a more flexible and better

trade-off between preprocessing cost, query response time, and

answer quality, and thus is more likely to satisfy user needs.

To this end, we propose AQP++1, a general framework to connect

AQP with AggPre for interactive analytics. The key idea of AQP++
is that, unlike AQP that uses a sample to directly estimate a query

result, it uses a sample to estimate the difference of the query result

from a precomputed aggregate. Consider a simple example. Suppose

we want to estimate the answer to the following query q.

q (D): SELECT SUM(A) FROM D WHERE 1 < C < 10.

Suppose the answer to the following aggregate query, pre , has
been precomputed.

pre (D): SELECT SUM(A) FROM D WHERE 2 < C < 10.

To estimate q(D), AQP++ first uses a sample to estimate the

difference of q(D) from pre (D), i.e.,

q (D)-pre (D): SELECT SUM(A) FROM D WHERE 1 < C ≤ 2.

Then, it adds the estimated difference to the known pre (D) to
obtain the estimation of q(D).

1
AQP++ is open-sourced at https://github.com/sfu-db/aqppp

https://doi.org/10.1145/3183713.3183747
https://github.com/sfu-db/aqppp

We find that AQP++ framework is very general because (1) it

works for a wide range of aggregate functions such as SUM, COUNT,

AVG, and VAR; and (2) it can be easily extended to support many

optimization techniques (that were originally proposed for AQP)
such as stratified sampling [3, 6, 8, 13–15, 27, 66] and outlier in-

dexing [13]. Furthermore, for any aggregation query, if AQP can

estimate its result unbiasedly, AQP++ can return an unbiased esti-

mate as well. That is, in expectation the estimated value is equal to

the true value.

To quantify the uncertainty of an estimated answer, we inves-

tigate how AQP++ can compute a confidence interval, and demon-

strate analytically and empirically when AQP++ can return a tighter

confidence interval (i.e., a more accurate answer) than AQP. Specif-
ically, we treat the estimated answers to a user query and a pre-

computed query as two random variables. We find that the more

correlated the two random variables are, the more accurate answer

AQP++ can return. In an extreme case, if a user query and a precom-

puted query are identical, which has a correlation coefficient of 1,

AQP++ will return the exact answer.

To examine whether AQP++ can achieve a better trade-off among

preprocessing cost, response time, and answer quality compared

to AQP or AggPre alternatives, we conduct an in-depth study of

AQP++ for range queries. A range query applies an aggregation

operation over all records that are selected by a conjunction of

range conditions. We choose this form of queries because (1) it

is one important class of queries for analytical workloads, and

(1) it can not only be well supported by AQP but also has been

extensively studied in the AggPre literature [12, 21, 28, 34, 47]. The
study requires solving two challenging problems.

• Aggregate Identification. Given a user query, there might be a

large number of precomputed aggregate values available. How

should we quickly identify the best one for the query?

• Aggregate Precomputation. Precomputing all possible aggregate

values is prohibitively expensive. Given a space budget, how

should we decide which aggregate values to be precomputed?

We use a simple example to illustrate the challenges of the two

problems as well as our contributions made to address them. Sup-

pose a user wants to interactively issue a query in following form:

SELECT SUM(A) FROM D WHERE x ≤ C ≤ y

where x ,y = 1, 2, · · · , 100. An efficient AggPre approach is to

precompute a prefix cube [34]. In this example, the (1-dimensional)

prefix cube consists of 100 cells:

SELECT SUM(A) FROM D WHERE C ≤ t

where t = 1, 2, · · · , 100. Once the cube is created, it is easy to see

that any user query can be answered by accessing at most 2 cells

in the cube. Since there are
101·100

2
= 5050 different user queries,

the precomputed cube (with only 100 cells) can be thought of as

containing 5050 aggregate values.

Let us first consider the aggregate-identification problem. Sup-

pose that, due to the space constraint, only 10 cells (e.g., t =
10, 20, · · · , 100) in the cube can be stored. In this situation, the

cube contains
11·10

2
= 55 aggregate values. Given a query, e.g.,

SELECT SUM(A) FROM D WHERE 15 ≤ C ≤ 41,

AQP++ needs to decide which one of the following 55 precomputed

values should be used to estimate the answer to the above query.

SELECT SUM(A) FROM D WHERE x ≤ C ≤ y

where x ,y = 10, 20, · · · , 100.

Since the query’s answer quality highly depends on the identified

value, the decision has to be made carefully. But, we cannot afford

trying out all aggregate values as it will increase query processing

time significantly. To this end, we propose an efficient aggregate-

identification approach. The key idea is to quickly identify a small

number of aggregate values whose corresponding queries look

similar to the user query and then examine which one is the best

only among them. We prove the optimality of this approach under

certain assumptions and show that it achieves good performance

empirically in the general setting.

Next, let us turn to the aggregate-precomputation problem. Sup-

pose the space budget is only available for creating a prefix cube

with 10 cells. Our goal is to decide which 10 out of 100 cells should

be selected to precompute. Note that there are

(
100

10

)
different ways

to select the 10 cells, so a brute-force search will not work. We

formally define the problem in the paper, and find that an equal-
partition scheme (i.e., t = 10, 20, · · · , 100) is not always optimal. To

solve the problem, we find that two factors, attribute correlation

and data distribution, may affect the cell-selection decision. We

first prove that if attributes A and C are independent, and C has no

duplicate values, the equal-partition scheme is optimal. The theo-

retical result guides us to develop a hill-climbing based heuristic

approach that can adjust the partition scheme adaptively based on

the actual attribute correlation and data distribution.

Please note that the above simple example only demonstrates

the challenges for one-dimensional range queries (i.e., with a single

range condition). There are many other challenges involved when

dealing with multidimensional cases. In the paper, we discuss these

challenges in detail and propose effective approaches to them.

In summary, our paper makes the following contributions:

• Weargue that the two separate ideas for interactive analytics, AQP
and AggPre, should be connected together, and propose AQP++,
the first general framework to enable the connection.

• We conduct an in-depth study of AQP++ for range queries, and
formalize two challenging problems in the study: aggregate iden-

tification and aggregation precomputation.

• We develop an efficient aggregate-identification approach and

show effectiveness of the approach analytically and empirically.

• We identify two important factors that affect the solution to the

aggregation-precomputation problem. We prove that the equal-

partition scheme is only optimal under certain assumptions and

propose an effective hill-climbing approach for general situations.

• We evaluate AQP++ using a commercial OLAP system on three

datasets. Experimental results show that AQP++ can achieve up

to 10x more accurate answers than AQP for a relatively small

preprocessing cost.

The remainder of this paper is organized as follows. We review

related work in Section 2. In Section 3, we formally defines the

aggregate identification and aggregate precomputation problems.

To address these problems, we first present the AQP++ framework

in Section 4, and then propose effective approaches for them in

Section 5 and Section 6, respectively. We describe the results of

our experimental studies in Section 7 and present conclusions and

future work in Section 8.

2 RELATEDWORK
Approximate Query Processing. Sampling-based AQP has been

extensively studied in the last several decades [17, 23, 51]. A lot

of techniques have been proposed to optimize AQP’s performance.

Most of them are focused on generating better stratified samples [3,
6, 8, 13–15, 27, 66]. There has also been some work that tries to

augment samples with auxiliary indices [13, 24, 50]. Unlike them,

AQP++ is a framework that can connect any existing AQP engine

with AggPre. Thus, all these techniques can be easily extended to

the AQP++ framework (see Section 4.2 for a detailed discussion).

AQP++ is similar in spirit to some recent work about AQP sys-

tems [26, 59], which observe that previous answers can be beneficial

to estimating the answers to future queries. AQP++ is fundamentally

different from these work in two aspects: (1) AQP++ utilizes precom-

puted exact answers over full data rather than approximate answers

over samples to improve future queries; (2) AQP++ uses a sample to

estimate the difference between the answers to a previous query

and a future query, rather than build a model to predict unobserved

data points.

Our work is also related to Approximate Pre-Aggregation [35, 38],

which combines samples with a small set of statistics of the data

to improve answer quality. However, they assume that the set of

statistics are available in the system without considering how to

precompute a BP-Cube as well as how to use it for result estimation.

Online aggregation [33, 42, 45, 58, 62, 63, 70, 71] is another pop-

ular application scenario of AQP systems, which progressively im-

proves answer quality by dynamically increasing sample size. In

this paper, we consider the scenario where samples are created

before queries, but it would be an interesting future direction to

investigate the use of AQP++ in an online-sampling setting.

In fact, AQP++ was initially inspired by SampleClean [44, 69].

SampleClean enables fast and accurate query processing on dirty

data. Its basic idea is to clean a sample of dirty data and then

use the cleaned sample to correct dirty query result. Specifically,

SampleClean is given one query, and the goal is to estimate the

difference of its results computed on two datasets (a dirty dataset

and a cleaned dataset). In contrast, AQP++ is given two queries (a

user query and a precomputed query), and the goal is to estimate

the difference of their results computed on one dataset.

In addition to sampling-based AQP, a number of non-sampling

based techniques are proposed recently [11, 61]. They aim to sup-

port more complex queries as well as provide deterministic guaran-

tees by using indices rather than samples. However, for the query

class we support, they are not as effective as sampling-based AQP.

Aggregate Precomputation. Aggregate precomputation is an-

other extensively studied topic in the database community for

improving analytical query performance [30, 34, 49, 53, 64]. Data

cubes, which store data aggregated across all possible combinations

of dimensions, are widely used in data warehouses [16, 53]. Since it

is often very expensive to store a complete data cube [65], there is

some work on partial data cube precomputation [25, 25, 32]. There

is also some work that tries to apply sampling or approximation

techniques to data cubes [10, 36, 40, 41, 46, 68]. For example, Li

et al. [46] studied how to compute the confidence intervals for a

cube constructed from a sample. Vitter and Wang [68] proposed an

I/O efficient technique to build an approximate data cube based on

wavelets. Compared with AQP, these techniques still suffer from (1)

much higher preprocessing cost or/and (2) not good at answering

ad-hoc queries. Thus, having a unified framework like AQP++ is

more desirable.

Appendix D discusses how AQP relates to materialized views.

Figure 1: A geometric illustration of the 2-D case.

3 PROBLEM FORMALIZATION
This section formally defines our problems. For ease of presentation,

we assume that our queries do not have a group-by clause. The

extension to group-by queries will be discussed in Appendix C.

Definition 1 (Query Template). A query template, denoted by
Q : [f (A),C1,C2, · · ·Cd], represents a collection of queries of the
following form2:
SELECT f (A) FROM table
WHERE x1 ≤ C1 ≤ y1 and · · · and xd ≤ Cd ≤ yd

where f , A, and Ci (i ∈ [1,d]) are called aggregation function,
aggregation attribute, and condition attributes, respectively, and xi ,yi
are in the data domain of Ci for each i ∈ [1,d].

For example, if a user wants to explore the relationship between

product sales and customer ages, she can specify a query template

like [SUM(sale),aдe].

For ease of presentation, we assume that f = SUM in later text and
discuss the extension to other aggregation functions in Appendix C.

Moreover, we assume that the data domain of eachCi is dom(Ci) =
{1, 2, · · · , |dom(Ci) |}

3
, and abbreviate a range query as SUM(x1 :

y1,x2 : y2, · · · ,xd : yd).
In AggPre literature [12, 21, 28, 34, 47], people often precompute

a prefix cube (P-Cube) (or its variations) to answer range queries.

Definition 2 (Prefix Cube). Given a query template Q :

[SUM(A),C1,C2, · · ·Cd], the prefix cube consists of the answers to
all the queries of the following form:

SUM(1 : y1, 1 : y2, · · · , 1 : yd),

where yi ∈ dom(Ci) and i ∈ [1,d].

Each answer is called a cell in the cube. A nice property about

P-Cube is that for any range query inQ , its answer can be computed

from no more than 2
d
cells. For example, consider a 1D range query:

SUM(3 : 5). The answer for this query can be obtained from 2 cells,

i.e., SUM(1 : 5) − SUM(1 : 2). For a 2D range query, the answer can

be obtained from at most 4 cells. There is a geometric illustration

in Figure 1.

However, it is often expensive to precompute the entire P-Cube
(with

∏d
i=1
|dom(Ci) | cells). Thus, we precompute a blocked prefix

cube (BP-Cube) [34] consisting of a small portion of the cells.

Definition 3 (Blocked Prefix Cube). Given a query template
Q , let dom(Ci)small denote a subset of dom(Ci) for each i ∈ [1,d].
The blocked prefix cube consists of the answers to all the queries of
the following form:

SUM(1 : y1, 1 : y2, · · · , 1 : yd),

where yi ∈ dom(Ci)small and i ∈ [1,d].

BP-Cube reduces the number of cells to be precomputed from∏d
i=1
|dom(Ci) | to

∏d
i=1
|dom(Ci)small |. For example, consider

a 2D query template Q : [SUM(A),C1,C2], where dom(C1) =

2
Note that this form of queries subsumes those with other forms of range conditions,

e.g., “C = x ”, “C ≥ x ”, “x ≤ C < y”. This paper focuses on single-table queries, but

it is straightforward to extend AQP++ to handle foreign key joins using a similar idea

from [6]. We defer other complex join queries to future work.

3
IfCi does not have a natural ordering (e.g., country), we use an alphabetical ordering.

{1, 2, · · · , 15} and dom(C2) = {1, 2, · · · , 8}. The full P-Cube con-

tains 15 ∗ 8 = 120 cells, i.e., SUM(1 : y1, 1 : y2) for all y1 ∈

[1, 15] and y2 ∈ [1, 8]. Suppose dom(C1)small = {5, 10, 15} and

dom(C2)small = {4, 8}. Then the BP-Cube only contains 3 ∗ 2 = 6

cells, i.e., SUM(1 : y1, 1 : y2) for all y1 ∈ {5, 10, 15} and y2 ∈ {4, 8}.
Aggregate Identification. We now start defining the aggregate-

identification problem. Let P denote a BP-Cube, i.e.,

P =
{
SUM(1 : y1, 1 : y2, · · · , 1 : yd) |

for all yi ∈ dom(Ci)small and i ∈ [1, d]

}
. (1)

Note that although only P is precomputed, due to the properties

of the BP-Cube, we can assume that the answers to all the queries

in P+ are available.

P+ = P ∪ {ϕ } ∪
{
SUM(x1 + 1 : y1, x2 + 1 : y2, · · · , xd + 1 : yd) |

for all xi , yi ∈ dom(Ci)small and i ∈ [1, d]

}
. (2)

For example, suppose dom(C1)small = {4, 6}. Then, we have P =
{SUM(1 : 4), SUM(1 : 6)}, and P+ = {SUM(1 : 4), SUM(1 : 6), SUM(5 :

6),ϕ}, where SUM(5 : 6) can be obtained from SUM(1 : 6)−SUM(1 : 4)
and ϕ is an empty query with an always-false condition.

Given a user query q and a sample S , for each pre ∈ P+, AQP++
can return an approximate answer along with a confidence interval

(see Section 4.2 for more detail about this). For example, suppose

q : SUM(1 : 4). Imagine AQP++ leverages the precomputed query

pre : SUM(2 : 4) and returns 1000 ± 5 (confidence level: 95%). This

result indicates that the true answer ofq is in the range of [995, 1005]

with 95% probability. The larger the width of the confidence interval,

the less accurate the approximate answer. For this reason, we define

the query error of q w.r.t. pre , denoted by error (q,pre), as half
the width of the confidence interval. For the above example, the

confidence interval has the width of 10, thus error (q,pre) = 5.

Once a BP-Cube P is precomputed, since any value in P+ can be

leveraged to answer a user query, we aim to select the best one

with the minimum query error. We denote the minimum query

error w.r.t. P by error (q, P) = minpre ∈P+ error (q,pre). Problem 1

formally defines the problem.

Problem 1 (Aggregate Identification). Given a user query q,
a sample S , and a BP-Cube P , the goal of aggregate identification is to
identify the best value in P+ such that the query error is minimized:

argmin

pre∈P+
error (q, pre)

Consider a 1D example. Given a user query q : SUM(2 : 5) and a

BP-Cube P = {SUM(1 : 4), SUM(1 : 6)}, there are four precomputed

values in P+ = {SUM(1 : 4), SUM(1 : 6), SUM(5 : 6),ϕ}. The aggregate-
identification problem aims to identify the best value among the

four values and use it to estimate the answer to q.

Aggregate Precomputation. Next, we define the aggregate-

precomputation problem. Given a space budget, we want to find

the best BP-Cube that satisfies the space budget. Let |P | denote the
number of cells in a BP-Cube P and k denote a threshold bounding

|P |. Given a threshold k , there are a lot of different ways to construct
a BP-Cube such that |P | ≤ k . For example, suppose k = 6 and d = 2.

The shapes of BP-Cubes can be 1 × 6, 2 × 3, 3 × 2 or 6 × 1. For each

possible shape, e.g., 2×3, a BP-Cube can be constructed by choosing

any 2 values from dom(C1) and any 3 values from dom(C2).
To decide which one is the best, we define query-template error

to quantify the benefit of each BP-Cube and return the one with the

minimum query-template error. Given a query template Q and a

BP-Cube P , since a user might issue any query in Q , we define the
query-template error w.r.t P as error (Q, P) = maxq∈Q error (q, P),
which is the maximum query error over all possible user queries.

We choose this error metric because it is more beneficial to reduce

the errors of highly inaccurate queries rather than the ones who

have already gotten very accurate results. Certainly, there are many

other ways to define a query-template error. In the experiments,

we show that our aggregate-precomputation approach, which is

designed to optimize the maximum error, can also significantly

reduce other types of errors, such as average error and median

error. Problem 2 defines the aggregate-precomputation problem.

Problem 2 (Aggregate Precomputation). Given a query tem-
plate Q , a sample S , and a threshold k , the goal of aggregate precom-
putation is to determine the best BP-Cube P such that |P | ≤ k and the
query-template error is minimized:

argmin

P
error (Q, P) s.t. |P | ≤ k

Consider a 1D example. Given a threshold k = 2 and a query

template Q : [SUM(A),C1], where dom(C1) = {1, 2, · · · , 5}, the
aggregate-precomputation problem aims to determine the best BP-
Cube P = {SUM(1 : t1), SUM(1 : t2)} with the two values t1 and

t2 chosen from dom(C1) such that error (Q, P) is minimized. For

multiple-dimensional cases, the problem becomes even more chal-

lenging because we also need to determine the shape of the best

BP-Cube, e.g., 2 × 3 or 3 × 2.

4 FROM AQP TO AQP++
In this section, we first provide some background knowledge about

AQP, and then present the AQP++ framework.

4.1 Sampling-based AQP
AQP’s mathematical foundations are built on sampling and estima-

tion theories [23].

Result Estimation. Given a large relational table D and a ran-

dom sample S of the table, for certain aggregation queries q, their
answers can be estimated based on the sample, i.e.,

q (D) ≈ q̂ (S), (3)

or simply q ≈ q̂ if the context is clear. The supported aggregation

queries are of this form:

SELECT f (A) FROM D WHERE Condition.

Please note that Condition can be any function that takes a record

as input and returns True or False (e.g., age > 30 and country =
"USA", tweet like "%sigmod%").

Note that f cannot be an arbitrary aggregation function (e.g., min,

max). Typical aggregation functions include AVG, SUM, COUNT,

and VAR. A recent paper shows that some kinds of User Defined

Functions (UDFs) can be supported as well [5].

Confidence Interval. Along with an estimated result, AQP often

returns a confidence interval to quantify the estimation uncertainty.

The confidence interval is an interval estimate of the true value. For

example, a 95% confidence interval q̂±ϵ means that the true value is

within this range with 95% probability. In AQP, there are two kinds

of approaches computing a confidence interval. The first one is

an analytical approach, aiming to derive a closed-form confidence

interval often based on the Central Limit Theorem. The limitation

of this approach is the lack of generality. Each query has its own

form of the confidence interval. Example 1 shows how to compute

the closed-form confidence interval for a SUM query.

Example 1. Suppose we want to use AQP to estimate the answer
along with the confidence interval for the following query:

q (D) = SELECT SUM(A) FROM D WHERE C ≥ 0

To facilitate the calculation, we first rewrite it as follows:
q (D) = SELECT SUM(A · cond(C ≥ 0)) FROM D

where cond(C ≥ 0) returns 1 if C ≥ 0 holds; 0, otherwise.
For ease of presentation, we denoteA · cond(C ≥ 0) by A’, the table

size |D| by N , and the sample size |S| by n. Then, we can obtain the
estimated answer to q:

q̂ (S) = SELECT N · SUM(A
′)

n FROM S

Based on the Central Limit Theorem, we can derive that the closed-
form confidence interval of the query is q̂ ± ϵ , where

ϵ = SELECT λ · N
√

VAR(A′)
n FROM S

Here λ is a parameter determined by a confidence level. For example,
λ = 1.96 for a 95% confidence interval and λ = 2.576 for a 99%
confidence interval.

For more complex queries, it may be very hard to get a closed-

form confidence interval, thus AQP often computes an empirical

confidence interval using bootstrap in this situation. The approach

generates a set of resamples, S1,S2, · · · ,Sm , of the original sample

S, and estimates the query answer using each resample. The ob-

tained answers, q̂(S1), q̂(S2), · · · , q̂(Sm), form an estimate of the

distribution of q(D), from which we can compute a confidence

interval. This is a more general approach, but a naive implementa-

tion will suffer from high computational cost because it needs to

generatem resamples and then run queries on each of the resam-

ples. Some sophisticated approaches were proposed to overcome

the limitation [60, 72].

4.2 AQP++ Framework
The AQP++ framework is tailored to connect AQP with AggPre for
interactive analytics. In this section, we first answer two fundamen-

tal questions about AQP++: (1) How does AQP++ estimate a query
result? (2) How does AQP++ compute a confidence interval?

4.2.1 Result Estimation. Unlike AQP that uses a sample to di-
rectly estimate the answer to a user query (see Equation 3), AQP++
seeks to use a sample to estimate the difference of the query result

from a precomputed aggregate value. Let q denote a user query and

pre denote a precomputed aggregate query.
q: SELECT f (A) FROM D WHERE Condition1

pre: SELECT f (A) FROM D WHERE Condition2

AQP++ estimates the difference of their query results as follows:

q (D) − pre (D) ≈ q̂ (S) − ˆpre (S)

Since pre (D) has been precomputed (i.e., a constant), we have

q (D) ≈ pre (D) +
(
q̂ (S) − ˆpre (S)

)
(4)

To compute Equation 4, AQP++ first employs AQP (Equation 3)

to estimate the user query’s answer q̂(S), and then estimate the

precomputed query’s answer ˆpre (S). Finally, it plugs the two values
into Equation 4 to obtain the final estimated answer.

Example 2. This example illustrates how to use AQP++ to estimate
the answer to the same query as Example 1:

q (D) = SELECT SUM(A) FROM D WHERE C ≥ 0

Suppose the following aggregate query has been precomputed:
pre (D) = SELECT SUM(A) FROM D WHERE C > 0

AQP++ first uses AQP (Equation 3) to estimate the answers to q and
pre , respectively.

q̂ (S) = SELECT N · SUM(A·cond(C≥0))
n FROM S

ˆpre (S) = SELECT N · SUM(A·cond(C>0))
n FROM S

Then, it plugs pre (D), q̂(S), and ˆpre (S) into Equation 4 to get the
estimated answer to q.

Unification. AQP++ connects AQP with AggPre using Equation 4.

Interestingly, the equation shows that AQP and AggPre are only the

special cases of AQP++ when no aggregate is precomputed and all

aggregates are precomputed, respectively.

(1) AQP++ subsumes AQP. Define ϕ as an empty query, whose condi-
tion is always false.

ϕ = SELECT SUM(A) FROM D WHERE False4.

Suppose no aggregate is precomputed, i.e., pre = ϕ. In this case,

we have pre (D) = ˆpre (S) = 0. Thus, Equation 4 is reduced to

q(D) ≈ q̂(S), which returns the same result as AQP.

(2) AQP++ subsumes AggPre. Suppose all aggregates are precom-

puted, i.e., pre = q. In this case, we have ˆpre (S) = q̂(S). Thus,
Equation 4 is reduced to q(D) ≈ pre (D), which returns the

same result as AggPre.

Generality. The AQP++ framework is very general. Firstly, it works

for any aggregate function that AQP can support such as SUM,

COUNT, AVG, and VAR, and some UDFs (see Lemma 1). This can be

easily proved based on Equation 4 because q(D) only depends on

pre (D), q̂(S), and ˆpre (S), where pre (D) has been precomputed,

and q̂(S) and ˆpre (S) can be obtained using AQP (since AQP can

support their aggregation function).

Lemma 1. For any aggregation function f , if AQP can answer the
queries of the form: SELECT f(A) FROM D WHERE Condition,
AQP++ can answer the queries as well.

Proof. The proofs to the lemmas and theorems of this paper

can be found in Appendix A. □

Furthermore, for any aggregate function, if AQP has an unbiased

estimator, AQP++’s estimator is also unbiased.

Lemma 2. For any aggregation function f , if AQP can unbiasedly
estimate the queries of the form: SELECT f(A) FROM D WHERE
Condition, the answers that AQP++ returns are also unbiased.

Lastly, AQP++ can be easily extended to support many existing op-

timization techniques that were proposed for AQP, such as stratified
sampling [3, 6, 8, 13–15, 27, 66] and auxiliary indices [13, 24]. These

optimization techniques aim to improve the estimation quality of

Equation 3. Since Equation 4 is obtained by treating Equation 3 as a

black box, the optimization techniques work for AQP++ as well. For
example, consider stratified sampling optimization. Unlike uniform

sampling, where each row has the same probability to be sampled,

stratified sampling divides data into a set of subgroups and tends

to apply a higher sampling rate to smaller subgroups. This was

shown to be an effective sampling approach to deal with skewed

group-size distributions. Let Sop be a stratified sample of data. Then,

we have an optimized AQP++ framework:

q (D) ≈ pre (D) +
(
q̂ (Sop) − ˆpre (Sop)

)
, (5)

where q̂(Sop) and ˆpre (Sop) apply AQP to the stratified sample to

estimate the answers to q and pre , respectively.

4
Note that AQP++ also works when q and pre have different aggregation functions.

4.2.2 Confidence Interval. Like AQP, AQP++ also has two kinds

of approaches to compute a confidence interval for an estimated an-

swer. The analytical one needs to manually compute a closed-form

confidence interval for each type of query. Example 3 illustrates

how to compute a confidence interval for a SUM query.

Example 3. Continuing Example 2, suppose we want to compute
a confidence interval for pre (D) +

(
q̂(S) − ˆpre (S)

)
. Since pre (D)

is a constant, we only need to compute the confidence interval for
q̂(S) − ˆpre (S), i.e.,

SELECT N · SUM(A·cond(C=0))
n FROM S.

Following the idea of Example 1, we obtain the confidence interval
q̂ ± ϵ , where

ϵ = SELECT λ · N
√

VAR(A·cond(C=0))
n FROM S.

For more complex queries, when it is hard to derive closed-

form confidence intervals for them, AQP++ can use the bootstrap

to compute their empirical confidence intervals. It first generates a

set of resamples, S1,S2, · · · ,Sm . Then, for each resample Si (i ∈

[1,m]), it computes pre (D) +
(
q̂(Si) − ˆpre (Si)

)
. Please note that

this step is different from AQP (which computes q̂(Si) instead). The
computed results form an estimate of the distribution of q(D), from
which we derive a confidence interval.

Back of the envelope analysis.We investigate why AQP++ may

produce more accurate answers (i.e., tighter confidence intervals)

compared to AQP. One may be tempted to think that this is impos-

sible because AQP++ has to estimate two random variables and then

get their difference, which should have introduced more error than

AQPwho only needs to estimate one. However, this analysis ignores
the correlation between the two random variables. For AQP++, the
variance of its estimator (involving two random variables) is:

Var
(
q̂ − ˆpre

)
= Var(q̂) + Var(ˆpre) − 2Cov(q̂, ˆpre)

For AQP, the variance of its estimator is Var(q̂). By comparing

them, we can see that if Var(ˆpre) < 2Cov(q̂, ˆpre), AQP++ can have

a smaller variance than AQP. That is, AQP++ tends to return a more

accurate result in this situation. To further elaborate on the situation,

we know that Cov(q̂, ˆpre) depends on the degree of the correlation

between a user query result and a precomputed aggregate. If they

are highly correlated, Cov(q̂, ˆpre) becomes very large, thus AQP++
is more likely to return a more accurate answer. We also validate

this interesting phenomenon in the experiments.

5 AGGREGATE IDENTIFICATION
With the new AQP++ framework, we now study the two problems de-

fined in Section 3. This section studies the aggregate-identification

problem. We first consider a simplified setting of the problem and

present an optimal solution for it. We then extend the solution to

the general setting.

5.1 Optimal Solution
We assume that (1) Q is one-dimensional (i.e., [SUM(A), C]); (2)

A and C are independent. For ease of presentation, we denote a

relational table by D = [a1,a2, · · · ,aN], which is a list of attribute

values of A ordered by C . Since A and C are independent, the list

can be thought of as being randomly shuffled. Each user query

is denoted by SUM(x : y) =
∑
x ≤i≤y ai . We denote a BP-Cube by

P = {SUM(1 : t) =
∑

1≤i≤t ai for all t ∈ dom(C)small }, and we

call each t ∈ dom(C)small a partition point.

Figure 2: An illustration of P , P+, and P− for the 1D case.

Given a user query q, to identify the best aggregate value for q,
the brute-force approach needs to compute the query error w.r.t

every pre ∈ P+ and return the one with the minimum error. Since

|P+ | can be very large, this approach is prohibitively expensive. The
key observation of our approach is that a user query can benefit

more from a correlated aggregate query than a uncorrelated one.

For example, consider a user query SUM(4 : 10). Suppose both

SUM(4 : 9) and SUM(1 : 3) have been precomputed. Without

the need to compute the actual query error w.r.t them, we can

immediately deduce that SUM(4 : 9) is preferable because it is

highly correlated to the user querywhile SUM(1 : 3) tells us nothing
about the user query.

Based on this observation, given a user query SUM(x : y), we can
prove that only five aggregate values in P+ need to be considered.

We call them candidate aggregate values, denoted by

P− =
{
SUM(lx + 1 : ly), SUM(lx + 1 : hy),

SUM(hx + 1 : ly), SUM(hx + 1 : hy)
}
∪
{
ϕ
}
, (6)

where lx (hx) is the first partition point that is lower (higher) than

x ; ly (hy) is the first partition point that is lower (higher) than y.
Intuitively, x falls between partition points lx and hx , and y falls

between partition points ly and hy . Based on the four partition

points, we find the four most correlated aggregate queries to the

user query. We also add ϕ into P− to handle some special cases, e.g.,

x and y fall between the same two partition points (i.e., lx = ly).
Lemma 3 proves the correctness of this solution.

Lemma 3. Given D = [a1, · · · ,aN], a query template Q , and a
BP-Cube P , we have:

min

pre∈P+
error (q, pre) = min

pre∈P−
error (q, pre).

For example, consider the BP-Cube P and the available aggregate

values P+ in Figure 2. Given a user query q = SUM(4 : 10), we want
to identify the best value from P+ for the query. Based on Lemma 3,

we only need to consider five values. To get the five values, we can

see that x = 4 falls between the precomputed points of 3 and 6, thus

lx = 3 and hx = 6; y = 10 falls between the precomputed points of

9 and 12, thus lx = 9 and hx = 12. Based on Equation 6, we obtain

P− = {SUM(4 : 9), SUM(4 : 12), SUM(7 : 9), SUM(7 : 12),ϕ}.

5.2 Aggregate-Identification Approach
Lemma 3 significantly reduces the number of aggregate values that

need to be considered for answering a user query. While we can

only prove its correctness under certain assumptions, it inspires us

to develop an efficient heuristic approach for the general setting.

The key idea of our approach is to quickly identify a small num-

ber of candidate aggregate values from P+ and then examine which

one is the best among them. Similarly, we denote the candidate

Figure 3: An illustration of P− for the 2D case.

aggregate values by P−. Equation 6 shows the computation of P−

for the 1D case. We now extend it to the d-dimensional case. Given

a user query q = SUM(x1 : y1,x2 : y2, · · · ,xd : yd), suppose that
for each i ∈ [1,d], xi falls between lxi and hxi , and yi falls between
lyi and hyi . We define P− w.r.t q as

P− =
{
SUM(u1 + 1 : v1, u2 + 1 : v2, · · · , ud + 1 : vd)

| ui ∈ {lxi , hxi }, vi ∈ {lyi , hyi } for each i ∈ [1, d]

}
∪

{
ϕ
}

(7)

For example, consider a 2D BP-Cube in Figure 3. The first dimension

has the partition points of dom(C1)small = {1, 5, 10, 15, 20, 25};

the second dimension has the partition points of dom(C2)small =
{1, 4, 8, 12, 16, 20}. Given a user query q = SUM(8 : 18, 7 : 14), for
the first dimension C1, we can see that x1 = 8 falls between 5 and

10, thus lx1
= 5 and hx1

= 10; y1 = 18 falls between 15 and 20, thus

ly1
= 15 and hy1

= 20. Similarly, for the second dimension, we have

lx2
= 4 and hx2

= 8 for x2 = 7; we have ly2
= 12 and hy2

= 16 for

y2 = 14. Based on Equation 7, we obtain P− consisting of the 17

aggregate values shown on the right side of the figure.

The size of P− is independent of the BP-Cube size. For each

dimension, there are four possible cases, i.e., {lxi ,hxi } × {lyi ,hyi }.

Thus, we have |P− | = 4
d + 1. For example, |P− | = 4

1 + 1 = 5 for the

1D case and |P− | = 4
2 + 1 = 17 for the 2D case. Furthermore, we

can quickly identify P−. Let ki = |dom(Ci)small |. Every dimension

only needs O (logki) time to search for the partition points, thus

all dimensions need O (
∑
i log(ki)) = O (logk) time. To generate

4
d + 1 queries based on the partition points, we need O (4d) time.

Thus, the total time complexity is O (logk + 4
d).

Once P− is obtained, we then need to decide which one in P−

should be finally identified.We adopt a subsampling based approach.

The idea is to create a subsample of S, and use the subsample to

estimate the query error w.r.t. each aggregate value in P−. Specif-
ically, given a user query, for each precomputed aggregate value

pre ∈ P−, we compute the confidence interval of the user query

w.r.t. pre and select the one with the smallest confidence interval.

The subsampling rate is a parameter that can balance the trade-off

between the effectiveness and efficiency of aggregate identification.

In the experiments, we set it to less than
1

4
d to ensure that the

overhead added is smaller than the actual query processing time.

6 AGGREGATE PRECOMPUTATION
We now study the aggregate-precomputation problem. There are

two major challenges. One is how to determine the BP-Cube’s shape.
That is, given a threshold k , we need to assign a number ki to each

dimension such that

∏d
i=1

ki ≤ k . The total number of possible

assignments can be quite large. The other challenge is how to decide

which ki points should be chosen from dom(Ci) for each i ∈ [1,d].

Again, there are a large number of different choices,

(
|dom(Ci) |

ki

)
,

and a brute-force approach does not work.

Figure 4: (a) The equal-partition scheme is not feasible; (b)
The equal-partition scheme is not optimal.

In this section, we first explore the 1-dimensional case and then

extend to multidimensional cases.

6.1 One-Dimensional Query Template
For the one-dimensional case, since the BP-Cube’s shape has only
one possibility, the only challenge left is how to choose the best

k points, 1 ≤ t1 < t2 < · · · < tk = |dom(C) |, from dom(C) such
that the query-template error is minimized

5
. The most natural idea,

called equal-partition scheme, is to partition dom(C) into k equal

parts. But, this idea ignores two important factors.

• Data Distribution. If C does not follow a uniform distribution

(i.e., some values appear more frequently than others), the equal-

partition scheme is often not feasible. This is, we cannot use

range queries with conditions over C to partition A equally. For

example, consider the relational table (with attributes A and C)
in Figure 4(a). The only way to partition the data is shown in the

figure, which is not an equal-partition scheme.

• Attribute Correlation. If A and C are correlated, when sorting

A by C , this process is not equivalent to a random shuffle of A.
Thus, the variances of different parts of A may differ a lot. For

example, consider the relational table in Figure 4(b). Suppose

when 1 ≤ C ≤ 4, A is always equal to 0; when 5 ≤ C ≤ 8,

A follows a normal distribution with a large variance. Since a

larger variance leads to a higher query error, it might be better to

choose more points from the second half of A rather than adopt

an equal-partition scheme.

In the following, we first make some assumptions about data

distribution and attribute correlation, and prove that the equal-

partition scheme is optimal under these assumptions. Then, we

relax the assumptions and propose an adaptive approach for the

general setting.

6.1.1 Optimal Partition Scheme. We assume that (1) C has no

duplicate values; (2) A and C are independent. The first (resp. sec-

ond) assumption removes the impact of the data distribution of C
(resp. the correlation between attributes A and C) on the optimal

partition scheme. Similar to Section 5.1, we denote a relational table

by D = {a1,a2, · · · ,aN }, which is the list of attribute values of A
ordered by C . Assumption 1 suggests that any sub-list of D can be

precomputed (without being constrained by the skewed distribu-

tion of C); Assumption 2 means that D can be thought of as being

randomly shuffled.

We can prove that the equal-partition scheme is optimal under

Assumptions 1 and 2. The corresponding BP-Cube is denoted by
6

Peq = {SUM(1 :

i
k
N) | i = 1, 2, · · · k }.

5
We compute the sum of all the values in each aggregation attribute because these

sum values are independent of condition attributes and can be reused across query

templates. Therefore, we assume tk = |dom(C) |
6
Here, we assume N%k = 0. Otherwise, we will choose ⌈ ik N ⌉ for i ∈ [1, N%k], and ⌊ ik N ⌋

for i ∈ (N%k, k]. The proof can be extended to this case.

Figure 5: An illustration for notations of Lx , L̄x ,Ly , and L̄y (q
is a user query and red dots represent partition points).

The proof’s basic idea is that in Lemma 4, we compute the query-

template error, error (Q, Peq), w.r.t. the equal-partition scheme; in

Lemma 5, we prove that for any other partition scheme, the resulting

query-template error cannot be smaller than error (Q, Peq). Hence,
Peq is optimal since it has the minimum query-template error.

Lemma 4. Given D = {a1,a2, · · · ,aN }, a query template Q , and
a threshold k , the query-template error of Q w.r.t Peq is

error (Q, Peq) = λN

√
σ 2

eq

n
,

where σ 2

eq =
1

k E[D2
] − 1

k2
(E[D])2.

Lemma 4 indicates that the query-template error decreases at a

rate of O (1√
k
). This is a very interesting result because it shows

that with only a small k (i.e., the BP-Cube size), the query-template

error can be dramatically reduced. For example, if k = 100, the error

can be reduced by about 10 times.

Lemma 5 proves that error (Q, Peq) is minimum.

Lemma 5. Given D = {a1,a2, · · · ,aN }, a query template Q , and
a threshold k , if P , Peq , then error (Q, P) ≥ error (Q, Peq).

It is easy to prove Theorem 1 based on Lemmas 4 and 5.

Theorem 1. Given D = {a1,a2, · · · ,aN }, a query template Q ,
and a threshold k , Peq is an optimal BP-Cube.

For example, suppose D = {a1,a2, · · · ,a12} and k = 4. Based

on Theorem 1, we obtain the optimal BP-Cube Peq = {SUM(1 :

3), SUM(1 : 6), SUM(1 : 9), SUM(1 : 12)}.

6.1.2 An Adaptive Approach Based onHill Climbing. The optimal

partition scheme requires two assumptions which may not hold in

practice. In this section, we propose a hill-climbing based algorithm

that can adaptively adjust the partition scheme based on the actual

data distribution and attribute correlation.

AlgorithmOverview. The algorithm starts with an initial BP-Cube
and then attempts to improve it by moving a single partition point

from one place to another. If the change leads to a better BP-Cube,
the change is made and the iterative process is repeated; otherwise,

the algorithm is terminated. To make the algorithm work, we need

to address three problems: (1) how to find an initial BP-Cube; (2)
how to evaluate the effectiveness of a BP-Cube (in order to know

whether the change leads to a better BP-Cube); (3) how to adjust a

BP-Cube (i.e., decide which partition point should be moved away

and where it should move to).

(1) Initialization. A poor initialization may not only hurt the effi-

ciency of an optimization algorithm, but also lead to a local optimum

that is far from the global optimum. We use Peq as an initialization

because (1) it has been proved to be optimal in some situations and

(2) it avoids ending up with a solution that is even worse than the

naive equal partitioning. However, Peq may not be always feasible

(due to the skewed distribution of C). If a partition point (in Peq) is
not feasible, we will choose its closest feasible point to replace it.

For example, in Figure 4(a), since the middle point (4th point) is not

feasible, its closest feasible partition point (6th point) will be chosen.

Accordingly, the initial BP-Cube is P = {SUM(1 : 2), SUM(1 : 3)}.

(2) Evaluation. The most naive way to evaluate the effectiveness

of a BP-Cube is to adopt query-template error because this is the

ultimate optimization objective. But, when the assumption that A
andC are independent does not hold, we have not found an efficient

way to compute it without enumerating

(
|dom(C) |+1

2

)
possible user

queries. To address this challenge, we seek to find an upper bound

of query-template error. It turns out that the upper bound can not

only be efficiently computed (in linear time) but also lead to a robust

solution (since it bounds the worst case).

Recall that the query-template error is defined as error (Q, P) =
maxq∈Q error (q, P).We first give the upper bound of error (q, P),
and then we present an efficient linear algorithm to compute the

upper bound of error (Q, P).
To get the upper bound of error (q, P), consider a user query

q = SUM(x : y) in Figure 5. The red dots are the partition points

near by x or y . We can see that the middle part of q has been

precomputed, so we only need to estimate Lx + Ly . For Lx , since
Lx + L̄x has been precomputed, we can estimate Lx in two ways.

One is to directly estimate Lx and the other is to estimate the

complement L̄x . We try both ways and choose the one with a

smaller error, i.e., min

{
λN√
n
·
√
Var(ALx),

λN√
n
·

√
Var(AL̄x)

}
, where

ALx = A · cond(C ∈ Lx) andAL̄x = A · cond(C ∈ L̄x). Similarly, for

Ly , the estimation error is min

{
λN√
n
·

√
Var(ALy),

λN√
n
·
√
Var(AL̄y)

}
.

By adding them up, we obtain the upper bound of error (q, P).

Lemma 6. GivenD, a query templateQ , and a BP-Cube P , for any
q ∈ Q , we have error (q, P) ≤

λN√
n
·min

{√
Var(ALx),

√
Var(AL̄x)

}
+ λN√

n
·min

{√
Var(ALy),

√
Var(AL̄y)

}
.

To get the upper bound of error (Q, P), we first compute errori =
λN√
n

min

{√
Var(ALi),

√
Var(AL̄i)

}
for every point i ∈ [1,N], and

then pick up two points i1, i2 ∈ [1,N] where errori1 has the maxi-

mum error and errori2 has the second maximum error. Note that

all of these can be computed in linear time. Based on Lemma 6, we

can deduce that error (Q, P) cannot be larger than errorup (Q, P) =
errori1 +errori2 . Our hill-climbing algorithm uses the upper bound,

errorup (Q, P), to evaluate the effectiveness of a BP-Cube P .

(3) Adjustment. To adjust the current BP-Cube, we try to move

a single partition point from one place to another. The heuristic

is to move the partition point to either i1 or i2. This is because
that the goal is to reduce errorup (Q, P) and moving to i1 (or i2)
is very likely to reduce errorup (Q, P). In order to decide which

partition point should be moved away, we want to find the one

such that moving it away will have the least chance to increase

errorup (Q, P). Imagine a partition point t is moved away. Only the

points between the two partition points nearby t may have a larger

errori . Thus, the chance that errorup (Q, P) will increase depends
on the maximum error among the changed points. For example,

suppose P = {SUM(1 : 3), SUM(1 : 6), SUM(1 : 9), SUM(1 : 12)}.
There are four partition points: 3, 6, 9, and 12. If the partition point

t = 6 is moved away, only the points in (3, 9) may have a larger

errori , and for the others, errori keeps unchanged. We compute the

maximum errori among the changed points, i.e., maxi ∈(3,9) errori
(after moving 6). Similarly, we compute the maximum error for the

Figure 6: An illustration of the binary search algorithm to
search for the BP-Cube’s shape k1 × k2 (suppose k = 500).

other three partition points, i.e., maxi ∈(1,6) errori (after moving 3),

maxi ∈(6,12) errori (after moving 9), maxi ∈(9,12) (after moving 12).

Suppose maxi ∈(6,12) errori is minimal among the four values. Then,

the partition point 9 will be moved away.

(4) Stop Condition. The hill-climbing algorithm will stop when

errorup (Q, P) cannot be decreased through the adjustment process.

Remark. Intuitively, there are two places that could cause the

greedy approach to be not optimal. First, the approach aims to

optimize the upper bound of the query-template error rather than

the query-template error itself. Second, when putting a partition

point to a new position, this new position (i.e., i1 or i2) is selected
heuristically, which may not be the optimal position.

6.2 Multidimensional Query Template
Consider a query template, Q : [SUM(A),C1,C2, · · · ,Cd]. Given a

threshold k , we need to first assign ki to each dimension Ci such

that

∏d
i=1

ki ≤ k . Once k1,k2, · · · ,kd are determined, we apply the

above hill climbing algorithm to choosing the ki partition points in

each dimension.

Determine the BP-Cube’s Shape.Without loss of generality, we

use a 2-dimensional query template Q : [SUM(A),C1,C2] to il-

lustrate our idea. A naive solution is to assign the same value to

C1 and C2, i.e., k1 = k2 =
√
k . But, this ignores the fact that the

data distributions in C1 and C2 can be quite different. To better

balance the values of k1 and k2, we first plot an error profile for
Q1 : [SUM(A),C1] and Q2 : [SUM(A),C2], respectively. The error

profile shows how errorup (Qi , Phc) decreases with the increase of

ki for i = 1, 2, where Phc is the BP-Cube determined by the hill-

climbing algorithm. Since it is expensive to compute every data

point on the profile curves, we compute a small subset of them and

approximate the remaining ones by interpolation. The function

used for the interpolation is proportional to ∼ 1/
√
k (see Lemma 4).

Once the error profiles are plotted, k1 and k2 can be efficiently

determined. For example, consider the two error profiles in Figure 6.

Suppose k = 500. We do a binary search on the y-axis of the error

profiles. At each iteration, if k1 ·k2 < k (or k1 ·k2 > k), it continues
the search in the lower (or upper) half of the search range, eliminat-

ing the other half from consideration. In the example, suppose the

red line is the current search position. Then, we obtain k1 = 10 and

k2 = 20 from the error profiles. Since k = 500 and k1×k2 = 200 < k ,
it means that we have the additional budget to enlarge k1 and k2

for getting a smaller error. Thus, the next search position is the

lower half of the search range (i.e., the blue line). The binary search

repeats until k1 × k2 = k or the search range is empty.

Putting It All Together. Given a query template Q =

[SUM(A),C1,C2, · · · ,Cd] and a threshold k , the aggregate-

precomputation contains two stages. The first stage is to determine

which BP-Cube should be precomputed and the second stage is to

precompute the BP-Cube. Please note that the first stage is based
on a sample S . It consists of two steps: (1) Determine the BP-Cube’s
shape, k1 × k2 × · · · × kd ; (2) Run the hill-climbing based algorithm

to get ki partition points from each dimension (i ∈ [1,d]). In the

second stage, we need to scan the full data. Ho et al. [34] proposed

an efficient algorithm to compute a BP-Cube. Since a BP-Cube is typ-
ically several orders of magnitude smaller than the P-Cube, it incurs
much less preprocessing cost (see B for a detailed cost analysis).

Extensions. We discuss how to extend AQP++ to handle other

aggregation functions, group-by queries, data updates, multiple

query templates, and space allocation in Appendix C.

7 EXPERIMENTAL RESULTS
We conduct extensive experiments to evaluate AQP++. The experi-
ments aim to answer three major questions. (1) When does AQP++
give more accurate answers than AQP? (2) How does AQP++ com-

pare with AQP and AggPre in terms of preprocessing cost, response

time, and answer quality? (3) How well does the hill climbing based

approach perform compared to the equal-partition scheme?

7.1 Experiment Setup
Experimental Settings.We implemented AQP and AQP++ using
DBX, a commercial OLAP system with column-store indexes sup-

ported. The code was written in C++, compiled using Visual Studio

2015, and connected to DBX through ODBC. The experiments were

run on a Windows machine with an Intel Core 8 i7-6700 3.40GHz

processor, 16GB of RAM, and 1TB HDD.

Datasets. We conducted experiments on three datasets. (1) TPCD-
Skew is a synthetic dataset generated from the TPCD-Skew bench-

mark [18]. We generated 100GB data with the skew parameter

z = 2, and ran queries on the lineitem table, which contains 600

million rows. (2) BigBench is a synthetic dataset generated from

the Big Data Benchmark [1]. We generated 100GB data, and ran

queries on the UserVisits table, which contains 752 million rows. (3)

TLCTrip is a real-world dataset from the NYC Taxi and Limousine

Commission [2]. We used the yellow car data from year 2009 to

2016, which is of size 200GB and contains 1400 million rows.

Sampling. It is worth noting that AQP++ is a general framework

that can connect any AQP engine with AggPre no matter which

sampling approach the AQP engine adopts. To allow for a clear

comparison between the cores of AQP and AQP++ frameworks (i.e.,

Equation 3 vs. Equation 4), we assume that both AQP and AQP++
only use a uniform sample by default. Specifically, we create a uni-

form sample from the full table and store the sample into DBX as

a table (sample rate = 0.05% by default). The sample will be used

by AQP and AQP++ to answer queries. To evaluate the performance

of AQP++ on other forms of samples, we implemented another two

sampling approaches, measure-biased sampling [24] and stratified

sampling [6], used by the state-of-the-art AQP systems, and com-

pared AQP with AQP++ on these samples.

Error Metrics.We adopted relative error to quantify query accu-

racy because it is easy to interpret. For an approximate query result

q̂ ± ϵ , where ϵ is half the width of the 95% confidence interval,

the relative error of the query is defined as
ϵ
q , where q is the true

answer of the query. Given a collection of queries, when we say

Table 1: Comparison of the overall performance (TPCD-
Skew 100GB, k=50000, 0.05% uniform sample).

Preprocessing Cost Response Answer Quality
Space Time Time Avg Err. Mdn Err.

AQP 51.2 MB 4.3 min 0.60 sec 2.67% 2.48%

AggPre > 10 TB > 1 day < 0.01 sec 0.00% 0.00%

AQP++ 51.9 MB 11.7 min 0.67 sec 0.27% 0.19%

median (or average) error, it refers to the median (or average) value

of the relative errors of the queries in the collection.

7.2 Overall Performance
Table 1 compares the overall performance (preprocessing cost,

query response time, and answer quality) of AQP++ with alter-

native approaches on the TPCD-Skew dataset. We randomly gen-

erated 1000 queries using the template of [SUM(l_extendedprice),
l_orderkey, l_suppkey], where the selectivity of each query is be-

tween 0.5% − 5%.

Suppose the latency requirement is 1 second. We first examine

whether the state-of-the-art OLAP solutions can meet the require-

ment. We first chose a commercial (M)OLAP system and created

a data cube with l_extendedprice as the measure attribute, and

l_orderkey and l_suppkey as the dimension attributes. The cube

has a hierarchy structure of “l_suppkey→l_orderkey”. We ran the

1000 queries over the cube and found that the cube size was around

4GB and the average query response timewasmore than 10 seconds,

which is far from interactive. The reason is that the two dimensions,

⟨l_orderkey, l_suppkey⟩, have a large number of distinct values (i.e.,

377 million), thus a range query still needs to scan a lot of cells

in the cube. In addition, we tested the time of directly executing

queries in DBX. DBX needed an average response time of 6 seconds

and a maximum response time of 35 seconds to run all the queries,

which did not meet the latency requirement either.

We now evaluate the performance of AQP, AggPre, and AQP++.
AQP used a uniform sample to answer queries (sample rate =

0.05%); AggPre precomputed the complete P-Cube using the algo-

rithm in [34]. In the lineitem table, l_orderkey and l_suppkey have

1.5 × 10
8
and 7.5 × 10

4
distinct values, respectively, so there are

1.1 × 10
13

cells in P-Cube. Clearly, AQP and AggPre represented two

extreme cases of AQP++, where one did not precompute any aggre-

gate and the other precomputed all possible aggregates. For AQP++,
we used the same sample as AQP, and precomputed a BP-Cube of
size k = 50, 000.

Table 1 compared its performance with AQP and AggPre. We can

see that all of them met the latency requirement (< 1 sec), but

they were quite different in terms of preprocessing cost and answer

quality. AQP++ spent orders of magnitude less preprocessing time

and space than AggPre since it only needs to precompute a small

BP-Cube rather than the complete P-Cube. In comparison with AQP,
AQP++ reduced the average error by 10× and the median error by

13× for almost the same preprocessing space and about 7.4 minutes

more preprocessing time. Furthermore, the overhead added to the

AQP++’s response time (due to the aggregate-identification step) is

negligible. This is because the response time was dominated by the

I/O time for reading data from the sample table, and the added CPU

time was relatively very small.

To further compare AQP and AQP++, we set the sample rate of AQP
to 4% such that it can reach approximately the same average error

as AQP++. We call it AQP(large). Compared to AQP++, the AQP(large)’s
sample size was about 80× larger, which significantly increased the

preprocessing time and space. Furthermore, due to the increase of

the sample size, its query response time was more than 1 second,

which violated the latency requirement.

We implemented APA+ [38] and compared its performance with

AQP++. Since our query template was 2-dimensional, we assumed

that 1-dimensional facts (i.e., a set of statistics defined by APA+) are

available in the system for each query. To process a query, APA+

first gets the related facts and then combines them with a sample

to estimate the answer to the query. We used the gurobi library to

solve the quadratic programming problem in APA+ such that it can

minimize the estimation error. The experimental result showed that

APA+ achieved an median error of 1.69% while the median error

for AQP++ was only 0.19%. The reason is that APA+ does not use

BP-Cubes for result estimation while AQP++ can identify the best

BP-Cube to precompute and use it for result estimation.

7.3 Detailed Performance
In this section, we evaluate the performance of AQP++ by vary-

ing the number of dimensions and the set of condition attributes,

aiming to gain a deeper understanding of various trade-offs. We

also examine the effectiveness of the hill climbing algorithm for

aggregate precomputation. If not specified, we use the same dataset

and queries as the previous section, and set the sample rate to 0.05%,

k=50000, and the number of dimensions to 2 by default.

Number of Dimensions. We compare the preprocessing time,

response time, and answer quality of AQP and AQP++ by varying

the number of dimensions. We chose ten columns from the lineitem

table, and constructed ten query templates accordingly:

[SUM (l_extendedprice), l_orderkey],
[SUM (l_extendedprice), l_orderkey, l_partkey],
· · ·

[SUM (l_extendedprice), l_orderkey, l_partkey, l_suppkey,

l_linenumber, l_quantity, l_discount, l_tax, l_shipdate,

l_commitdate, l_receiptdate],

where each of them has a different number of dimensions. We

compared AQP with AQP++ w.r.t. each query template, and reported

the result in Figure 7.

Figure 7(a) compares the preprocessing time of AQP and AQP++.
Since AQP only needs to create a random sample, the number of

dimensions had no impact on its preprocessing time. In comparison,

AQP++ requires a little more preprocessing time when the number

of dimensions increased since it needs to generates an error profile

for each dimension. The larger the number of dimensions, the more

time spent in generating error profiles.

Figure 7(b) shows how the response time changed w.r.t. the

number of dimensions. To identify the best precomputed aggregate

value, AQP++ first generates 4
d + 1 candidate values and then uses

a subsample to estimate which one will lead to the smallest error.

As the number of dimensions increased, the number of candidate

values increased exponentially. However, we can see from the figure

that the difference between the response times of AQP and AQP++
did not increase exponentially. This is because that if the number

of candidate values is increased by 4 times, AQP++ will decrease

the subsampling rate by 4 times as well, which helps to reduce the

aggregate-identification time.

Figure 7(c) compares the answer quality between AQP and AQP++
in terms of median error. The figure shows that the median error

of AQP++ got bigger as the number of dimensions increased. This is

because that the space budget k = 50000 was fixed. If there is only

 0

 4

 8

 12

 16

 20

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(m

in
)

of dimensions

AQP
AQP++

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
)

of dimensions

AQP
AQP++

 0%

 1%

 2%

 3%

 4%

 1 2 3 4 5 6 7 8 9 10

M
ed

ia
n

Er
ro

r

of dimensions

AQP
AQP++

(a) Preprocessing Time (b) Response Time (c) Answer Quality

Figure 7: Comparison of the performance of AQP and AQP++ by varying the number of dimensions (TPCD-Skew 100GB,
k=50000, 0.05% uniform sample).

��
��
��
��
��

���
���

�� ��� ��� ���� ���� ������
��
��
�
��
��

�
��
��
��
��
��
� �

���������������

�������������������
������������������

��
��
��
��
��

���
���

�� ��� ��� ���� ���� ������
��
��
�
��
��

�
��
��
��
��
��
� �

���������������

�������������������
������������������

(a) l_shipdate (b) l_commitdate

Figure 8: Evaluation of the adjustment approach in our hill
climbing algorithm (TPCD-Skew 100GB, k1 = 200, k2 = 200,
and 0.05% sample).

one dimension, this dimension can be assigned a budget of 50000

partition points, but if there are two dimensions, each dimension (on

average) can only be assigned a budget of

√
50000 = 224 partition

points, which is less effective than 1D. Nevertheless, as shown

in Figure 7(c), AQP++ outperformed AQP by 12.8× for 2D. As the

number of dimensions increased, the improvement of AQP++ over
AQP decreased. The result indicates that AQP++ can scale up to 10

dimensions but is hard to scale to a very large number of dimensions

(e.g., 20) due to the limitation of prefix cubes.

Hill Climbing.We evaluate the adjustment approach of our hill

climbing algorithm. Recall that at each iteration, our approach

considers all partition points and picks up the best one to move.

One may ask that why not only consider the four partition points

next to i1 and i2. We compared the two adjustment approaches.

As discussed in Section 6, an equal partitioning scheme turns

to be ineffective when attributes are highly correlated. Thus, we

picked up two attributes, l_shipdate and l_commitdate, that have

strong correlations with l_extendedprice, and constructed the query

template: [SUM (l_extendedprice), l_shipdate, l_commitdate]. Fig-

ure 8 compares the upper bound of the query template error (i.e.,

errorup (Q, P)) of Hill Climb (global) and Hill Climb (local) on each

dimension, where the former used our adjustment approach while

the latter adopted the alternative. We set k1 = k2 = 200. We can

see that Hill Climb (local) converged to a local optimum with less

than 10 iterations while Hill Climb (global) can continue the iterative

process and finally reached a much better result. The reason is that

Hill Climb (local) only considers the four partition points next to i1
and i2. If moving them away cannot lead to a better solution, the

algorithm will stop.

Changes of Condition Attributes. In exploratory workloads, a

user may frequently change the set of condition attributes in her

queries. We discuss how AQP++ handles this situation below.

Suppose a user may issue a collection of queries generated from

the three query templates: Q1 : [SUM(A),C1], Q2 : [SUM(A),C1,C2],

Q3 : [SUM(A),C1,C2,C3], but only Q2 has a precomputed BP-Cube

���

���

���

���

���

�� �� �� �� �� ��

�
��
��
��
��
��
�

���������������

���
�����

Figure 9: Evaluation of the changes of the set of condition
attributes in user queries. Note that only Q3 has a precom-
puted BP-Cube (TPCD-Skew 100GB, k=50000, 0.05% sample).

P2. We next show how AQP++ can use P2 to answer the queries

from Q1 and Q3.

If a user query q is from Q1, we can rewrite q as an equivalent

query q′ from Q2 where q′ does not enforce any restriction on

C2, thus AQP++ can still use P2 to answer q. For example, consider

q : [SUM(A), 1 : 2]. It can be rewritten as q′ : [SUM(A), 1 : 2, 1 :

|dom(C2) |] (where C2 can be any value in its domain), and then be

processed by AQP++ using P2.

If a user queryq is fromQ3, we can consider P2 as a 3-dimensional

BP-Cube P ′
2
. For example, suppose the shape of P2 is k1 × k2. Then,

it can be seen as a 3-dimensional BP-Cube P ′
2
with the shape of

k1 × k2 × 1. Thus, AQP++ can still use P2 to answer q.
To evaluate this approach, we constructed six query templates

Q1 : [SUM(A),C1], · · · ,Q6 : [SUM(A),C1,C2,C3,C4,C5,C6] on the

TPCD-Skew dataset, whereA is l_extendedprice, andC1,C2, · · · ,C6

are l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity,

l_discount, respectively. We assumed that only Q3 had a precom-

puted BP-Cube (with size k = 50000). We randomly generated 1000

queries from each query template with the selectivity of 0.5%-5%.

Figure 9 compares the median error of AQP and AQP++ for these
queries w.r.t. each Qi (i ∈ [1, 6]). We can see that AQP++ kept out-
performing AQPwhen changing the set of condition attributes from

Q3 toQ1 or fromQ3 toQ6, but with the improvement being smaller

as more changes are made. An interesting future work is to study

how to detect this situation and how to trigger the computation of

more suitable BP-Cubes in an automatic way.

7.4 Evaluation With Other Sampling Methods
The previous experiments validate the effectiveness of AQP++ on
uniform samples. In this section, we implement two other sampling

approaches used by the state-of-the-art AQP systems [6, 24] and

examine the performance of AQP++ on these samples.

AQP (measure-biased) vs. AQP++ (measure-biased). Measure-

biased sampling selects each record with a probability propor-

tional to the value in the measure attribute. That is, the larger

the value in the measure attribute, the more likely the record

���

���

���

���

���

���

�� ����� ����� ����� ����� ������

�
��
��
��
��
��
�

��������������������

��������������������
����������������������

���

���

���

���

���

����� ����� ����� �����

�
��
��
��
��
��
�

����������������

��������������
�����������������

Figure 10: Comparing AQP++with AQP using measure-based
sampling and stratified sampling (TPCD-Skew 100GB).

will appear in the sample. This has shown be to a very effec-

tive sampling approach to mitigate the negative impact of out-

liers on estimated answers. We randomly generated 1000 queries

with the selectivity of 0.5% − 5% using the default template. Since

measure-biased sampling is designed for handling outliers, we

only chose the queries that can cover (at least) one outlier, where

a value is defined as an outlier if l_extendedprice is larger than

median(l_extendedprice)+3∗SD(l_extendedprice). We created a 0.05%

measure-biased sample of the dataset, leading to a sample of size

|S | = 0.3 million, and then compared AQPwith AQP++ on the sample

by varying BP-Cube size from k=1000 to k=10,000. Figure 10(a) plots
the median error. We can see that with a very small BP-Cube (e.g.,
k=5000), AQP++ reduced the median error of AQP by 3.3×, which
validated the effectiveness of AQP++ for measure-biased sampling.

AQP (stratified) vs. AQP++ (stratified). Stratified sampling di-

vides data into different groups and then applies a different sam-

pling ratio to each group. The sampling ratio of each group is

disproportional to its group size. This is to ensure that there are

enough records being sampled from small groups. Since stratified

sampling is designed for optimizing group-by queries, we randomly

generated 1000 group-by queries of the following form:

SELECT SUM(l_extendedprice) FROM lineitem
WHERE l_orderkey, l_suppkey
GROUP BY l_returnflag, l_linestatus,

where the selectivity of each query is between 0.5% - 5%. We then

created a 0.05% stratified sample of the dataset w.r.t. the group-by

attributes, l_returnflag and l_linestatus, leading to a sample of size

|S | = 0.3million. AQP used the sample to estimate the answers to the

group-by queries; AQP++ used the same sample along with a small

BP-Cube of size k = 50, 000 to estimate the answers. Figure 10(b)

reports the median error w.r.t. each group. We can see that AQP++
achieved 3×−4×more accurate answers than AQP, which validated

the effectiveness of AQP++ for stratified sampling. Interestingly,

both AQP++ and AQP returned true answers for the group-by key of

“<N,F>” because the group size was very small and all its records

were included into the sample due to the use of stratified sampling.

7.5 Evaluation on More Datasets
We compared the performance of AQP++ and AQP on two other

datasets, BigBench and TLCTrip.

For the BigBench dataset, we want to examine the performance

of AQP++ for different BP-Cube size. We created a 0.05% uniform

sample of the dataset, and randomly generated 1000 queries using

the template of [SUM (adRevenue), visitDate, duration, sourceIP]

with the selectivity of 0.5%-5%. Figure 11(a) compares the median

error of AQP++ and AQP by varying k . We can see that even with a

small BP-Cube, AQP++ can still outperform AQP by a lot. For example,

when k = 50, 000, AQP++ reduced the median error by 3.8×. As k

 0%

 1%

 2%

 3%

 4%

 20000 40000 60000 80000 100000

M
ed

ia
n

Er
ro

r

(a) BP-Cube Size (k)

AQP
AQP++

 0%

 1%

 2%

 3%

 4%

 1 2 3 4 5 6 7 8 9 10

M
ed

ia
n

Er
ro

r

of Dimentions

AQP
AQP++

(a) BigBench (b) TLCTrip

Figure 11: Comparing AQP++with AQP on the BigBench (100
GB) and TLCTrip (200GB) datasets.

grows, AQP++ can achieve better and better performance, finally

reached a median error of 0.60% when k = 100, 000.

For the TLCTrip dataset, we want to examine the performance of

AQP++ for different number of dimensions. We chose ten columns

from the table, and constructed ten query templates accordingly:

[SUM (Distance), Pickup_Date], · · · , [SUM (Distance),Pickup_Date,
Pickup_Time,vendor_name,Fare_Amt,Rate_Code, Passenger_Count,

Dropoff_Date, Dropoff_Time, surcharge, Tip_Amt]. We created a

0.1% uniform sample of the dataset; for each query template, we

randomly generated 1000 queries with the selectivity of 0.5%-5%,

and precomputed a BP-Cube of size k = 300, 000 for it. Figure 11(b)

compares the median error of AQP++ and AQP w.r.t. each query

template. Similar to Figure 7(c), we found that AQP++ significantly
outperformed AQP when the number of dimensions is small and

marginally improved the median error of AQP when the number of

dimensions was increased to 10.

8 CONCLUSION
In this paper, we studied how to enable database systems to an-

swer aggregation queries within interactive response times. We

found that the two separate ideas for interactive analytics, AQP
and AggPre, can be connected together using the AQP++ framework.

We presented the unification and generality of the framework, and

demonstrated (analytically and empirically) why AQP++ can return

a more accurate answer than AQP. After that, an in-depth study

of the framework was conducted for range queries. In the study,

we formally defined the aggregate-identification and aggregate-

precomputation problems, and proposed both optimal solutions

(under certain assumptions) as well as effective heuristic approaches

(for general settings). We implemented AQP++ on a commercial

OLAP system, and evaluated them on three datasets. Experimental

results showed that AQP++ can improve the answer quality of AQP
by up to 10× and reduce the preprocessing cost (both time and

space) of AggPre by several orders of magnitude.

Our work is a first attempt to provide a general framework to con-

nect AQP and AggPre together. Since both AQP and AggPre have been
extensively studied in the past, we believe there are many future

research directions to explore. First, various techniques have been

proposed to optimize AQP (e.g., workload-driven sample creation)

as well as AggPre (e.g., cube approximation). It would be interesting

to revisit these techniques under the AQP++ framework. Second,

there are some aggregation functions that AQP cannot handle well,

such as min and max. However, they are easy for AggPre. Since
AQP++ connects AQP with AggPre, it would be interesting to explore
whether AQP++ can be extended to support these aggregation func-

tions. Third, it might be hard for some users to decide which query

templates should be specified. Thus, user-guided query template

design is another interesting topic to explore.

REFERENCES
[1] Big Data Benchmark. http://amplab.cs.berkeley.edu/benchmark.

[2] TLC Trip Record Data. http://www.nyc.gov/html/tlc/html/about/trip_record_

data.shtml.

[3] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for approximate

answering of group-by queries. In SIGMOD, 2000.
[4] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua approximate

query answering system. In SIGMOD, 1999.
[5] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan, S. Madden, B. Moza-

fari, and I. Stoica. Knowing when you’re wrong: building fast and reliable

approximate query processing systems. In SIGMOD, 2014.
[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB:

queries with bounded errors and bounded response times on very large data. In

EuroSys, 2013.
[7] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: relational data processing

in spark. In SIGMOD, 2015.
[8] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approximate

query processing. In SIGMOD, 2003.
[9] P. Bailis, J. M. Hellerstein, and M. Stonebraker. Readings in Database Systems, 5th

Edition, chapter "Interactive Analytics". 2016.
[10] D. Barbará and M. Sullivan. Quasi-cubes: Exploiting approximations in multidi-

mensional databases. SIGMOD Record, 1997.
[11] Y. Cao and W. Fan. Data driven approximation with bounded resources. PVLDB,

10(9):973–984, 2017.

[12] C. Y. Chan and Y. E. Ioannidis. Hierarchical prefix cubes for range-sum queries.

In VLDB, 1999.
[13] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. R. Narasayya. Overcoming

limitations of sampling for aggregation queries. In ICDE, 2001.
[14] S. Chaudhuri, G. Das, and V. R. Narasayya. A robust, optimization-based approach

for approximate answering of aggregate queries. In SIGMOD, 2001.
[15] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized stratified sampling for

approximate query processing. ACM Trans. Database Syst., 32(2):9, 2007.
[16] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP tech-

nology. SIGMOD Record, 1997.
[17] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing: No silver

bullet. In SIGMOD, 2017.
[18] S. Chaudhuri and V. Narasayya. TPC-D data generation with skew. ftp.research.

microsoft.com/users/viveknar/tpcdskew.

[19] Y. Chen and K. Yi. Two-level sampling for join size estimation. In SIGMOD, 2017.
[20] R. Chirkova and J. Yang. Materialized views. Foundations and Trends in Databases,

4(4):295–405, 2012.

[21] S. Chun, C. Chung, J. Lee, and S. Lee. Dynamic update cube for range-sum queries.

In VLDB, 2001.
[22] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries with arbitrary aggregation

functions using views. ACM Trans. Database Syst., 31(2):672–715, 2006.
[23] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for mas-

sive data: Samples, histograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1-3):1–294, 2012.

[24] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample + Seek:

approximating aggregates with distribution precision guarantee. In SIGMOD,
pages 679–694, 2016.

[25] C. E. Dyreson. Information retrieval from an incomplete data cube. In VLDB,
1996.

[26] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisiting reuse

for approximate query processing. PVLDB, 10(10):1142–1153, 2017.
[27] V. Ganti, M. Lee, and R. Ramakrishnan. ICICLES: self-tuning samples for approx-

imate query answering. In VLDB, 2000.
[28] S. Geffner, D. Agrawal, A. El Abbadi, and T. R. Smith. Relative prefix sums: An

efficient approach for querying dynamic OLAP data cubes. In ICDE, 1999.
[29] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improv-

ing approximate query answers. In SIGMOD, 1998.
[30] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-

low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing

group-by, cross-tab, and sub totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.
[31] A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294,

2001.

[32] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes

efficiently. In SIGMOD, 1996.
[33] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD,

1997.

[34] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data

cubes. In SIGMOD, 1997.
[35] C. Jermaine. Robust estimation with sampling and approximate pre-aggregation.

In VLDB, pages 886–897, 2003.
[36] C. Jermaine and R. J. Miller. Approximate query answering in high-dimensional

data cubes. In SIGMOD, 2000.
[37] C. M. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query

processing with the DBO engine. In SIGMOD, 2007.
[38] R. Jin, L. Glimcher, C. Jermaine, and G. Agrawal. New sampling-based estimators

for OLAP queries. In ICDE, 2006.

[39] S. Joshi and C. Jermaine. Materialized sample views for database approximation.

In ICDE, 2006.
[40] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and interactive

cube exploration. In ICDE, pages 472–483, 2014.
[41] N. Kamat and A. Nandi. A session-based approach to fast-but-approximate

interactive data cube exploration. ACM Trans. Knowl. Discov. Data, 12(1):9:1–9:26,
Feb. 2018.

[42] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri, and

B. Ding. Quickr: lazily approximating complex adhoc queries in bigdata clusters.

In SIGMOD, 2016.
[43] A. Kemper, T. Neumann, J. Finis, F. Funke, V. Leis, H. Mühe, T. Mühlbauer, and

W. Rödiger. Processing in the hybrid OLTP & OLAP main-memory database

system hyper. IEEE Data Eng. Bull., 36(2):41–47, 2013.
[44] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and T. Kraska. Stale view

cleaning: Getting fresh answers from stale materialized views. PVLDB, 8(12):1370–
1381, 2015.

[45] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via random

walks. In SIGMOD, 2016.
[46] X. Li, J. Han, Z. Yin, J. Lee, and Y. Sun. Sampling cube: a framework for statistical

olap over sampling data. In SIGMOD, 2008.
[47] W. Liang, H. Wang, and M. E. Orlowska. Range queries in dynamic OLAP data

cubes. Data Knowl. Eng., 34(1):21–38, 2000.
[48] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vas-

silakis. Dremel: Interactive analysis of web-scale datasets. PVLDB, 3(1):330–339,
2010.

[49] G. Moerkotte. Small materialized aggregates: A light weight index structure for

data warehousing. In VLDB, 1998.
[50] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but verify: Optimistic visual-

izations of approximate queries for exploring big data. In CHI, 2017.
[51] B. Mozafari and N. Niu. A handbook for building an approximate query engine.

IEEE Data Eng. Bull., 38(3):3–29, 2015.
[52] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan, S. Chakraborty, H. Bhanawat,

and K. Bachhav. Snappydata: A unified cluster for streaming, transactions and

interactice analytics. In CIDR, 2017.
[53] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and

summary tables in a warehouse. In SIGMOD, 1997.
[54] A. Nandi, A. Fekete, and C. Binnig. HILDA 2016 workshop: A report. IEEE Data

Eng. Bull., 39(4):85–86, 2016.
[55] S. Nirkhiwale, A. Dobra, and C. M. Jermaine. A sampling algebra for aggregate

estimation. PVLDB, 6(14):1798–1809, 2013.
[56] F. Olken. Random sampling from databases. PhD thesis, University of California

at Berkeley, 1993.

[57] F. Olken and D. Rotem. Simple random sampling from relational databases. In

VLDB, 1986.
[58] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large

mapreduce jobs. PVLDB, 4(11):1135–1145, 2011.
[59] Y. Park, A. S. Tajik, M. J. Cafarella, and B. Mozafari. Database learning: Toward a

database that becomes smarter every time. In SIGMOD, pages 587–602, 2017.
[60] A. Pol and C. Jermaine. Relational confidence bounds are easy with the bootstrap.

In SIGMOD, pages 587–598, 2005.
[61] N. Potti and J. M. Patel. DAQ: A new paradigm for approximate query processing.

PVLDB, 8(9):898–909, 2015.
[62] F. Rusu, C. Qin, and M. Torres. Scalable analytics model calibration with online

aggregation. IEEE Data Eng. Bull., 38(3):30–43, 2015.
[63] F. Rusu, F. Xu, L. L. Perez, M. Wu, R. Jampani, C. Jermaine, and A. Dobra. The

DBO database system. In SIGMOD, pages 1223–1226, 2008.
[64] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for

multidimensional datasets. In VLDB, 1998.
[65] A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramasamy. Storage estimation

for multidimensional aggregates in the presence of hierarchies. In VLDB, 1996.
[66] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. SciBORQ: Scientific data manage-

ment with bounds on runtime and quality. In CIDR, 2011.
[67] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,

A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik.

C-Store: A column-oriented DBMS. In PVLDB, 2005.
[68] J. S. Vitter and M. Wang. Approximate computation of multidimensional aggre-

gates of sparse data using wavelets. In SIGMOD, 1999.
[69] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A

sample-and-clean framework for fast and accurate query processing on dirty

data. In SIGMOD, pages 469–480, 2014.
[70] S. Wu, B. C. Ooi, and K. Tan. Continuous sampling for online aggregation over

multiple queries. In SIGMOD, 2010.
[71] K. Zeng, S. Agarwal, and I. Stoica. iOLAP: managing uncertainty for efficient

incremental OLAP. In SIGMOD, 2016.
[72] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical bootstrap: a new

method for fast error estimation in approximate query processing. In SIGMOD,
pages 277–288, 2014.

http://amplab.cs.berkeley.edu/benchmark
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
ftp.research.microsoft.com/users/viveknar/tpcdskew
ftp.research.microsoft.com/users/viveknar/tpcdskew

APPENDIX
A PROOFS
Proof of Lemma 1
Consider a user query q:

SELECT f (A) FROM D WHERE Condition_1,

and a precomputed aggregate query pre:

SELECT f (A) FROM D WHERE Condition_2.

If AQP supports the aggregation function f , query q and pre can
be estimated using AQP, i.e., q̂(S) and ˆpre (S). Since pre (D) is a
constant, AQP++ can use Equation 4 to get the estimatation of q.

Proof of Lemma 2
Consider a user query q:

SELECT f (A) FROM D WHERE Condition_1,

and a precomputed aggregate query pre:

SELECT f (A) FROM D WHERE Condition_2.

If AQP can estimate their answers unbiasedly, then we have

q(D) = E[q̂(S)] and pre (D) = E[ˆpre (S)]. Based on Equation 4,

AQP++’s estimator returns pre (D)+
(
q̂(S)− ˆpre (S)

)
. We can prove

that its expect value is equal to the true value:

E
[
pre (D) +

(
q̂ (S) − ˆpre (S)

)]
= E[pre (D)] +

(
E[q̂ (S)] − E[ˆpre (S)]

)
= pre (D) +

(
q (D) − pre (D)

)
= q (D)

Proof of Lemma 3
Consider a sequence of i.i.d valuesD = {a1,a2, · · · ,an }. We define

Dpre = {Gpre (ai) | i ∈ [1,n]}, where Gpre (ai) take ai as input
and returns ai if ai satisfies the pre’s condition; otherwise, 0. We

defineDq = {Gq (ai) | i ∈ [1,n]}, whereGq (ai) take ai as input and
returns ai if ai satisfies the q’s condition; otherwise, 0. We define

Dd = Dpre − Dpre = {xi − yi |xi ∈ Dpre ,yi ∈ Dq , i ∈ [1,n].}
Based on the confidence interval for a SUM query in Example 3, we

can deduce that error (q,pre) = λN

√
VAR(Dd)

n . Since VAR(Dd) =

E[D2

d] − E[Dd]
2
, let us compute E[D2

d] and E[Dd]
2
separately.

Firstly, we will compute E[Dd]
2
. We have E[Dd] = E[Dpre −

Dq] = E[Dpre] − E[Dq]. Since each value in D is i.i.d, the sum

of the values within any range is proportional to the length of

the range. Let α be the percentage of the values in D satisfying

pre’s condition but not q’s, β be the percentage of the values in D

satisfying q’s condition but not pre’s, and γ be the percentage of

the values in D satisfying both pre’s and q’s condition. Then, we
have E[Dpre] = (α + γ)E[D] and E[Dq] = (β + γ)E[D]. Hence,

E[Dd]
2 = (α − β)2E[D]

2
(8)

Secondly, we will compute E[D2

d]. We have Dpreq =

{Gpreq (ai) | i ∈ [1,n]}, where G (ai) take ai as input and re-

turns ai if ai satisfies the pre’s condition as well as the q’s condi-
tion; otherwise, 0. Similar to the idea of computing E[Dd]

2
, we

obtain E[D2

pre] = (α + γ)E[D2
], E[D2

q] = (β + γ)E[D2
] and

E[D2

preq] = γE[D2
]. Hence, we can get:

E[D2

d] = (α + β)E[D2
] (9)

Combining Equation 8 and Equation 9, we can derive error (q,pre)

= λN
√

σ 2

n , where σ 2 = (α + β)E[D2
] − (α − β)2 (E[D])2.

Given q, our goal is to find pre with the minimal error, which is

equivalent to find the minimal σ 2
. Denote the selectivity of q as θ .

The following two equations always hold:

θ ≥ β (10)

0 ≤ α + θ ≤ 1 (11)

Let us consider pre in P+ in the following three cases:

(1) Case 1: pre satisfies α ≥ β + E[D2
]

2E[D]
2
. we will prove that

σ 2 − error (q,ϕ) ≥ 0, which means ϕ ∈ P− is the optimal pre query.
Actually, we have σ 2 ≥ (α − β)E[D2

] − (α − β)2E[D]
2
. Hence,

σ 2 −error (q,ϕ) ≥ (α − β −θ)E[D2
]− (α − β −θ) (α − β +θ)E[D]

2
.

Since α − β ≥ E[D2
]

2E[D]
2
≥ 1

2
, and θ ≤ 1 − α ≤ 1

2
(based on

Equation 11), we have α −β −θ ≥ 0. Since α −β +θ ≤ 1−β ≤ 1, we

can get E[D2
]− (α − β +θ)E[D]

2 ≥ E[D2
]−E[D]

2 ≥ 0. Combine

it with α − β − θ ≥ 0, we can derive σ 2 − error (q,ϕ) ≥ 0.

(2) Case 2: pre satisfies β ≥ α + E[D2
]

2E[D]
2
. We will prove that

ϕ ∈ P− is the optimal pre , i.e., σ 2−error (q,ϕ) ≥ 0. Since β ≥ α , we
can get (α−β)2 ≤ β2

. Besides, we also have α+β ≥ β . Then, we can
derive σ 2 = (α + β)E[D2

] − (α − β)2E[D]
2 ≥ βE[D2

] − β2E[D]
2
.

Hence, σ 2 − error (q,ϕ) ≥ (β − θ)E[D2
] − (β − θ) (β + θ)E[D]

2
.

Since we have β ≥ α+ E[D2
]

2E[D]
2
≥

E[D2
]

2E[D]
2
and θ ≥ β (Equation 10),

we can get β + θ ≥ 2β ≥ E[D2
]

E[D]
2
. Hence, we have E[D2

] − (β +

θ)E[D]
2 ≤ E[D2

] − E[D]
2 E[D2

]

E[D]
2
= 0. Combine it with β − θ ≤ 0,

we could derive σ 2 − error (q,ϕ) ≥ 0.

(3) Case 3: pre satisfies β < α + E[D2
]

2E[D]
2
and α < β + E[D2

]

2E[D]
2
.

We will prove that a query pre ∈ P− will have the smallest error.

If regard σ 2
as a quadratic function of α , then the turn point is

β + E[D2
]

2E[D]
2
. Since α < β + E[D2

]

2E[D]
2
, we can get that for a fixed β , the

error is monotonically increasing w.r.t. α . Similarly, for a fixed α ,
the error is monotonically increasing w.r.t. β . Now given a query q,
there are five possible positions that pre query can be. Let x and y
denote the lowest point and the highest point of q query. Let prex
and prey denote the lowest point and the highest point of pre query,
respectively. Let preopt denote the optimal pre with smallest error.

(a) position 1: prel ≥ x and preh ≤ y. In this case, alpha = 0

and β = prex − x + y − prey . Then the smallest β will get when

prex = hx and prey = ly . Hence, preopt ∈ P
−
.

(b) position 2: prex < x and prey ≤ y. In this case, α = x − prex
and β = y − prey . Then the smallest α and β is got when prex = lx
and prey = ly . Hence, preopt ∈ P

−
.

(c) position 3: prex ≥ x and prey > y. In this case, α = prey − y
and β = prex −x . Then the smallest α and β is got when prex = hx
and prey = hy . Hence, preopt ∈ P

−
.

(d) position 4: prex < x and prey > y. In this case, β = 0 and

α = x −prex +prey −y. Then the smallest α is got when prex = lx
and prey = hy . Hence, preopt ∈ P

−
.

(e) position 5: pre = ϕ. Since ϕ ∈ P−, we also have preopt ∈ P
−
.

Proof of Lemma 4
According to Lemma 3, we only need to prove

max

q∈Q
min

pre∈P−eq
error (q, pre) = λN

√
σ 2

eq

n
.

Let θ denote q’s selectivity.

(1) If θ > 1

k . In this case, there exists two points hx and ly inside

query q. We will prove that when x and y are the middle points

of lxhx and lyhy , we can get maxq∈Q minpre ∈P−eq error (q,pre) =

λN

√
σ 2

eq
n , where σ 2

eq =
1

k E[D2
] − 1

k2
(E[D])2.

First we will prove that when x and y are the middle points,

we have σ 2

opt = σ 2

eq . Actually, there are five pre we can choose:

pre = AGG (lx : hy), pre = AGG (hx : ly), pre = AGG (lx : ly),
pre = AGG (hx : hy), and pre = ϕ.

(a) If pre = AGG (lx : hy), then α = 1

k and β = 0, thus σ 2 = σ 2

eq .

(b) If pre = AGG (hx : ly), similar to (a) we can get σ 2 = σ 2

eq .

(c) If pre = AGG (lx : ly), we have α =
1

2k and β = 1

2k , hence

σ 2 = 1

k E[D2
] ≥ σ 2

eq .

(d) If pre = AGG (hx : hy), similar to (c) we can get σ 2 =
1

k E[D2
] ≥ σ 2

eq .

(e) If pre = ϕ, we have σ 2 = θE[D2
] − θ2E[D]

2
. Since

1

k ≤ θ ≤

1 − 1

k , we can get σ 2 ≥ σ 2

eq .

Hence, σ 2

opt = σ 2

eq .

Now we will prove that for any query q, we have σ 2

opt ≤ σ 2

eq .

Suppose l = |hx ly | and L = |lxhy |.

(a) When θ − l ≤ 1

k , for pre = hx ly , we have α = 0 and β =

θ − l ≤ 1

k . Then, σ
2 = βE[D2

] − β2E[D]
2 ≤ σ 2

eq . Hence, we can

get σ 2

opt ≤ σ 2 ≤ σ 2

eq .

(b) When θ − l > 1

k , for pre = lxhy , we have α = L − θ =

l + 2

k − θ <
1

k and β = 0. Then σ 2 = αE[D2
] − α2E[D]

2 < σ 2

eq .

Hence, we can get σ 2

opt ≤ σ 2 < σ 2

eq .

(2) If θ ≤ 1

k , we will prove that the query-template error can-

not be larger than λN

√
σ 2

eq
n . When using ϕ to answer the query,

the query’s variance is σ 2 = θE[D2
] − θ2 (E[D])2. Since θ ≤ 1

k
and σ 2

is monotonically increasing w.r.t θ , we have σ 2 ≤ σ 2

eq .

Thus, error (q,ϕ) = λN
√

σ 2

n ≤ λN

√
σ 2

eq
n . Since ϕ ∈ P−eq , we obtain

minp∈P−eq error (q,p) ≤ error (q,ϕ) ≤ λN

√
σ 2

eq
n .

Proof of Lemma 5
In order to prove the lemma, we only need to construct a single bad

query q′ ∈ Q such that error (q′, P) ≥ λN

√
σ 2

eq
n . Since the precom-

puted queries are not evenly chosen, there must exist two intervals

such that the sum of their lengths is larger than
2N
k . Construct a

query q′ = SUM(x : y), where x and y are the middle points of the

two intervals, respectively. Suppose |lxhx | = 2a and |lyhy | = 2b.

Then we have
1

k ≤ a +b ≤ 1 − θ and θ ≥ a +b ≥ 1

k . There are five

possible pre queries for q′:
(a) pre = AGG (lx : hy): we have β = 0 and α = a + b. Since

1

k ≤ a + b ≤ 1 − θ ≤ 1 − 1

k , we have σ
2 = (a + b)E[D2

] − (a +

b)2E[D]
2 ≥ 1

k E[D2
] − 1

k2
E[D]

2 = σ 2

eq .

(b) pre = AGG (hx : ly): similar to (a), we have σ 2 = (a +

b)E[D2
] − (a + b)2E[D]

2 ≥ σ 2

eq .

(c) pre = AGG (lx : ly): we have α = a and β = b. Then σ 2 =

(a+b)E[D2
]− (a−b)2E[D]

2 ≥ (a+b)E[D2
]− (a+b)2E[D]

2 > σ 2

eq .

(d) pre = AGG (hx : hy): similar to (c), we can get σ 2 ≥ σ 2

eq .

(e) pre = ϕ: we have α = 0 and β = θ . Since 1

k ≤ θ ≤ 1 − 1

k , we

have σ 2 = θE[D2
] − θ2E[D]

2 ≥ σ 2

eq .

Now, for all five pre queries, we have σ 2 ≥ σ 2

eq . Hence the query

error of q′ is minpre ∈P− error (q
′,pre) ≥ λN

√
σ 2

eq
n .

Proof of Theorem 1
Based on Lemmas 4 and 5, we can easily deduce that the query-

template error of Q w.r.t. Peq is minimum. That is,

Peq = argmin

P
max

q=SUM(x :y)
1≤x<y≤N

error (q, P).

Hence, Peq is an optimal BP-Cube.

Proof of Lemma 6
Due to the space limit, we just give the proof sketch. P− \ {ϕ} ⊆ P+,
then error (q, P) = minp∈P+ error (q,p) ≤ minp∈P−\{ϕ } error (q,p).

We can see that P− \ {ϕ} consists of four precomputed queries that

lead to four ways to estimate the sum. As shown in Section 6.1.2, we

can choose the pre query that leads to min

{
λN√
n
·
√
Var(ALx),

λN√
n
·√

Var(AL̄x)
}
and min

{
λN√
n
·

√
Var(ALy),

λN√
n
·
√
Var(AL̄y)

}
. Then

error (q, P) would be λN√
n
·
√
Var(X + Y) or λN√

n
·
√
Var(X − Y), where

X = ALx if Var(ALx) ≤ Var(AL̄x), otherwiseX = AL̄x .Y has a sim-

ilar meaning with X . Then, based on Cauchy-Schwarz inequality√
Var(X ± Y) ≤

√
Var(X) +

√
Var(Y), we can derive the lemma.

B PREPROCESSING COST ANALYSIS
We analyze the time complexity of our aggregate-precomputation

technique in this part.

In the first stage, we need to determine which BP-Cube needs to
be precomputed. This stage is only executed on a sample S. The

total time complexity of this stage is dominated by determining the

BP-Cube’s shape because it needs to run hill climbing algorithms for

multiple times (denote the number of the times bym) in order to

plot an error profile for each dimension. The hill climbing algorithm

is an iterative algorithm. Let iter denote the number of iterations.

Each iteration takes a linear time of O (n). Thus, the time complexity

of plotting a single error profile is O (m · iter · n). Since we need to

constructd error profiles, the total time complexity isO (d ·m·iter ·n).
Note that here n is the sample size, which is orders of magnitude

smaller than the data size. In the experiments, we setm = 20 by

default, and found that iter is on average smaller than 20.

In the second stage, we need to precompute the BP-Cube obtained
from the first stage. Ho et al. [34] proposed an efficient algorithm to

do so. The algorithm needs to scan the full data once to initialize a

d-dimensional array of the size of

∏d
i=1

ki . The time complexity of

this step isO (N ·logk) and the I/O cost isO (D). Next, the algorithm
scans the array for d times and the final d-dimensional array is the

BP-Cube that we want to precompute. The time complexity of this

step isO (d ·k). Since BP-Cube is often small, we assume that it can be

put in memory, thus this step does not involve any I/O cost. To sum

up, the total time complexity is O (N · logk +d ·k) and the total I/O

cost is O (D). Since the entire P-Cube consists of
∏d

i=1
|dom(Ci) |

cells and a BP-Cube only containsk (≪
∏d

i=1
|dom(Ci) |) cells, AQP++

incurs much less preprocessing cost than AggPre in terms of both

space usage and running time.

C EXTENSIONS
Aggregation Functions. As mentioned in Section 4.2, AQP++ has
an estimator (Equation 5) that works for any aggregation function

that AQP can support. For each aggregation function, however, it

may require a different way to construct a precomputed aggregate

query set. In this paper, we propose an aggregate-precomputation

technique for SUM queries. The technique can be extended to

COUNT and AVG with small changes. For COUNT queries, we

add a virtual attribute to the table with all the values equal to 1.

Any COUNT query can be rewritten as a SUM query on the virtual

attribute. For AVG queries, since AVG(A) =
SUM(A)

COUNT(A) , to construct

a BP-Cube for it, we need to consider the accuracy of both SUM(A)
and COUNT(A). We employ a simple heuristic approach [15] to

combine them together, α · SUM(A) + (1 − α) · COUNT(A), where
α ∈ [0, 1] (α = 0.5 by default). Given an AVG query template

[AVG(A),C1, · · · ,Cd], we add a virtual attribute A′ to the table

with each value equal to α ·A+ (1−α), and then apply the aggregate-
precomputation technique to [SUM(A′),C1, · · · ,Cd] to determine

the BP-Cube that need to be precomputed.

For holistic aggregation functions such as median and percentile,

BP-Cubes cannot support them well. The main reason is that their

query answers cannot be easily combined. For instance, it is easy to

add the answers to SUM(1 : 5) and SUM(6 : 10) to get the answer to
SUM(1 : 10), but such idea will not work for median or percentile.

If there is a sophisticated method to handle precomputed percentile

results (like BP-Cubes for SUM), one can still benefit from AQP++ by
using bootstrap to compute the confidence interval of q − pre and
using Equation 4 to get the estimation. In the future, we will explore

other forms of cubes to handle holistic aggregation functions.

Group-by Queries. We now discuss how to extend AQP++ to sup-

port group-by queries. In the aggregate precomputation stage, we

can treat group-by attributes as condition attributes and then apply

the same hill-climbing algorithm to generate BP-Cubes. For example,

suppose a user wants to run queries in the following form:

SELECT SUM(sales) FROM table
WHERE age GROUP BY country

The user can specify a query template [SUM(sale), age, country],

and then use our algorithm to generate a BP-Cube for the template.

In the aggregate identification stage, given a group-by query, e.g.,

SELECT SUM(sales) FROM table
WHERE 19<age<31 GROUP BY country

we need to identify a precomputed aggregate value for each group.

One idea is to apply our aggregate-identification approach to each

group one by one. However, this may be costly when the number of

groups is large. To make this process more efficient, we can adopt a

heuristic approach, where we consider all groups as the same and

only apply our approach to the following query (which is obtained

by removing the group-by clause from the user query):

SELECT SUM(sales) FROM table WHERE 19<age<31.

Suppose the identified range condition is “20<age<30”. Then, we

use it for all groups, and construct the following query

SELECT SUM(sales) FROM table
WHERE 20<age<30 GROUP BY country,

where we can identify a precomputed aggregate for each group.

For both stages, it is clear to see that the proposed extension

may not be the most effective solution to enable AQP++ to support

group-by queries. For example, in the aggregate precomputation

stage, it ignores the fact that country is a categorical attribute and

its range condition can only use an equal sign, i.e., “country = x”. We

will explore these opportunities and further enhance the extension

to group-by queries in future work.

Data Updates. When the underlying data is updated, AQP++ does
not only need to update sample data (like AQP), but also needs

to maintain precomputed query results. The latter is essentially a

materialized view maintenance problem. Many techniques have

been proposed to solve the problem [20]. In particular, for SUM,

COUNT, AVG queries, their query results can be maintained more

efficiently due to the availability of incremental algorithms. Fur-

thermore, since AQP++ only needs to maintain a BP-Cube, it incurs
much less maintenance cost than AggPre.

There are many interesting problems in this space, such as how

to develop an incremental hill-climbing algorithm, how to achieve

a better trade-off between maintenance cost, query response time,

and answer quality, and how to combine stale prefix cubes with data

updates to answer queries. However, addressing these problems is

beyond the scope of this paper. We will systematically study these

problems in future work and propose a comprehensive solution to

data updates.

Multiple Query Templates. The paper studies how to decide

which BP-Cube should be precomputed for a single query template.

When multiple query templates are given, we need to decide how

to allocate the space budget to each query template. Suppose there

are two query templatesQ1 : [SUM(A1),C1,C2] andQ2 : [SUM(A2),

C3], and the space budget is k . A simple approach is to allocate k/2
to each one. To better balance the allocation, we can adopt a similar

idea with the binary-search algorithm in Section 6.2, which tunes

the space-budget allocation iteratively. At the beginning, both Q1

and Q2 will be allocated to have the space budget of k/2. Then, we
use error profile curves to estimate which query template has a

larger error, e.g., Q1 has a larger error. In this situation, Q1 needs

more space budget. We adjust the allocation by assigning the budget

of 3k/4 to Q1 and the budget of 1/k to Q1. The iterative process

will continue until the search range is empty.

Space Allocation. In AQP++, part of the space is used for sampling

while the other part is used for storing BP-Cubes. One natural ques-
tion is how to allocate this budget between the two in order to

achieve the best performance given a fixed budget. We adopted a

simple approach in the paper. This approach is based on the obser-

vation that sample size has a big impact on query response time

but the size of BP-Cubes does not. Therefore, we can first select

the maximum sample size that meets the user’s requirement for re-

sponse time (e.g., less than 0.5 s), and then use the remaining space

for storing BP-Cubes. In the future, we will study how to leverage

query workloads to develop a more sophisticated approach.

D MORE RELATEDWORK
Materialized Views. Precomputed query results are also known

as materialized views (see [20] for a survey). If we look at AQP++ in
a materialized view context, AQP++ essentially materializes aggre-

gation views [64] as well as sample views [39], and studies how to

answer queries using the materialized views. The two problems (ag-

gregate identification and aggregate precomputation) that the paper

delves into are known as answering queries using views [22, 31]

and selecting views to materialize [32, 64]. But, existing approaches

cannot be used to solve our problems because none of them has

considered the connection between AQP and AggPre.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formalization
	4 From AQP to AQP++
	4.1 Sampling-based AQP
	4.2 AQP++ Framework

	5 Aggregate Identification
	5.1 Optimal Solution
	5.2 Aggregate-Identification Approach

	6 Aggregate Precomputation
	6.1 One-Dimensional Query Template
	6.2 Multidimensional Query Template

	7 Experimental Results
	7.1 Experiment Setup
	7.2 Overall Performance
	7.3 Detailed Performance
	7.4 Evaluation With Other Sampling Methods
	7.5 Evaluation on More Datasets

	8 Conclusion
	References
	A Proofs
	B Preprocessing Cost Analysis
	C Extensions
	D More Related Work

