
Enabling SQL-based Training Data Debugging
for Federated Learning

Yejia Liu∗
Simon Fraser University
Burnaby, BC, Canada

yejial@sfu.ca

Weiyuan Wu∗
Simon Fraser University
Burnaby, BC, Canada

youngw@sfu.ca

Lampros Flokas
Columbia University

New York, NY
lamflokas@cs.columbia.edu

Jiannan Wang
Simon Fraser University
Burnaby, BC, Canada

jnwang@sfu.ca

Eugene Wu
Columbia University

New York, NY
ewu@cs.columbia.edu

ABSTRACT

How can we debug a logistical regression model in a federated
learning setting when seeing the model behave unexpectedly (e.g.,
the model rejects all high-income customers’ loan applications)?
The SQL-based training data debugging framework has proved
effective to fix this kind of issue in a non-federated learning set-
ting. Given an unexpected query result over model predictions, this
framework automatically removes the label errors from training
data such that the unexpected behavior disappears in the retrained
model. In this paper, we enable this powerful framework for fed-
erated learning. The key challenge is how to develop a security
protocol for federated debugging which is proved to be secure, effi-
cient, and accurate. Achieving this goal requires us to investigate
how to seamlessly integrate the techniques from multiple fields
(Databases, Machine Learning, and Cybersecurity). We first propose
FedRain, which extends Rain, the state-of-the-art SQL-based train-
ing data debugging framework, to our federated learning setting.
We address several technical challenges to make FedRain work and
analyze its security guarantee and time complexity. The analysis
results show that FedRain falls short in terms of both efficiency and
security. To overcome these limitations, we redesign our security
protocol and propose Frog, a novel SQL-based training data de-
bugging framework tailored for federated learning. Our theoretical
analysis shows that Frog is more secure, more accurate, and more
efficient than FedRain. We conduct extensive experiments using
several real-world datasets and a case study. The experimental res-
ults are consistent with our theoretical analysis and validate the
effectiveness of Frog in practice.

1 INTRODUCTION

Companies and organizations increasingly need to balance the de-
sire to share and augment their training data with additional data
attributes in order to improve ML model quality with the challenge
of keeping private data secure. Recent work in federated learning
leverages secure multi-party computation to develop distributed
training and inference protocols that enable organizations to col-
laboratively train models over their joined data without explicitly
sharing their private data with each other nor a third-party.

Training data quality is critical to developing accurate and un-
biased ML models [31, 51]. However, in federated learning, training
data errors can come from any of the data sources, and we anticipate

* The first two authors contributed equally to this research.

Table 1: Debugging training data for federated learning.

Method Complaint Type Secure?

Model loss Not Supported ✓
Influence function [32] Instance-based ×

Rain [59] SQL-based ×
Our work SQL-based ✓

the need for efficient and effective federated data debugging tech-
niques. Specifically, when a biased or inaccurate federated learning
model mispredicts in a way that affects downstream analysis res-
ults, can we automatically identify the training examples that most
contributed to the downstream error in a way that retains federated
learning’s security guarantees? Without solving this problem, com-
panies will be cautious about deploying federated learning models
in production.

Example 1.1 (Federated ML Debugging). Figure 1 borrows a real-
world Financial use case from Yang et al. [3]. Fintech Company
A wants to work with a Bank B to build a risk assessment model
that approves customer credit card applications. For simplicity,
Company A’s data has schema (ID, Income, Label), and joins on ID
with Bank B’s data with schema (ID, Deposit). They first securely
train model𝑀 (Income, Deposit) → Label over the joined training
data 𝐷𝐴 ⊲⊳𝐼𝐷 𝐷𝐵 . Later, they securely make inferences on the
joined inference data 𝐼𝐴 ⊲⊳𝐼𝐷 𝐼𝐵 and materialize the predictions in
table P with schema (ID, Label). Company A (and Bank B) may now
use the table 𝑃 in its application and downstream analytics. For
instance, a data scientist Lucy at Company A builds a dashboard
that visualizes the percentage of rejections (label=0) from wealthy
applicants:

SELECT COUNT(·)/Total_Count AS ratio
FROM 𝑃 ⊲⊳𝐼𝐷 𝐼𝐴

WHERE 𝐼𝐴.Income > 200,000 AND P.Label = 0

If the result is high (say, 0.5), then Company A is rejecting half
of its the high-income applicants. If, after checking the inference
dataset, Lucy does not find any errors, then the issue may be due to
errors in the training data. Ideally, Lucy should be able to specify
that “this ratio should actually be zero” (we call this statement a
complaint), and be presented with the training record IDs that, if
deleted from either party’s training data, would resolve the com-
plaint. Further, this debugging process should maintain the same
security properties as training and inference. Otherwise, Company
A and Bank B are unlikely to deploy such a model in production.

1

DA

(ID, Income,
Label)

DB

(ID, Deposit)

1. Secure Co-Training πtrain

IA
(ID, Income,

Label)

IB
(ID, Deposit)

3. SELECT COUNT(*)/Total_Count
 FROM P ⋈ IA WHERE
 IA .Income > 200,000
 AND P.Label = 0

2. Secure Co-Inference πinf

Cnt/T_Cnt
0.5

5. Secure Co-Debugging πdebug

6. Ranked training records to delete

User

4.
Complaint:
Count = 0

Model θA

Model θB

Ta
bl
e
P

Company A

Bank B

Figure 1: Overview of this paper’s Federated training and debugging workflow, focusing on Company A’s actions (the process

is the symmetric for Bank B). Company A issues a COUNT query and then complains about the returned queried result. Based

on the complaint, the debugging frameworkwould generate a list of training data deletion IDs thatmost resolve the complaint.

Possible Solutions. Despite the popularity of inference queries
that combine relational operators and model inference, there are
few techniques today that identify erroneous training records that
directly affect errors in the query results. Table 1 summarizes the
four primary approaches today. They adopt an intervention-based
debugging framework [39] and aim to remove a subset of training
data such that if removed, and the model was re-trained, the new
model would not lead to the unexpected query answer.

(1)Model Loss is a simple baseline that iteratively removes train-
ing examples from the highest to lowest training loss until the
complaint is resolved. The training losses can be trivially obtained
during federated inference, thus this method is secure. However,
model loss is independent of the complaint, and so this will likely
remove many irrelevant training records.
(2) Influence Function partially overcomes the preceding limit-
ation. It allows the user to specify an instance-based complaint,
i.e., individual model mispredictions, and quickly approximates
the influence of removing each training example on the mispre-
diction [32]. For the above example, Company A can point to a
specific high-income customer and ask why this customer’s credit
card application is rejected by the model. This method iteratively
ranks and removes training records based on their estimated influ-
ence on the complaint until the complaint is resolved. While this
improves over the baseline, it is limited to misprediction labels and
not downstream analytics, and is not secure in a federated setting.
(3)Rain [59] generalizes complaints to SQL-based queries, i.e., com-
plain about an unexpected query answer, and quickly approximates
the influence of removing each training example on query result. It
does so by transforming the training and query workflow into an
end-to-end differentiable function. This generalizes the previous
method, as instance-based complaints are a degenerate query. For
the above example, Company A can directly complain that why
the ratio is too high and it should be zero. Rain iteratively ranks
and removes training records that most increased the ratio until
the complaint is resolved. Unfortunately, Rain is not secure.
(4)This paper presents a secure debugging framework that provides
rich Rain-style complaints but uses an efficient secure computation
protocol to avoid leaking private data.

Scope of this paper. This work presents the first SQL complaint-
based training data debugging approach for federated learning that

is secure and efficient. We identify a setting that is common and
amenable to efficient protocols. i) Logistic Regression Models are
one of the most common classification models. Some of the first fed-
erated learning algorithmswere designed for logistic regression [23]
and have been implemented in popular open-source federated learn-
ing libraries [2]. ii) Two Party: most existing federated learning
algorithms have studied a third-party setting [15, 23, 60] that relies
on a third party to facilitate collaboration between the cooperating
parties. However, this requires identifying such a trusted party and
is an additional risk for data leakage. In contrast, our work targets
the more practical but challenging setting that removes the depend-
ency on the trusted third party. iii) Vertical Federated Learning is
where the data is vertically partitioned across the parties. This is
more complex as it requires decomposition of loss functions into
each party [15, 23, 60].
FedRain and Frog. Our first solution FedRain directly extends
Rain to the federated setting. FedRain follows the same compu-
tation procedure as Rain. For each step in Rain that is not secure,
FedRain uses homomorphic encryption to encrypt the private data
and then compute over encrypted data. Since not all the computa-
tions can be applied to encrypted data, we need to carefully design
secure protocols to e.g., calculate the gradient of an SQL query and
compute a hessian-vector-product. We also present the security and
complexity analysis.

Federated learning is bottlenecked by data encryption and rounds
of communication, and the FedRain protocol does not scale to large
training data sizes. Furthermore, FedRain needs to limit the num-
ber of stochastic gradient descent iterations to less than the number
of features in order to ensure security. However, this is typically far
lower than the iterations needed for logistic regression to converge.
Thus, FedRain often cannot reach high model accuracy without
breaking the security guarantee.

To overcome these limitations, Frog is a secure, efficient, and
accurate training data debugging framework tailored for federated
learning that makes two main technical contributions. First, we
decompose the logistic regression model structure so that each
party can train a local model and then securely combine the model
parameters. This lets each party efficiently train their local models,
but still exploit features from the other party to build an accurate
model. Second, we design efficient and secure protocols for model

2

training and debugging in a federated learning setting. We prove
that the protocol is secure and has much lower time complexity
than FedRain.

We conduct extensive experiments to evaluate FedRain and
Frog, and compare them with the baselines above. Our empir-
ical results are consistent with our theoretical analysis showing
that Frog is more accurate, more efficient, and more secure than
FedRain. We also present a case study to demonstrate Frog can
effectively resolve a real SQL-based complaint. In the case study, the
model is to predicate whether an employee should get a high salary.
The query is to compute the percentage of predicated high-salary
female and male employees, respectively. The user complains that
“the difference between the two percentage values should actually
be zero”. That is, the user wants the model to make a fair prediction.
Frog is able to help the user to reduce the difference by a large
margin with very little loss in model’s F1 Score.
Contributions. The following summarizes our contributions:
• We are the first to study how to enable SQL-based training data
debugging for federated learning.We formally define the problem
and discuss the limitations of baseline solutions.

• We propose FedRain, which extends Rain to the federated learn-
ing setting. We address several technical challenges in the design
of its security protocol and prove its security guarantee and
analyze its time complexity.

• We propose Frog, a novel federated debugging framework. We
design a training and a debugging security protocols for Frog
and prove their security guarantees and analyze their time com-
plexities.

• We conduct extensive experiments using real-world datasets and
a case study. The results that i) FedRain and Frog enable SQL-
based training data debugging for federated learning; ii) Frog
significantly outperforms FedRain in terms of both efficiency
and accuracy; iii) Frog can effectively resolve a real SQL-based
complaint.

Next, we will present the problem definition and introduce the ne-
cessary background for Rain and homomorphic encryption. Section
4 and 5 will present FedRain and Frog respectively, and Section 6
presents our evaluation and case study.

2 PROBLEM DEFINITION

In this section, we define our federated debugging problem. Before
that, we first introduce some background knowledge about logistic
regression, security model, and federated training and inference.

2.1 Background

Logistic Regression. Logistic regression is a commonly used clas-
sification model in machine learning. For a feature vector 𝒙 , the
logistic regression model predicts 𝒙 of having a class label of 1 as

ℎ𝜽 (𝒙) =
1

1 + 𝑒−𝜽T𝒙
, (1)

where 𝜽 is the model parameter. The parameter 𝜽 is learned by
maximizing the log likelihood on a training dataset 𝐷 . Specifically,
given a training dataset 𝐷 = {(𝒙𝑖 , 𝑦𝑖)}𝑛𝑖=1, where 𝒙𝑖 represents a
feature vector and 𝑦𝑖 ∈ {0, 1} is the class label of 𝒙𝑖 , the train-
ing algorithm aims to find the best 𝜽 to maximize the following

likelihood:
𝑛∏
𝑖=1

(
ℎ𝜽 (𝒙𝑖)𝑦𝑖 (1 − ℎ𝜽 (𝒙𝑖)1−𝑦𝑖)

)
This is equivalent to finding the best 𝜽 to minimize the following
log likelihood:

𝐿(𝜽) = − 1
𝑛

𝑛∑
𝑖=1

ℓ𝑖 (𝜽)

− 1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 logℎ𝜽 (𝒙𝑖) + (1 − 𝑦𝑖) log(1 − ℎ𝜽 (𝒙𝑖))

)
.

(2)

In a federated learning setting, the training dataset𝐷 is vertically
partitioned as 𝐷𝐴 and 𝐷𝐵 , stored in Party A and Party B, respect-
ively. We assume that Party A contains a subset of features and the
class label, 𝐷𝐴 = {(𝑥𝐴

𝑖
, 𝑦𝑖)}𝑛𝑖=1, Party B contains the other subset of

features, 𝐷𝐵 = {(𝑥𝐵
𝑖
)}𝑛
𝑖=1. The number of features contained in 𝐷𝐴

and 𝐷𝐵 are denoted as𝑚𝐴 and𝑚𝐵 . For ease of presentation, we
assume that𝐷𝐴 and𝐷𝐵 share common unique IDs. We denote their
join result by 𝐷 = 𝐷𝐴 ⊲⊳𝐼𝐷 𝐷𝐵 . This set intersection operation can
be done in a privacy-preserving manner [13, 45].

To avoid data leakage, Party A and Party B have to follow a
security protocol for training, inference, and debugging, respectively.
Security Model. We use a common security model in federated
learning, named honest-but-curious [15, 36, 60]. That is, Party A and
Party B will always follow the specified security protocol. However,
they may also try to learn the protected data from another party
given the messages received.

We consider the protocols that two honest-but-curious parties
Party A and Party B collaboratively compute a function by exchan-
ging messages to each other in multiple rounds. Formally, given
a function F , Party A and Party B run a protocol 𝜋F to compute
𝜋F (𝐼𝐴, 𝐼𝐵), where (𝐼𝐴, 𝐼𝐵) is the input of the function, 𝐼𝐴 is from
Party A, and 𝐼𝐵 is from Party B. Let (𝑂𝐴,𝑂𝐵) denote the output of
the function, i.e., (𝑂𝐴,𝑂𝐵) = 𝜋F (𝐼𝐴, 𝐼𝐵). Party A has access to 𝐼𝐴

and𝑂𝐴 . Party B does not want Party A to guess out what 𝐼𝐵 and𝑂𝐵
are. Therefore, we say a protocol is secure against Party A if there
are infinite number of (𝐼𝐵′,𝑂𝐵′) such that (𝑂𝐴,𝑂𝐵′) = 𝜋F (𝐼𝐴, 𝐼𝐵

′),
and vice versa for Party B. This is a common security definition
adopted by many existing works [17, 27, 35, 44, 63].

Definition 2.1 (Two-Party Security Protocol). Given a function F ,
two honest-but-curious parties, an input 𝐼𝐴 from Party A, and an
input 𝐼𝐵 from Party B, a two-party security protocol, denoted by 𝜋F ,
is a multiple round message passing protocol between Party A and
Party B that compute 𝜋F (𝐼𝐴, 𝐼𝐵) and derive (𝑂𝐴,𝑂𝐵). The protocol
contains a sequence of messages {𝑀𝐴→𝐵

𝑖
, 𝑀𝐵→𝐴

𝑖
| 1 ≤ 𝑖 ≤ 𝑁 }

that Party A and Party B will send to each other for each round
𝑖 ∈ [1, 𝑁].

Federated Training. For federated training, the inputs are𝐷𝐴 and
𝐷𝐵 , and the function F is min𝜽 𝐿(𝜽) defined in Equation 2, where
each training example (𝒙𝑖 , 𝑦𝑖) comes from 𝐷 = 𝐷𝐴 ⊲⊳𝐼𝐷 𝐷𝐵 , and
the outputs are 𝜽𝐴 and 𝜽𝐵 , where the model parameter 𝜽 is the
concatenation of 𝜽𝐴 and 𝜽𝐵 , denoted by 𝜽 = 𝜽𝐴 |𝜽𝐵 .

In order to train a logistic regression model while keep data
secure, Party A and Party B should follow a protocol 𝜋𝑡𝑟𝑎𝑖𝑛 which
is defined as:

3

Definition 2.2 (Federated Training). Given two training datasets,
𝐷𝐴 and 𝐷𝐵 , the goal of federated training is to design a two-party
security protocol, denoted by 𝜋train, that trains a logistic regression
model over 𝐷𝐴 ⊲⊳𝐼𝐷 𝐷𝐵 which computes min𝜽 𝐿(𝜽).

Federated Inference. Once a model is trained, it will be applied
to an inference dataset 𝐼 = 𝐼𝐴 ⊲⊳𝐼𝐷 𝐼𝐵 to do model inference. 𝐼𝐴
and 𝐼𝐵 are the inference datasets owned by Party A and Party B,
respectively.

For federated inference, the inputs are 𝐼𝐴 , 𝜽𝐴 , 𝐼𝐵 , and 𝜽𝐵 , the
function F is ℎ𝜽 (𝒙) defined in Equation 1, where each 𝒙 is from
𝐼𝐴 ⊲⊳𝐼𝐷 𝐼𝐵 , and the output is the predicated class label of each 𝒙 .

Definition 2.3 (Federated Inference). Given two inference datasets
𝐼𝐴 and 𝐼𝐵 , and the model parameter 𝜽𝐴 |𝜽𝐵 , the goal of federated
inference is to design a two-party security protocol, denoted by
𝜋inf, that does the logistic regression inference over 𝐼𝐴 ⊲⊳𝐼𝐷 𝐼𝐵

which computes ℎ𝜽 (𝒙) for each 𝒙 .

2.2 Our Problem: Federated Debugging

Once a model is trained, each party can securely make inferences
on the joined inference data and materialize the predictions in table
P with schema (ID, Label). Each party can issue aggregation queries
on the joined result between table P and its own inference data.
Without loss of generality, suppose that the queries are executed in
Party A. In the following, we first present the supported inference
queries, and then define our federated debugging problem.
Inference Query.We allow Party A to issue an aggregation query
on its inference data 𝐼𝐴 and the table 𝑃 in the following form:

SELECT agg(·) FROM 𝑃 ⊲⊳𝐼𝐷 𝐼A

WHERE 𝐶1 AND 𝐶2 AND · · · 𝐶𝑚
GROUP BY 𝐺1, 𝐺2, · · ·, 𝐺𝑘

The agg function can be count, avg or sum. 𝐼𝐴 is the inference
dataset held by Party A. 𝐶𝑖 (𝑖 ∈ [1,𝑚]) is a filter condition and
𝐺𝑖 (𝑖 ∈ [1, 𝑘]) is a group-by attribute. Like Rain [59], P.Label
can appear in the SELECTION, WHERE, or GROUP BY clause. For
example, the query in Figure 1 puts P.Label = 0 in the WHERE
clause. We denote this query result as𝑄 (𝐼𝐴;𝜽), where 𝜽 represents
the model that populates the table 𝑃 .
FederatedDebugging.We call the statement that whether𝑄 (𝐼𝐴;𝜽)
satisfies an expected value a Complaint. Formally, we define Com-
plaint as follows:

Definition 2.4 (Complaint). A complaint 𝑐 (·) is expressed as a
boolean constraint over the query result 𝑄 (𝐼𝐴;𝜽), where 𝑜𝑝 ∈ {=
, ≤, ≥} and 𝑣 may take any value in the aggregation result’s domain.

𝑐
(
𝑄 (𝐼 ;𝜽)

)
=

{
True, if 𝑄 (𝐼 ;𝜽) op v
False, otherwise

(3)

For the complaint in Figure 1, the expected value is 𝑣 = 0, and
the complaint 𝑐 (·) is to check whether the query result 𝑄 (𝐼𝐴;𝜽)
is equal to 0. For the model 𝜽 , the query result is 𝑄 (𝐼𝐴;𝜽) = 0.5,
thus it violates the complaint (i.e., 𝑐 (𝑄 (𝐼𝐴;𝜽)) = False). Our goal
is to identify the minimum number of training examples such that
if they were removed, and the model was retrained, the updated
model 𝜽 ′ would lead to a new query result 𝑄 (𝐼𝐴;𝜽 ′) that satisfies
the complaint (i.e., 𝑐 (𝑄 (𝐼𝐴;𝜽 ′)) = True). Definition 2.5 formally
defines the problem.

Definition 2.5 (Federated Debugging). Given two training data-
sets, 𝐷𝐴 and 𝐷𝐵 , the model parameter 𝜽𝐴 |𝜽𝐵 , an inference query
𝑄 (𝐼𝐴;𝜽), and a complaint 𝑐 (·), the goal of federated debugging is
to design a two-party security protocol, 𝜋debug, that searches for a
minimal sized Δ such that if it were removed, the complaint would
be resolved. More formally, Party A and Party B aim to compute
the following function:

min
Δ⊆𝐷𝐴⊲⊳𝐼𝐷𝐷

𝐵
|Δ|

s.t. 𝑐
(
𝑄 (𝐼𝐴;𝜽 ′)

)
= True

where 𝜽 ′ = argmax
𝜽

𝐿(𝜽)

Challenges. We face several challenges to solve this problem.
Firstly, this problem touches multiple fields (Databases, Machine
Learning, and Cybersecurity). It requires us to investigate how to
seamlessly integrate the techniques from these fields. Secondly,
there are three aspects to evaluate a security protocol: accuracy,
efficiency, and security. It is not easy to design a security protocol
that performs well in all three aspects. Thirdly, we need to not only
provide theoretical guarantees but also implement our approach in
order to gain a deep understanding of its performance.

3 PRELIMINARIES

Our framework is built on the Rain debugging framework, as well
as the Paillier Encryption Scheme for security guarantee.

3.1 Rain [59]

Rain is a SQL-based training data debugging framework proposed
in a non-federated learning setting. In detail, Rain assumes that
there exists an ML model which is trained on the training data 𝐷
and then its prediction (i.e., M.predict) is embedded in a SQL query.
After the query is executed, a user can issue a complaint on the
query result. Rain then takes the complaint as input and produces a
ranked list of the training examples in 𝐷 based on how much each
training example contributes to the complaint. Rain proposes an
iterative debugging framework that takes a budget 𝐾 as input and
runs the following steps until the budget is exhausted:

(1) Generate the ranked list;
(2) Remove the top-𝑘 training examples from the ranked list;
(3) Retrain an ML model on the new training set;
(4) Set 𝐾 = 𝐾 − 𝑘 . Repeat (1)-(4) until 𝐾 < 0.

On the technical side, Rain solves two challenges: 1. How to
efficiently compute the effect on the query result for deleting each
training example? 2. How tomake the SQL query differentiable with
respect to the model parameters so that continuous optimization
techniques can be applied for solving the challenge 1. The solution
that Rain comes up with is: Rain first uses provenance polynomial
[6, 22] to convert a SQL query into a formula. After that, Rain relaxes
the discrete variables in the formula into continuous variables so
that the formula becomes differentiable. Lastly, Rain connects the
relaxed formula with influence function [32] to compute the score
for each training example, which indicates howmuch it can address
the complaint by deleting that training example.

4

For example, the query in Figure 1, can be expressed into a
formula as ∑

𝑖∈𝐼𝐴Income>200000

1(P.Label𝑖 = 0)
Total_count

where 𝐼𝐴Income>200000 is a subset of the inference dataset 𝐼𝐴 that
only contains the records of Income > 200000. 1 is the indicator
functionwhich returns 1 (0) if the expression inside is ‘True’ (‘False’).
P.Label𝑖 is the prediction result for the 𝑖-th inference record. Then,
Rain relaxes this formula further to make it continuous:

𝑄 =
∑

𝑖∈𝐼𝐴Income>200000

𝑃 .Label_prob𝑖
Total_count

in which 𝑃 .Label_prob𝑖 is the probability that the i-th inference
record is predicated as 0.

Given the relaxed formula 𝑄 , Rain computes 𝑸 ′𝑯−1𝑬 to get the
influence score of each training example w.r.t. the complaint [59].
Here, 𝑸 ′ = − 𝜕𝑄

𝜕𝜽 is the gradient of the relaxed formula with respect
to the model parameter 𝜽 , indicating the intention of minimizing
𝑄 . 𝑯−1 is the inverse matrix of the Hessian matrix of the model

loss on the training dataset 𝐷 , i.e. 𝜕
2𝐿 (𝜽)
𝜕𝜽 2

−1
. 𝑬 is the element-wise

gradient of the model loss on the training dataset: 𝑬 = { 𝜕ℓ𝑖 (𝜽)
𝜕𝜽 }𝑛

𝑖=1.
Please refer to Equation 2 for the definitions of ℓ𝑖 (𝜽) and 𝐿(𝜽).

3.2 Homomorphic Encryption

Homomorphic encryption (HE) is a type of encryption scheme that
allows computations to be operated on the encrypted data without
the requirement to decrypt the data. Additionally, the computation
result still remains encrypted. Multiple HE schemes are proposed by
the security community. Among them, Paillier encryption scheme
[43] is the most widely used [15, 23, 60, 63] in Federated Learning.

Paillier encryption scheme is an additive homomorphic encryp-
tion scheme which supports producing the encrypted sum of two
encrypted values. Let ⟦·⟧ denote the encrypted version of a number.
Consider two numbers𝑢 and 𝑣 . Paillier encryption scheme provides
the following operation:

⟦𝑢⟧ + ⟦𝑣⟧ = ⟦𝑢 + 𝑣⟧ (4)

Based on Equation (4), we can define plain text multiplication as

𝑢 · ⟦𝑣⟧ =
∑
𝑢

⟦𝑣⟧ = ⟦𝑢𝑣⟧ (5)

Note that the value 𝑢 is not encrypted.
Performing computations on encrypted numbers can incur a

huge computational cost. For example, the addition on two encryp-
ted numbers can be two to three magnitudes slower than their
unencrypted counterpart [23]. This drawback hints us to design
protocols that avoid encrypted computation as much as possible to
make the solution tractable.

4 FEDRAIN: FEDERATED RAIN

In this section, we discuss how to extend Rain to federated learn-
ing. We first introduce the existing two-party logistic regression
protocol for training and inference in Section 4.1. After that, we
propose our FedRain solution for debugging in Section 4.2. Finally,
we provide security analysis in Section 4.3.

4.1 Training and Inference

FedRain adopts the existing protocol [63] for training a logistic
regression model in the two-party federated logistic regression
setting. The training protocol assumes the training data 𝐷𝐴 and
𝐷𝐵 are already aligned and stored on each party. Additionally, the
model parameter 𝜽 is split into two parts 𝜽𝐴 and 𝜽𝐵 with size
𝑚𝐴 and𝑚𝐵 . After that, Party A and Party B run gradient descent
(GD) collaboratively by exchanging messages. That is, Party A and
Party B first compute the gradient of the logistic loss (Equation (2))
for their own parameters 𝜕𝐿 (𝜽)

𝜕𝜽𝐴 = − 1
𝑛

∑𝑛
𝑖=1 (𝑦𝑖 − ℎ𝜽 (𝒙𝑖))𝒙𝐴𝑖 and

𝜕𝐿 (𝜽)
𝜕𝜽𝐵 = − 1

𝑛

∑𝑛
𝑖=1 (𝑦𝑖−ℎ𝜽 (𝒙𝑖))𝒙𝐵𝑖 . Then, Party A and Party B update

their local parameter 𝜽𝐴 and 𝜽𝐵 by 𝜽𝐴 := 𝜽𝐴 − 𝜂 𝜕𝐿 (𝜽)
𝜕𝜽𝐴 and 𝜽𝐵 :=

𝜽𝐵 − 𝜂 𝜕𝐿 (𝜽)
𝜕𝜽𝐵 . 𝜂 is the learning rate of GD. [63] proposed a way to

securely compute the gradients 𝜕𝐿 (𝜽)
𝜕𝜽𝐴 and 𝜕𝐿 (𝜽)

𝜕𝜽𝐵 : first Party A ask
Party B to transfer 𝜽𝐵𝒙𝐵

𝑖
for 𝒙𝐵

𝑖
∈ 𝐷𝐵 in plain text, then Party A

computes the residual 𝑦𝑖 − ℎ𝜽 (𝒙𝑖) and send the encrypted residual
to Party B avoiding Party B knowing the labels 𝑦𝑖 . Party B then
computes the gradient 𝜕𝐿 (𝜽)

𝜕𝜽𝐵 with the encrypted residual and send
it to Party A for decryption. To avoid Party A knowing Party B’s
gradient, Party B will also add noise to 𝜕𝐿 (𝜽)

𝜕𝜽𝐵 and later denoise it
upon receiving the decrypted gradient from Party A. Throughout
the whole process, the training data𝐷𝐴 and𝐷𝐵 as well as the model
parameters 𝜃𝐴 and 𝜃𝐵 are stored locally in Party A and Party B
and remains unknown to the other party. The only message that is
transferred in plain text is (𝜽𝐵)T𝑥𝐵

𝑖
from Party B to Party A.

On the other hand, the inference stage is straightforward: Party B
send (𝜽𝐵)T𝒙𝐵

𝑖
for 𝒙𝐵

𝑖
∈ 𝐼𝐵 to Party A and then Party A can directly

compute the prediction as ℎ𝜽 (𝒙𝑖) = 1
1+𝑒−(𝜽𝐴)T𝒙𝐴

𝑖
−(𝜽𝐵)T𝒙𝐵

𝑖

4.2 Debugging

As mentioned in the preliminaries, Rain computes the 𝑸 ′𝑯−1𝑬
formula to get the influence score for each training sample. In order
to extend Rain to federated learning, the key is to design a security
protocol to compute 𝑸 ′𝑯−1𝑬 , i.e. the influence score of removing
each training example on the query result.

4.2.1 Compute 𝑸 ′. We will show the computation of Sum aggreg-
ation for the query 𝑄 (𝐼 ;𝜽) with the complain “the query value
should be smaller” as a example. The algorithms for Count and
Mean and other types of complains are similar.

First, the sum of the model output is
∑
𝒙𝑖 ∈𝐼

1
1+𝑒−𝜽T𝒙𝑖

. Since the
complaint is for minimizing the sum, the corresponding gradi-
ent of the complaint is 𝑸 ′ = −∑

𝑖∈𝐼
𝒙𝑖

𝑒𝜽
T𝒙𝑖 +2+𝑒−𝜽T𝒙𝑖

. Directly shar-
ing 𝑸 ′ is not secure because doing so will leak 𝒙𝑖 in the nom-
inator. However, we can let each party store their own gradients∑
𝒙𝑖 ∈𝐼

𝒙𝐴
𝑖

𝑒𝜽
T𝒙𝑖 +2+𝑒−𝜽T𝒙𝑖

and
∑
𝒙𝑖 ∈𝐼

𝒙𝐵
𝑖

𝑒𝜽
T𝒙𝑖 +2+𝑒−𝜽T𝒙𝑖

and never share them

with each other. On the other hand, 𝜽T𝒙𝑖 in the denominator must
be shared with the other party in plain text. Similar to the infer-
ence stage, computing 𝜽T𝒙𝑖 is done by Party B sharing (𝜽𝐵)T𝒙𝐵

𝑖
to

Party A. We will discuss the security implication for this sharing in
Section 4.3.

5

Algorithm 1: Protocol for computing 𝑯𝒗 in FedRain
Input: 𝜽 {𝐴,𝐵} , 𝐷 {𝐴,𝐵} , 𝒗{𝐴,𝐵}

Output: 𝑯𝒗{𝐴,𝐵}

1 Party A Send ⟦𝑹⟧𝐴 and ⟦𝑹𝑿𝐴𝒗𝐴⟧𝐴
2 Party B Send ⟦𝑯𝒗𝐵 + 𝝐𝐵⟧𝐴 and ⟦𝑿𝐵𝒗𝐵⟧𝐵
3 Party A Send ⟦𝑯𝒗𝐴 + 𝝐𝐴⟧𝐵 ; then Decrypt & send 𝑯𝒗𝐵 + 𝝐𝐵

4 Party B Decrypt and send 𝑯𝒗𝐴 + 𝝐𝐴

5 Party A Derandomize 𝑯𝒗𝐴 + 𝝐𝐴

6 Party B Derandomize 𝑯𝒗𝐵 + 𝝐𝐵

Algorithm 2: Protocol for computing𝑸 ′𝑯−1𝑬 in FedRain
Input: 𝜽 {𝐴,𝐵} , 𝐷 {𝐴,𝐵} , 𝒛{𝐴,𝐵}

Output: 𝑸′𝑯−1𝑬
1 Party B Send (𝜽𝐵)T𝒙𝐵

𝑖
for 𝒙𝐵

𝑖
∈ 𝐷𝐵

2 Party A Send ⟦𝑦𝑖 − ℎ𝜽 (𝒙𝑖)⟧𝐴
3 Party B Send (𝒛𝐵)T⟦𝑦𝑖 − ℎ𝜽 (𝒙𝑖)⟧𝐴𝒙𝐵

𝑖

4 Party A Compute
(𝒛𝐴)T (𝑦𝑖 − ℎ𝜽 (𝒙𝑖))𝒙𝐴𝑖 + (𝒛𝐵)T (𝑦𝑖 − ℎ𝜽 (𝒙𝑖))𝒙𝐵

𝑖

4.2.2 Compute 𝑸 ′𝑯−1. Directly compute the hessian matrix 𝑯
and then take the inverse to get 𝑯−1 suffers from numerical in-
stability issue [25]. Instead, computing 𝑸 ′𝑯−1 can be treated as
solving the unknown vector 𝒛 from the linear system 𝑯𝒛 = 𝑸 ′. We
will use the 𝐶𝐺 [52] algorithm to solve 𝒛. Different from comput-
ing 𝑸 ′, the 𝐶𝐺 process used to compute 𝑸 ′𝑯−1 is more complex
in that it needs to compute several auxiliary vectors and requires
more communication between Party A and Party B because 𝐶𝐺
approximates 𝒛 in an iterative way. We will discuss a sketch on how
to make 𝐶𝐺 work here and the detailed protocol can be found in
our technical report1.

On the data storage side, similar to 𝑸 ′ that the value is separated
into two parties, we did the same for the 𝐶𝐺 algorithm for maxim-
izing the security. That is, we found that all the vectors inside 𝐶𝐺
are linearly separable across two parties which allows each party
to store these vectors locally and never share with the other. For ex-
ample, the residual vector 𝒓 = 𝑯𝒛̂−𝑸 ′ of the approximated solution
𝒛̂, which is used in the 𝐶𝐺 algorithm, is separated into two parties
as 𝒓𝐴 and 𝒓𝐵 with each having the size𝑚𝐴 and𝑚𝐵 . On the other
hand, in terms of the computations, 𝐶𝐺 uses vector product 𝒗T𝒗
and Hessian-Vector-Product (HvP) 𝑯𝒗 in each iteration. Among
them, HvP requires some work to make it secure.
Protocol for HvP Hessian-vector-product takes a size𝑚 vector 𝒗
and outputs another size𝑚 vector 𝑯𝒗 by multiplying 𝒗 with the
𝑚 ×𝑚 hessian matrix. The protocol design of 𝑯𝒗 is based on block
matrix notation. First, the hessian of logistic regression is

𝑯 =
∑
𝒙𝑖 ∈𝐷

𝒙𝑖𝒙
T
𝑖 ℎ𝜽 (𝒙𝑖) (1 − ℎ𝜽 (𝒙𝑖)) (6)

By using the matrix form 𝑿 where 𝑿 𝒊 = 𝒙T𝒊 and diagonal matrix
𝑹𝑖 𝑗 = ℎ𝜽 (𝒙𝑖) (1 − ℎ𝜽 (𝒙𝑖)) to represent the hessian, we get 𝑯 =

𝑿T𝑹𝑿 . If we decomposite 𝑿 into [𝑿𝐴 𝑿𝐵], using block notation
we get

1http://tiny.cc/fedrain-frog

Table 2: Time Complexity on computing encrypted values

of FedRain vs. Frog.

Encrypted Values Computation

Debugging FedRain Frog

Influence 𝑂 (𝑝𝑛𝑚) 𝑂 (𝑛𝑚)
Retraining 𝑂 (𝑞𝑛𝑚) 0
Total 𝑂 (𝐾 · 𝑝𝑛𝑚) +𝑂 (𝐾 · 𝑞𝑛𝑚) 𝑂 (𝐾 · 𝑛𝑚)

𝑯 =

[
(𝑿𝐴)T𝑹𝑿𝐴 (𝑿𝐴)T𝑹𝑿𝐵
(𝑿𝐵)T𝑹𝑿𝐴 (𝑿𝐵)T𝑹𝑿𝐵

]
(7)

After that, assuming 𝒗 is also separable into two parties: 𝒗 =

[𝒗𝐴 𝒗𝑏], 𝑯𝒗 will be:

𝑯𝒗 =

[
(𝑿𝐴)T𝑹𝑿𝐴 (𝑿𝐴)T𝑹𝑿𝐵
(𝑿𝐵)T𝑹𝑿𝐴 (𝑿𝐵)T𝑹𝑿𝐵

] [
𝒗𝐴

𝒗𝐵

]
=

[
(𝑿𝐴)T𝑹𝑿𝐴𝒗𝐴 + (𝑿𝐴)T𝑹𝑿𝐵𝒗𝐵
(𝑿𝐵)T𝑹𝑿𝐴𝒗𝐴 + (𝑿𝐵)T𝑹𝑿𝐵𝒗𝐵

]
=

[
𝑯𝒗𝐴

𝑯𝒗𝐵

] (8)

Given the block matrix form of 𝑯𝒗, we can use the protocol in
Algorithm 1 to compute it.

In step 2, Party B computes

⟦𝑯𝒗𝐵⟧𝐴 = (𝑿𝐵)T⟦𝑹𝑿𝐴𝒗𝐴⟧𝐴 + (𝑿𝐵)T⟦𝑹⟧𝐴𝑿𝐵𝒗𝐵 (9)

and in step 3 Party A computes

⟦𝑯𝒗𝐴⟧𝐵 = (𝑿𝐴)T𝑹𝑿𝐴𝒗𝐴 + (𝑿𝐴)T𝑹⟦𝑿𝐵𝒗𝐵⟧𝐵 (10)

Also note that in line 2 and 3, two parties add random noises 𝝐𝐴
and 𝝐𝐵 to the encrypted data before sending them out to another
party for decryption. This ensures the computation of Hvp remains
secure without leaking any plain text data.

4.2.3 Compute 𝑸 ′𝑯−1𝑬 . The gradient of one training sample for
the logistic regression is (𝑦𝑖 − 𝑦𝑖)𝒙𝑖 . Instead of sending the partial
gradient (𝑦𝑖 − 𝑦𝑖)𝒙𝐵𝑖 from Party B to Party A in plaintext, which
will leak the dataset 𝒙𝐵

𝑖
, we let Party B store this gradient locally

and only send the computed influence score 𝑸 ′𝑯−1𝑬 to Party A. In
detail, Party B first compute the partial influence score as 𝒛𝐵 (𝑦𝑖 −
𝑦𝑖)𝒙𝐵𝑖 and then send it to Party A in plain text. The protocol is
depicted in Algorithm 2.

4.2.4 Time Complexity Analysis. As mentioned in the prelimin-
aries, computations happened on a encrypted values are 2 to 3
magnitudes slower than their unencrypted counterpart. Thus, in
this section we report the time complexity for model training and
debugging for the computations on the encrypted values only. The
result is shown in Table 2.
Training and retraining Party B needs to multiply the encrypted
residual by its training data 𝒙𝐵

𝑖
and then sum up the result to get

the gradient 𝜕𝐿 (𝜽)
𝜕𝜽𝐵 = − 1

𝑛

∑𝑛
𝑖=1⟦(𝑦𝑖 − ℎ𝜽 (𝒙𝑖))⟧𝐴𝒙𝐵𝑖 in each GD

round. The complexity for doing ⟦𝑦𝑖 − ℎ𝜽 (𝒙𝑖)⟧𝐴𝒙𝐵𝑖 for 𝑛 training
records is 𝑂 (𝑛𝑚). The summation takes another 𝑂 (𝑛), so in total
the complexity for a single GD round on the encrypted value is

6

𝑂 (𝑛𝑚). Assuming GD runs for𝑞 rounds, the complexity for training
and retraining is 𝑂 (𝑞𝑛𝑚).
Influence Calculation During the computation of HvP, Party
A needs to multiply an 𝑛 × 𝑚 vector (𝑿𝐴)T𝑹 with the encryp-
ted𝑚 × 1 vector ⟦𝑿𝐵𝒗𝐵⟧𝐵 as (𝑿𝐴)T𝑹⟦𝑿𝐵𝒗𝐵⟧𝐵 in Equation (10),
which takes 𝑂 (𝑛𝑚) complexity. Similarly, Party B needs to com-
pute Equation (9) which also takes 𝑂 (𝑛𝑚). Since this process is
running inside the 𝐶𝐺 algorithm in an iterative fashion, assuming
the CG algorighm iterate 𝑝 times, the complexity for CG is𝑂 (𝑝𝑛𝑚).
Additionally, computing the influence score in Algorithm 2 Line 3
requires another 𝑂 (𝑛𝑚) computation similar to the training case.
Overall, one debugging iteration takes 𝑂 (𝑝𝑛𝑚) as the the complex-
ity.
Debugging FedRain debugs the training data in an iterative fash-
ion where it repeatedly removes the top ranked points from the
training set by influence score, and retrains the model. Assuming it
deletes K records from the training set in total with each iteration
deleting 1 record, the overall complexity for influence computation
will be𝑂 (𝐾 ·𝑝𝑛𝑚) and the retraining complexity will be𝑂 (𝐾 ·𝑞𝑛𝑚).
In total, it is 𝑂 (𝐾 · 𝑝𝑛𝑚) +𝑂 (𝐾 · 𝑞𝑛𝑚)

4.3 Security Analysis

We provide theorems and proof sketches to analyze the security
guarantee on the training and debugging protocol of FedRain in
this section.

4.3.1 Training.

Theorem 4.1. The training process of FedRain is secure under
our security model in Definition 2.1 if the number of gradient descent
round is less than 𝑛×𝑚𝐵

𝑛−𝑚𝐵 , where 𝑛 is the number of samples in 𝐷𝐵 and
𝑚𝐵 is the number of features in 𝐷𝐵 .

As proved by the original author in [63], assuming the shape of
the training dataset 𝐷𝐵 from Party B has size 𝑛 ×𝑚𝐵 , the training
protocol is secure if the number of GD round for the training stage
is smaller than 𝑛×𝑚𝐵

𝑛−𝑚𝐵 . As mentioned in Section 4.1, Party A knows
(𝜽𝐵)T𝒙𝐵

𝑖
for 𝒙𝐵

𝑖
∈ 𝐷𝐵 from Party B’s messages, which forms a

nonlinear system with 𝑛 ×𝑚𝐵 +𝑚𝐵 unknowns (𝑚𝐵 unknowns in
𝜽 and𝑚𝐵 unknowns in 𝒙𝐵

𝑖
with 𝑛 different 𝒙𝐵

𝑖
) and 𝑛 equations.

There will be infinite number of solutions of {𝒙𝐵
𝑖
}𝑛
𝑖=1 due to the

number of unknowns (𝑛 ×𝑚𝐵 +𝑚𝐵) are larger than the number
of equations (𝑛). However, for each round, Party A will get 𝑛 new
equations and𝑚𝐵 new unknowns. After 𝑟 rounds, Party A will get
𝑛 ×𝑚𝐵 + 𝑟 ×𝑚𝐵 unknowns and 𝑛 × 𝑟 equations. In order to keep
𝑛 × 𝑟 < 𝑛 ×𝑚𝐵 + 𝑟 ×𝑚𝐵 , 𝑟 should be smaller than 𝑛×𝑚𝐵

𝑛−𝑚𝐵 . □

4.3.2 Debugging.

Theorem 4.2. The computation process of 𝑸 ′𝑯−1𝑬 for FedRain
is secure under our security model in Definition 2.1 if𝑚𝐵 > 1 and
the number of debugging iteration is less than𝑚𝑎𝑥{𝑛𝐷×𝑚𝐵

𝑛𝐷−𝑚𝐵 ,
𝑛𝐼×𝑚𝐵

𝑛𝐼−𝑚𝐵 },
where 𝑛𝐷 is the number of samples in 𝐷𝐵 and 𝑛𝐼 is the number of
samples in 𝐼𝐵 .

Proof Sketch. Throughout the debugging stage, there are several
pieces of information from Party B that is known by Party A in plain
text. They are, (𝜽𝐵)T𝒙𝐵

𝑖
for 𝒙𝐵

𝑖
∈ 𝐼𝐵 during the computation of 𝑸 ′

in Section 4.2.1, the vector products 𝒗T𝒗 during the computation
of 𝐶𝐺 in Section 4.2.2 and the partial influence score (𝒛𝐵)T (𝑦𝑖 −
ℎ𝜽 (𝒙𝑖))𝒙𝐵𝑖 in Section 4.2.3. Similar to the training stage, in each
debugging iteration Party A gets 𝑛𝐼 equations and𝑚𝐵 + 𝑛𝐼 ×𝑚𝐵
unknowns about (𝜽𝐵)T𝒙𝐵

𝑖
for 𝒙𝐵

𝑖
∈ 𝐼𝐵 . This forbids the debugging

iteration exceeding 𝑛𝐼×𝑚𝐵

𝑛𝐼−𝑚𝐵 . On the other hand, knowing the partial
influence score (𝒛𝐵)T (𝑦𝑖 − ℎ𝜽 (𝒙𝑖))𝒙𝐵𝑖 by Party A is equavalent to
knowing (𝒛𝐵)T𝒙𝐵

𝑖
since Party A knows (𝑦𝑖 − ℎ𝜽 (𝒙𝑖)). This leads

to Party A learning 𝑛𝐷 equations and 𝑛𝐷 ×𝑚𝐵 unknowns from
(𝜽𝐵)T𝒙𝐵

𝑖
(Line 1 in Algorithm 2) and another 𝑛𝐷 equations and

𝑛𝐷 ×𝑚𝐵 unknowns from (𝒛𝐵)T𝒙𝐵
𝑖
(Line 3 in Algorithm 2). This

forbids the debugging iteration exceeding 𝑛𝐷×𝑚𝐵

𝑛𝐷−𝑚𝐵 . On the contrary,
knowing 𝒗T𝒗 by Party A does not lead to security issue if𝑚𝐵 >

1, due to there are only 1 equation known by Party A with 𝑚𝐵
unknowns. □

5 FROG: EFFICIENT FEDERATED DEBUGGING

FedRain Deficiencies. FedRain proposed in Section 4 shows a
plausible way to enable SQL-based data debugging for federated
learning. However, it has two major deficiencies which impedes it
to be largely adopted in reality. One concern comes from security
guarantee while the other is expensive time cost.
Deficiency 1. Security Limitation. FedRain poses a very tight limit
on the number of gradient descent iterations. For example, if party B
contains 1000 rows and 10 features. To meet the security guarantee
in section 2, the training protocol can only run a maximum of
𝑛×𝑚
𝑛−𝑚 ≈ 10 iterations. However, a normal logistic regression model
typically needs far more iterations to converge in the real-world
scenario.
Deficiency 2. Expensive Time Cost. As shown in Table 2, FedRain
also inflicts large overhead due to heavy encrypted gradient com-
putation in debugging. In the system total running time, training
(and retraining in debugging) is the major bottleneck of framework
efficiency. This point can be explained by the fact that 𝑞 is usually
a large number (e.g. 1000) for ML models to converge . In contrast,
the number of CG iterations, 𝑝 is a relatively small number between
10 and 20. Therefore, optimizing encrypted gradient computation
in training is the most crucial task in reducing total framework
running time.

5.1 Linearly Separable Model Structure

To remedy the above two deficiencies, we propose Frog, an efficient
and secure federated debugging framework.

In terms of expensive time cost in FedRain, we cannot resolve
this issue if sticking to the original exact logistic regression model
structure. Each party needs to rely heavily on the information from
the other party to compute gradients and influence values. A natural
thought is to create a linearly separable model structure.

We represent the local logistic models stored in Party A and
Party B by 𝑓1 and 𝑓2 as follows. For (𝒙𝐴, 𝑦) ∼ 𝐷𝐴, 𝒙𝐵 ∼ 𝐷𝐵 ,

𝑓1 (𝒙𝐴) =
1

1 + 𝑒−(𝜽𝐴)T𝒙𝐴
, 𝑓2 (𝒙𝐵) =

1
1 + 𝑒−(𝜽𝐵)T𝒙𝐵

7

Based on these two local models, the linearly separable structure
is expressed as 𝑓 (𝒙) = 𝑓1 (𝒙𝐴) + 𝑓2 (𝒙𝐵). For this linearly separable
structure, original negative log-likelihood loss function used in
FedRain does not work anymore because the combined value is not
a likelihood. Instead, we use the L2 loss function ℓ𝑖 (𝜽) = 1

2 (𝑓 (𝒙𝑖) −
𝑦𝑖)2. The gradient of loss for training record 𝑖 then is:

∇ℓ𝑖 (𝜽) = (𝑓 (𝒙𝑖) − 𝑦𝑖)∇𝜽 𝑓 (𝒙𝑖)

= (𝑓1 (𝒙𝐴𝑖) + 𝑓2 (𝒙
𝐵
𝑖) − 𝑦𝑖) (∇𝜽𝐴 𝑓1 (𝒙𝐴𝑖) |∇𝜽𝐵 𝑓2 (𝒙𝐵𝑖)) (11)

With the linearly separable structure based on the L2 loss, we
split the gradient computation into a local part, ∇𝜃 𝑓 and a shared
part, (𝑓 −𝑦). Both parties can perform a local gradient update with
only the communication of (𝑓 −𝑦). Note that (𝑓 −𝑦) does not need
to be encrypted. This implies we do not need to conduct expensive
computation for gradients on encrypted values in training and thus
we resolve the complexity issue.

To resolve the security issue, we add a mask to each party. In-
tuitively, for a linear system 𝑨𝒙 = 𝒃 , we mask the left part with a
random number 𝑐 to transform the linear system into 𝑐𝑨𝒙 = 𝒃 . In
this way, we protect 𝒙 from leakage. The masked linearly separable
structure is expressed as 𝑓 = 𝑐1 𝑓1 + 𝑐2 𝑓2. Then the gradient of loss
becomes:

∇𝜽 ℓ𝑖 (𝜽) = (𝑓 (𝒙𝑖) − 𝑦𝑖)∇𝜽 𝑓

= (𝑐1 𝑓1 (𝒙𝐴𝑖) + 𝑐2 𝑓2 (𝒙
𝐵
𝑖) − 𝑦𝑖) (𝑐1∇𝜽𝐴 𝑓1 (𝒙𝐴𝑖) |𝑐2∇𝜽𝐵 𝑓2 (𝒙𝐵𝑖))

(12)

where 𝑐1 and 𝑐2 are invisible to the other party. In this way, we
resolve the security issue.

Note that if 𝑐1 or 𝑐2 is not a trainable variable, a fixed value will
adversely affect the accuracy of themodel. In our linearly separation
design, we prove that we can have trainable 𝑐1, 𝑐2 without security
concerns (see the proof in Section 5.3).

The gradient of ℓ𝑖 (𝜽 , 𝑐1, 𝑐2) with respect to 𝑐1 is

∇𝑐1 ℓ𝑖 (𝜽 , 𝑐1, 𝑐2) = (𝑓 (𝒙𝑖) − 𝑦𝑖) 𝑓1 (𝒙𝐴𝑖)

where 𝑓1 (𝒙𝐴𝑖) is in Party A and 𝑓 (𝒙𝑖) − 𝑦𝑖 is the same shared value
as Equation (12). The same argument holds for 𝑐2. We merge 𝑐1, 𝑐2
into 𝜃𝐴, 𝜃𝐵 for simplicity since their updating protocols are the
same.

In general, the linearly separable structure enables both parties
to update their own logistic models locally without exchanging
encrypted raw data. The gradients of each party would then be nat-
urally aggregated through model. This structure also benefits our
debugging stage, which would be further explained in subsequent
sections. Note that although the model under Frog is an approx-
imation of the logistic regression mode, we show empirically in
Section 6.3 that it can achieve quite close F1 scores in prediction to
Rain [59], which has a centralized logistic regression model.

5.2 Working Mechanism of Frog: Training &

Debugging

In this section, we discuss the protocols and working mechanisms
in Frog. We first present how each local model is updated in the
training stage. Then, we will show how the query gradients as well
as the influence of each data point are calculated in our framework.
For simplicity, we omit 𝑐1, 𝑐2 gradients updating details in following

Algorithm 3: Protocol for computing ∇ℓ (𝜃) in Frog
Input: 𝜽 {𝐴,𝐵} , 𝐷 {𝐴,𝐵} , 𝑐1, 𝑐2, 𝑔𝑑_𝑠𝑡𝑜𝑝
Output: ∇ℓ (𝜃) in equation (12)

1 Party A Send 𝑐1 𝑓1 (𝒙𝐴𝑖) − 𝑦𝑖
2 Party B Send 𝑐2 𝑓2 (𝒙𝐵

𝑖
)

3 Party A Compute gradient
(𝑐1 𝑓1 (𝒙𝐴𝑖) + 𝑐2 𝑓2 (𝒙𝐵

𝑖
) − 𝑦𝑖)𝑐1∇𝜃𝐴 𝑓1 (𝒙𝐵

𝑖
)

4 Party B Compute gradient
(𝑐1 𝑓1 (𝒙𝐴𝑖) + 𝑐2 𝑓2 (𝒙𝐵

𝑖
) − 𝑦𝑖)𝑐2∇𝜃𝐵 𝑓2 (𝒙𝐵

𝑖
)

Algorithm 4: Protocol for computing 𝑸̃ ′ in Frog
Input: 𝜽 {𝐴,𝐵} , 𝐷 {𝐴,𝐵} , 𝑐1, 𝑐2
Output: 𝑸′

1 Party B Send 𝐴𝑔𝑔 (𝑐1 𝑓1 (𝒙𝐴𝑖)) , ⟦𝐴𝑔𝑔 (𝑐2∇𝜽𝐵 𝑓2 (𝒙𝐵
𝑖
))⟧𝐵

2 Party A Compute 𝑸′; then send ⟦𝑟1 · 𝑸′⟧𝐵

[
𝑯𝐴𝐴 𝑯𝐵𝐴

𝑯𝐴𝐵 𝑯𝐵𝐵

]
Figure 2: Symmetric properties of Hessian Matrix H.

analysis since they can be trivially computed through the following
protocols shown in training and debugging stages. The computation
does not require any extra information to be shared between those
two parties.

5.2.1 Compute∇ℓ (𝜽). The information exchange protocols between
two parties to compute the training gradient ∇ℓ (𝜽) are shown in
Algorithm 3. The input symbol 𝑔𝑑_𝑠𝑡𝑜𝑝 in the protocol is a signal
used to control whether both parties should continue the gradients
updating iterations or not.

5.2.2 Compute 𝑸 ′. The query gradient of model 𝒇 is as follows,

𝑄 ′ = 𝑠𝑔𝑛(𝐴𝑔𝑔(𝑓 (𝒙𝑖))∇𝜽𝐴𝑔𝑔(𝑓 (𝒙𝑖)

= 𝑠𝑔𝑛(𝐴𝑔𝑔(𝑐1 𝑓1 (𝒙𝐴𝑖) + 𝑐2 𝑓2 (𝒙
𝐵
𝑖)))

· (∇𝜽𝐴𝑔𝑔(𝑐1 𝑓1 (𝒙𝐴𝑖)) + ∇𝜽𝐴𝑔𝑔(𝑐2 𝑓2 (𝒙𝐵𝑖))),

where 𝐴𝑔𝑔(·) represents any aggregation function defined in sec-
tion 2 that takes the inference data as input for the contained func-
tion. For example, 𝐴𝑔𝑔(𝑓 (𝒙𝑖)) means compute the aggregation
function on the output of 𝑓 which is computed on the inference
data 𝐼 . 𝑠𝑔𝑛 is the 𝑠𝑖𝑔𝑛 function, which would return 1 (0) if the
expression inside is ≥ 0 (< 0).

The communication protocols to calculate 𝑸 ′ is shown in Al-
gorithm 4. Note that in order to prevent party B to access the value
of 𝑸 ′, we randomize 𝑸 ′ by 𝑟1, denoted as 𝑸̃ ′ in all following sec-
tions. Note this scalar randomization will not change our final
influence ranking results.

5.2.3 Compute 𝑸 ′𝑯−1. Different from FedRain, hessian matrix
can be explicitly computed under Frog due to the linearly separable
structure. Based on the symmetric property of hessian matrix, the
hessian matrix can be divided to four parts as shown in Figure 2.

8

Algorithm 5: Protocol for computing 𝑸̃ ′𝑯−1 in Frog
Input: 𝜽 {𝐴,𝐵} , 𝐷 {𝐴,𝐵} , 𝑐1, 𝑐2
Output: 𝑸̃′𝑯−1

1 Party B Send ⟦𝑐2∇𝜽𝐵 𝑓2 (𝒙
𝐵
𝑖
) + 𝝐⟧𝐵

2 Party A Compute ⟦𝑯̂𝐴𝐵⟧𝐵 ; then send
⟦𝑯̂𝐴𝐵⟧𝐵,

∑
𝑗 𝒄1∇𝜽𝑨𝒇1 (𝒙

𝑨
𝒊) , 𝑯

𝐴𝐴

3 Party B Decrypt and derandomize ⟦𝑯̂𝐴𝐵⟧𝐵 ; then construct 𝑯
4 Party B Compute 𝑸̃′𝑯−1 using CG Algorithm

Algorithm 6: Protocol for computing 𝑸̃ ′𝑯−1𝑬

Input: 𝜽 {𝐴,𝐵} , 𝐷 {𝐴,𝐵} , 𝑐1, 𝑐2
Output: 𝑸′𝑯−1𝑬

1 Party B Send (𝑸̃′𝑯−1)𝑚
𝐴

2 Party A Send (𝑸̃′𝑯−1)𝑚𝐴
(𝑬𝑨)

3 Party B Send (𝑸̃′𝑯−1)𝑚𝐵
(𝑬𝑩)

4 Party A Compute 𝑸̃′𝑯−1𝑬

5 Party B Compute 𝑸̃′𝑯−1𝑬

The formulas to calculate for each part is as follows:

𝑯𝐴𝐴 = ∇𝜽𝐴 (∇𝜽𝐴 ℓ (𝜽))

= ∇𝜽𝐴 [
∑

(𝑓 − 𝑦)𝑐1∇𝜽𝐴 𝑓1]

=
∑

(𝑓 − 𝑦)𝑐1∇2
𝜽𝐴 𝑓1 + (𝑐1∇𝜽𝐴 𝑓1)2

𝑯𝐴𝐵 = ∇𝜽𝐵 (∇𝜽𝐴 ℓ (𝜽))

=
∑

𝑐2∇𝜽𝐵 𝑓2 · 𝑐1∇𝜽𝐴 𝑓1

Note that 𝑯𝐵𝐵 has a similar format with 𝑯𝐴𝐴 , and 𝑯𝐵𝐴 is just
the transpose of 𝐻𝐴𝐵 , so they are omitted here for simplicity. The
calculations of𝑯𝐴𝐴 and𝑯𝐵𝐵 can be completed in each party locally,
since they doesn’t require any information from the other party.

The communication protocol to calculate 𝑸̃ ′𝑯−1 is shown in
Algorithm 5, where 𝑯̂𝐴𝐵 is the 𝑯𝐴𝐵 computed with randomized
𝑐2∇𝜽𝐵 𝑓2. Note that in the whole 𝑸̃ ′𝑯−1 computing process, the𝐶𝐺
is only used once and computed locally in Party B.

5.2.4 Compute 𝑸 ′𝑯−1𝑬 . The protocol of computing the final in-
fluence function is displayed in Algorithm 6. From Algorithm 5,
we can know that 𝑸̃ ′𝑯−1 locates in Party B. To enable Party A to
compute its own influence, Party B only needs to send a vector
(𝑸̃ ′𝑯−1)𝑚

𝐴
, which represents the part belonging to Party A in

(𝑸̃ ′𝑯−1) rather than the whole 𝑸̃ ′𝑯−1. This is because Frog is
linearly separable, similar for the meaning of (𝑸̃ ′𝑯−1)𝑚

𝐵
. After

this step, both parties can calculate their own influence with their
element-wise gradients 𝑬𝐴 , 𝑬𝐵 locally. At last, each party would
send their influence results to the other to compute the final in-
fluence rankings based on the additive property of an influence
function. Thus, each party would know which training data points
to delete in the end.

5.2.5 Time Complexity Analysis. Computation on encrypted values
is the major bottleneck of our debugging frameworks as mentioned
in section 3 and 4.2.4. In this section, we analyze the debugging
time complexity of Frog. The results are summarized in Table 2.

Influence Calculation. The largest computation cost comes from
⟦𝑯̂𝐴𝐵⟧𝐵 , whose complexity is 𝑂 (𝑛𝑚). Supposing we have 𝐾 total
rounds of debugging, the cost would be 𝑂 (𝐾 · 𝑛𝑚).
Retraining. The retraining protocol in debugging is the same as
training shown in Algorithm 3. There is no encrypted values in
training, therefore the computation cost on encrypted values is 0,
no matter how many times the debugging runs.

5.3 Security Analysis

In this section, we analyze the security of training and debugging
protocols of Frog.

5.3.1 Training.

Theorem 5.1. The training process is secure under our security
model defined in Definition 2.1.

Proof Sketch. Training protocols shown in Algorithm 3 leaks no
information of raw data to the other party. In training, party A
would receive a vector of 𝑐2 𝑓2 in every stochastic gradient descent
iteration. As mentioned in section 5.1, 𝑐1, 𝑐2 are trainable variables.
It implies we update 𝑐1 with zero additional communication from
party B, and similar for 𝑐2. Specifically, there would be unique
(𝑛 + 1) unknown variables for each iteration while there are only 𝑛
equations.

Note that 𝑐2 and 𝑓2 changes with each iteration, which implies
𝑐2 and 𝑓2 are unsolvable.

To this end, party A cannot decode 𝜃𝐵 and 𝑥𝐵 . Similar logic
applies party B in the training stage communication.

5.3.2 Debugging.

Theorem 5.2. The debugging process is secure under our security
model defined in Definition 2.1, assuming 𝑛 > 𝑚.

Proof Sketch. First, let’s check whether party A or B can decipher
any raw data, gradients or 𝜃 of each other during the Q gradient
computation process. As shown in Algorithm 4, each equation con-
taining plain-text or decipherable information from the other party
is randomized by a unique variable (e.g. 𝒓1, 𝑟2, 𝑟3), which makes
them unsolvable. This implies that for later constituted underde-
termined system of equations, those equations for computing 𝑸 ′ in
this process cannot be counted towards them anymore to compose
a possible solvable equation system.

In Algorithm 5, the decipherable information and plain-text of
party A received by party B are 𝑯̂𝑨𝑩, 𝑯𝑨𝑨 and

∑

𝒋 𝒈𝒋 . The number
of equations can be constructed by party B is𝑚𝐴 × (𝑚 + 1), while
the number of unknowns w.r.t 𝜃𝐴, 𝑥𝐴

𝑖
, 𝑦𝑖 is𝑚𝐴 × (𝑛+1) +𝑛. As long

as 𝑛 > 𝑚, namely, the number of data samples is larger than the
number of features, the equation system is unsolvable. For party
A, the plain information received about party B is 𝑸̃ ′𝑯−1. It’s an
approximate value, which means no certain information can be
obtained from this value.

As for the influence calculation shown in 6, the passed inform-
ation (𝑸̃ ′𝑯−1)𝑚𝐵

(𝑬𝑩) from party A to party B can allow B to
construct more 𝑛 equations. After this process, the total accumu-
lated number of equations in party B is𝑚𝐴 × (𝑚 + 1) +𝑛. However,
it’s still less than the number of unknown variables,𝑚𝐴× (𝑛+1) +𝑛,
as long as 𝑛 > 𝑚.

9

5.4 Overall Comparison: Frog vs. FedRain
In this subsection, we give an overall analytical comparison between
FedRain and Frog from three perspectives: efficiency, security, and
accuracy.

5.4.1 Efficiency. We summarize the time complexity of perform-
ing computation on encrypted values in the debugging stage of
both frameworks in Table 2. Recall that in the table, 𝑝 represents
the number of CG iterations in one debugging round, and 𝑞 is the
number of gradient descent epochs of one debugging round. The
total time complexity is calculated by assuming we debug for 𝐾
rounds. As illustrated in Algorithm 3, there is no encryption cost at
all in Frog during retraining (training). Thus the time complexity of
training on computing encrypted values is 0. Besides, the CG com-
putation of Frog is conducted locally as explained in Algorithm 5
while FedRain needs to do CG computation several times.

5.4.2 Security. The assumption of security guarantee made by
FedRain is stronger than Frog. To ensure security, the FedRain
debugging protocol can run no more than 𝑛×𝑚

𝑛−𝑚 iterations. In con-
trast, as long as the number of training examples is larger than the
number of features, Frog can guarantee security under the security
model defined in Definition 2.1.

5.4.3 Accuracy. Themodel used in Frog is an approximation to the
exact logistic regression model. In comparison, FedRain is based
on the exact logistic regression model. One may be tempted to
think that FedRain should be more accurate than Frog. However,
to ensure security, FedRain has to pose a very tight limit on the
number of gradient descent iterations. In many situations, this
number is too small for FedRain to converge to an accurate model,
thus Frog is actually more accurate than FedRain.

6 EXPERIMENTS

Our experiments study the extent and how Frog improves upon
FedRain in terms of runtime and debugging quality. Section 6.2
provides a break down of the computational and communication
costs between the two methods and their sensitivity to dataset sizes
and debugging parameters, and Section 6.3 studies the debugging
quality as compared to FedRain and loss-based approaches. Addi-
tionally, Section 6.4 presents a case study that uses Frog to improve
the fairness on the Adult dataset.

6.1 Experiment Settings

Our experiment are setup as follows:
Dataset:We used three datasets: Diabetes [19] contains 442 rows,
10 numeric features and 1 continuous prediction target with domain
25−346 that we threshold at the median (> 140.5) into a binary label.
BreastCancer [18] contains 569 rows, 30 numerical features, and
binary label. Adult [18] contains 32561 rows, a mix of 13 categorical
and numeric features, and binary label.

We split each dataset so 80% is used for training, 10% for inference
and SQL querying, and the rest as a hold-out to report the model
accuracy as the result of debugging. We vertically split each dataset
into two partitions, where the first half of attributes are on Party A
and the rest on party Party B, and the ID is on both parties. Finally,
we introduce label-dependent training data errors by flipping a
random subset of ‘1’ labels to ‘0’ in the dataset.

Table 3: Time cost comparison between Federated LC Rain

and Federated Logistic Rain.

Frog FedRain Relative

Training

Compute
Network

9.15s
0.09s

144.3s
13.2s

15×
146×

Debugging

Influence

Compute
Network

0.62s
0.00075s

17.7s
0.7s

28×
933×

Debugging

Retraining

Compute
Network

0.924s
0.008s

54.4s
6.5s

58×
812×

Approaches: We compare the Rain [59] (which is not secure), the
loss-based approach (Loss), FedRain, and Frog. We do not compare
with Influence Function since it is subsumed by Rain.
Evaluation MetricsWe measure end-to-end runtimes, as well as
a break-down into computate and communication runtimes in the
training and debugging steps. For debugging quality, we report the
recall@k curve (Figure 4), which is the percentage of correctly
identified training records as a function of the total number of
deleted rows (k). We also report the model F1 scores before and
after debugging on the hold-out dataset (Table 4).
ImplementationOur implementation is in Python.We use PHE [16]
for Paillier encryption with GMP [21] and gmpy2 [26] acceleration.
We simulate a two party federated learning environment by run-
ning Party A and Party B in isolated 16G RAM and 8 core E7-4839
CPUs docker containers installed with Ubuntu 20.04 and use the
docker bridge network (9 Gbps) for communication. The code is
hosted on Github2.

6.2 Evaluation of System Efficiency

We first study a runtime break down of the two federated debugging
algorithms, and then study their parameter sensitivity.

6.2.1 Runtime Breakdown. Although we compared Frog and Fed-
Rain’s time complexities analytically, we now compare their runtimes
on the Diabetes dataset for each step of training and debugging, and
for both computation and network transmission. We run training
for 1000 gradient descent iterations. During debugging, we delete
10 training points (influence) and then retrain for 100 gradient des-
cent iterations. The inference query computes the probability of
diabetes for each gender, where Predictions is the materialized
predictions table:

SELECT AVG(P.Label_prob())
FROM 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑃 ⊲⊳𝐼𝐷 𝐷𝑖𝑎𝑏𝑒𝑡𝑡𝑒𝑠 Group BY GENDER

Table 3 reports the breakdown and confirms our analysis in Sec-
tion 5.4. Frog reduces compute during (re)training for two reasons.
First, it avoids computing over encrypted data. Second, the data
sent from Party B to Party A is an unencrypted scalar, as opposed to
two 𝑛 × 1 vectors per gradient iteration for FedRain. Frog speeds
accelerates the CG algorithm when estimating the influence scores
because it only needs to send and encrypt an 𝑛 × 1 vector once in
total, as opposed once per CG iteration (10∼20 times).

6.2.2 Sensitivity to Parameters. We now vary the dataset sizes (n),
the number of features in the datasets (m), number of training
records to delete during debugging (K), and report the end-to-end
runtime sensitivities of the two approaches. We use the Diabetes
dataset, and replicate its rows and attributes to achieve the desired
2https://github.com/sfu-db/FedRain-and-Frog

10

(a) Training (vary n) (b) Training (vary m) (c) Debugging (vary n) (d) Debugging (vary m) (e) Debugging (vary k)

Figure 3: Varying dataset size (n), number of features (m), and deletion size (K). A run was stopped if the runtime exceeded 3.5

hours.

configuration. The training errors and SQL query are the same as
the previous experiment.

The results in Figure 3 are consistent with our complexity ana-
lysis in Section 5.4. We report the training (subfigures a, b) and
debugging runtimes (c, d, e) in log scale as we vary each parameter
(note that 𝐾 is only applicable to debugging). FedRain increases
linearly for m and n during training, however Frog remains nearly
constant because it does not require any encryption. In contrast,
both methods scale linearly in terms of n and m during debugging
because both have time complexity𝑂 (𝑛𝑚) (though Frog is over an
order of magnitude faster). Similarly, both methods scale linearly
with 𝐾 , but the slope for Frog is lower. Overall, we find that the
major bottleneck is due to encryption before communication, which
potentially can be reduced by custom hardware.

6.3 Data Debugging Quality

We now report the data debugging quality of Frog and FedRain,
along with the Loss baseline. We also include Rain results run-
ning on a single machine setting (thus does not require the secure
protocols). We use the Diabetes and Breast Cancer datasets, and
introduce low (30% of records) and high (50%) corruption rates
respectively. We execute a COUNT(*) query where the complaint
specifies that the output should be the ground truth query result.

Overall, we find that the training records Frog returns is com-
parable to Rain. Note that Frog uses the linearly separable variant
of the logistic regression model, and that FedRain is limited to
a finite number of gradient iterations during training in order to
preserve its security guarantees.

6.3.1 Recall@𝐾 . Section 6.3 reports the Recall@K curves for the
four approaches, and the gray line denotes the upper bound where
every removed record was correctly identifies as an error.

Figure 4 shows the recall curve for different datasets with low
(30%) and high (50%) corruption rates. Frog is comparable to Rain [59]
in terms of recall across the datasets and corruptions, while Loss
and FedRain performs poorly. Loss has a low recall curve because
minimizing training loss during data debugging is, in general, in-
dependent of resolving user complaints. FedRain performs poorly
because the model did not train to convergence due to its limited
number of training gradient iterations in order to ensure the fed-
erated security guarantee. For example, in the Diabetes dataset,
FedRain only runs about 10 gradient descent steps. For this reason,
its influence gradient estimates are also inaccurate.

0 10 20 30 40 50
k

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca
ll@

k

FedRain
Frog
Loss
Rain
UpperBound

(a) Diabetes, low corruption

0 50 100 150
k

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca
ll@

k

FedRain
Frog
Loss
Rain
UpperBound

(b) Cancer, high corruption

Figure 4: Recall@k curve with varying corruption rates on

Diabetes and BreastCancer. The K is equal to the total num-

ber of corrupted data points. The Recall@k performance

of Frog is on par to Rain. Loss performs badly. FedRain is

not fully trained due to its security guarantee in section 4.3

which therefore results in bad performance.

Table 4:Model F1 score before and after debugging; the clean

data row is for reference.

Diabetes (30%) BreastCancer (50%)

Model Before
Debug

After

Debug

Before
Debug

After

Debug

Rain 0.72 0.81 0.58 0.84
Loss 0.73 0.74 0.56 0.64

FedRain 0.55 0.64 0.17 0.17
Frog 0.73 0.82 0.56 0.83

Clean Data - 0.85 - 0.87

6.3.2 Model Accuracy. Table 4 report the model F1 scores before
and after debugging. The accuracy of Frog achieves the highest ac-
curacy of the secure approaches and achieves comparable accuracy
to Rain. In addition, it is close to the model accuracy trained on the
clean dataset. In contrast Loss and FedRain marginally improve
the model accuracy.

6.4 Case Study

We now illustrate how Frog can be useful to debug and address
a gender bias issue in the context of a high-tech company that
wants to collaborate with an HR agency to determine employee
salaries. However, several female employees find that their salaries
are much lower than male coworkers who are at the same position

11

Table 5: High salary prediction discrepency between female

and male employees reduces after debugging with Frog.
Discrepancy

Before Debugging
Discrepancy

After Debugging

Female 20.89% 48.91%
Male 79.11% 51.09%

0 2,000 4,000
k

0.00

0.05

0.10

0.15

0.20

Q
u
e
ry

 V
a
lu

e

(a) The query value during de-

bugging.

0 2,000 4,000
k

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

(b) Model F1 score changes on

testing data when debugging.

Figure 5: Case Study Results

and have similar work performance. After hearing those complaints,
the company issues the following query to check the average salary
bands (high salary vs. low salary) between the two genders, where
Predictions is the materialized predictions from the secure co-
inference step:

SELECT avg(SALARY) FROM 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑃 ⊲⊳𝐼𝐷 𝐴𝑑𝑢𝑙𝑡

WHERE P.Label = 'High Salary'
GROUP BY GENDER

They are surprised to find a large salary discrepancy between female
and male employees. There are several existing methods to address
such biases, including data pre-processing by flipping labels of data
points [28, 65], leveraging adversarial learning and regularization
techniques to generate a fair model [66] and [38, 56]. Unfortunately,
these methods either do not have secure federated protocols, or
would require prohibitively high overheads due to encryption or
complex model loss structures. In contrast, Frog can be used to
debug this discrepancy.

To simulate this scenario, we use the UCI Adult [7] dataset with
the simulated label errors. We issue the above query across the two
parties, and submit a complaint that the discrepancy between the
percentage of high salary employees of the two classes should be 0.
Table 5 reports the percentages before and after debugging. We can
see that percentage of high salary predictions between the genders
changed from 20.89% vs. 79.11% before debugging to 48.91% vs.
51.09% after debugging, which is close to equal.

One worry may be that data debugging in this way addresses the
discrepancy, but otherwise degrades the model accuracy. Figure 5a
reports the discrepancy as a function of the number of deleted
training records 𝐾 , as well as the 𝐹1 score on the hold-out data
set. Figure 5a shows that the complaint is steadily and consistently
resolved as we identify and remove the identified training errors.
In contrast, Figure 5b shows that the 𝐹1 score is almost constant
throughout the data debugging process.

7 RELATEDWORK

Complaint-based federated data debugging is related to data clean-
ing for ML, federated learning, ML pipeline debugging, and SQL
explanation.

Data Cleaning for ML.ML for data cleaning [24, 37, 47] and data
cleaning for ML [33, 34, 61] are active research topics, where the
former studies how to use ML techniques to clean data and the
latter explores how to clean data towards an accurate downstream
ML model. Recent surveys have argued for the importance of using
downstream applications for data debugging [42, 48], and this work
extends prior approaches that leverage downstream complaints [32,
59] to a federated setting.

Federated Learning. Data privacy is a major issue in organiza-
tions, governments, and societies, as evidenced by numerous gov-
ernment regulations [1, 5, 12]. As a result, federated learning [10]
is increasingly relied upon in industries such as finance, medicine,
and transportation [2, 3, 11, 41, 54, 62, 64].

Federated learningmethods have been developed for cases where
the training data is applied horizontally (HFL) [14, 53, 55], or ver-
tically (VFL) [15, 23, 55, 60] partitioned across the parties. There
is limited work on debugging training data for federated learning.
Chen et al. [14] studied how to handle label quality disparity in
federated learning. They designed an algorithm to aggregate client
models’ updates based on a data quality measure of each client
under HFL. In contrast, our work focuses on the more complex VFL
setting and uses SQL-based complaints to fix data.

ML Pipeline Debugging. Data errors are a major issue in modern
machine learning pipelines [8, 46]. Diagnostic debuggers as Data
X-ray [57] help detect some data errors based on their common
properties. Data validation and model assertions are commonly ap-
plied before model training and deployment [9, 20, 30]. The use of
downstream model semantics or analytics for data debugging is rel-
atively new, and recent works have leveraged model convexity [34],
robustness [48], and queries [59].

SQL Explanation. SQL explanation uses query result complaints
to detecting input data errors [4, 29, 40, 49, 50, 58]. This is a powerful
concept since a user only needs to specify a high-level complaint
and then the system will help the user to trace the complaint back
to the corresponding data errors. Frog extends this debugging
model to identify training rather than query input errors, and to a
federated setting.

8 CONCLUSION

In this paper, we studied how to enable SQL-based training data
debugging for federated learning. This is the first study on this
important topic. We focused on logistic regression and two-party
vertical federated learning, and formally defined our problem. We
successfully extended Rain to a federated learning setting and call
our framework FedRain. We proved a security guarantee for Fed-
Rain and analyzed its time complexity. After that, we identified the
limitations of FedRain, and proposed Frog, a novel federated de-
bugging framework. A novel idea proposed in Frog is to modify the
logistic regression model structure to make it more tailored for fed-
erated learning. Both theoretical analysis and experimental results
showed that Frog is more secure, more accurate, and more efficient
than FedRain. In the end, we did a case study to demonstrate the
effectiveness of Frog to resolve a real SQL-based complaint.

12

REFERENCES

[1] 2018 reform of EU data protection rules.
[2] An Industrial Grade Federated Learning Framework. https://www.fedai.org.

Accessed: 2021-05-31.
[3] Federated learning. 2019.
[4] F. Abuzaid, P. Kraft, S. Suri, E. Gan, E. Xu, A. Shenoy, A. Ananthanarayan, J. Sheu,

E. Meijer, X.Wu, J. Naughton, P. Bailis, andM. Zaharia. Diff: A relational interface
for large-scale data explanation. Proc. VLDB Endow., 12(4):419–432, Dec. 2018.

[5] J. Albrecht. How the gdpr will change the world. European Data Protection Law
Review, 2:287–289, 2016.

[6] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate queries.
In Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’11, page 153–164, New York, NY, USA,
2011. Association for Computing Machinery.

[7] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[8] F. Biessmann, J. R. Golebiowski, T. Rukat, D. Lange, and P. Schmidt. Automated

data validation in machine learning systems. 2021.
[9] E. Breck, M. Zinkevich, N. Polyzotis, S. Whang, and S. Roy. Data validation for

machine learning. In Proceedings of SysML, 2019.
[10] D. R. Brendan McMahan. Federated learning: Collaborative machine learning

without centralized training data, 2013.
[11] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi. Fed-

erated learning of predictive models from federated electronic health records.
International Journal of Medical Informatics, 112:59–67, 2018.

[12] P. BUKATY. The California Consumer Privacy Act (CCPA): An implementation
guide. IT Governance Publishing, 2019.

[13] H. Chen, K. Laine, and P. Rindal. Fast private set intersection from homomorphic
encryption. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1243–1255, 2017.

[14] Y. Chen, X. Yang, X. Qin, H. Yu, B. Chen, and Z. Shen. Focus: Dealing with label
quality disparity in federated learning, 2020.

[15] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, andQ. Yang. Secureboost:
A lossless federated learning framework, 2021.

[16] C. Data61. Python paillier library. https://github.com/data61/python-paillier,
2013.

[17] W. Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical analysis:
Linear regression and classification. In SDM, 2004.

[18] D. Dua and C. Graff. UCI machine learning repository, 2017.
[19] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The

Annals of Statistics, 32(2):407 – 499, 2004.
[20] R. Elshawi, M. Maher, and S. Sakr. Automated machine learning: State-of-the-art

and open challenges, 2019.
[21] T. Granlund and the GMP development team. GNU MP: The GNU Multiple

Precision Arithmetic Library, 6.2.1 edition, 2021. http://gmplib.org/.
[22] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Proceed-

ings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’07, page 31–40, New York, NY, USA, 2007. Association
for Computing Machinery.

[23] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne.
Private federated learning on vertically partitioned data via entity resolution and
additively homomorphic encryption, 2017.

[24] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-shot
learning for error detection. In Proceedings of the 2019 International Conference
on Management of Data, pages 829–846, 2019.

[25] N. J. Higham. Accuracy and stability of numerical algorithms, Second Edition.
SIAM, 2002.

[26] C. V. Horsen. gmpy2 2.0.8, 2016.
[27] B. Jeon, S. M. Ferdous, M. R. Rahman, and A. Walid. Privacy-preserving decent-

ralized aggregation for federated learning, 2020.
[28] F. Kamiran and T. Calders. Data pre-processing techniques for classification

without discrimination. Knowledge and Information Systems, 33, 10 2011.
[29] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explanations for

robust query evaluation in probabilistic databases. In SIGMOD ’11, 2011.
[30] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia. Model assertions for monitoring

and improving ml models, 2020.
[31] A. Karanika, P. Oikonomou, K. Kolomvatsos, and C. Anagnostopoulos. An

ensemble interpretable machine learning scheme for securing data quality at
the edge. In A. Holzinger, P. Kieseberg, A. M. Tjoa, and E. Weippl, editors,
Machine Learning and Knowledge Extraction, pages 517–534, Cham, 2020. Springer
International Publishing.

[32] P. W. Koh and P. Liang. Understanding black-box predictions via influence
functions, 2020.

[33] S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu. Boostclean: Automated error
detection and repair for machine learning, 2017.

[34] S. Krishnan, J.Wang, E.Wu,M. Franklin, and K. Goldberg. Activeclean: interactive
data cleaning for statistical modeling. Proceedings of the VLDB Endowment, 9:948–
959, 08 2016.

[35] Q. Li, Z. Wen, and B. He. Practical federated gradient boosting decision trees.
34:4642–4649, Apr. 2020.

[36] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang. A secure federated transfer
learning framework. IEEE Intell. Syst., 35(4):70–82, 2020.

[37] M. Mahdavi, Z. Abedjan, R. Castro Fernandez, S. Madden, M. Ouzzani, M. Stone-
braker, and N. Tang. Raha: A configuration-free error detection system. In
Proceedings of the 2019 International Conference on Management of Data, pages
865–882, 2019.

[38] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on
bias and fairness in machine learning, 2019.

[39] A. Meliou, S. Roy, and D. Suciu. Causality and explanations in databases. Pro-
ceedings of the VLDB Endowment, 7(13):1715–1716, 2014.

[40] A. Meliou and D. Suciu. Tiresias: The database oracle for how-to queries. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, page 337–348, New York, NY, USA, 2012. Association for
Computing Machinery.

[41] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and
G. Srivastava. A survey on security and privacy of federated learning. Future
Generation Computer Systems, 115:619–640, 2021.

[42] F. Neutatz, B. Chen, Z. Abedjan, and E. Wu. From cleaning before ml to cleaning
for ml. Data Engineering, page 24, 2021.

[43] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, 1999.

[44] B. Pejó and G. Biczók. Quality inference in federated learning with secure
aggregation, 2021.

[45] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection based on
ot extension. ACM Transactions on Privacy and Security (TOPS), 21(2):1–35, 2018.

[46] N. Polyzotis, S. Roy, S. E. Whang, and M. A. Zinkevich. Data management chal-
lenges in production machine learning. Proceedings of the 2017 ACM International
Conference on Management of Data, 2017.

[47] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with
probabilistic inference, 2017.

[48] C. Renggli, L. Rimanic, N. M. Gurel, B. Karlavs, W. Wu, and C. Zhang. A data
quality-driven view of mlops. ArXiv, abs/2102.07750, 2021.

[49] S. Roy, L. Orr, and D. Suciu. Explaining query answers with explanation-ready
databases. Proc. VLDB Endow., 9(4):348–359, Dec. 2015.

[50] S. Roy and D. Suciu. A formal approach to finding explanations for database
queries. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’14, page 1579–1590, New York, NY, USA, 2014.
Association for Computing Machinery.

[51] N. Sambasivan, S. Kapania, H. Highfill, D. Akrong, P. K. Paritosh, and L. M. Aroyo.
"everyone wants to do the model work, not the data work": Data cascades in
high-stakes ai. 2021.

[52] J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain, 1994.

[53] T. Song, Y. Tong, and S. Wei. Profit allocation for federated learning. In 2019 IEEE
International Conference on Big Data (Big Data), pages 2577–2586, 2019.

[54] T. Suzumura, Y. Zhou, N. Baracaldo, G. Ye, K. Houck, R. Kawahara, A. Anwar, L. L.
Stavarache, Y. Watanabe, P. Loyola, D. Klyashtorny, H. Ludwig, and K. Bhaskaran.
Towards federated graph learning for collaborative financial crimes detection,
2019.

[55] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren. Federboost: Private federated
learning for gbdt, 2020.

[56] H. Wang, B. Ustun, and F. P. Calmon. Repairing without retraining: Avoiding
disparate impact with counterfactual distributions, 2019.

[57] X. Wang, M. Feng, Y. Wang, X. Dong, and A. Meliou. Error diagnosis and data
profiling with data x-ray. Proceedings of the VLDB Endowment, 8:1984–1987, 08
2015.

[58] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.
Proc. VLDB Endow., 6(8):553–564, June 2013.

[59] W. Wu, L. Flokas, E. Wu, and J. Wang. Complaint-driven training data debugging
for query 2.0. In D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q.
Ngo, editors, Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, pages 1317–1334. ACM, 2020.

[60] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi. Privacy preserving vertical
federated learning for tree-based models. Proceedings of the VLDB Endowment,
13(12):2090–2103, Aug 2020.

[61] J. N. Yan, O. Schulte, M. Zhang, J. Wang, and R. Cheng. Scoded: Statistical
constraint oriented data error detection. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 845–860, 2020.

[62] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol., 10(2):12:1–12:19, 2019.

[63] S. Yang, B. Ren, X. Zhou, and L. Liu. Parallel distributed logistic regression for
vertical federated learning without third-party coordinator. CoRR, abs/1911.09824,
2019.

[64] W. Yang, Y. Zhang, K. Ye, L. Li, and C.-Z. Xu. FFD: A Federated Learning Based
Method for Credit Card Fraud Detection, pages 18–32. 06 2019.

[65] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair repres-
entations. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of Ma-
chine Learning Research, pages 325–333, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR.

[66] B. H. Zhang, B. Lemoine, and M. Mitchell. Mitigating unwanted biases with
adversarial learning, 2018.

13

https://www.fedai.org
https://github.com/data61/python-paillier
http://gmplib.org/

A CG

In this section we describe how to adapt the CG algorithm (Al-
gorithm 7) to the two party Federated Learning setting. As the
premises, we assume 𝑄 ′ is already computed and distributed into
two parties as 𝑸 ′𝐴 and 𝑸 ′𝐵 as described in Section 4.2.1. For ini-
tializing 𝒓0 in Line 1, the two parties first compute 𝑯𝒛 {𝐴,𝐵 }0 using
the HvP protocol Algorithm 5. After that, they can compute 𝒓 {𝐴,𝐵 }0
locally. For Party A to decide whether 𝒓0 is sufficiently small in
Line 4 and Line 11, we use the L2 norm of the vector for 𝒓0 and 𝒓𝑘 .
In detail, the L2 norm of a vector 𝒗 is | |𝒗 | |2 = 𝒗T𝒗 which can be
separated into two parts as (𝒗𝐴)T𝒗𝐴 and (𝒗𝐵)T𝒗𝐵 . So first Party A
and Party B can compute each part separately and then Party B send
(𝒗𝐵)T𝒗𝐵 to Party A to compute | |𝒗 | |2. We describe this protocol in
Algorithm 8. Note that this protocol is repeatedly used in Line 4
(for computing 𝒓T0 𝒓0), Line 6 (for computing 𝒓T

𝑘+1𝒓𝑘+1 and pT
𝑘
Hp𝑘),

Line 11 (for computing 𝒓T
𝑘
𝒓𝑘) and Line 12 (for computing 𝒓T

𝑘
𝒓𝑘 and

𝒓T
𝑘+1𝒓𝑘+1). On receiving the vector products in Line 6 and Line 12,
Party A can then compute 𝛼𝑘 and 𝛽𝑘 and send them to Party B for
Party B to update 𝒛𝑘+1 (Line 7), 𝒓𝑘+1 (Line 8) and 𝒑𝑘+1 (Line 13).

Algorithm 7: Conjugate Gradient Algorithm

Input: 𝑸 ′{𝐴,𝐵 } , 𝜽 {𝐴,𝐵 } , 𝒙 {𝐴,𝐵 }
𝑖

for 𝒙 {𝐴,𝐵 }
𝑖

∈ 𝐷 ,
𝑦𝑖 for 𝑦𝑖 ∈ 𝐷

Output: The result of Q′H−1

1 initialize r0 := Q′ − Hz0, p0 := r0, 𝑘 := 0;
2 if r0 is sufficiently small then
3 return z0
4 end

5 repeat

6 𝛼𝑘 :=
rT
𝑘
r𝑘

pT
𝑘
Hp𝑘

7 z𝑘+1 := z𝑘 + 𝛼𝑘p𝑘
8 r𝑘+1 := r𝑘 − 𝛼𝑘Hp𝑘
9 if r𝑘+1 is sufficiently small then
10 exit loop
11 end

12 𝛽𝑘 :=
rT
𝑘+1r𝑘+1
rT
𝑘
r𝑘

13 p𝑘+1 := r𝑘+1 + 𝛽𝑘p𝑘
14 𝑘 := 𝑘 + 1
15 return z𝑘+1

Algorithm 8: Protocol for computing 𝒗T𝒗
Input: 𝒗{𝐴,𝐵}

Output: 𝒗T𝒗
1 Party B Send (𝒗𝐵)T𝒗𝐵
2 Party A Compute 𝒗T𝒗 = (𝒗𝐴)T𝒗𝐴 + (𝒗𝐵)T𝒗𝐵

14

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Background
	2.2 Our Problem: Federated Debugging

	3 Preliminaries
	3.1 Rain Rain
	3.2 Homomorphic Encryption

	4 FedRain: Federated Rain
	4.1 Training and Inference
	4.2 Debugging
	4.3 Security Analysis

	5 Frog: Efficient Federated Debugging
	5.1 Linearly Separable Model Structure
	5.2 Working Mechanism of Frog: Training & Debugging
	5.3 Security Analysis
	5.4 Overall Comparison: Frog vs. FedRain

	6 Experiments
	6.1 Experiment Settings
	6.2 Evaluation of System Efficiency
	6.3 Data Debugging Quality
	6.4 Case Study

	7 Related Work
	8 Conclusion
	References
	A CG

