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Abstract—String similarity join that finds similar string pairs
between two string sets is an essential operation in many
applications, and has attracted significant attention recently in
the database community. A significant challenge in similarity
join is to implement an effective fuzzy match operation to find
all similar string pairs which may not match exactly. In this
paper, we propose a new similarity metrics, called “fuzzy token
matching based similarity”, which extends token-based similarity
functions (e.g., Jaccard similarity and Cosine similarity) by
allowing fuzzy match between two tokens. We study the problem
of similarity join using this new similarity metrics and present
a signature-based method to address this problem. We propose
new signature schemes and develop effective pruning techniques
to improve the performance. Experimental results show that
our approach achieves high efficiency and result quality, and
significantly outperforms state-of-the-art methods.

I. INTRODUCTION

Similarity join has become a fundamental operation in
many applications, such as data integration and cleaning, near
duplicate object detection and elimination, and collaborative
filtering [20]. In this paper we study string similarity join,
which, given two sets of strings, finds all similar string pairs
from each set. Existing studies [15], [6], [2], [3], [20], [21],
[18] mainly use the following functions to quantify similarity
of two strings.

Token-based similarity functions: They first tokenize strings
as token sets (“bag of words”), and then quantify the sim-
ilarity based on the token sets, such as Jaccard similarity
and Cosine similarity. Usually if two strings are similar,
their token sets should have a large overlap. Token-based
similarity functions have a limitation that they only consider
exact match of two tokens, and neglect fuzzy match of two
tokens. Note that many data sets contain typos and incon-
sistences in their tokens and may have many mismatched
token pairs that refer to the same token. For example,
consider two strings “nba mcgrady” and “macgrady nba”.
Their token sets are respectively {“nba”, “mcgrady”} and
{“macgrady”, “nba”}. The two token sets contain a mis-
matched token pair (“mcgrady”, “macgrady”). As an exam-
ple, the Jaccard similarity between the two strings is 1/3 (the
ratio of the number of tokens in their intersection to that in
their union). Although the two strings are very similar, their
Jaccard similarity is very low.

Character-based similarity functions : They use characters
in the two strings to quantify the similarity, such as edit
distance which is the minimum number of single-character edit
operations (i.e., insertion, deletion, and substitution) needed to
transform one to another. In comparison with token-based sim-
ilarity, edit distance is sensitive to the positions of the tokens
in a string. For example, recall the two strings “nba mcgrady”
and “macgrady nba”. Their edit distance is 9. Although the
two strings are very similar, their edit-distance-based similarity
is very low.

The above two classes of similarity metrics have limitations
in evaluating the similarity of two strings. These problems
seem trivial but are very serious for many datasets, such as
Web query log and person names. To address this problem,
we propose a new similarity metrics, fuzzy token matching
based similarity (hereinafter referred to as fuzzy-token sim-
ilarity), by combining token-based similarity and character-
based similarity. Different from token-based similarity that
only considers exact match between two tokens, we also in-
corporate character-based similarity of mismatched token pairs
into the fuzzy-token similarity. For example, recall the two
strings “nba mcgrady” and “macgrady nba”. They contain
one exactly matched token “nba” and one approximately
matched token pair (“mcgrady”, “macgrady”). We consider
both of the two cases in the fuzzy-token similarity. We give the
formal definition of the fuzzy-token similarity and prove that
many well-known similarity functions (e.g., Jaccard similarity)
are special cases of fuzzy-token similarity (Section II).

There are several challenges to address the similarity-
join problem using fuzzy-token similarity. Firstly, fuzzy-token
similarity is more complicated than token-based similarity and
character-based similarity, and it is even rather expensive to
compute fuzzy-token similarity of two strings (Section II-B).
Secondly, for exact match of token pairs, we can sort the
tokens and use prefix filtering to prune large numbers of
dissimilar string pairs [20]. However as we consider fuzzy
match of two tokens, it is nontrivial to sort the tokens and
use prefix filtering. Thus it calls for new effective techniques
and efficient algorithms. In this paper we propose f uzzy token
matching based string similarity join (called Fast-Join) to
address these problems. To summarize, we make the following
contributions in this paper.

• We propose a new similarity metric, fuzzy-token similar-
ity, and prove that many existing token-based similarity



functions and character-based similarity functions are
special cases of fuzzy-token similarity.

• We formulate the similarity-join problem using fuzzy-
token similarity. We propose a signature-based framework
to address this problem.

• We propose a new signature scheme for token sets and
prove it is superior to the state-of-the-art method. We
present a new signature scheme for tokens and develop
effective punning techniques to improve the performance.

• We have implemented our method in real data sets. The
experimental results show that our method achieves high
performance and result quality, and outperforms state-of-
the-art methods.

The rest of this paper is organized as follows. Section II
proposes the fuzzy-token similarity. Section III formalizes
the similarity-join problem using fuzzy-token similarity and
presents a signature-based method. To increase performance,
we propose new signature schemes for token sets and tokens
respectively in Section IV and Section V. Experimental results
are provided in Section VI. We review related works in
Section VII and make a conclusion in Section VIII.

II. FUZZY-TOKEN SIMILARITY

We first review existing similarity metrics, and then formal-
ize the fuzzy-token similarity. Finally we prove that existing
similarities are special cases of fuzzy-token similarity.

A. Existing Similarity Metrics

String similarity functions are used to quantify the similarity
between two strings, which can be roughly divided into three
groups: token-based similarity, character-based similarity, and
hybrid similarity.
Token-based similarity: It tokenizes strings into token sets
(e.g., using white space) and quantifies the similarity based on
the token sets. For example, given a string “nba mcgrady”, its
token set is {“nba”, “mcgrady”}. We give some representa-
tive token-based similarity: Dice similarity, Cosine similarity,
and Jaccard similarity, defined as follows. Given two strings
s1 and s2 with token sets T1 and T2:

Dice similarity: DICE(s1, s2) =
2·|T1∩T2|
|T1|+|T2| .

Cosine similarity: COSINE(s1, s2) =
|T1∩T2|√
|T1|·|T2|

.

Jaccard similarity: JACCARD(s1, s2) =
|T1∩T2|

|T1|+|T2|−|T1∩T2| .

Note that the token-based similarity functions use the
overlap of two token sets to quantify the similarity. They
only consider exactly matched token pairs to compute the
overlap, and neglect the approximately matched pairs which
refer to the same token. For example, consider two strings s1
= “nba trace mcgrady” and s2 = “trac macgrady nba”.
Their token sets have a overlap “nba”, and their Jac-
card similarity is 1/5. Consider another string s3 =
“nba trace video”. For s1 and s3, their token sets have a
larger overlap {“nba”, “trace”}, and their Jaccard similarity
is 2/4. Although JACCARD(s1, s2) < JACCARD(s1, s3), actu-
ally s2 should be much more similar to s1 than s3, since all
of the three tokens in s2 are similar to those in s1.

Character-based similarity: It considers characters in strings
to quantify the similarity. As an example, edit distance is
the minimum number of single-character edit operations (i.e.
insertion, deletion, substitution) to transform one into another.
For example, the edit distance between “macgrady” and
“mcgrady” is 1. We normalize the edit distance to interval
[0,1] and use edit similarity to quantify the similarity of two
strings, where edit similarity between two strings s1 and s2 is
NED(s1, s2) = 1 − ED(s1,s2)

max(|s1|,|s2|) in which |s1| (|s2|) denotes
the length of s1 (s2).

Note that edit similarity is sensitive to the position informa-
tion of each token. For example, the edit similarity between
strings “nba trace mcgrady” and “trace mcgrady nba” is
very small although they are actually very similar.

Hybrid Similarity: Chaudhuri et al. [5] proposed generalized
edit similarity (GES), which extends the character-level edit
operator to the token-level edit operator. For example, consider
two strings “nba mvp mcgrady” and “mvp macgrady”. We
can use two token-level edit operators to transform the first
one to the second one (e.g. deleting the token “nba” and
substituting “mcgrady” for “macgrady”). Note that we can
consider the token weight in the transformation. For example,
“nba” is less important than “macgrady” and we can assign
a lower weight for “nba”. However the generalized edit
similarity is sensitive to token positions.

Chaudhuri et al. [5] also derived an approximation of
generalized edit similarity (AGES). This similarity ignores the
positions of tokens and requires each token in one string to
match the “closest” token (the most similar one) in another
string. For example, consider two strings s1 = “wnba nba”
and s2 = “nba”. For the tokens in s1 “wnba” and “nba”,
their “closest” tokens in s2 are both “nba”. We respectively
compute the similarity between “wnba” and “nba” and that
between “nba” and “nba”. The AGES between s1 and
s2 is the average value of these two similarity values, i.e.
AGES(s1,s2) = 0.75+1

2 = 0.875. However AGES does not
follow the symmetry property. Consider the above two strings
s1 and s2. We can also compute their similarity from the
viewpoint of s2. For the token in s2 “nba”, we find its
“closest” token in s1 “nba”. We only need to compute the
similarity between “nba” and “nba”. The AGES between s1
and s2 turns to this similarity value, i.e. AGES(s2,s1) = 1.
The asymmetry property will make AGES have limitations
for many practical problems. For example, if using AGES to
quantity the similarity for self-join problem, AGES will lead
to inconsistent results.

As existing similarity functions have limitations, to address
these problems, we propose a new similarity metrics.

B. Fuzzy-Token Similarity
We propose a powerful similarity metrics, fuzzy-token sim-

ilarity, by combining token-based similarity and character-
based similarity. Different from token-based similarity which
computes the exact overlap of two token sets (i.e., the number
of exactly matched token pairs), we compute fuzzy overlap in
considering fuzzy match between tokens as follows.



Given two token sets, we use character-based similarity to
quantify the similarity of token pairs from the two sets. As
an example, in this paper we focus on edit similarity. We first
compute the edit similarity of each token pair from the two
sets, then use maximum weight matching in bipartite graphs
(bigraphs) for computing fuzzy overlap as follows.

We construct a weighted bigraph G =
(
(X,Y ), E

)
for

token sets T1 and T2 as follows, where X and Y are two
disjoin sets of vertexes, and E is a set of weighted edges that
connect a vertex from X to a vertex in Y . In our problem, as
illustrated in Figure 1, the vertexes in X and Y are respectively
tokens in T1 and T2, and an edge from a token ti ∈ T1 to a
token t′j ∈ T2 is their edit similarity. For example, in the figure,
the edge with the weight w1,1 means that the edit similarity
between t1 and t′1 is w1,1. We can only keep the edges with
weight larger than a given edit-similarity threshold δ. The
maximum weight matching of G is a set of edges M ⊆ E
satisfying the following conditions: (1) Matching: Any two
edges in M have no a common vertex; (2) Maximum: The sum
of weights of edges in M is maximal. We use G’s maximum
weight matching as the fuzzy overlap of T1 and T2, denoted by
T1 ∩̃δ T2. Note that the time complexity for finding maximum
weight matching is O(|V |2∗|E|) [4], where |V | is the number
of vertexes and |E| is the number of edges in bigraph G. We
give an example to show how to compute the fuzzy overlap.
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Fig. 1. Weighted bigraph

Example 1: Consider two strings s1 = “nba mcgrady” and
s2 = “macgrady nba”. We first compute the edit similar-
ity of each token pair: NED(“nba”, “macgrady”) = 1

8
,

NED(“nba”, “nba”) = 1, NED(“mcgrady”, “macgrady”) =
7
8
, NED(“mcgrady”, “nba”)= 1

7 . For an edit-similarity thresh-
old δ = 0.8, we construct a weighted bigraph with two
weighted edges: one edge e1 with weight 1 for token pair
(“nba”, “nba”) and the other edge e2 with weight 7

8 for token
pair (“mcgrady”, “macgrady”). The maximum weight match-
ing of this bigraph is the edge set {e1, e2} which meets two
conditions: matching and maximum. Thus the fuzzy overlap
T1 ∩̃0.8 T2 is {e1, e2} and its weight is |T1 ∩̃0.8 T2| = 15

8 .
Using fuzzy overlap, we define fuzzy-token similarity.

Definition 1 (Fuzzy-Token Similarity): Given two strings s1
and s2 and an edit-similarity threshold δ, let T1 and T2 be the
token sets of s1 and s2 respectively,

Fuzzy-Dice similarity: FDICEδ(s1, s2) =
2·|T1∩̃δT2|
|T1|+|T2| .

Fuzzy-Cosine similarity: FCOSINEδ(s1, s2) =
|T1∩̃δT2|√
|T1|·|T2|

.

Fuzzy-Jaccard similarity: FJACCARDδ(s1, s2)=
|T1∩̃δT2|

|T1|+|T2|−|T1∩̃δT2|
.

For example, consider s1 and s2 in Example 1. Their Fuzzy-
Jaccard similarity is FJACCARDδ(s1, s2)=

1+7/8
4−1−7/8=15/17.

C. Comparison with Existing Similarities
In this section, we compare fuzzy-token similarity with

existing similarities. Existing token-based similarity such as
Jaccard similarity obeys the triangle inequality, however
fuzzy-token similarity does not obey the triangle inequal-
ity. We give an example to prove this property. Consider
three strings with only one token, s1=“abc”, s2=“abcd”
and s3=“bcd”. We have NED(s1, s2)=NED(s2, s3)=0.75, and
NED(s1, s3) = 1

3 . Let edit-similarity threshold δ = 0.5. We
have |s1 ∩̃0.5 s2|=|s2 ∩̃0.5 s3|=0.75 and |s1 ∩̃0.5 s3|=0 (as 1

3 <
0.5). Thus FJACCARDδ(s1, s2)=FJACCARDδ(s2, s3)= 0.75

2−0.75 =
0.6 and FJACCARDδ(s1, s3) = 0. Usually, one minus the
similarity denotes the corresponding distance. We have (1 −
0.6)+(1−0.6) < (1−0). Thus Fuzzy-Jaccard similarity does
not obey the triangle inequality. Similarly, the example can
also show Fuzzy-Dice similarity and Fuzzy-Cosin similarity do
not obey the triangle inequality. Thus our similarities are not
metric-space similarities and cannot use existing studies [10]
to support our similarities.

Compared with AGSE (Section II-A), fuzzy-token similarity
has the symmetry property. This is because we construct
a bigraph for the token sets of two strings, and the max-
imum weight matching of this bigraph is symmetric, thus
|T1 ∩̃δ T2| = |T2 ∩̃δ T1|.

Next we investigate the relationship between fuzzy-token
similarity and existing similarities. We first compare it with
token-based similarity. If δ = 1 for fuzzy-token similarity, then
a fuzzy overlap will be equal to the overlap (Lemma 1), and
the corresponding fuzzy-token similarity will turn to token-
based similarity. Thus token-based similarity is only a special
case of the fuzzy-token similarity when δ = 1.

Lemma 1: For token sets T1 and T2, |T1 ∩̃1 T2| = |T1∩T2|.
For the general case (δ ∈ [0, 1]), a fuzzy overlap never have

a smaller value than the corresponding overlap (Lemma 2).

Lemma 2: For token sets T1 and T2, |T1 ∩̃δ T2| ≥ |T1∩T2|.
Based on this Lemma, we can deduce that fuzzy-token sim-

ilarity will never have a smaller value than the corresponding
token-based similarity. One advantage of this property is that
for a string pair, if they are similar evaluated by token-based
similarity, then they are still similar for fuzzy-token similarity.

Next we compare fuzzy-token similarity with edit similarity.
We find that edit similarity is also a special case of the fuzzy-
token similarity as stated in Lemma 3.

Lemma 3: Given two strings s1 and s2, let token sets T1 =
{s1} and T2 = {s2}, we have |T1 ∩̃δ=0 T2| = NED(s1, s2).

Based on the above analysis, fuzzy-token similarity is a
generalization of token-based similarity and character-based
similarity, and is more powerful than them as experiments
proved in Section VI. Fuzzy-token similarity also has some
different properties from existing similarities which pose new
challenges when using it to quantify the similarity.



III. STRING SIMILARITY JOIN USING FUZZY-TOKEN
SIMILARITY

In this section, we study the similarity-join problem using
fuzzy-token similarity to compute similar string pairs.

A. Problem Formulation

Let S and S′ be two collections of strings, and R and R′

be the corresponding collections of token sets. For T ∈ R
and T ′ ∈ R′, let Fδ(T, T

′) denote the fuzzy-token similarity
of T and T ′, where Fδ could be FJACCARDδ , FCOSINEδ , and
FDICEδ . We define the similarity-join problem as follows.

Definition 2: (Fuzzy token matching based string similarity
join): Given two collections of strings S and S′, and a thresh-
old τ , a fuzzy token matching based string similarity join is
to find all the pairs (s, s′) ∈ S × S′ such that Fδ(T, T

′) ≥ τ ,
where T (T ′) is the token set of s(s′).

A straightforward method to address this problem is to enu-
merate each pair (T1, T2) ∈ R×R′ and compute their fuzzy-
token similarity. However this method is rather expensive, and
we propose an efficient method, called Fast-Join.

B. A Signature-Based Method

We adopt a signature-based method [15]. First we generate
signatures for each token set, which have a property that:
given two token sets T1 and T2 with signature sets Sig(T1)
and Sig(T2) respectively, T1 and T2 are similar only if
Sig(T1) ∩ Sig(T2) ̸= ϕ. Based on this property we can
filter large numbers of dissimilar pairs and obtain a small set
of candidate pairs. Finally, we verify the candidate pairs to
generate the finial results. We call our method as Fast-Join.
Signature Schemes: It is very important to devise a high-
quality scheme in this framework, as such signature can prune
large numbers of dissimilar pairs. Section IV and Section V
study how to generate high-quality signatures.
The filter step: This step generates candidates of similar pairs
based on signatures. We use an inverted index to generate
candidates [15] as follows. Each signature in the signature
sets has an inverted list of those token sets whose signature
sets contain the signature. In this way, two token sets in the
same inverted lists are candidates as their signature sets have
overlaps. For example, given token sets T1, T2, T3, T4, with
Sig(T1) = {ad, ac, dc}, Sig(T2) = {be, cf, em}, Sig(T3) =
{ad, ab, dc}, and Sig(T4) = {bm, cf, be}. The inverted list of
ad is {T1, T3}. Thus (T1, T3) is a candidate. As there is no
signature whose inverted list contains both T1 and T2, they
are dissimilar and can be pruned. To find similar pairs among
the four token sets, we generate two candidates (T1, T3) and
(T2, T4) and prune the other four pairs.

We can optimize this framework using the all-pair based
algorithm [3]. In this paper, we focus on how to generate
effective signatures and use this framework as an example.
Our method can be easily extended to other frameworks.
The refine step: This step verifies the candidates to generate
the final results. Given two token sets T1 and T2, we construct
a weighted bigraph as described in Section II-B. As it is

expensive to compute the maximum weighted matching, we
propose an improved method. We compute an upper bound
of the maximal weight by relaxing the “matching” condition,
that is we allow that the edges in M can share a common
vertex. We can compute this upper bound by summing up the
maximum weight of edges of every token in T1 (or T2). If this
upper bound makes Fδ(T1, T2) smaller than τ , we can prune
the pair (T1, T2), since Fδ(T1, T2) is no larger than its upper
bound and thus will also be smaller than τ .

IV. SIGNATURE SCHEME OF TOKEN SETS

In the signature-based method, it is very important to
define a high-quality signature scheme, since a better signature
scheme can prune many more dissimilar pairs and generate
smaller numbers of candidates. In this section we propose a
high-quality signature scheme for token sets.

A. Existing Signature Schemes

Let us first review existing signature schemes for ex-
act search, i.e., δ = 1. Consider two token sets T1 =
{t1, t2, . . . , tn} and T2 = {t′1, t′2, . . . , t′m} where ti denotes
a token in T1 and t′j denotes a token in T2. Suppose T1 and
T2 are similar if |T1 ∩ T2| ≥ c, where c is a constant. A
simple signature scheme is Sig(T1) = T1 and Sig(T2) = T2.
Obviously if T1 and T2 are similar, their overlap is not empty,
that is Sig(T2) and Sig(T2) have common signatures. As this
method involves large numbers of signatures, it will lead to
low efficiency. A well-known improved method is to use prefix
filtering [6], which selects a subset of tokens as signatures. To
use prefix filtering, we first fix a global order on all signatures
(i.e. tokens). We then remove the ⌈c−1⌉ signatures with largest
order from Sig(T1) and Sig(T2) to obtain the new signature
set Sigp(T1) and Sigp(T2). Note that if T1 and T2 are similar,
|Sigp(T1) ∩ Sigp(T2)| ̸= ϕ [6].

For example, consider two token sets T1 = {“nba”,
“kobe”, “bryant”}, T2 = {“nba”, “tracy”, “mcgrady”}
and a threshold c = 2. They cannot be filtered by the simple
signature scheme, as Sig(T1) = T1 and Sig(T2) = T2 have
overlaps. Using alphabetical order, we can remove “nba” from
Sig(T1) and “tracy” from Sig(T2), and get Sigp(T1) =
{“bryant”, “kobe”} and Sigp(T2) ={“nba”, “mcgrady”}.
As they have no overlaps, we can prune them.

However, it is not straightforward to extend this method
to support δ ̸= 1 as we consider fuzzy token matching.
For example, consider the token sets {“hoston”, “mcgrady”}
and {“houston”, “macgrady”}. Clearly they have large fuzzy
overlap but have no overlap. To address this problem, we
propose an effective signature scheme for fuzzy overlap.

B. Token-Sensitive Signature

As the similarity function Fδ is rather complicated and it is
hard to devise an effective signature scheme for this similarity,
we simplify it and deduce an Equation that if Fδ(T1, T2) ≥
τ , then there exists a constant c such that |T1 ∩̃δ T2| ≥ c.
Then we propose a signature scheme Sigδ(·) satisfying: if
|T1 ∩̃δ T2| ≥ c, then Sigδ(T1) ∩ Sigδ(T2) ̸= ϕ. We can



devise a pruning technique: if Sigδ(T1) ∩ Sigδ(T2) = ϕ, we
have |T1 ∩̃δ T2| < c and Fδ(T1, T2) < τ , thus we can prune
(T1, T2). Section IV-C gives how to deduce c for different
similarity functions. Here we discuss how to devise effective
signature schemes for |T1 ∩̃δ T2| ≥ c.

Signature scheme for |T1 ∩̃δ T2| ≥ c: Given two token sets
T1 = {t1, t2, . . . , tn} and T2 = {t′1, t′2, . . . , t′m}, we study
how to generate the signature sets Sigδ(T1) and Sigδ(T2)
for the condition δ ̸= 1 such that if |T1 ∩̃δ T2| ≥ c, then
Sigδ(T1) ∩ Sigδ(T2) ̸= ϕ. Recall that T1 ∩̃δ T2 denotes the
maximum weight matching of their corresponding weighted
bigraph G. Each edge in G for vertexes ti ∈ T1 and t′j ∈ T2

is NED(ti, t
′
j) ≥ δ. We construct another bigraph G′ with the

same vertexes and edges as G except that the edge weights
are assigned as follows. We first generate the signatures of
tokens ti and t′j , denoted as sigδ(ti) and sigδ(t′j) respectively,
such that if NED(ti, t

′
j) ≥ δ, sigδ(ti) ∩ sigδ(t′j) ̸= ϕ.

(We will discuss how to generate the signature scheme for
tokens in Section V.) Then for each edge of vertexes ti
and t′j in G′, we assign its weight to |sigδ(ti) ∩ sigδ(t′j)|.
As there exists an edge in G between ti and t′j , we have
sigδ(ti) ∩ sigδ(t′j) ̸= ϕ, thus |sigδ(ti) ∩ sigδ(t′j)| ≥ 1 ≥
NED(ti, t

′
j). Obviously the maximal matching weight in G

is no larger than that in G′. Without loss of generality, let
M = {(t1, t′1), (t2, t′2), . . . , (tk, t′k)} be the maximal weight
matching of G′ where each element (ti, t

′
i) in M denotes

an edge of G′ with the edge weight of |sigδ(ti) ∩ sigδ(t′i)|.
Thus the maximal matching weight of G′ is

∑k
i=1 |sigδ(ti)∩

sigδ(t′i)|. Based on the definition of matching, no two edges
in M have a common vertex. Hence,

k∑
i=1

|sigδ(ti) ∩ sigδ(t′i)| ≤ |
( k⊎

i=1

sigδ(ti)
)
∩
( k⊎

i=1

sigδ(t′i)
)
|

≤ |
( n⊎

i=1

sigδ(ti)
)
∩
( m⊎

i=1

sigδ(t′i)
)
|

where
⊎

denotes the union operation for multisets1.
Base on above analysis, we have |T1 ∩̃δ T2| ≤ |Sigδ(T1)∩

Sigδ(T2)| as formalized in Lemma 4. Thus, we use
Sigδ(T1) =

⊎n
i=1 sig

δ(ti) and Sigδ(T2) =
⊎m

i=1 sig
δ(t′i)

as the signatures of T1 and T2 respectively, such that if
Sigδ(T1) ∩ Sigδ(T2) = ϕ, |T1 ∩̃δ T2| ≤ 0 < c.

Lemma 4: For each token set T1 = {t1, t2, . . . , tn}
and T2 = {t′1, t′2, . . . , t′m}, |T1 ∩̃δ T2| ≤ |Sigδ(T1) ∩
Sigδ(T2)| where Sigδ(T1) =

⊎n
i=1 sig

δ(ti) and Sigδ(T2) =⊎m
i=1 sig

δ(t′j).

Obviously we can use prefix filtering to improve this signa-
ture scheme. We fix a global order and then generate Sigδp(T1)
from Sigδ(T1) by removing the last ⌈c − 1⌉ signatures with
largest order. Example 2 gives an example.

Example 2: Consider the collection of token sets R in
Figure 2. Given δ = 0.8 and c = 2.4, we aim to generate a

1In this paper, we use multiset which is a generalization of a set. A multiset
can have more than one membership, that is there may be multiple instances
of a member in a multiset.
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Fig. 2. Prefix filtering and token-sensitive signatures of one sample collection
of token sets R (δ = 0.8, c = 2.4)

signature set for each token set in R such that if two token sets
are similar (i.e. |Ti ∩̃0.8 Tj | ≥ 2.4), then their corresponding
signature sets have overlaps (i.e. Sigδ(Ti) ∩ Sigδ(Tj) ̸= ϕ).

At the first step, as shown in “Token Signatures”, we
collect all the tokens in R and generate a signature set
for each token. Here we choose some q-grams (substrings
of the token that consists of q consecutive characters) as
token’s signatures [20], which will be explained in Sec-
tion V. For instance, the signature set of macgrady is
{“ac”, “cg”, “ad”}. We find that if two tokens are similar
(e.g. NED(“macgrady”, “mcgrady”) ≥ 0.8), they at least
share one signature (e.g. “ad”).

At the second step, we generate signatures Sigδ(Ti) as the
union of its tokens’ signatures. For example, consider the token
set T2 = {“trcy”, “macgrady”,“mvp”}, we have Sigδ(T2)=
{“tr1”, “rc1”, “cy1”, “ac2”, “cg2”, “ad2”, “mv3”}. Each
signature has a superscript that denotes which token generates
this signature. For instance, “ac2” denotes that the signature
“ac” is generated from the second token “macgrady”. Note
that Sigδ(Ti) is a multiset. For example, Sigδ(T1) contains
two “an” from the second and the third tokens respectively.

At the third step, to generate signatures using prefix filtering,
we delete ⌈c−1⌉ = 2 largest signatures (if we use alphabetical
order) from Sigδ(Tj) and generate Sigδp(Tj). For instance, we
can get Sigδp(T2) by removing “rc” and “tr” from Sigδ(T2)
since they are the two largest signatures based on alphabetical
order. Using this signature scheme, Sigδp(T3) have no overlap
with both Sigδp(T2) and Sigδp(T4), so we can filter (T2, T3) and
(T3, T4). For other token-set pairs such as (T2, T4), because
Sigδp(T2) and Sigδp(T4) have common signatures, they will be
considered as the candidate pair for further verification.

Token-Sensitive Signature: We propose a novel signature
scheme that can remove many more signatures than prefix
filtering. As an example, consider the token sets T1 and T3



Algorithm 1: TokenSensitiveSignature(T, c)
Input: T : a token set

c : a fuzzy-overlap threshold
Output: Sigδt (T ) : the token-sensitive signature set of T
begin1

Sigδt (T ) =
⊎

t∈T sigδ(t);2
Let H be a hash table storing token ids;3
for each stid ∈ Sigδt (T ) in decreasing global order on4
signatures do

if tid /∈ H then5
Add tid into H;6
if H.size() ≥ c then7

break;8

Remove stid from Sigδt (T );9

return Sigδt (T );10
end11

Fig. 3. Algorithm of generating token-sensitive signatures for a token set

in Figure 2. Sigδ(T1) and Sigδ(T3) have a large overlap
{“an”, “be”, “ko”, “ob”}. Thus based on prefix filtering,
when c = 2.4 they will not be filtered. Here we have an ob-
servation that these signatures are only generated from two to-
kens. For example, the overlap {“an2”, “be1”, “ko1”, “ob1”}
in T3 is generated from two tokens “kobe” and “bryant”.
That is T3 at most has two similar tokens with T1. However,
if |T1 ∩̃0.8 T3| ≥ 2.4, T3 has at least ⌈c⌉ = 3 tokens similar
to T1. Therefore, T1 and T3 should be filtered. Based on this
observation, we devise a new filter condition in Lemma 5.

Lemma 5: Given two token sets T1 and T2, and a threshold
c, if signatures in Sigδ(T1) ∩ Sigδ(T2) are only generated
from smaller than ⌈c⌉ tokens in T1 (or T2), then the token
pair (T1, T2) can be pruned.

We can use this filter condition to reduce the size of sig-
nature set and call it token-sensitive signature scheme. Given
a token set T , we generate its token-sensitive signature set
Sigδt (T ) as follows. Different from prefix filtering signature
scheme which removes the last ⌈c − 1⌉ signatures, token-
sensitive signature scheme removes the maximal number of
largest signatures (in the global order on signatures) that are
generated from at most ⌈c− 1⌉ distinct tokens. That is if we
remove one more signatures, then the removed signatures are
generated from ⌈c⌉ tokens.

Lemma 6 shows token-sensitive signature scheme generates
no larger number of signatures than the prefix-filtering signa-
ture scheme. This is because if the last ⌈c⌉ signatures come
from ⌈c⌉ different tokens, then both of signature schemes will
remove ⌈c−1⌉ signatures; otherwise, token-sensitive signature
scheme will remove more than ⌈c − 1⌉ signatures but prefix
filtering signature scheme only remove ⌈c− 1⌉ signatures.

Lemma 6: Given the same global order and the same signa-
ture scheme for tokens, the token-sensitive signature scheme
generates no larger number of signatures than the prefix
filtering signature scheme, i.e., Sigδt (T ) ⊆ Sigδp(T ).

We give the pseudo-code of token-sensitive signature
scheme in Algorithm 3. Firstly, Sigδt (T ) is initialized as the

union of the signature sets of T ’s tokens. Then we scan the
signatures in Sigδt (T ) based on the pre-defined global order
decreasingly. For each signature stid, we check whether the
token tid has occurred before. We use a hash table H to
store the occurred tokens. If tid has occurred (i.e. tid ∈ H),
we remove stid from Sigδt (T ). If tid has not occurred (i.e.
tid /∈ H), we add tid into H and if H.size() ≥ c, we stop
scanning the following signatures and return the signature set
Sigδt (T ); otherwise, we remove stid from Sigδt (T ) and scan
the next signature. Example 3 shows how this algorithm works.

Example 3: Consider the token set T1 in Figure 2. Given
δ = 0.8 and c = 2.4, we first initialize Sigδ(T1) =
{“an2”, “an3”, “be1”, “cy3”, “ko1”, “nc3”, “ob1”} with
signatures sorted in alphabetical order. We scan the signatures
in Sigδ(T1) from back to front. Initially, H = {}. For the first
signature “ob1, it comes from the first token “kobe” in T1,
since 1 /∈ H, we add 1 into H. As the size of H = {1} is
smaller than 2.4, we remove “ob1” from Sigδ(T1) and scan
the next signature “nc3”. Since “nc3” comes from the third
token and 3 /∈ H, we add 3 into H. As the size of H = {1, 3}
is smaller than 2.4, we remove “nc1” from Sigδ(T1). Note
that the prefix filtering signature scheme will stop here, but the
token-sensitive signature scheme will scan the next signature
“ko1”. Since “ko1” comes from the first token and 1 ∈ H,
we can directly remove “ko1” from Sigδ(T1) and scan the
following signatures. We can also remove “cy3”, “be1”, “an3”
as they come from the first or the third tokens which have
already been added into H. Finally, we stop at the signature
“an2”. Since “an2” comes from the second token and 2 /∈ H,
we add 2 into H. As the size of H = {1, 2, 3} is no smaller
than 2.4, we stop removing signatures and return the final
signature set Sigδt (T1) = {“an2”}.

Figure 2 shows the token-sensitive signatures of the token
sets in R. Compared with prefix-filtering signature scheme, it
significantly reduces the size of a signature set and filters more
token-set pairs. In Example 2, prefix-filtering signature scheme
can only prune (T2, T3) and (T3, T4), but since Sigδt (T1) ∩
Sigδt (T2) = ϕ and Sigδt (T1) ∩ Sigδt (T3) = ϕ and Sigδt (T1) ∩
Sigδt (T4) = ϕ, token-sensitive signature scheme can further
filter the token-set pairs (T1, T2) and (T1, T3) and (T1, T4).

C. Deducing Constant c
In this section, we deduce how to compute the constant c,

such that if Fδ(T1, T2) ≥ τ , then there exists a constant c
such that |T1 ∩̃δ T2| ≥ c.

Fuzzy-Dice Similarity:
2 · |T1 ∩̃δ T2|
|T1|+ |T2|

≥ τ =⇒ 2 · |T1 ∩̃δ T2|
|T1|+ |T1 ∩̃δ T2|

≥ τ

=⇒ |T1 ∩̃δ T2| ≥
τ

2− τ
· |T1| (1)

Fuzzy-Cosine Similarity:
|T1 ∩̃δ T2|√
|T1| · |T2|

≥ τ =⇒ |T1 ∩̃δ T2|√
|T1| · |T1 ∩̃δ T2|

≥ τ

=⇒ |T1 ∩̃δ T2| ≥ τ2|T1| (2)



Fuzzy-Jaccard Similarity:

|T1 ∩̃δ T2|
|T1| + |T2| − |T1 ∩̃δ T2|

≥ τ =⇒
|T1 ∩̃δ T2|

|T1| − |T1 ∩̃δ T2| + |T1 ∩̃δ T2|
≥ τ

=⇒ |T1 ∩̃δ T2| ≥ τ · |T1| (3)

Thus given a token set T1, we can deduce that c = τ
2−τ ·

|T1| for Fuzzy-Dice similarity, c = τ2|T1| for Fuzzy-Cosin
similarity, and c = τ · |T1| for Fuzzy-Jaccard similarity.

We can prove that if Fδ(T1, T2) ≥ τ , then Sigδt (T1) ∩
Sigδt (T2) ̸= ϕ. We only show the proof of Fuzzy-Jaccard
similarity. Fuzzy-Dice similarity and Fuzzy-Cosin similar-
ity can be proved similarly. If FJACCARDδ(T1, T2) ≥ τ ,
then |T1 ∩̃δ T2| ≥ max(c1, c2) where c1 = τ · |T1| and
c2 = τ · |T2|. Let Sigδt (T1) and Sigδt (T1)

′ be the signa-
ture set of T1 when the fuzzy-overlap threshold is c1 and
max(c1, c2) respectively. Let Sigδt (T2) and Sigδt (T2)

′ be the
signature set of T2 when the fuzzy-overlap threshold is c2
and max(c1, c2) respectively. As |T1 ∩̃δ T2| ≥ max(c1, c2),
Sigδt (T1)

′∩Sigδt (T2)
′ ̸= ϕ. As max(c1, c2) is no smaller than

c1 and c2, Sigδt (T1)
′ ⊆ Sigδt (T1) and Sigδt (T2)

′ ⊆ Sigδt (T2),
thus Sigδt (T1) ∩ Sigδt (T2) ̸= ϕ.

V. SIGNATURE SCHEMES FOR TOKENS

As we need to use the signatures of tokens for generating
the signatures of token sets, in this section, we study effective
signature schemes for tokens.

A. Extending Existing Signature Schemes to Support Edit
Similarity

Many signature schemes [7], [20], [16], [2], [19] are pro-
posed to evaluate edit distance. They generate signature sets
for tokens t and t′, such that if ED(t, t′) is no larger than
an edit-distance threshold λ, then their signature sets have
overlaps. But for edit similarity, tokens with different lengths
might have different edit-distance thresholds. In order to use
existing signature schemes, given an edit-similarity threshold
δ, for a token t we can compute its maximal edit-distance
threshold λ such that for any token t′ if NED(t, t′) ≥ δ, then
ED(t, t′) ≤ λ. As NED(t, t′) = 1 − ED(t,t′)

max(|t|,|t′|) ≥ δ, we have

1− ED(t,t′)
|t|+ED(t,t′) ≥ δ, that is ED(t, t′) ≤ 1−δ

δ · |t|. Thus we can
set λ = 1−δ

δ ·|t|. For example, consider the token “tracy” and
δ = 0.8. For any token t′ such that NED(“tracy”, t′) ≥ 0.8,
the edit distance between t′ and “tracy” is no larger than
1−0.8
0.8 · |5| = 1.25. Next we review existing signature schemes

for tokens. Note that they are designed for edit distance instead
of edit similarity, we extend them to support edit similarity.

q-gram-based signature scheme [7], [20] utilizes the idea that
if two tokens are similar, they will have enough common q-
grams where a q-gram is a substring with length q. To extend
q-gram-based signature scheme to support edit similarity, for
a token t we compute its maximal edit-distance threshold λ =
1−δ
δ · |t| based on the given edit-similarity threshold δ. We

generate t’s signature set using the edit-distance threshold λ.
However the q-gram-based signature scheme is ineffective for

short tokens as it will result in a large number of candidates
which need to be further verified.

Deletion-based neighborhood generation [16]: We can use
the same idea as the q-gram-based signature scheme to extend
the deletion-based neighborhood generation to support edit
similarity. However this scheme will generate a large number
of signatures for long tokens, even for a large edit-similarity
threshold.

Part-Enum [2] uses the pigeon-hole principle to generate
signatures. For a token t, it first obtains the q-gram set
represented as a feature vector. For two tokens, if their edit
distance is within λ, then the hamming distance between
their feature vectors is no larger than q · λ. Based on this
property, to generate the signatures of the token t with the
edit-distance threshold λ, Part-Enum only needs to generate
the signatures of the feature vector of t with the hamming-
distance threshold q · λ. It divides the feature vector into
⌈ q·λ+1

2 ⌉ partitions, and based on the pigeon-hole principle
there exists at least one partition whose hamming distance
is no larger than 1. For each partition, it further divides the
partition into multiple sub-partitions. All of the sub-partitions
compose the signatures of t. To extend Part-Enum to support
edit similarity, we cannot simply generate signatures with the
maximal edit-distance threshold. This is because edit distance
will affect the number of partitions. For example, given the
edit-similarity threshold δ = 0.8 and q = 1, for “macgrady”
the maximal edit-distance threshold λ = 1−0.8

0.8 · |8| = 2, and
Part-Enum needs to divide its feature vector into ⌈ 1·2+1

2 ⌉ = 2
partitions. But for “mcgrady”, the maximal edit-distance
threshold λ = 1−0.8

0.8 · |7| = 1, and Part-Enum needs to
divide its feature vector into ⌈ 1·1+1

2 ⌉ = 1 partition. Although
NED(“mcgrady”,“macgrady”) ≥ 0.8, their signature sets have
no overlap. To solve this problem, for a token t we compute
the minimum length δ·|t| of a token t′ such that NED(t, t′) ≥ δ.
When generating the signatures for t, we consider the maximal
edit-distance threshold ⌊ 1−δ

δ · l⌋ for each possible length l
of the token t′, i.e. l ∈ [δ · |t|, |t|]. For example, consider
the token “macgrady”. The length range is [0.8 · 8, 8]. Two
lengths 7 and 8 satisfy this range. For them, we respectively
compute the maximal edit-distance thresholds for l = 7,
⌊ 1−0.8

0.8 · |7|⌋ = 1 and for l = 8, ⌊ 1−0.8
0.8 · |8|⌋ = 2. The signature

set of “macgrady” for δ = 0.8 is the union of its signature
set with the edit-distance thresholds 1 and 2. However Part-
Enum needs to tune many parameters to generate signatures,
and it generates larger numbers of candidates as it ignores the
position information.

Partition-ED [19] is a partition-based signature scheme to
solve approximate-entity-extraction problem. It also uses the
pigeon-hole principle to generate signatures. Different from
Part-Enum, it directly partitions a token instead of the feature
vector of a token. Each token t will generate two signature
sets, one is called query signature set sigδq(t) and the other
is called data signature set sigδd(t). For two tokens t and t′,
if ED(t, t′) ≤ λ, then sigδq(t) ∩ sigδd(t

′) ̸= ϕ. Given an edit-



distance threshold λ, to obtain sigδq(t) it divides t into ⌈λ+1
2 ⌉

partitions, and based on the pigeon-hole principle there exists
at least one partition whose edit distance is no larger than 1.
It adds 0- and 1-deletion neighborhoods of each partition into
sigδq(t) [16]. To obtain sigδd(t), it still divides t into ⌈λ+1

2 ⌉
partitions. But for each partition, it also needs to shift and scale
it to generate more partitions [19]. For all generated partitions,
it adds their 0- and 1-deletion neighborhoods into sigδd(t)

To extend Partition-ED to support edit similarity, for the
query signature set sigδq(t), we only need to generate sigδq(t)

with the edit-distance threshold 1−δ
δ ·|t|. For the data signature

set, as the same reason as Part-Enum, since the edit distance
can affect the number of partitions, we compute the minimum
length δ · |t| and the maximum length |t|

δ of a token t′ such
that NED(t, t′) ≥ δ. We generate sigδq(t) with the edit-distance
threshold ⌊ 1−δ

δ · l⌋ for each possible length l of t′, i.e. l ∈
[δ · |t|, |t|]. For example, consider the token “macgrady” and
δ = 0.8. The length range is [0.8·8, 8

0.8 ]. Four lengths 7,8,9,10
satisfy this range. We generate sigδd(t) with the edit-distance
thresholds ⌊ 1−0.8

0.8 · |7|⌋ = 1, ⌊ 1−0.8
0.8 · |8|⌋ = 2, ⌊ 1−0.8

0.8 · |9|⌋ = 2
and ⌊ 1−0.8

0.8 · |10|⌋ = 2. However, Partition-ED will generate
many redundant signatures. For example, for the strings with
lengths 9 as their edit-distance threshold with “macgrady”
should be no larger than (1−δ)∗max(9, |“macgrady”|) = 1.8,
thus we do not need to generate signatures with the edit-
distance threshold 2. Similarly, for strings with lengths 7
and 8, we only need to generate signatures with the edit-
distance threshold 1. To address this problem, we propose a
new signature scheme Partition-NED in Section V-B. Figure 4
compares the number of signatures generated by Partition-ED
and Partition-NED for different lengths of tokens (δ = 0.75).
We can see when the length of token is larger than 8, Partition-
ED will generate many more signatures than Partition-NED.
For example, Partition-ED generates 125 signatures for the
tokens whose length is 10, and Partition-NED only generates
56 signatures. Experimental result in Section VI shows our
algorithm achieves the best performance when using the
Partition-NED signature scheme for generating signatures of
tokens.
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Fig. 4. Comparison of the number of signatures between Partition-ED and
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B. Partition-NED Signature Scheme

As discussed in Section V-A, when extending existing
signature schemes to support edit similarity, they have some
limitations. To address these limitations, in this section we
propose a new signature scheme for edit similarity called
Partition-NED.

Overview of Partition-NED: For each token, we generate the
same query signature set sigδq(t) as Partition-ED. To generate
the data signature set sigδd(t), we compute the length range
[δ·|t|, |t|

δ ] of a token t′ such that NED(t, t′) ≥ δ. For each token
t′ with the length |t′| ∈ [δ ·|t|, |t|

δ ], t
′ is divided into d = ⌈λ+1

2 ⌉
partitions where λ = ⌊ 1−δ

δ · |t′|⌋ is the maximal edit-distance
threshold for the token t′. Based on the pigeon-hole principle,
if NED(t, t′) ≥ δ, there exists at least one partition whose
edit distance with a substring of t is within 1. If we can find
the corresponding substrings in t for each partition, we only
need to add 0- and 1-deletion neighborhoods of them into
sigδd(t), then sigδd(t) ∩ sigδq(t

′) ̸= ϕ. For example, consider
the token t (|t| = 9) in Figure 5. Given δ = 0.75, we can
compute the length range [0.75 · 9, 9

0.75 ] of a token t′ such
that NED(t, t′) ≥ 0.75. There are six lengths 7,8,9,10,11,12
satisfying the range. For each token t′ with the length |t′| ∈
{7, 8, 9, 10, 11, 12}, e.g. the token t′ (|t′| = 12) in Figure 5,
we compute its maximal edit-distance threshold λ = ⌊ 1−0.75

0.75 ·
12⌋ = 4 and get d = ⌈ 4+1

2 ⌉ = 3 partitions. Since λ = 4 and
d = 3, based on the pigeon-hole principle, there at least exists
one partition whose edit distance with a substring of t is within
1. Therefore, the problem is how to find such substrings of t.
In the following, we give the algorithm to solve this problem
and propose two effective punning techniques to reduce the
number of substrings.

Algorithm description: Consider two tokens t = c1c2 · · · cm
and t′ = c′1c

′
2 · · · c′n. Suppose t′ is divided into d partitions:

t′[1 : ℓ] = c1 . . . cℓ; t
′[ℓ+1 : 2ℓ+1] = cℓ+1 . . . c2∗ℓ; · · · ; t′[(d−

1)∗ℓ+1 : n] = c(d−1)∗ℓ+1 . . . cn, where ℓ = ⌊n
d ⌋. For example,

in Figure 5 the token t′ is divided into d = 3 partitions t′[1 : 4],
t′[5 : 8] and t′[9 : 12], where ℓ = ⌊ 12

3 ⌋ = 4. Let t[pi :
qi] = cpicpi+1 · · · cqi denote the i-th partition of t. Let λ =
(1− δ) ·max(|t|, |t′|) be the edit-distance threshold between
t and t′. For example, in Figure 5 if NED(t, t′) ≥ 0.75, then
ED(t, t′) ≤ (1− 0.75) ·max(9, 12) = 3, thus the edit-distance
threshold is λ = 3. For the partitions of t′, we consider three
cases to find corresponding substrings in t.

Case 1 - the first partition: Suppose the first partition t′[p1 =
1 : q1] has one or zero edit errors. For this partition, we select
the substrings from t whose start position is 1 and lengths are
within [ϑ− 1, ϑ+1] where ϑ denotes the length of t[p1 : q1].
Thus we select the corresponding substrings t[1 : 3], t[1 : 4]
and t[1 : 5] from the token t as shown in Figure 5.

Case 2 - the last partition: Suppose the last partition t′[pd :
n] has one or zero edit errors. For this partition, we select
the substrings from t whose end position is n and lengths are
within [ϑ− 1, ϑ+1] where ϑ denotes the length of t′[pd : n].
Thus we select the corresponding substrings t[5 : 9], t[6 : 9]
and t[7 : 9] from the token t as shown in Figure 5.

Case 3 - the middle partitions: Suppose a middle partition
t′[pi : qi] (i ̸= 1, d) has one or zero edit errors. To find its
corresponding substrings in t, we know their lengths are within
[ϑ − 1, ϑ + 1] where ϑ denotes the length of t′[pi : qi], then
we have to determine its start positions of the corresponding



t'

c1 c4

t'[1:4]

c2 c3 c5 c8c6 c7 c9

t'[5:8]

t

t[1:3]

t'[1:4]

t'[9:12]

t'[5:8]

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11
Legend：

t'[9:12]

Minimal-Edit-Distance Pruning

Duplication Pruning

Case 1

Case 2

Case 3

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[1:4]

t[1:5]

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[5:9]

t[6:9]

t[7:9]

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[2:4]

t[2:5]

t[2:6]

t[3:5]

t[3:6]

t[3:7]

t[4:6]

t[4:7]

t[4:8]

t[5:7]

t[5:8]

t[5:9]

t[6:8]

t[6:9]

.
.

.

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[7:9]

c'12

Fig. 5. For the partitions of t′, we find eight corresponding substrings t[1:3],
t[1:4], t[6:9],t[7:9], t[4:6], t[4:7], t[5:7] and t[5:8] of t (δ = 0.75)

substrings. Wang et al. [19] presented that there are at most λ
insertions or deletions before t′[pi : qi], thus the start positions
of the corresponding substrings must be within [pi−λ, pi+λ].
For each start position in this range, we need to consider the
substrings whose lengths are within [ϑ − 1, ϑ + 1] where ϑ
denotes the length of t′[pi : qi]. Consider the middle partition
t′[5 : 8] in Figure 5. Since λ = 3, the start positions are
within [2, 8]. For each start position in [2, 8], we select three
substrings whose lengths are within [3, 5]. For example, we
select t[2 : 4], t[2 : 5] and t[2 : 6] for the start position 2. We
only select t[7 : 9] for the start postilion 7 since t[7 : 10] and
t[7 : 11] exceeds the length of t.

In Figure 5, for all the partitions of t′, we totally find 21
corresponding substrings of t. Next, we propose two pruning
techniques to reduce unnecessary substrings.

Minimal-Edit-Distance Pruning: Suppose t[pi : qi] is the
corresponding substring of the partition t′[p′i : q′i]. When
computing the edit distance between t and t′, t[pi : qi] and
t′[p′i : q

′
i] should be aligned, and their prefix strings t[1 : pi−1]

and t′[1 : p′i − 1] should be aligned, and their suffix strings
t[qi + 1 : m] and t′[q′i + 1 : n] should be aligned. So the
edit distance ED(t, t′) is the sum of ED(t[pi : qi], t

′[p′i : q
′
i]),

ED(t[1 : pi − 1], t′[1 : p′i − 1]) and ED(t[qi +1 : m], t′[q′i +1 :
n]). We know that the edit distance between two strings is no
smaller than their length difference. Thus we can compute the
minimum of the edit distance,

ED(t, t′) ≥ |ξ|+ |pi − p′i|+ |(m− qi)− (n− q′i)| (4)

where |ξ| = |(qi − pi) − (q′i − p′i)| is the length difference
between t[pi : qi] and t′[p′i : q

′
i].

If the right side of Equation 4 is larger than λ, then we can
prune the substrings t[pi : qi]. For example, in Figure 5 we
can prune the corresponding substring t[3 : 7] for the partition
t′[5 : 8] since the minimum of ED(t, t′) is |1|+ |3−5|+ |(9−
7)− (12− 8)| = 5 and 5 is larger than λ = 3.

Duplication Pruning: Recall three cases of selecting the
corresponding substrings, we consider each partition indepen-
dently, and thus some conditions may be repeatedly consid-
ered. For example, consider the substring t[3 : 5] for the
partition t′[5 : 8] in Figure 5. On the left t[1 : 2] of t[3 : 5],
it needs at least two edit operations to align t[1 : 2] and
t′[1 : 4]. Therefore, there exists at most one edit error on the
right t[6 : 9] of t[3 : 5] due to the total edit distance λ = 3.
Note that the condition that t[6 : 9] has one or zero edit error
has been considered in Case 2, and thus we can prune the
substring t[3 : 5].

Formally, to find the substrings of t, we first consider the
first partition and the last partition. Then we consider the
middle partitions from right to left. For the partition t′[p′i : q

′
i]

and let k denote the number of partitions behind t′[p′i : q
′
i]. We

can prune the substrings in t′ with start positions larger than
p′i + λ− 2k (or smaller than p′i − (λ− 2k)). This is because
for each of such substrings, e.g. t[pi : qi], the edit operations
before t[pi : qi] will be larger than λ−2k and correspondingly
the edit operations after t[pi : qi] will be smaller than 2k
(otherwise the total edit distance is larger than λ). As there
are k partitions behind t[pi : qi], there at least exists one
partition with zero or one edit error. As this partition has been
considered, we can prune the substring t[pi : qi].

In Figure 5, using minimal-edit-distance pruning we can
prune 10 substrings and using duplication pruning we can
prune 8 substrings. Using both of them, we can reduce
the number of substrings from 21 to 8. We guarantee the
correctness of Partition-NED as formalized in Lemma 7.

Lemma 7: Given two tokens t and t′, and signature sets
sigδd(t) and sigδq(t

′) generated using Partition-NED, we have
if NED(t, t′) ≥ δ, then sigδd(t) ∩ sigδq(t

′) ̸= ϕ.

VI. EXPERIMENTAL STUDY

We used two real data sets and evaluated the effectiveness
and the efficiency of our proposed methods.

Data sets: 1) AOL Query Log2: We generate two sets of
strings and each data sets included one million distinct real
keyword queries. 2) DBLP Author: We extracted author names
from DBLP dataset3. We also generate two sets of strings
and each data sets included 0.6 million real person names.
Table I illustrates detailed statistical information of the data
sets, which gives the number of strings, the average number of
tokens in a string, the maximal number of tokens in a string,
and the minimal number of tokens in a string. Figures 6(a)-
6(b) show the length distribution of tokens.

2http://www.gregsadetsky.com/aol-data/
3http://www.informatik.uni-trier.de/∼ley/db



TABLE I
DATASET STATISTICS

Data Sets Sizes avg token no max token no min token no
Query Log 1,000,000 3.35 132 1
Author 613,542 2.77 8 1

We implemented all the algorithms in C++ and compiled
using GCC 4.2.3 with -O3 flag. We used inverse document
frequency (IDF) to sort the signatures. All the experiments
were run on a Ubuntu Linux machine with an Intel Core 2
Quad E5420 2.50GHz processor and 4 GB memory.
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A. Result Quality

In this section, we compared the result quality for different
similarity functions. We chose 100,000 queries from the Query
Log dataset and computed the similar string pairs using jaccard
similarity, fuzzy-jaccard similarity, edit similarity, GES and
AGES. We first compared the number of similar string pairs
generated using jaccard similarity and fuzzy-jaccard similarity
as shown in Table II.

TABLE II
RESULT QUALITY FOR JACCARD AND FUZZYJACCARD SIMILARITY

(δ = 0.8) (THE PRECISION IS COMPUTED BY EVALUATING 100 RESULTS.)

τ
Jaccard Fuzzy Jaccard

# of Results Precision(%) # of Results Precision(%)

0.95 127 100 212 99
0.9 132 99 560 100

0.85 166 99 986 98
0.8 405 94 1520 93

0.75 1100 90 2344 86
0.7 1201 69 2698 84

We see that our similarity generates more similar string
pairs. For example, when τ = 0.8 and δ = 0.8, fuzzy-jaccard
returned 1520 similar pairs and jaccard found 405 results.

In addition, to evaluate result quality, we randomly selected
100 results from the generated pairs and asked five research
members from our group to evaluate the results blindly. We
can see that the method using fuzzy-jaccard similarity also
achieved high result quality. For example, when τ = 0.7,
fuzzy-jaccard similarity achieved 84% precision. This is be-
cause we consider fuzzy overlap, which can find similar pairs
with typos and inconsistences.

We also compared fuzzy-jaccard similarity with edit simi-
larity and got similar results. For example, when δ = 0.75, the
precision of edit similarity is only 27%, while that of fuzzy-
jaccard similarity is 90% (τ = 0.8).

We compared fuzzy-jaccard similarity with existing hybrid
similarity functions GES and AGES. We found GES missed
a lot of similar query pairs. For example, when δ = 0.8 and
τ = 0.8, GES only returned 486 pairs (precision 97%), while

fuzzy jaccard returned 1520 results (precision 93%). This is
because GES give a low similarity value to the similar query
pairs where the same keywords occurred in different positions.
Although AGES ignores the positions of tokens and returned
more results, its precision is rather low. For example, when
δ = 0.8 and τ = 0.8, AGES returned 25017 results and the
precision was only 6% (about 25017 × 6% = 1501 relevant
pairs). Fuzzy-jaccard similarity returned 1520 results, and the
precision was 93% (about 1520×93% = 1414 relevant pairs).
Thus Fuzzy-jaccard similarity has nearly the same recall with
AGES, but achieves much higher precision than AGES.

B. Evaluation on Different Signature Schemes for Tokens

In this section, we compared the performance of different
token signature schemes. We implemented five methods: q-
gram based method [20], deletion-based neighborhood gen-
eration [16], Part-Enum [2], Partition-ED [19] and Partition-
NED. We extended them to support edit similarity using the
methods in Section V-A. We used the token-sensitive signature
scheme for generating token sets. Figure 7 gives the results.
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Fig. 7. Performance for different token signature schemes (τ = 0.8)

We see that the q-gram based method achieved the worst
performance as it can only use small q for short tokens, but
small q resulted in large numbers of false-positive results. Part-
Enum also performed worse since converting a token to the
feature vector destroyed the position information of grams.
The deletion-based neighborhood generation scheme achieved
higher performance for the Author data set as the tokens are
usually short in person names. But for the Query Log dataset,
the method generated large numbers of signatures for long
tokens and achieved very low performance, and it did not
report any result within 106 seconds. Thus in the figure we
did not show the results of the deletion-based neighborhood
generation. Partition-NED performed the best of all the sig-
nature schemes. When the edit-similarity threshold is large,
Partition-ED has the comparable performance with Partition-
NED. However when the edit-similarity threshold becomes
smaller, Partition-ED will be less efficient than Partition-
NED. This is because Partition-ED generated large numbers
of signatures, but Partition-NED used the pruning techniques
to remove unnecessary signatures.

In addition, we compared the numbers of token signatures
generated from Partition-ED and Partition-NED. Figure 8
shows the results. We can see our method can reduce large
numbers of signatures. For instance, on the Query Log dataset,
for δ = 0.8, Partition-NED generated 2.8∗107 signatures while
Partition-ED only generated 1.8 ∗ 107 signatures.
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and Partition-NED (τ = 0.8)

As Partition-NED achieved the highest performance, we
used Partition-NED for generating token signatures in the
remainder experiments of this paper.

C. Evaluation on Signature Schemes of Token Sets

In this section, we compared the performance of token-
sensitive signature scheme and prefix-filtering signature
scheme. We first compared the number of removed signatures.
Figure 9 shows the results.
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Fig. 9. Comparison of the numbers of removed token-set signatures between
prefix filtering and token-sensitive prefix filtering (δ = 0.85)

We can see that token-sensitive signature scheme can re-
move many more signatures as it considered token information
in the removal step. For example, on the Author dataset, for
τ = 0.8, the token-sensitive signature scheme can remove
1.5 ∗ 106 signatures and the prefix-filtering signature scheme
only removed 0.9 ∗ 106 signatures.

We also compared the number of candidates gotten from
the two token-set signature schemes. Figure 10 shows the
results. We see that token-sensitive signature scheme generated
fewer candidates than prefix-filtering signature scheme. This is
because it removed many more unnecessary signatures. For ex-
ample, on Query Log, for δ = 0.85, token-sensitive signature
scheme generated less than 1.2∗106 candidates, while prefix-
filtering signature scheme generated 1.3∗107 candidates.

Finally, we compared the running time of using the two
token-set signature schemes to solve the similarity-join prob-
lem and Figure 11 shows results. We can see the algorithm
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Fig. 10. Comparison of the numbers of candidates between prefix filtering
and token-sensitive prefix filtering (τ = 0.8)

using the token-sensitive signature scheme is 3 to 5 times
faster than that using the prefix-filtering signature scheme, as
the former can remove large numbers of unnecessary token
signatures. For example, on the Author dataset, for τ = 0.8,
if using the token-sensitive signature scheme, the algorithm
took less than 30s, while if using the prefix-filtering signature
scheme, the time increased to 130s.
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D. Put Everything Together
In this section, we further evaluated the algorithm of solving

the similarity-join problem, which included three phases: (1)
generating signatures; (2) filtering dissimilar pairs and com-
puting candidates; (3) verifying the candidates to get the final
results. We used token-sensitive signature scheme for token
sets and Partition-NED for token signatures. Figure 12 shows
the results by varying the fuzzy-jaccard threshold τ .
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For the Author dataset, three phases took the similar amount
of time. For the Query Log dataset, the phase of generating
signatures was rather expensive. This is because in the data
set the tokens have larger length, which resulted in larger edit-
distance thresholds. When τ became smaller the filter and the
verification time increased. The reason is that a smaller τ will
result in more candidate pairs.

E. Evaluation on Other Similarity Functions
We evaluated the performance of different fuzzy-token simi-

larities, fuzzy-jaccard, fuzzy-dice, and fuzzy-cosine. Figure 13
shows the results. We see that fuzzy-dice and fuzzy-cosine
took more time than fuzzy-jaccard. This is because for the
same τ , they deduced a smaller fuzzy-overlap threshold than
fuzzy-jaccard. We also evaluate the result quality of the three
similarities. We find that when fixing the same thresholds δ
and τ , fuzzy-jaccard archived higher precision but returned
fewer relevant pairs than the other two similarities. For ex-
ample, when δ = 0.85 and τ = 0.8, fuzzy-jaccard returned
1029 relevant pairs with the precision 95%, while fuzzy-dice
returned 3298 pairs with the precision 71% and fuzzy-dice
returned 3324 pairs with the precision 70%.
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VII. RELATED WORK
There are some studies on fuzzy token matching based simi-

larity. Chaudhuri et al. [5] proposed generalized edit similarity
(GES), which extends the character-level edit operator to the
token-level edit operator. However GES is sensitive to token
positions. They also derived an approximation of generalized
edit similarity (AGES) which ignores the positions of tokens.
However AGES does not obey the symmetry property, which
may lead to inconsistent results. Our proposed fuzzy-token
similarity overcomes these limitations. Arasu et al. [1] pro-
posed a transformation-based framework for similarity join
by using functions to define similar pairs, such as synonyms.
Jestes et al. [11] studied probabilistic string similarity joins
with expected edit distance constrains. However, the two
methods need some extra inputs such as string transformations
or probabilistic string attributes. In contrast, Fast-Join needs
little human effort, and thus is an application-independent
method to combine two types of similarity measures. More
importantly, our similarity can subsume existing ones. A big
benefit of our method is that it can be easily extended to
support existing similarity functions.

Jacox et al. [10] studied the metric-space similarity join. The
method cannot solve our problem since fuzzy-token similarity
does not obey the triangle inequality. Chaudhuri et al. [6]
proposed the prefix-filtering signature scheme for effective
similarity join. Although the method can be used to solve
our problem, it was quite expensive. Therefore, we proposed
token-sensitive signature scheme which is proved to be better
than the prefix-filtering signature scheme. In the experiment
we have extensively compared the two signature schemes. The
experimental results also proved our claim.

There are also many other studies on string similarity
join [7], [15], [2], [3], [22], [20], [18], [17], which focus on
either character-based similarity or token-based similarity, and
approximate string searching [14], [8], [13], [9], [23], [12],
which given a query string and a set of strings, finds all similar
strings of the query string in the string set.

VIII. CONCLUSION
In this paper we have studied the problem of string simi-

larity join. We proposed a new similarity function by comb-
ing token-based similarity and character-based similarity. We
proved that existing similarities are special cases of fuzzy-
token similarity. We proposed a signature-based framework to
address the similarity join using fuzzy-token similarity. We
proposed token-sensitive signature scheme, which is superior
to the state-of-the-art signature schemes. We extended existing
signature schemes for edit distance to support edit similarity.
We devised a partition-based token signature scheme and

developed pruning techniques to improve the performance.
The experimental results on real datasets show that our method
achieves high result quality and performance.
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