
Towards Extracting Highlights From Recorded Live
Videos: An Implicit Crowdsourcing Approach

Ruochen Jiang∗‡
†Simon Fraser University
{changboq, jnwang}@sfu.ca

Changbo Qu∗† Jiannan Wang†
‡Ohio State University
jiang.2091@osu.edu

Chi Wang
Microsoft

wang chi@microsoft.com

Yudian Zheng
Twitter

yudianz@twitter.com

Abstract—Live streaming platforms need to store a lot of
recorded live videos on a daily basis. An important problem
is how to automatically extract highlights (i.e., attractive short
video clips) from these massive, long recorded live videos. One
approach is to directly apply a highlight extraction algorithm
to video content. However, algorithmic approaches are either
domain-specific, which require experts to spend a long time to
design, or resource-intensive, which require a lot of training
data and/or computing resources. In this paper, we propose
LIGHTOR, a novel implicit crowdsourcing approach to overcome
these limitations. The key insight is to collect users’ natural
interactions with a live streaming platform, and then leverage
them to detect highlights. LIGHTOR consists of two major compo-
nents. Highlight Initializer collects time-stamped chat messages
from a live video and then uses them to predict approximate
highlight positions. Highlight Extractor keeps track of how users
interact with these approximate highlight positions and then
refines these positions iteratively. We find that the collected user
chat and interaction data are very noisy, and propose effective
techniques to deal with noise. LIGHTOR can be easily deployed
into existing live streaming platforms, or be implemented as
a web browser extension. We recruit hundreds of users from
Amazon Mechanical Turk, and evaluate the performance of
LIGHTOR using two popular games in Twitch. The results show
that LIGHTOR can achieve high extraction precision with a small
set of training data and low computing resources.

Index Terms—Machine learning, implicit crowdsourcing, high-
light detection.

I. INTRODUCTION

Video data is booming and will account for 90% of all
internet traffic by 2020 as predicted by Cisco [1]. Improving
video-related services is of growing interest in the database
and data mining community [2]–[7]. As an important type
of video service, live streaming platforms such as Twitch,
Mixer, YouTube Live, and Facebook Live fulfill the mission of
democratizing live video broadcasting. With these platforms,
anyone can be a broadcaster to record a video and broadcast
it in real time; anyone can be a viewer to watch a live
video and chat about it in real time. This unique experience
makes these platforms more and more popular nowadays. For
example, by 2018, Twitch has reached 3.1 million unique
monthly broadcasters, and over 44 billion minutes of videos
are watched each month [8].

Once a live stream is complete, the recorded video along
with time-stamped chat messages will be archived. A recorded
video is often very long (from half an hour to several hours).

∗ Work done at SFU. Both authors contributed equally to this research.

Many users do not have the patience to watch the entire
recorded video but only look for a few highlights to watch.
A highlight represents a small part of the video that makes
people feel excited or interested, and it typically lasts from a
few seconds to less than one minute. For example, a highlight
in a Dota2 game video could be an exciting battle or a critical
knockdown.

We study how to automatically extract highlights from a
recorded live video. Finding a good solution to this problem
could have a propound impact on live-streaming business.
First, since it save users’ time in manually finding the
highlights, more and more users might be willing to watch
recorded live videos, thus increasing the user engagement
of a live-streaming platform. Second, highlight extraction is
a fundamental task in video processing. If a live-streaming
platform knows the highlights of each video, it will signifi-
cantly improve the user experience of other profitable video
applications, such as video search and video recommendation.

One direction to solve this problem is to adopt a machine-
only approach [9]–[13]. However, many existing highlight-
detection algorithms [9], [10] are domain specific. For exam-
ple, to apply them to Twitch, domain experts need to design
a different algorithm for every game type (e.g. Dota2, LoL,
etc.), which is not easy to develop and maintain. Some recent
papers study how to train a deep-learning model (e.g., CNN,
RNN, LSTM) to detect highlights [11]–[13]. However, for
each game type, they need to label a large number of videos
in order to train a good model. The model trained on one
type of game (e.g., Dota2) usually does not generalize well
to another (e.g., LoL). Furthermore, the training process is
computationally expensive, which take several days to train
a model using expensive GPUs.

Crowdsourcing is a potential approach to overcome these
limitations. Crowdsourcing seeks to recruit a large number of
Internet workers to solve challenging problems (e.g., entity
resolution [14], [15], image labeling [16]). A simple solution
is to adopt explicit crowdsourcing, which pays workers some
money and asks them to extract highlights from videos. Since
this solution uses monetary incentives to recruit workers, it
does not scale well to a large number of videos in live
streaming platforms.

In this paper, we propose a novel implicit crowdsourcing to
tackle this problem [17]. Implicit crowdsourcing is the idea
of collecting implicit feedback from users (i.e., user’s natural

ar
X

iv
:1

91
0.

12
20

1v
1

 [
cs

.D
B

]
 2

7
O

ct
 2

01
9

10 /
1510 /

15

Wonderful!

Kill!

Kill!

👍

👍 😄 😄

2000 / 3600 0 / 3600 10 / 152000 / 3600

Highlight Initializer

Recorded Video
ExtractedHighlights

Live Video

Prediction

Adjustment

Highlight Extractor

Aggregation

Classification

Filtering

Fig. 1: LIGHTOR: An implicit crowdsourcing workflow for extracting highlights from a recorded live video.

interactions with the system) and then leveraging the feedback
to solve a challenging problem. It has achieved great success
in many domains. For example, reCAPTCHA [18] leverages
this idea to digitize old books. Search engines collect implicit
clickthrough data to optimize web search ranking [19]. To
apply this idea, we face two challenges. The first one is how
to design an implicit crowdsourcing workflow so that video
viewers interact with the system naturally but provide useful
feedback implicitly. The second one is how to use the implicit
(and noisy) feedback to detect and extract video highlights.
We address these two challenges as follows.

Implicit Crowdsourcing Workflow. We design a novel im-
plicit crowdsourcing workflow, called LIGHTOR. LIGHTOR
consists of two components. i) Highlight Initializer takes a
recorded live video as input and uses its time-stamped chat
messages to detect which part of the video could have a
highlight. For example, when a large number of chat messages
pop up within a short period of time, users may talk about a
highlight that has just happened. Note that Highlight Initializer
can only get an approximate position of a highlight. It is still
not clear about the exact boundary (i.e., exact start and end
points) of a highlight. ii) Highlight Extractor is designed to
address this problem. At each approximate position, it puts
a “red dot” on the progress bar of the video, which informs
users that there could be a highlight at this position. Note
that users will not be forced to watch this highlight. Instead,
they can watch the video as usual. Highlight Extractor collects
user interaction data w.r.t. each red dot to identify the exact
boundary of each highlight.

Noisy User Data. One major challenge in our implicit
crowdsourcing design is how to handle the high noise in
the implicit feedback from users. For example, in Highlight
Initializer, when a user leaves a chat message, she might not
comment on the video content but chat with other users. In
Highlight Extractor, when a user watches a certain part of
video, she might not be attracted by the video content but
check whether this part of video has something interesting.
Therefore, we have to be able to separate noise from signal. We
analyze real-world user data and derive a number of interesting
observations. Based on these observations, we develop several
effective techniques to deal with noisy user interaction data.

LIGHTOR can be easily deployed on an existing live stream-
ing platform. The only change is to add red dots to the progress
bar of recorded videos. Based on a user survey, we find
that most users prefer this change since red dots help them
find more interesting highlights. Furthermore, LIGHTOR can

be implemented as a web browser extension, which has the
potential to support any platform.

We recruit about 500 game fans from Amazon Mechanical
Turk and evaluate LIGHTOR using two popular games (Dota2
and LoL) from Twitch. The results show that (1) our proposed
techniques make LIGHTOR achieve very high precision (up to
70%− 90%) in the returned top-k highlights, which changes
the system from unusable to usable, and (2) LIGHTOR requires
123× fewer training examples and over 100000× less training
time compared to the state-of-the-art deep learning based
approach, thus it is much preferable when there is a lack of
training data or computing resources.

To summarize, our contributions are:
• We study how to leverage implicit crowdsourcing to ex-

tract highlights from a recorded live video. We propose
LIGHTOR, a novel workflow to achieve this goal.

• We analyze real-world chat messages, and derive a number
of interesting observations. Based on these observations, we
develop a simple but effective Highlight Initializer.

• We derive a number of interesting observations from real-
world user interaction data, and propose a novel Highlight
Extractor to identify the exact boundary of each highlight.

• We discuss how to deploy LIGHTOR on an existing live
streaming platform or implement it as a web extension. We
recruit hundreds of users and evaluate LIGHTOR using real
live video data. The results demonstrate the superiority of
LIGHTOR over baseline approaches.
The remainder of this paper is organized as follows. Sec-

tion II reviews the related work. Section III presents the
LIGHTOR workflow. We discuss how Highlight Initializer and
Highlight Extractor are built in Section IV and Section V,
respectively. Section VI discusses how to deploy LIGHTOR
in practice. Experimental results are presented in Section VII.
We discuss our findings and lessons learned in Section VIII,
and present conclusions and future work in Section IX. We
provide a reproducibility report and release all the code and
datasets at the project page: http://tiny.cc/lightor.

II. RELATED WORK

Crowdsourcing has been extensively studied in the database
community in recent years. However, prior work is mainly
focused on explicit crowdsourcing [20]–[22] or non-video-
tasks [23]–[27]. This paper shows that exploring the use
of implicit crowdsourcing for video tasks is a promising
direction, calling for more attention to this exciting research
direction. In fact, our work touches a wide range of research
topics in other communities.

2

http://tiny.cc/lightor

Computer Vision. There is a recent trend to apply deep
learning to highlight detection [12], [13], [28]. For example, a
frame-based CNN model [28] was trained to detect the frames
with significant visual effects for e-sports. In [13], a joint
model of CNN on video and LSTM on chat was trained to
detect highlights in game videos. While these deep-learning
based approaches achieve good performance, they require
large training sets and high computing resources. Unlike these
studies, we focus on the use of implicit crowdsourcing which
requires much less training data and computational cost. In
addition to deep learning, there are some domain specific
algorithms [9], [10]. Unlike these works, we focus on a more
general approach. Video summarization [12], [29] aims to
generate a condensed video to summarize the story of the
entire video. Highlight detection often serves as the first step
of video summarization and generates a small number of
candidate highlights.

Explicit Crowdsourcing. There are some works using explicit
crowdsourcing for video analysis [30]–[32]. That is, they ask
crowd workers to do a certain video-related task explicitly,
e.g., video segmentation [30], video tagging [32]. However,
none of these studies attempt to apply implicit crowdsourcing
to video highlight detection, which is a more monetary-cost
efficient and natural way to collect essential data.

Implicit Crowdsourcing (User Comments). There are some
works on the use of user comments [2], [33] for video
analysis. A LDA model was proposed to generate video tags
from time-stamped comments [2]. Another work uses word
embedding to extract highlights from time-stamped comments
for movies [33]. They are different from LIGHTOR in three
aspects. (1) They only focus on user commenting data while
LIGHTOR considers both user commenting data and user
viewing behavioral data (see Section V). (2) They use bag
of words or word embedding as features while LIGHTOR use
more general features (see Section IV-B). (3) They use time-
stamped comments rather than live chat messages, thus they
do not face the challenge that there is a delay between video
content and the comments (see Section IV-C).

Twitter data has been leveraged to detect events in some
studies [34]–[36]. However, live chat messages are usually
shorter and more noisy thus requiring the development of new
techniques.

Implicit Crowdsourcing (User Viewing Behaviors). HCI and
Web researchers have designed systems using click-through or
interaction data to measure user engagement. For example,
the research on MOOC videos or how-to videos leverage
interactions as engagement measurement to detect interesting
or difficult parts of videos (e.g., [37], [38]). Some studies have
also leveraged interaction data to predict audience’s drop-out
rate and analyzed the cause of interaction peak [39], [40].
These works simply sum up all users’ watching sessions along
the video and get curves between watched frequency and
video timestamps. We have compared with these methods,
but found that they did not perform well on our collected

user interaction data since when users interact with a casual
video, their viewing behaviors are much more unpredictable.
The experimental results can be found in Section VII-C.

III. THE LIGHTOR WORKFLOW

Figure 1 depicts the LIGHTOR workflow. The workflow
consists of two major components: Highlight Initializer and
Highlight Extractor. The former determines which part of the
video could be a highlight, and the latter identifies the exact
boundary (start and end time) of each highlight. We will
use a simple example to illustrate how they work as well
as the challenges that they face. Consider a one-hour video
V = [0, 3600], which starts at 0s and ends at 3600s. Suppose
the video has a highlight between 1900s and 2005s, denoted
by h = [1990, 2005]. The goal is to extract h from V .

Highlight Initializer. Highlight Initializer aims to identify
an approximate start position of each highlight so that if a
user starts watching the video from this position, she can tell
that there is a highlight nearby. For example, 2000 is a good
position since it is within the highlight range [1990, 2005]
but 2100 is a bad one since it is very far away from the
highlight. We observe that most live videos allow users to leave
chat messages in real time. This can be leveraged as a kind
of implicit feedback. However, time-stamped chat messages
are short and noisy, thus it is challenging to use them to
implement an accurate Highlight Initializer. We will discuss
how to address this challenge in Section IV.

Highlight Extractor. Suppose the above component returns
2000 as a result. We will add a “red dot” at this position
on the progress bar of the recorded video (see Figure 1).
A red dot can be seen as a hint, which informs users that
there could be a highlight nearby. Users can click on the
red dot and start watching the video. They may drag the
progress bar backward if they find the video clip interesting
and want to watch it again, or they may drag the progress
bard forward if they find the video clip uninteresting. All
these interactions can be leveraged as another kind of implicit
feedback to extract highlights. However, user interactions are
noisy. It is challenging to leverage the user interaction data
to implement an accurate Highlight Extractor. We will discuss
how to address this challenge in Section V.

IV. HIGHLIGHT INITIALIZER

This section presents the design of Highlight Initializer.
We first define the design objective, then discuss the design
choices, and finally propose the detailed implementation.

A. Design Objective

There could be many highlights in a video, but most
users are only interested in viewing the top-k ones. Highlight
Initializer aims to find an approximate start position for each
top-k highlight.

Next, we formally define what is a good approximate start
position (i.e., what is a good red dot). The goal is to make
users see a highlight shortly after they start watching the video

3

Fig. 2: Analysis of the Chat Data in a Twitch Video.

from a red dot. Let h = [s, e] denote a highlight and r denote
the red dot w.r.t. h. We call r a good red dot if it meets three
requirements.

First, the red dot should not be put after the end of the
highlight (i.e., r ≤ e). Otherwise, a user is very likely to miss
the highlight. This is because a user typically clicks the red
dot r and starts watching the video for a short period of time.
If nothing interesting happens, she may skip to the next red
dot. Second, the red dot should not be put at more than 10s
before the start of the highlight (i.e., r ≥ s − 10). Based on
existing studies (e.g., [41]), people can accept less than 10s
delay, but may lose their patience when the delay is longer.
Third, it is not useful to generate two red dots that are very
close to each other. Thus, we require that there does not exist
another red dot r′ such that |r− r′| ≤ δ, where δ is a system
parameter and is set to 120s by default.

With the definition of good red dots, we define the design
objective of Highlight Initializer.

Objective. Given a recorded live video along with time-
stamped messages, and a user-specified threshold k, Highlight
Initializer aims to identify a set of k good red dots.

B. Design Choices

We face different choices when designing the Highlight
Initializer. We will explain how the decision is made for each
choice.

Video vs. Chat Data. We choose to only use chat data instead
of video data to identify red dots. This design choice has
two advantages. First, we can use a small set of training
data (e.g., 1 labeled video) to train a good model over chat
data. But, it is hard to achieve this for video data. Second,
processing video data often requires high computing resources.
Since chat data is much smaller in size than video data,
this limitation can be avoided. On the other hand, a chat-
data based approach may not work well for videos with
few chat messages. Nevertheless, as will be shown in the
experiment, our model performs well on the videos with 500
chat messages per hour. We find that the majority (more than
80%) of popular videos in Twitch meet this requirement. For
the remaining unpopular videos, there may not be a strong
demand to generate highlights for them.

General vs. Domain-specific Features. We seek to build a
Machine Learning (ML) model to identify red dots. There are
two kinds of features that can be used by the model. General
features are independent of video type (e.g., Dota2 game vs.
LoL game). For example, message number can be seen as a

kind of general feature because we can extract this feature for
any type of video and use it as a strong predictor for highlights.
In contrast, domain-specific features are highly dependent on
the selected domains. For example, the keyword “Goal” is a
domain-specific feature since it can be used to detect highlights
in a Soccer game, but not in a Dota game. We choose to use
general features rather than domain-specific features. This will
allow our model to have good generalization.

C. Implementation
We implement the Highlight Initializer component based

on the above design choices. In the following, we first present
a naive implementation and identify its limitations. We then
propose our implementation to overcome these limitations.

1) Naive Implementation: A naive implementation is to
count which part of the video has the largest message number
and put a red dot at that position. Figure 2(a) shows a real-
world example. It plots a histogram along with the smoothed
curve of the message number in a Twitch live video. We can
see that 2332s has the largest message number, thus this naive
implementation will put a red dot at 2332s.

Unfortunately, this implementation does not perform well
in practice due to two reasons. The first reason is that having
the largest message number does not always mean that users
are chatting about a highlight. For instance, there could be
advertisement chat-bots which post quite a few messages in
a very short period of time. The second reason is that in a
live video, users will only chat about a highlight after they
have seen a highlight. Thus, there is a delay between the start
position of a highlight and its comments. For example, in
Figure 2(a), we can see the delay (the distance between the
green dotted line and the red dot) is around 20s. This naive
implementation fails to capture the delay.

2) Our Implementation: Our implementation consists of
two stages.

Prediction. The prediction stage aims to address the first issue
mentioned above. Given a set of chat messages within a short
sliding window (e.g., 25s), we build a predictive model to
determine whether the messages in the sliding window are
talking about a highlight or not. We propose three general
features for the model.
• Message Number is the number of the messages in the

sliding window. The naive implementation only considers
this feature.

• Message Length calculates the average length of the mes-
sages in the sliding window, where the length of a message

4

is defined as the number of words in the message. We
observe that if viewers see a highlight, they tend to leave
short messages. If their messages are long, they typically
chat about something else.

• Message Similarity measures the similarity of the messages
in the sliding window. If the messages are similar to
each other, they are more likely to chat about the same
topic, instead of random chatting. We use Bag of Words
to represent each message as a binary vector and apply
one-cluster K-means to find the center of messages. The
message similarity is computed as the average similarity of
each message to the center. The computation of message
similarity can be further enhanced with more sophisticated
word representation (e.g., word embedding).
To make these features generalize well, we normalize them

to the range in [0, 1] and build a logistic regression model to
combine them. We examine the effectiveness of each feature
on Twitch chat data. Figure 2(b) shows the analysis results
of a random video. The video contains 1860 chat messages
in total. We divide them into 109 non-overlapping sliding
windows, where 13 are labeled as highlights and 96 are labeled
as non-highlights. For each feature, we compare the feature-
value distributions of highlights and non-highlights. We can
see that their distributions are quite different. For example,
for the message-length feature, all the highlights are between
0 and 0.4, but non-highlights can be any length.

Adjustment. The adjustment stage aims to overcome the
second limitation of the naive implementation. Given a set
of messages in a sliding window which are predicted to be
talking about a highlight, we aim to estimate the start position
of the highlight.

The key observation is that people can only comment on a
highlight after they have seen it. We first detect the peak in
the sliding window, where a peak represents the time when
the message number reaches the top. After that, we train a
model to capture the relationship between the peak’s position
(timepeak) and the highlight’s start position (timestart).

The current implementation considers a simple linear rela-
tionship, i.e., timestart = timepeak − c, where c is a constant
value. We can learn the optimal value of c from training
data. Specifically, for each labeled highlight i, the highlight’s
ground-truth start position is denoted by timestarti. Since it
is predicated as timepeaki − c, the red dot will be put at
timepeaki − c. Our goal is to identify as many good red dots
as possible. Thus, we aim to find the best c such that

arg max
c

∑
i

reward(timepeaki − c, timestarti),

where reward(·) = 1 if it is a good red dot; reward(·) = 0,
otherwise.

Once c is obtained, we can use it to get the red dot positions.
For example, suppose the learned c = 20s. It means that
we will move the peak backward by 20s. Imagine timepeak
= 2010s. Then we will select timepeak - 20s = 1990s as a
red dot’s position. This simple linear relationship leads to

Algorithm 1: Highlight Initializer for one video v.
Input : M : all the messages; t: video length; k: # of desired

highlights; l: sliding window size; c: adjustment value;
LRmodel: trained logistic regression model

Output: H: top-k sliding window list.

1 W ← get sliding wins(M, l)
2 foreach sliding window W [i] do
3 fi ← Feature vec(W [i],M) // Normalized f=(num, len, sim)
4 pi ← LRmodel.predict(fi) // Get predicted probability
5 W [i]←W [i].append(pi)
6 end
7 Wsorted ←Sort W by p
8 H ←Top(k,W ′

sorted)
9 foreach highlight window H[j] do

10 H[j]← (sj − c, ej) // Adjustment
11 end
12 return H

good performance as shown in later experiments. We defer
the exploration of more complex relationships to future work.

Algorithm Description. To put everything together, Algo-
rithm 1 shows the pseudo-code of the Highlight Initializer
component. The input consists of the set M of all the time-
stamped messages of video v, the video length t, the number
of one’s desired highlights k, the sliding window size l, the
adjustment value c, and Trained Logistic Regression Model,
LRmodel. The output is the highlight sliding window list,
H = {(sj , ej) | j = 0, ..., k − 1}, where (sj , ej) is respec-
tively the start and end time of a sliding window j.

In line 1, we initially generate the sliding window list
W = {(si, ei) | i = 0, ..., n}. When two sliding windows have
an overlap, we keep the one with more messages. From line 2
to line 6, for each sliding window wi = (si, ei), we apply
the trained logistic regression model on the feature vector
fi = (numi, leni, simi) which is extracted from the massages
whose timestamps are in the range of (si, ei). Lines 7 and
8 retrieve the top-k highlight sliding windows H . In Top
function, we make sure that H does not contain too close
highlights. From line 9 to 11, we adjust the start time by c for
each sliding window in H . Finally, we return H as an output.

V. HIGHLIGHT EXTRACTOR

This section presents the design of Highlight Extractor. We
first define the design objective, then discuss the challenges,
and finally propose the detailed implementation.

A. Design Objective

Highlight Extractor aims to identify the boundary (start and
end positions) of each highlight using user interaction data.
User Interaction Data. While watching a video, a user may
have different kinds of interactions with the video (e.g., Play,
Pause, Seek Forward, and Seek Backward). We analyze user
interaction data, and find that if a certain part of video has a
large number of views, then this part is very likely to be a
highlight. Based on this observation, we transform user inter-
action data into play data, where each record is in the form of:

5

〈user, play(s, e)〉. For example, 〈Alice, play(100, 120)〉 means
that the user Alice starts playing the video at 100s, and stops at
120s. If the context is clear, we will abbreviate it as play(s, e)
and call play(s, e) a play.

We leverage the play data to extract highlights. Note that if
a play is far away from a red dot, it may be associated with
another highlight. Thus, we only consider the plays within
[−∆,∆] around a red dot (∆ = 60s by default).

The following defines the objective of Highlight Extractor.

Objective. Given the play data play(s1, e1) , · · · , play(sn, en)
w.r.t. a red dot, Highlight Extractor aims to identify the start
and end positions of the highlight of the red dot.

B. Challenges

To achieve the objective, we need to address the following
challenges.

How to filter play data? Play data could be very noisy. For
example, a user may randomly pick up a position s, and watch
for a few seconds (e.g., 5s) to check whether this part of video
is interesting or not. If uninteresting, she may jump to another
position. Obviously, we should filter this play(s, s+5) since it
cannot be interpreted as the user enjoying watching [s, s+ 5].
Note that this example only shows one type of noisy play.
There could be many others that need to be considered.

How to aggregate play data? Let play(s′1, e
′
1), · · · ,

play(s′m, e
′
m) donate the play data after the filtering. Each

play can be considered as a vote for the highlight. For
example, play(1990, 2010) means that the user votes 1990s
and 2010s as the start and end positions of the highlight.
Users may have different opinions about the highlight. We
can aggregate their opinions using median because it is robust
to outliers. Thus, the new start and end positions are computed
as median(s′1, s

′
2, · · · , s′m) and median(e′1, e

′
2, · · · , e′m).

Unfortunately, when applying this idea to real-world user
interaction data, it does not always work well. We have a very
interesting observation: whether this idea works well or not
strongly depends on the relative positions of the red dot and
the highlight. There are two possible relative positions:

Type I: the red dot is after the end of the highlight;
Type II: the red dot is before the end of the highlight.
Since many users start watching the video from a red dot,

if they do not find anything interesting, they may skip to the
next red dot. Imagine the red dot is put after the end of the
highlight (i.e., Type I). Many users may miss the highlight,
thus their play data are not reliable indicators of the highlight.
Imagine the red dot is put before the start of the highlight (i.e.,
Type II). Many users will watch the same highlight, thus their
play data follow a similar pattern.

To further examine this observation, we calculate the dif-
ference of each play’s start position and the ground-truth start
position. Figure 3(a) shows the distribution of all plays of
Type I. We can see the curve approximately follows a uniform
distribution between -40 and +20. It shows that the play activ-
ities for Type I are quite diverse. Users may either play back
randomly in order to find the highlight or skip to the next

100 80 60 40 20 0 20 40 60
Error of start time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity

(a) Type I

40 20 0 20 40 60 80
Error of start time

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

(b) Type II

Fig. 3: Distribution of the difference between each play’s start position and
the ground-truth start position.

highlight. In comparison, Figure 3(b) shows the distribution
of all plays of Type II. We can see the curve approximately
follows a normal distribution. It implies that most plays for
Type II correspond to highlight watching.

This observation poses two new questions. The first one is
that given a red dot, how to determine whether it belongs to
Type I or Type II? The second one is that after a red dot is
classified as Type I or II, how to aggregate its play data?
C. Implementation

We propose a series of techniques to address these chal-
lenges. The following shows our detailed implementation.

Filtering. The main idea is to filter the plays that are not about
watching the highlight but about doing something else (e.g.,
looking for a highlight). We observe that if a play is far away
from the red dot, it typically does not cover the highlight.
Thus, we remove such plays from the data. We also notice
that if a play is too long or too short, it tends to have little
value. A too short play could indicate that viewers watch for
a few seconds and find it uninteresting, while a too long play
means that viewers may be watching the entire video. Thus,
we remove such plays from the data. Third, there could be
some outliers, i.e., the play that is far away from the other
plays. We adopt the following outlier detection method to find
the outliers and then remove them.

We construct an undirected graph G = (V,E). Each node
vi = (si, ei) ∈ V represents a play record, where (si, ei)
is respectively the start and end time. Each edge evi,vj ∈ E
represents that vi and vj have overlapping part. Then we find
the center node o ∈ V of the graph which has the largest
degree. We select o and its neighbor nodes as valuable play
data and treat the others as outliers. That is, Outliers = {v ∈
V | v 6= o and ev,o /∈ E}.
Classification. Given a red dot, we build a classification model
to determine whether it belongs to Type I or Type II. We need
to classify the relative position between the red dot and the
end of the highlight into Type I or Type II. We find that this
(unknown) relative position has a strong correlation with the
(known) relative position between the red dot and observed
play data. Therefore, we identify the following three features.
• # Plays after red dot computes the number of plays which

start at or after the red dot.
• # Plays before red dot computes the number of plays which

end before the red dot.
• # Plays across red dot computes the number of plays which

starts before the red dot and ends after the red dot.

6

Type I Type II

Play# after red dot 1

Play# before red dot 1

Play# across red dot 1

End of highlight

Play Data
Play Data

End of highlight

Play# after red dot 3

Play# before red dot 0

Play# across red dot 0

Fig. 4: An illustration of three features for classifying the relative position
between red dot and the end of highlight.

Algorithm 2: Highlight Extractor for one highlight h
Input : Highlight h = (s, e);

Moving duration for Type I, m.
Output: Highlight refined boundaries, h = (s′, e′).

1 repeat
2 I ← get interact()
3 P ← filter(I) // Filtering
4 f ← feature vec(P) // f=(before red, after red,

across red)
5 label← classification(f) // Classification

// Aggregation
6 if label = Type II then
7 foreach p in P do
8 if p.e ¡ h.s then
9 Remove(p) // Remove plays before red dots

10 end
11 h.s′ ← median(P.s) ; h.e′ ← median(P.e)
12 else
13 h.s′ ← h.s−m
14 end
15 until Red dot position converge
16 return h

Figure 4 shows an example to illustrate the three features.
For Type I, since the highlight ends before the red dot, some
users play before or across the red dot in order to find the
highlight. In comparison, there is no such play in Type II since
if a user starts watching the video at the red dot, she will
see the highlight. Our experiments show that our classification
model achieves high accuracy (around 80%).

Aggregation. Different aggregation strategies are proposed for
Type I and Type II, respectively.

For Type II, as Figure 3(b) shows, the play patterns of
most users are similar. The median of the start time offsets
is between 5 and 10. This is because that the most exciting
part of the highlight usually happens a few seconds after its
start point, which causes users to skip the beginning of the
highlight. This kind of error is tolerable. Therefore, we can
use median to aggregate their play data.

For Type I, as seen from Figure 3(a), the distribution of start
time offsets is rather random. Therefore, we need to collect
more play data. Our main idea is to convert a red point from
Type I to Type II. Given that Type II can collect high-quality
play data, once a red dot is converted to Type II, we can get
high-quality play data as well. Specifically, once a red dot is
classified as Type I, we will move it backward by a constant
time (e.g., 20s) and collect new interaction data based on the

Web Service

Web
Crawler

User	Chat &
Interaction Data

Highlight
Extractor

Highlight
Initializer

Lightor Core

Front End Back End

Fig. 5: LIGHTOR Web Browser Extension.

new red dot location. If the new red dot is classified as Type II,
we apply the Type II’s aggregation approach; otherwise, we
move it backward by another 20s.

Algorithm Description. To put everything together, Algo-
rithm 2 shows the pseudo-code of the entire Highlight Extrac-
tor component. The input consists of a highlight h = (s, e),
and a moving duration m for Type I, which is a constant
described above to convert a Type I to a Type II. The output
is the updated h = (s′, e′).

In lines 2 and 3, we get the user interactions I for the
current h and filter them to get a list of plays, P . In lines
4 and 5, we extract the feature f from P and perform the
binary classification to decide h’s label. From lines 6 to 14,
as we describe above in Aggregation, we update h = (s′, e′).
If label is Type II, it means the red dot is before the end of
the highlight. From lines 7 to 10, we remove the plays whose
ends are before the red dot. Then, we calculate the median to
update h. If label is Type I, it means the red dot is after the
end of the highlight, and we move h.s backward by m. We
iterate this procedure until the red dot position is stable (e.g.,
|h.s− h.s′| < ε).

VI. DEPLOY LIGHTOR IN PRACTICE

In this section, we discuss two ways to deploy the LIGHTOR
workflow: one is to wrap it as a web browser extension and the
other is to integrate it into existing live streaming platforms.

A. Web Browser Extension

Figure 5 depicts the architecture of our web browser exten-
sion. It has the potential to support any live streaming platform.
We will use Twitch as an example to illustrate how it works.

In addition to the LIGHTOR’s core components, we need
two additional components: Web Service and Web Crawler.
Web Service. When a user opens up a web page in Twitch, if
the URL of the web page is a recorded video, LIGHTOR will be
automatically activated. It extracts the Video ID from the web
page and sends it to the back end server. The server receives
the Video ID and checks whether the video’s chat messages
have been crawled and stored in the database. If not, it will
call the web crawler component to crawl the chat messages.
After that, it will use the chat data to identify the positions of
top-k highlights and return them to the front end. The returned
results will be rendered on the original web page by adding
red dots on the progress bar of the video. Meanwhile, the user
interaction data will be logged. Highlight Extractor will use

7

the data to refine the results. The refined results will be stored
in the database continuously.
Web Crawler. The web crawler component crawls the chat
messages of recorded videos in Twitch. The crawled chat mes-
sages will be stored into the database. The crawling process
can be executed both offline and online. The offline crawling
periodically checks a given list of popular channels. If new
videos are uploaded in those channels, their chat messages
will be crawled accordingly. The online crawling will crawl
the chat messages on the fly. It will be triggered if the chat
messages of a video do not exist in the database.

B. Integrate Into Live Streaming Platforms

LIGHTOR can be easily deployed into existing live stream-
ing platforms. The only change is to add red dots to the
progress bar of recorded videos. It is easy to implement this
feature from a technical point of view. Moreover, based on our
user study, this new interface is more attractive since it can
help users find more interesting highlights.

LIGHTOR is also useful for improving existing features. For
example, Twitch allows broadcasters to cut and upload the
highlights of their recorded videos manually. LIGHTOR can
provide broadcasters with a set of highlight candidates. This
will help broadcasters save a lot of time when they need to
edit their highlights repeatedly.

VII. EXPERIMENTS

We evaluate LIGHTOR on real live video data. The exper-
iments aim to answer three questions. (1) How well does
Highlight Initializer perform? (2) How well does Highlight
Extractor perform? (3) How does LIGHTOR compare with
deep-learning based approaches? We will first describe ex-
perimental settings and then present experimental results. We
provide a reproducibility report in the github repo (https:
//github.com/sfu-db/Lightor Exp), including data description,
data preprocessing, model parameters and configurations, and
a Jupyter notebook to reproduce all experimental figures.

A. Experimental Settings

Game videos dominate mainstream live streaming platforms
such as Twitch and Mixer. They were also used to evaluate
the state-of-the-art highlight detection approaches [13], [28].
Therefore, we evaluated LIGHTOR using two popular games
from Twitch: Dota2 and LoL.
Game Videos. (1) Dota2. We crawled 60 live videos in Dota 2
using Twitch APIs. The length of each video is between 0.5
hour to 2 hours. We asked experienced game players to watch
each video and manually label the start and end positions of
each highlight. Each video contains 10 labeled highlights on
average. The length of each highlight is between 5s to 50s.
(2) LoL. We selected 173 live videos of League of Legends
(LoL) from NACLS dataset [13]. The length of each video
is between 0.5 hour to 1 hour. The labels were obtained by
matching with highlight collections of a YouTube channel.
Each video contains 14 labeled highlights on average. The
length of each highlight is between 2s to 81s.

The Dota2 and LoL datasets are different in two aspects.
First, the game types are different, and thus raw visual and
textual features do not generalize well. Second, the Dota2
videos were from Twitch personal channels, but the LoL videos
came from North America League of Legends Championship
Series. Thus, their chat data have different characteristics.
Chat and Play Data. LIGHTOR relies on two kinds of user
data: chat data and play data. For chat data, Live streaming
platforms make the data accessible. We used their APIs to
crawl the data. The number of chat messages crawled for each
video is between 800 to 4300.

It is quite challenging to collect play data since they
are not accessible from a live streaming platform. To the
best of our knowledge, there is even no play data publicly
available. To collect the data, we recruited game fans from
Amazon Mechanical Turk (AMT), and asked them to watch
the recorded live videos. Each video’s progress bar has a single
red dot since we would like to get rid of the influence of nearby
red dots and study user interactions on one red dot directly.
We collected the user interaction data and then generated the
play data. Note that we did not ask the crowd to enter the
start and end positions of a highlight. Therefore, the crowd
provided us with the boundary of a highlight implicitly. There
were 492 workers participating our experiments and we spent
about $750 to create the dataset. We have published the dataset
in the above github repo.

Evaluation Metrics: We used Precision@K to evaluate the
performance since most users are only interested in watching
a small number of highlights (e.g., k = 5 to 10). We defined
three Precision@K metrics in the experiments.

(1) Chat Precision@K is to evaluate the effectiveness of the
prediction stage in Highlight Initializer. The prediction stage
sorts chat-message sliding windows based on how likely they
are talking about a highlight, and returns the top-k sliding
windows. Chat Precision@K is defined as the percentage of
correctly identified sliding windows out of the k identified
sliding windows.

(2) Video Precision@K (start) is to evaluate the precision
of the identified start positions of highlights. Since people
typically cannot tolerate more than 10s delay, we say a start
position x is correct if there exists a highlight h = [s, e] such
that x ∈ [s − 10, e]. Video Precision@K (start) is defined as
the percentage of correctly identified start positions out of the
k identified start positions.

(3) Video Precision@K (end) is to evaluate the precision of
the identified end positions of highlights. It is similar to Video
Precision@K (start). We say an end position y is correct if there
exists a highlight h = [s, e] such that y ∈ [s, e + 10]. Video
Precision@K (end) is defined as the percentage of correctly
identified end positions out of the k identified end positions.

Baselines: Highlight detection is a multidisciplinary problem
and there are many solutions proposed in different areas. We
compared LIGHTOR with the following approaches.
• Social network based methods analyze online social network

data to detect events. Toretter [36] is an earthquake detection

8

https://github.com/sfu-db/Lightor_Exp
https://github.com/sfu-db/Lightor_Exp

1 2 3 4 5 6 7 8 9 10
K

0.75

0.80

0.85

0.90

0.95

1.00

C
ha

t P
re

ci
si

on
@

K

msg num
msg num + msg len
msg num + msg len + msg sim

(a) Prediction Performance

1 2 3 4 5 6 7 8 9 10
of Training Videos

0.5

0.6

0.7

0.8

0.9

1.0

C
ha

t P
re

ci
si

on
@

10

(b) Effect of Training Size

Fig. 6: Evaluation of Prediction Stage.

system based on Twitter Data. We applied it to our chat data
to detect the start of each highlight. We compared it with
LIGHTOR’s Highlight Initializer in Section VII-B.

• Online learning based methods aim to detect key clips of
How-To and lecture videos by analyzing viewers’ viewing
behaviors. SocialSkip [37] analyzes viewers’ skipping and
jumping backwards interactions while Moocer [39] mainly
focuses on normal playing interactions. We applied them to
our play data to identify the boundary of each highlight. We
compared these two baselines with LIGHTOR’s Highlight
Extractor in Section VII-C.

• Deep Learning based methods train a deep neural network
model on a large amount of labeled data and then apply
the model to classify each video frame as highlight or non-
highlight. We compared LIGHTOR with the state-of-art deep
learning approach [13] in Section VII-E. The approach has
two models, where chat model (Chat-LSTM) is trained on
chat data only and chat-video joint model (Joint-LSTM) is
trained on both chat and video data.

Software Versions and Hardware Configuration: LIGHTOR
was implemented using Python 3.5. Logistic regression models
were trained using scikit-learn 0.20. The experiments were run
over a Ubuntu virtual server with an Intel Xeon CPU E7-4830
v4@2.00GHz with RAM 53GB. The sliding window size was
set to 25s. The deep learning models were implemented in
PyTorch 1.1 and trained on 4 Nvidia Tesla v100 GPUs.

In the following, we first evaluate the Highlight Initializer
and Highlight Extractor of LIGHTOR, and then examine the
applicability of LIGHTOR on the Twitch platform. Finally, we
compare LIGHTOR with the deep learning methods.

B. Evaluation of Highlight Initializer

Highlight Initializer consists of prediction and adjustment
stages. We evaluated their performance on Dota2 data.
Prediction Stage. The prediction stage is designed to get top
sliding windows corresponding to highlights. We propose three
features, message number (msg num), message length (msg
len), and message similarity (msg sim), and build a logistic
regression model based on them. To evaluate the effectiveness
of the proposed features, we build two additional logistic
regression models using msg num and msg num + msg len.
We used 10 video’s sliding windows as training data and used
50 videos’ sliding windows as test data.

Figure 6a shows the average Chat Precision@K of the 50
testing videos on different number of desired highlights. We
have two interesting observations. First, msg num was an

1 2 3 4 5 6 7 8 9 10
K

0.0

0.2

0.4

0.6

0.8

1.0

Vi
de

o
Pr

ec
is

io
n@

K
(s

ta
rt)

Toretter
Lightor
Ideal

(a) Adjustment Performance

1 2 3 4 5 6 7 8 9 10
of Training Videos

0

5

10

15

20

25

30

C
on

st
an

t C

(b) Effect of Training Size

Fig. 7: Evaluation of Adjustment Stage.

effective feature for small k (≤ 3) but did not perform well as k
got larger (e.g., k = 10). This is because that as k increased, it
would be more and more challenging to detect new highlights.
If we only used the msg num feature, these messages some-
times were sent because viewers were discussing something
on random topics which were not related to the highlights.
Second, the ML model using all three features was better at
capturing the nature of highlight messages especially when
one wants to detect more than 5 highlights. The reason is that
when viewers saw a highlight, their messages tended to be in a
similar pattern. In addition to actively sending more messages,
they would send more short messages such as Emojis or
Stickers which make the average length of messages in the
sliding windows shorter than common ones. When viewers
were talking about something particular in the highlights, the
messages would have a higher similarity.

We examine whether our method can still perform well on
small training data. We varied the number of training videos
from 1 to 10 and trained ten models w.r.t. different training
size. Figure 6b shows the average Chat Precision@10 of each
model evaluated on the 50 testing videos. We can see that the
performance stayed stable. For example, when there was only
one training video, our method can still achieve the precision
of 0.82. The reason for this impressive result is that our ML
model was built on a small number of highly effective features.

Adjustment Stage. Suppose the prediction stage returns k
sliding windows as highlights. Then, the adjustment stage aims
to find the approximate start positions of the highlights (i.e.,
red dots). It first finds the peak in each sliding window and
subtracts it by a constant value c (learned from labeled data)
to get the red dot. We used ten videos as training data to get
the constant value, and evaluated Video Precision@K (start)
on fifty testing videos. The ideal situation of the adjustment
stage is to be able to get a correct red dot for every top-
k highlight. So the Ideal curve in Figure 7a is the same as
the red line in Figure 6a. Toretter is a social-network based
highlight detection approach. It detects highlights based on
the time-series curve of message number. We compare with
it to examine the necessity of having the adjustment stage
in Highlight Initializer. From Figure 7a, we can see that
Toretter’s precision was below 20%. Our adjustment method
outperformed Toretter by around 3×. This result validates that
i) there is indeed a delay between the start of a highlight and
the discussion of the highlight; ii) our adjustment method can
capture the delay well.

We investigate how robust the constant value c is by varying
the number of training videos. Figure 7b shows the result. We

9

0 1 2 3 4 5 6 7
of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Vi
de

o
Pr

ec
is

io
n@

K
(s

ta
rt)

Lightor
SocialSkip
MOOCer

(a) Start Position

0 1 2 3 4 5 6 7
of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Vi
de

o
Pr

ec
is

io
n@

K
(e

nd
)

Lightor
SocialSkip
MOOCer

(b) End Position

Fig. 8: Evaluation of Highlight Extractor.

can see that the constant value kept stable. It was in the range
from 23s to 27s. This is because that users tend to have similar
behaviors when watching highlights. It could be considered as
”reaction time” of viewers, so that we can use a small amount
of training data to generate a quite accurate constant value for
adjustment.

C. Evaluation of Highlight Extractor

Highlight Extractor aims to leverage play data to identify
the boundary of each highlight. We compared our method with
SocialSkip [37] and Moocer [39]. Both methods model the
interaction data as a histogram along the timeline. Each bin
represents a 1-second video clip, and the bin height represents
how interesting the video clip is. SocialSkip leverages Seek
Backward & Forward to construct the histogram. When Seek
Forward/Backward happens, it indicates that the range that the
user jumps is interesting/uninteresting. The bin height would
be added by +1/-1 accordingly. Once all user interactions are
collected, SocialSkip smooths the histogram curve and finds
all local maxima of the curve. SocialSkip subtracts each local
maximum by 10s as the start position and adds it by 10s as the
end position of a highlight. Differently, Moocer only leverages
Play interactions. When Plays happen, the histogram range
being played will be added by 1. After smoothing, Moocer
finds the local maxima as well. For each local maximum, it
finds two turning points aside the local maximum as the start
and end position of a highlight.

We randomly selected 7 testing videos, and applied High-
light Initializer on them to generate 35 red dots (5 per video).
We created one task for each red dot. We first published the
35 tasks to AMT. After receiving 10 responses for each task,
we computed the new position of each red dot, and published
a set of new tasks with updated red-dot positions to AMT.
We repeated this process until users reached a consensus on
the extracted highlights. Since SocialSkip and Moocer are not
iterative, we applied them using our first iteration of interaction
data. Figure 8 shows how Video Precision@K (start) and Video
Precision@K (end) change over iterations. We can see that
LIGHTOR kept improving over iterations, and outperformed
SocialSkip and Moocer by a big margin in the last iteration.
This improvement came from two sources. On one hand, it
removed the red dots that did not talk about a highlight (i.e.,
improving the prediction stage in Highlight Initializer); on the
other hand, it made a better adjustment about where a red dot
should be put (i.e., improving the results of adjustment stage
in Highlight Initializer).

100 500 1000 1000025000
of chats/hour

0.0

17.5

40.0

60.0

80.0

100.0

Pe
rc

en
ta

ge
 (%

) cumulative distribution
threshold

(a) CDF for Chat Messages

100 1000 1000025000
of viewers

0.0

20.0

40.0

60.0

80.0

100.0

Pe
rc

en
ta

ge
 (%

) cumulative distribution
threshold

(b) CDF for Viewers

Fig. 9: Cumulative distribution over recorded videos.

D. Applicability of LIGHTOR in Twitch

Based on our experiments, in order to achieve high pre-
cision, Highlight Initializer requires the number of chat mes-
sages per hour larger than 500 and Highlight Extractor requires
more than 100 viewers per video. We examine the applicability
of LIGHTOR with these requirements in Twitch.

We selected the top-10 channels in Dota 2 and crawled
twenty most recently recorded videos from each channel. We
plot the CDF of the number of chat messages and the number
of viewers, respectively. Figure 9 shows the results. We see that
more than 80% of recorded videos have more than 500 chat
messages per hour and all the recorded videos have more than
100 viewers. These results indicate that LIGHTOR is applicable
to the majority of popular videos in Twitch.

E. Comparison with Deep Learning

We compared LIGHTOR with the state-of-the-art deep learn-
ing approach [13]. We first compared LIGHTOR’s Highlight
Initializer with Chat-LSTM since both of them use chat mes-
sages only. Then we conducted an end-to-end comparison
between LIGHTOR and Joint-LSTM.

Chat-LSTM is a character-level 3-layer LSTM-RNN [42]
model. For each labeled frame, it treats all chat messages that
occur in the next 7-second sliding window as input. Joint-
LSTM is built on top of a video model and Chat-LSTM. The
video model uses a memory-based LSTM-RNN on top of image
features extracted from pre-trained image models. We used
LoL dataset to train models and applied on both LoL and Dota2
datasets. We applied Chat-LSTM and Joint-LSTM to predict the
probability of each frame being a highlight, and selected the
top-k frames. Close frames usually mean they belong to the
same highlight, thus if two frames are close to each other
(within 120s which is consistent with our setting in Section
IV-A), we only pick up the frame with a higher probability.

Comparison with Chat-LSTM. We first compare LIGHTOR
with Chat-LSTM in terms of training data size. Figure 10a
shows the result. We can see that LIGHTOR only needed to
label a single video in order to achieve a high precision, but
Chat-LSTM did not perform well with a single labeled video.
This is because that LIGHTOR detects highlights based on a
small number of generic features. We increased the training
size of Chat-LSTM to 123 labeled videos, and compared
with LIGHTOR with 1 labeled training video. As shown in
Figure 10b, Chat-LSTM’s performance got improved but still
performed worse than LIGHTOR. This is because that Chat-
LSTM is not good at adjusting delay between chat messages
and video contents.

We then compare LIGHTOR with Chat-LSTM in terms of
model generalization. Figure 11 shows the result. In Figure 11a

10

1 2 3 4 5 6 7 8 9 10
K

0.0

0.2

0.4

0.6

0.8

1.0

Vi
de

o
Pr

ec
is

io
n@

K
(s

ta
rt) Lightor (1 labeled video)

Chat-LSTM (1 labeled video)

(a) Both LIGHTOR and Chat-LSTM
were trained on 1 video.

1 2 3 4 5 6 7 8 9 10
K

0.0

0.2

0.4

0.6

0.8

1.0

Vi
de

o
Pr

ec
is

io
n@

K
(s

ta
rt) Lightor (1 labeled video)

Chat-LSTM (123 labeled videos)

(b) LIGHTOR was trained on 1 video
while Chat-LSTM was trained on 123
videos.

Fig. 10: Comparison of LIGHTOR and Chat-LSTM in terms of training data size
(LoL data, 50 test videos).

we can see that for LIGHTOR, the model trained on one
game type (LoL) can still achieve high precision on another
game type (Dota2). LIGHTOR has good generalization because
the selected features are very general. Interestingly, LIGHTOR
performed even better on Dota2 data for k > 5. This is because
Dota2 videos have more highlights. For Chat-LSTM, as shown
in Figure 11b, there is a big performance gap between LoL
and Dota2. That is, if we trained the Chat-LSTM model on
one game type (LoL) and then tested it on another game type
(Dota2), the model did not generalize well.

Comparing with Joint-LSTM. We compare LIGHTOR with
Joint-LSTM on their end-to-end performance. LIGHTOR was
trained on 1 labeled LoL video and collected user interactions,
while Joint-LSTM was trained on 123 labeled LoL videos.
We tested them on seven Dota2 videos. Table I reports
their training time and Video Precision of Top-5 highlights
(k=5). In terms of efficiency, LIGHTOR required 100000×
less training time compared to Joint-LSTM. In terms of ef-
fectiveness, LIGHTOR achieved a Video Precision@K (start)
of 0.906 and a Video Precision@K (end) of 0.719, while the
Video Precision@K (start) and the Video Precision@K (end) of
Joint-LSTM are both round 0.6. This is because that LIGHTOR
has a much better generalization than Joint-LSTM.

Systems Precision@K Precision@K Training time
(Start) (End)

LIGHTOR 0.906 0.719 1.06 sec
Joint-LSTM 0.629 0.600 >3 days

TABLE I: An end-to-end comparison between LIGHTOR and Joint-
LSTM.

In summary, the experimental results indicate that LIGHTOR
has great advantages over these deep-learning based ap-
proaches in terms of training data size, computational cost
and generalization. Nevertheless, we do not argue to totally
replace the deep-learning based approach with LIGHTOR.
Deep learning has its own advantages. For example, if a deep
learning model is trained over video data, it does not need
chat messages or user interaction data to detect highlights.
An interesting future direction is to explore how to combine
LIGHTOR with Deep Learning, where LIGHTOR is used to
generate high-quality labeled data and Deep Learning is then
applied to train a model.

VIII. FINDINGS & LESSONS LEARNED

We present interesting findings and lessons learned.

1 2 3 4 5 6 7 8 9 10
K

0.0

0.2

0.4

0.6

0.8

1.0

Vi
de

o
Pr

ec
is

io
n@

K
(s

ta
rt) LOL

Dota2

(a) LIGHTOR was trained on LoL,
and tested on LoL and Dota 2

1 2 3 4 5 6 7 8 9 10
K

0.0

0.2

0.4

0.6

0.8

1.0

Vi
de

o
Pr

ec
is

io
n@

K
(s

ta
rt) LOL

Dota2

(b) Chat-LSTM was trained on LoL, and
tested on LoL and Dota 2

Fig. 11: Comparison of LIGHTOR and Chat-LSTM in terms of model generaliza-
tion.

• It is important to do a pilot test and analyze real user
interaction data. For example, we originally thought that
Seek Backward could be a useful indicator to detect start
positions of highlights. However, from real data we find that
since there are various reasons to trigger this interaction
(e.g., re-watch a highlight, look for a new highlight), it is
not easy to infer users’ true intent.

• The recorded live videos in Twitch typically attract thou-
sands of viewers on average. In our experiments, we re-
cruited around 500 viewers and showed promising results.
Based on these findings, we believe that there is no obstacle
for LIGHTOR to collect enough user interaction data in real
live streaming platforms.

• Users prefer spreading the red dots over the entire progress
bar, instead of cluttering them in a narrow region. They think
the former can help them have a broader overview of the
whole video, while the latter only shows the content of part
of the video.

• Viewers sometimes get excited about the interesting clips
that are not related to a video’s main theme, such as the
break between two games, or the preparation for a game.
LIGHTOR may identify these clips as highlights. We will
study how to overcome this limitation in future work.

IX. CONCLUSION & FUTURE WORK

We presented LIGHTOR, a novel implicit crowdsourcing
workflow to extract highlights for recorded live videos.
LIGHTOR consists of two components. In Highlight Initializer,
we explored different design choices and justified our deci-
sions. We proposed three generic features (message number,
message length, and message similarity) and built a model to
predict highlight positions. We also noticed that there is a delay
between a highlight and its comments, and proposed a simple
learning-based approach to estimate the delay. In Highlight
Extractor, we identified the challenges to use noisy user inter-
action data to extract highlights, and proposed a three-stage
dataflow (filtering → classification → aggregation) to address
these challenges. We discussed how to implement LIGHTOR
as a web browser extension and how to integrate LIGHTOR
into existing live streaming platforms. We recruited about 500
real users and evaluated LIGHTOR using real Dota 2 and
LoL data. We compared with various baselines in the social
network, online learning, and deep learning fields. The results
showed that LIGHTOR achieved very high detection accuracy
(Precision@K: 70%-90%). Furthermore, it only needed to label

11

a single video and spend a few seconds on training, and the
obtained model had good generalization.

There are many future research directions to explore. First,
we were told by the data science team at a well-known live
streaming platform that they stored several terabytes of chat
data, but have not tried to extract value from the data. We are
planning to deploy LIGHTOR on their platform, and conduct
more large-scale real-world experiments. We would like to
extensively test our system in terms of the volumes and diverse
types of videos. Second, we want to further optimize the work-
flow, especially on the adjustment stage. The current imple-
mentation assumes that there is a simple linear relationship be-
tween timepeak and timestart. We plan to relax this assumption
and build a more sophisticated regression model. Third, we
plan to further evaluate the generalization of our system using
data collected from other domains (e.g., celebrity events) and
other live streaming platforms (e.g., YouTube Live). Fourth,
this paper demonstrates a great potential of the application
of implicit crowdsourcing to video highlight detection. It is
promising to investigate how to design an implicit crowd-
sourcing workflow for other video analysis tasks (e.g., video
querying, video summarization, and video indexing).

REFERENCES

[1] C. V. N. Index, “Cisco vni forecast and methodology, 2015–2020,” Cisco
white paper, vol. 1, 2016.

[2] B. Wu, E. Zhong, B. Tan, A. Horner, and Q. Yang, “Crowdsourced time-
sync video tagging using temporal and personalized topic modeling,” in
SIGKDD, 2014.

[3] J. Lee, S. Abu-El-Haija, B. Varadarajan, and A. P. Natsev, “Collaborative
deep metric learning for video understanding,” in ACM SIGKDD, 2018,
pp. 481–490.

[4] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
Optimizing deep cnn-based queries over video streams at scale,” PVLDB,
vol. 10, no. 11, pp. 1586–1597, 2017.

[5] S. Krishnan, A. Dziedzic, and A. J. Elmore, “Deeplens: Towards a visual
data management system,” arXiv preprint arXiv:1812.07607, 2018.

[6] B. Haynes, A. Mazumdar, A. Alaghi, M. Balazinska, L. Ceze, and
A. Cheung, “Lightdb: A DBMS for virtual reality video,” PVLDB,
vol. 11, no. 10, pp. 1192–1205, 2018.

[7] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri, “Accelerating
machine learning inference with probabilistic predicates,” in SIGMOD,
2018, pp. 1493–1508.

[8] “Twitch Tracker,” https://twitchtracker.com/statistics, 2018, accessed:
2018-11-05.

[9] Y. Rui, A. Gupta, and A. Acero, “Automatically extracting highlights
for TV baseball programs,” in ACM MM, 2000, pp. 105–115.

[10] A. Ekin, A. M. Tekalp, and R. Mehrotra, “Automatic soccer video
analysis and summarization,” IEEE Trans. Image Processing, vol. 12,
no. 7, pp. 796–807, 2003.

[11] H. Yang, B. Wang, S. Lin, D. P. Wipf, M. Guo, and B. Guo, “Unsuper-
vised extraction of video highlights via robust recurrent auto-encoders,”
in IEEE ICCV, 2015, pp. 4633–4641.

[12] T. Yao, T. Mei, and Y. Rui, “Highlight detection with pairwise deep
ranking for first-person video summarization,” in CVPR, 2016.

[13] C. Fu, J. Lee, M. Bansal, and A. C. Berg, “Video highlight prediction
using audience chat reactions,” in EMNLP, 2017, pp. 972–978.

[14] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “CrowdER: crowdsourc-
ing entity resolution,” PVLDB, vol. 5, no. 11, pp. 1483–1494, 2012.

[15] S. E. Whang, P. Lofgren, and H. Garcia-Molina, “Question selection for
crowd entity resolution,” PVLDB, vol. 6, no. 6, pp. 349–360, 2013.

[16] L. von Ahn and L. Dabbish, “Labeling images with a computer game,”
in CHI, 2004, pp. 319–326.

[17] “Implicit Crowdsourcing,” https://en.wikipedia.org/wiki/
Crowdsourcing#Implicit crowdsourcings, 2018, accessed: 2019-06-01.

[18] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum,
“reCAPTCHA: Human-Based Character Recognition via Web Security
Measures,” Science, vol. 321, no. 5895, pp. 1465–1468, 2008.

[19] T. Joachims, “Optimizing search engines using clickthrough data,” in
ACM SIGKDD, 2002, pp. 133–142.

[20] G. Li, J. Wang, Y. Zheng, and M. J. Franklin, “Crowdsourced data
management: A survey,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 9,
pp. 2296–2319, 2016.

[21] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing
in spatial crowdsourcing: A matching-based approach,” in SIGMOD,
2018, pp. 773–788.

[22] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and
A. Somech, “OASSIS: query driven crowd mining,” in SIGMOD, 2014,
pp. 589–600.

[23] H. Hu, G. Li, Z. Bao, Y. Cui, and J. Feng, “Crowdsourcing-based real-
time urban traffic speed estimation: From trends to speeds,” in ICDE,
2016, pp. 883–894.

[24] Y. Tong, L. Chen, and C. Shahabi, “Spatial crowdsourcing: Challenges,
techniques, and applications,” PVLDB, vol. 10, no. 12, pp. 1988–1991,
2017.

[25] L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka, “Spatial task
assignment for crowd sensing with cloaked locations,” in 2014 IEEE
15th International Conference on Mobile Data Management, vol. 1.
IEEE, 2014, pp. 73–82.

[26] H. Hu, Y. Zheng, Z. Bao, G. Li, J. Feng, and R. Cheng, “Crowdsourced
poi labelling: Location-aware result inference and task assignment,” in
2016 IEEE 32nd International Conference on Data Engineering (ICDE).
IEEE, 2016, pp. 61–72.

[27] S. Novgorodov, G. Elad, I. Guy, and K. Radinsky, “Generating product
descriptions from user reviews,” in The World Wide Web Conference.
ACM, 2019, pp. 1354–1364.

[28] Y. Song, “Real-time video highlights for yahoo esports,” CoRR, vol.
abs/1611.08780, 2016.

[29] M. Otani, Y. Nakashima, E. Rahtu, J. Heikkilä, and N. Yokoya,
“Video summarization using deep semantic features,” CoRR, vol.
abs/1609.08758, 2016.

[30] A. Kaspar, G. Patterson, C. Kim, Y. Aksoy, W. Matusik, and M. Elgharib,
“Crowd-guided ensembles: How can we choreograph crowd workers for
video segmentation?” in CHI, 2018.

[31] Y. Huang, Y. Huang, N. Xue, and J. P. Bigham, “Leveraging comple-
mentary contributions of different workers for efficient crowdsourcing
of video captions,” in CHI. ACM, 2017, pp. 4617–4626.

[32] P. Xu and M. Larson, “Users tagging visual moments: timed tags in
social video,” in Proceedings of the 2014 International ACM Workshop
on Crowdsourcing for Multimedia. ACM, 2014, pp. 57–62.

[33] Q. Ping and C. Chen, “Video highlights detection and summarization
with lag-calibration based on concept-emotion mapping of crowd-
sourced time-sync comments,” EMNLP 2017, p. 1, 2017.

[34] C. Xu, J. Wang, K. Wan, Y. Li, and L. Duan, “Live sports event detection
based on broadcast video and web-casting text,” in MM, 2006.

[35] L. Hsieh, C. Lee, T. Chiu, and W. H. Hsu, “Live semantic sport highlight
detection based on analyzing tweets of twitter,” in ICME. IEEE
Computer Society, 2012, pp. 949–954.

[36] T. Sakaki, M. Okazaki, and Y. Matsuo, “Tweet analysis for real-time
event detection and earthquake reporting system development,” IEEE
Trans. Knowl. Data Eng., vol. 25, no. 4, pp. 919–931, 2013.

[37] K. Chorianopoulos, “Collective intelligence within web video,” Human-
centric Computing and Information Sciences, vol. 3, no. 1, p. 10, 2013.

[38] J. Kim, P. J. Guo, C. J. Cai, S. D. Li, K. Z. Gajos, and R. C.
Miller, “Data-driven interaction techniques for improving navigation of
educational videos,” in UIST. ACM, 2014, pp. 563–572.

[39] J. Kim, P. J. Guo, D. T. Seaton, P. Mitros, K. Z. Gajos, and R. C. Miller,
“Understanding in-video dropouts and interaction peaks inonline lecture
videos,” in L@S, 2014, pp. 31–40.

[40] T. Sinha, P. Jermann, N. Li, and P. Dillenbourg, “Your click decides
your fate: Leveraging clickstream patterns in MOOC videos to infer
students’ information processing and attrition behavior,” CoRR, vol.
abs/1407.7131, 2014.

[41] “Response Times: The 3 Important Limits,” https://www.nngroup.com/
articles/response-times-3-important-limits, 1993, accessed: 2019-06-01.

[42] A. Graves, “Generating sequences with recurrent neural networks,”
CoRR, vol. abs/1308.0850, 2013. [Online]. Available: http://arxiv.org/
abs/1308.0850

12

https://twitchtracker.com/statistics
https://en.wikipedia.org/wiki/Crowdsourcing#Implicit_crowdsourcings
https://en.wikipedia.org/wiki/Crowdsourcing#Implicit_crowdsourcings
https://www.nngroup.com/articles/response-times-3-important-limits
https://www.nngroup.com/articles/response-times-3-important-limits
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850

	I Introduction
	II Related Work
	III The Lightor Workflow
	IV Highlight Initializer
	IV-A Design Objective
	IV-B Design Choices
	IV-C Implementation
	IV-C1 Naive Implementation
	IV-C2 Our Implementation

	V Highlight Extractor
	V-A Design Objective
	V-B Challenges
	V-C Implementation

	VI Deploy Lightor in Practice
	VI-A Web Browser Extension
	VI-B Integrate Into Live Streaming Platforms

	VII Experiments
	VII-A Experimental Settings
	VII-B Evaluation of Highlight Initializer
	VII-C Evaluation of Highlight Extractor
	VII-D Applicability of Lightor in Twitch
	VII-E Comparison with Deep Learning

	VIII Findings & Lessons learned
	IX Conclusion & Future work
	References

