
What’s in a Default?

Thoughts on the Nature and Role of Defaults

in Nonmonotonic Reasoning

James Delgrande
School of Computing Science,

Simon Fraser University,
Burnaby, B.C.,

Canada V5A 1S6.
jim@cs.sfu.ca

Abstract

This paper examines the role and meaning of defaults in nonmono-
tonic reasoning (NMR). Defaults, that is, statements that express a con-
dition of normally such as “adults are normally employed”, are crucial in
commonsense reasoning and in artificial intelligence in general. The ma-
jority of research concerning defaults has focussed on (default) inference
mechanisms, rather than representational issues involving the meaning
of a default. I suggest that, despite the very impressive formal work in
the area, it would be useful to (re)consider defaults with respect to the
phenomena that they are intended to model.

To start, I briefly consider how defaults have been represented in
NMR, along with informal interpretations of defaults. Two major dis-
tinctions are explored. The first considers the view of a default as an
assertion about some domain, as opposed to an inferential procedure for
deriving properties of individuals. The second distinction considers the
manner in which default application is informally treated, whether as a
weak “rule” or essentially as a weak material implication. I suggest that
the “weak material conditional” interpretation is not suitable in the case
of defaults; this is problematic since most existing approaches take this
latter interpretation.

Subsequently, I argue that defaults of normality are best regarded as
statements in a näıve scientific theory. A theory of the meaning of such
defaults can be given by a logic of weak conditionals, in which a default
is treated as a counterfactual normative statement. From this vantage,
nonmonotonic reasoning with such conditionals can be re-examined. To
this end, the notion of relevant properties emerges as a key factor in draw-
ing default conclusions about an individual. As well, other phenomena,
such as reasoning about norms, or deontic assertions, or counterfactuals
may be addressed in a similar fashion.

1



1 Introduction

Classical reasoning is monotonic, which is to say it adheres to a principle of
monotonicity:

Monotonicity: If Γ ` φ then Γ,∆ ` φ

Thus, having proven a result in geometry, say, it is absurd to suggest that
learning more information about the problem would invalidate the conclusion.
On the other hand, our commonsense, everyday knowledge is for the most part
nonmonotonic, in that it fails to satisfy monotonicity. Hence, for example, on
being told that an individual is a bird, one will conclude that it flies, while on
being later informed that it is a penguin or is a nestling, one will conclude that
it does not fly.

The area of nonmonotonic reasoning (NMR) in artificial intelligence (AI)
studies such reasoning. NMR then is a central and crucial area of AI, and is
fundamental to commonsense reasoning. The past 30 years have seen much
impressive and important work in NMR, beginning with the seminal Artificial
Intelligence Journal issue on the topic [AIJ, 1980]. At this stage, 30 years on,
we now have a good understanding of principles underlying NMR, and it would
appear that the major approaches to NMR have been identified and are well
explored.

In NMR, a fundamental notion is that of a default, where a default can be
thought of as a weak, or defeasible, conditional. The principal use of defaults
in NMR is to ascribe default properties to individuals. A default is generally
expressed in English in the form “X’s are (normally) Y ’s”.1 Examples include
the hackneyed “birds (normally) fly”, as well as “adults are employed” or “snow
is white”.2 So a primary task in NMR is to come up with a principled means
of dealing with such statements.

To this end, it can be observed that much research in NMR has dealt with
the development of formal approaches for reasoning with defaults. Paradigmat-
ically,3 particularly during the early days of the 1980’s and 1990’s, a research
program would involve proposing a formal mechanism, examing its suitability
with respect to dealing with defaults, locating glitches in the representation,
modifying the approach, and so proceed. The approaches developed, whether
default logic, circumscription, nonmonotonic inference relations, conditional
logics, or others,4 are arguably among the most impressive and important for-
malisms developed in AI.

On the other hand, part of the task of AI researchers is to apply such
approaches to real-world problems. That is, these formalisms are intended to
be used, and resulting knowledge bases will be used to encode information

1In linguistics, such sentences are examples of the broader class of generics [Carlson and
Pelletier, 1995]. Insofar as possible, linguistic issues and, particularly, linguistic conventions
or communication conventions are avoided here. Rather, the focus is on purely representa-
tional and reasoning issues.

2This last is the well-known example attached to Tarski’s theory of truth. But of course
it isn’t the case that snow is (unreservedly) white, but rather that snow is normally white.

3and stereotypically
4See the next section for references and brief descriptions
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about and to reason about the world. The main thesis of this paper is that
in some important cases default formalisms don’t capture the phenomenon
that they’re intended to model. Arguably, a large part of the problem is that
representational issues have received insufficient attention.

In this paper, I first review the notion of a (normality) default, specifically
how defaults have been represented in NMR, along with informal interpreta-
tions of defaults. Subsequently, two major distinctions are explored. The first
contrasts, on the one hand, the notion of a default as a general assertion about
some domain with, on the other hand, “applying” a default to an individual to
derive a property of that individual. That is, one can consider a default such
as “birds fly” as asserting something about a domain; on the other hand, one
can use a default to obtain a default conclusion, such as that a given bird flies.
It can be observed that most approaches ignore this first aspect, or conflate
these aspects. The second distinction considers the manner in which default
application is informally regarded, whether as a weak “rule” or whether as
a weak material implication. I suggest that the “weak material conditional”
interpretation is not suitable in the case of normality defaults. This, insofar
as reasoning with defaults goes, is problematic since most existing approaches
take the latter interpretation. The overall conclusion is that, despite the very
impressive formal apparatuses developed and despite the remarkable success in
applying these approaches in areas such as reasoning about action and plan-
ning, diagnosis, database systems, and logic programming, nonetheless there
remains a general problem with defaults of normality with “getting the infer-
ences right”.

I suggest, toward a direction for a solution, that defaults are best regarded
as näıve scientific statements. After developing this argument, I also suggest
that this view will lead to a better understanding of reasoning with defaults
and that perhaps it will also allow a wider application of default reasoning
to other types of weak conditionals, including counterfactuals, deontics, and
statements of causality.

2 Defaults

To begin, it seems fair to ask, What is a default? This question will be ad-
dressed in part throughout this section. Commonly, defaults are expressed in
the form “X’s are Y ’s” or “If X then normally Y ”. As a starting point, a
default can be taken as an assertion about the world. Thus “birds fly” says
something about the class of birds. We can also ask How are defaults used? ;
and here it can be noted that the standard use of defaults is to draw plau-
sible conclusions, or conclusions in situations where we have only incomplete
information.

Various approaches have been proposed for inference involving defaults, no-
tably, Default Logic [Reiter, 1980] (and encompassing, for our purposes, the
stable models semantics and answer set programming [Gelfond and Lifschitz,
1988, 1991, Baral, 2003], as well as autoepistemic logic [Moore, 1985, Denecker,
Marek, and Truszczyński, 2003]), circumscription [McCarthy, 1980, Lifschitz,
1985, McCarthy, 1986], nonmonotonic inference relations (and associated clo-
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sure operations) [Kraus, Lehmann, and Magidor, 1990, Lehmann and Magidor,
1992], and conditional logics [Delgrande, 1988, Lamarre, 1991, Boutilier, 1994].5

As described, a general problem (then and now) is getting the inferences right:
obtaining plausible, commonsense conclusions given a set of defaults and gen-
eral assertions about a domain.

2.1 Default Inference: Encodings

We give the briefest of introductions to approaches to nonmonotonic reasoning
here; for details the reader should consult the aforecited references, or gen-
eral accounts such as [Brewka, 1991b, Antoniou, 1997, Brewka, Niemela, and
Truszczynski, 2007].

A default can be encoded according to several quite different schemes:

“Rule of Inference”: This is the approach of Default Logic. “Birds fly” can
be encoded either in propositional or first order logic as follows:

Bird : Fly

F ly
or

Bird(x) : Fly(x)

Fly(x)
.

In the first case, if Bird is true and Fly is consistent with what is believed,
then Fly is concluded. The notion of “is consistent with” is subtle, and
leads to an intricate, elegant fixed point definition. In the second case,
the same intuitive account can be given, except that x is instantiated
to some ground term. That is, a default rule with free variables can be
regarded as a schema, standing for the set of its ground instantiations.

Several points can be noted:

1. Despite its name, Default Logic is not a logic of defaults per se, since
it doesn’t give an account of a notion of truth of a default. Instead
what is provided is a means of drawing default conclusions in the
absence of information.

2. Since Default Logic isn’t a logic of defaults, but rather is a general
and powerful mechanism, one must “program” desirable properties
for defaults. For example, given the additional default that penguins
don’t fly, along with the information that birds are penguins, one
has to stipulate explicitly that the more specific penguins-don’t-fly
default takes priority over the less specific birds-fly default.

3. Quite frequently in the literature a default is expressed proposition-
ally. However it is not clear what a default such as Bird :Fly

F ly means;
specifically, it is not clear what the propositions Bird and Fly refer
to. Probably the most intelligible gloss is that, in default reason-
ing one most often is reasoning about an individual, say x, and
the defaults are phrased with reference to this individual. Hence
the default may be more mnemonically encoded propositionally as
x-is-a-Bird : x-Flys

x-Flys .

5Comments on these approaches will be seen to apply to other approaches, including
conditional entailment [Geffner and Pearl, 1992] and abductive approaches such as Theorist
[Poole, 1988], as well as inheritance networks [Horty, 1994].
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Via Classical Logic: This is the approach taken by circumscription. The
“birds fly” example can be encoded propositionally or in first-order logic
as:

(Bird∧¬AbF ) ⊃ Fly or ∀x.(Bird(x)∧¬AbF (x)) ⊃ Fly(x). (1)

Thus, in the propositional case, if Bird is true, and AbF is not, then one
can derive Fly. The intended meaning of AbF is that the individual in
question is not abnormal with respect to flight. In circumscribing the
atom AbF , essentially if AbF can be taken to be false then it is taken
to be false. For the predicate AbF (·), one analogously minimises the
extension of the predicate. Semantically this is carried out by defining
an ordering over models of a knowledge base, preferring those models
where the Ab atoms are false (or the extension of the Ab predicates is
smallest, respectively), and then just considering the minimal models of
a knowledge base.

It can be noted that (1) leads to the very strong conclusion that unless
a bird can be shown to not fly, one concludes that it flies. Hence for
example, if one knew nothing about the birds of Madagascar, one would
conclude that they all fly.

The points made concerning Default Logic also apply to circumscription:
Circumscription is not a logic of defaults, but rather provides a means
by which defaults can be encoded. Similarly, to make default inferences
have the “right” properties one needs to enhance the approach. Thus to
deal with specificity information such as that implicit between penguins
and birds, priorities are introduced into circumscription. Last, of course,
the same comments apply to the meaning of atoms like Bird and Fly in
the propositional formula in (1).

Inference Relation: The area of nonmonotonic inference relations can be re-
garded foremost as providing a general framework whereby general princi-
ples of nonmonotonicity may be studied, and via which other formalisms
may be compared. However, one might also examine a specific nonmono-
tonic inference relation with regard to its suitability as an approach to
dealing with defaults. The base approach which has been used for repre-
senting defaults is called preferential reasoning. Our canonical example
would be expressed via a nonmonotonic inference relation as Bird |∼Fly.
In this case, one can specify relations between nonmonotonic inferences,
for example:

From Bird |∼Fly, Bird |∼Nest infer Bird ∧Nest |∼Fly. (2)

Hence from “birds fly” and “birds build nests”, one can infer that “birds
that build nests fly”. The resulting systems are inferentially weak, at
least with regards to obtaining desirable nonmonotonic consequences; for
example one cannot infer Bird ∧Green |∼Fly from Bird |∼Fly. This is
addressed by extending the set of inferences via a (nonmonotonic) closure
operator.
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Thus, it appears that a nonmonotonic inference relation is about defaults,
in the sense that one might read (2) as saying (despite the phrasing as an
inference relation) that from defaults “birds fly” and “birds build nests”
one can infer the default “birds that build nests fly”. The closure operator
then, so it might seem, extends reasoning to that of deduction involving
individuals. We discuss this point further in the next section.

Modal Operator: Last, one might consider a default to be a “real” assertion,
carrying a truth value. In this case, our example could be encoded using
a new connective, as Bird⇒ Fly. In this instance ⇒ is a binary modal
operator, with intuitive meaning “in the most normal of worlds in which
Bird is true, Fly is also true.” The example (2) can then be expressed
as a formula:

(Bird⇒ Fly ∧ Bird⇒ Nest) ⊃ (Bird ∧Nest)⇒ Fly. (3)

It proves to be the case that there are very close connections between
conditional logics of defaults and nonmonotonic inference relations. In
fact, the central approach in each case has been shown to be translatable
to the other, fully preserving inferences. As well, the central closure op-
erator in each case has also been shown to be symmetrically translatable.
It might seem that these two approaches are merely syntactic variants of
each other. However, we later suggest that, despite these formal inter-
translations, there are significant differences between the approaches with
respect to their suitability for representing and reasoning with defaults.

None of the above schemes appears to be immediately suitable for fully
dealing with defaults. In the case of Default Logic and circumscription, for
example, one has powerful inference mechanisms, and the challenge is to modify
the inference mechanism, or how it is applied, in order to get the “right”
properties. This led to the development of variants of the basic approach, see
for example [ Lukaszewicz, 1988, Brewka, 1991a, Mikitiuk and Truszczyński,
1993, Delgrande, Schaub, and Jackson, 1995, Delgrande and Schaub, 1997] with
respect to Default Logic. This also led to a general methodology for determining
suitable default inference during the 1980’s and 1990’s which can be called
“test-and-refine”: Typically a nonmonotonic inference mechanism would be
proposed or modified; it would be shown to work on a set of troublesome
examples; later other troublesome examples would arise; the approach would
be modified, and the process continued. Thus in dealing with specificity, in
Default Logic semi-normal defaults were employed, while in circumscription a
notion of prioritisation was introduced. The so-called Yale Shooting Problem
[Hanks and McDermott, 1986]) is a good example of a problem for which the
obvious encodings didn’t work, but that also spurring significant resarch and
results in the area. On the other side, nonmonotonic inference relations and
modal approaches provide a semantically-justified account of the notion of a
default, but in this case the difficulty lies in getting a nonmonotonic counterpart
that has the “right” properties.

It can also be observed that the above paradigmatic schemes for expressing
defaults are very different with respect to their form. Moreover, one would
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expect to obtain different conclusions depending on which approach is used to
express a default. This raises several key questions: Why should one prefer one
approach over another? And: which approach is most suitable for dealing with
defaults? And moreover: if two approaches lead to different conclusions, how
does one judge which is “correct”? From a formal point of view,6 the answer
to these questions is clear: One needs a theory of defaults in order to be able
to determine what the properties of defaults should be. Consequently, in the
next subsection, we examine the question of what a default informally means.

2.2 Interpretations of Defaults

Let’s reconsider what it is we’re trying to deal with and, to be specific, consider
various possible informal interpretations of “birds fly”. Among other alterna-
tives, the following are possible readings of “birds fly”:

1. Most birds fly

2. A bird that can be consistently assumed to fly does fly.

3. Birds normally fly

4. The prototypical bird flies

5. Birds generally/usually fly

A fair question to ask at this point is: Do any of these interpretations align with
the encodings that we’ve seen in the previous subsection, and if so, which and
in what fashion? While it isn’t immediately clear which, if any, of the previous
approaches fit with these interpretations, we can consider these interpretations
with respect to how they fit with an informal notion of default.

Consider the first interpretation of “birds fly” as “most birds fly”. This is
clearly a statistical assertion: one has some population of birds in mind, and
over half of them fly. One can develop an approach where, given that some
large proportion of birds fly and individual x is a bird, one accepts the belief
that x flies – indeed the late Henry Kyburg has addressed this interpretation.
(See for example [Kyburg, 1994].) Without going into detail, we will note that
such probabilistic approaches may be seen as being orthogonal to nonmonotonic
reasoning. Kyburg expressed the difference as follows:

Schema for probabilistic inference:
BK, E

C, hedged

Schema for nonmonotonic inference:
BK, E
C

hedged inference

That is, in the probabilistic case, one makes a (monotonic) inference that is
nonetheless “hedged”. In the nonmonotonic case, a consequence is accepted
while the inference itself is defeasible.

6Which is to say that there are also informal considerations. In particular, any theory of
defaults will need to produce plausible or commonsense conclusions. Arguably it is the job
of formalisation to precisely capture such informal notions.
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In any case, the representation schemes that we have reviewed resist a prob-

abilistic reading. In Default Logic, for example, a rule Bird(x):Fly(x)
Fly(x) applies to

individuals and (roughly) rests on a notion of consistency, not probability.7

Similar considerations apply in circumscription. As well, the nonmonotonic
inference relations or conditional logics that have been proposed to represent
defaults cannot be given a probabilistic reading. That is, in preferential rea-
soning, Bird |∼Fly cannot be coherently interpreted as “most birds fly”.8 We
return to this issue in Section 4.

The second reading, “a bird that can be consistently assumed to fly does
fly” is clearly epistemic in nature. Autoepistemic logic addresses this interpre-
tation; given the results of [Denecker et al., 2003] linking autoepistemic logic
and Default Logic, Default Logic can also be interpreted in this light. How-
ever, such an interpretation clearly doesn’t express the meaning of “birds fly”;
instead it presents a way that a reasoner may conclude a default property of
an individual. Note however that in this case it is not clear how one may draw
appropriate conclusions; for example one would have to “program” a notion of
specificity between defaults.

The next interpretation (“birds normally fly” or perhaps “the normal bird
flies”) is arguably closer to what is meant by “birds fly”, since it seems to be
simply true that birds normally fly. Conditional logics of defaults take this
interpretation, and preferential or rational nonmonotonic inference relations
can also be seen in this light. As indicated earlier, the issue here, assuming
that one is happy with a given logic of defaults, is how to reason about the
properties of specific individuals.

It can be noted however that this notion of normality has the following
problem when it comes to reasoning about default properties: Consider yet
again birds and their (default) properties. Presumably one would agree that a
penguin should be concluded to have feathers. However, a penguin is clearly
not a normal bird (it doesn’t fly, for one thing) and so one could not use the
statement “the normal bird has feathers” to reason about penguins. On the
other hand, there seems to be no problem in asserting that penguins should be
concluded to have feathers, since birds have feathers. This problem is pointed
out in [Carlson and Pelletier, 1995],9 where it is noted that presumably and
hopefully every human being is exceptional in some fashion. But then no human
is “normal” per se, and so one cannot directly appeal to a global notion of
normality in concluding default properties. We expand on this also in Section 4.

The fourth interpretation refers to a prototype. In saying that “the pro-
totypical bird flies”, roughly one has an idea of the notion of a prototypical
bird, or best or typical instance of the class of birds [Rosch, 1978]. Notions
of prototypicality then are descriptive or contingent; the prototypical bird is

7However [Reiter, 1980] suggests that the default rule
Bird(x):Fly(x)

Fly(x)
is intended to repre-

sent “most birds fly”. What seems to be more appropriate is to say that if one accepts that
“most birds fly” or “the large majority of birds fly” is true, then the default rule will let one
jump to the conclusion that a specific bird flies.

8Some approaches propose the reading of “birds fly” as meaning “all but an infinitesimal
number of birds fly”. However, such a reading isn’t just inaccurate; it seems to be simply
wrong: Clearly there are significant numbers of birds that do not fly, while “birds fly” is true.

9See also [Poole, 1991]
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essentially the “best” representative of the set of birds. Arguably, in reason-
ing about default properties, we want to go beyond notions of similarity to a
prototype, which is to say, default reasoning is more than similarity to a given
prototype.

The final interpretation, “birds generally or usually fly” is perhaps ambigu-
ous. On the one hand, it can be read as a statement in qualitative probability,
analogous to “most birds fly”, in which case the earlier comments apply. On
the other hand, it might be read as “the usual bird flies” which would seems
to be roughly synonymous with “the normal bird flies”.

This discussion of possible interpretations of defaults is not intended to be
exhaustive; and it is quite possible that there are interpretations that have been
missed. The discussion does emphasise the (obvious) point that “birds fly” is
ambiguous. Moreover, given that we are interested in the meaning of a default
such as “birds fly”, we can rule out some of these informal interpretations.
So, while we might agree that “most birds fly” is true, it doesn’t capture the
meaning of “birds fly” – for example if we were to arrange that all existing
birds be held down, “birds fly” would still be true. Similarly, autoepistemic
interpretations are inadequate to represent the meaning of “birds fly” (since
certainly “birds fly” would be true even if there were no believers to hold beliefs
about birds). Consequently we focus on the “normality” interpretation, and
suggest that “birds normally fly” is what is meant by “birds fly”.

3 Defaults: Two Issues

We next consider two issues regarding defaults. The first issue is representa-
tional, and concerns the dual aspects of defaults, as bearers of truth values
and as things that are used for drawing inferences. As a specific consequence
of this distinction, we also discuss the way in which formalisms for dealing
with defaults have handled individuals. The second issue concerns reasoning,
specifically whether a default is best informally regarded as a “weak rule of
inference” or a “weak material conditional”.

3.1 Defaults: Representation vs. Reasoning

Let’s reconsider the notion of a default. We can note several facts about a
default such as “‘birds fly”. First, it asserts something about the external
world: “birds fly” is clearly true while equally “cows fly” is false. As well, if
one accepts that “birds fly” is true, then one rationally would accept other
defaults, such as “birds fly or swim”. Second, the truth or falsity of a default is
independent of there being any believers. If human beings (and their knowledge
bases) were to disappear, birds would still fly, and “birds fly” would still be true.
Third, a default expresses a property of individuals belonging to a particular
class, while not mentioning any specific individuals. Finally, a default says
nothing about how one may obtain a default conclusion about an individual.

This suggests that a default asserts a general property about members of a
class, and it is the task of nonmonotonic inference to draw conclusions about
specific individuals based on a collection of defaults. So we can distinguish a
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default assertion or proposition, from an inference involving a default. To spell
things out:

• A default is either true or false. One may derive defaults from a set of de-
faults; however such derivations say nothing about particular individuals
nor properties of specific individuals.

• A default inference is either sound or unsound (or better perhaps, since
we’re dealing with nonmonotonicity, rational or not rational). A default
inference ascribes a property to an individual.

Consequently we distinguish two types of reasoning:

• With defaults (as assertions).

This is the realm of conditional logics of normality. Nonmonotonic in-
ference relations can also be seen in this light (given the correspondence
results between conditional logics and nonmonotonic inference relations).

• Applying defaults, to give conclusions about individuals.

This is the realm of Default Logic, and circumscription, along with the
rational closure for rational nonmonotonic inference relations.

Clearly, “traditional” approaches to nonmonotonic inference (as exemplified
by Default Logic and circumscription) have nothing to say about the meaning
of a default, and arguably this is what has led to issues with obtaining the
“right” inference. Conditional logics, and by extension nonmonotonic inference
relations, deal with the meaning of a default as an objective entity talking about
classes; it is not surprising then, as we later discuss, that such approaches have
difficulties when it comes to expressing default properties about individuals.

An interesting distinction that can be made concerning default assertions
compared to default inference, is that the former is essentially semantic while
the latter is syntactic, in the following sense: Defaults are things that are
either true or false, with respect to some larger theory. Two formulas that
are true under precisely the same conditions express the same thing, and the
fact that they may be written differently can be seen as an irrelevant syntactic
commitment. Hence, in a logic of defaults, the formulas (Bird ⇒ Fly) ∧
(Bird⇒ Nest) and Bird⇒ (Fly∧Nest) are true in exactly the same models,
and so express the same proposition. Arguably this is as things should be.

This is not the case for default inference. In Default Logic and circumscrip-
tion, one would expect quite different outcomes given the set of defaults{

Bird(x) : Fly(x)

Fly(x)
,
Bird(x) : Nest(x)

Nest(x)

}
and the set {

Bird(x) : Fly(x) ∧Nest(x)

Fly(x) ∧Nest(x)

}
,

or the two circumscriptive theories:

{∀x.(Bird(x) ∧ ¬AbF (x)) ⊃ Fly(x), ∀x.(Bird(x) ∧ ¬AbN (x)) ⊃ Nest(x)}
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and
{∀x.(Bird(x) ∧ ¬AbFN (x)) ⊃ (Fly(x) ∧Nest(x))}.

In particular, if one knows of a bird that it doesn’t fly, the former theories would
allow one to conclude that it nonetheless builds nests. The overall observation
then is that a default, as an instrument for inference, is a syntactic notion;
“logically equivalent” sets of defaults may give different default conclusions.
Again, this is as things should be.

We next examine this distinction with respect to how approaches to default
reasoning address first-order issues.

3.1.1 Defaults and First-Order Concerns

We can observe that virtually all approaches to default reasoning have problems
(or at least a certain awkwardness) in the first order case. Indeed, first-order
issues are often ignored (with the possible exception of circumscription) in that
defaults are usually expressed in a propositional language, as

Bird :Fly
F ly or (Bird ∧ ¬AbF ) ⊃ Fly or

Bird |∼Fly or Bird⇒ Fly

It is unclear what is meant in these cases, unless a default is understood as
applying to a specific individual. That is, the rule Bird :Fly

F ly only makes sense if

Bird is regarded as standing for x-is-a-Bird for understood individual x (and
similarly for Fly). Indeed, in the literature, this is just how such propositional
glosses are taken, with the understanding that first-order issues are orthogonal
to whatever a particular paper at hand is about.

In Default Logic and circumscription, there is no problem expressing a de-

fault in first-order terms. Thus in Default Logic, one can write Bird(x) :Fly(x)
Fly(x) .

This rule applies to instances only, and so can be regarded as a rule schema,
standing for the set of its ground instances. This has been a point of criticism
of Default Logic in the past. However, given the distinction between default
assertions and default inference, such a criticism, at least with regards to rea-
soning about default properties, seems misplaced: Default Logic has nothing to
say about a default as an assertion (i.e. default rules are not things that can be
true or false) but rather solely concerns inference; as we suggest below, default
inference is most appropriately regarded as involving individuals. Similarly, in
circumscription we can write ∀x.(Bird(x) ∧ ¬AbF (x)) ⊃ Fly(x). Hence every
bird, except for known exceptions, flies. As an assertion about the world, this
is clearly false,10 unless one is talking about a constrained domain such as the
birds at some zoo. Nonmonotonic inference relations on the other hand have
representational problems in the first-order case, since if the symbol |∼ stands
for an inference relation, it is not clear what an expression Bird(x) |∼Fly(x)
would mean. In particular, there is no formal relation between the occurrences
of free variable x on either side of the |∼ symbol, although informally there is.

10In this regard then, the circumscription of such a formula has the same epistemic flavour
as autoepistemic logic, in that it appears to talk about individuals not known to be excep-
tional.
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On the other hand, in a conditional logic, since a default is part of the
object language, there is no problem in adding quantification. However, it
is not immediately clear how semantically this should be carried out. Some-
thing like ∀x.Bird(x) ⇒ Fly(x) is problematic [Delgrande, 1998]; as well, in-
tuitively this formula doesn’t seem to capture the idea that birds fly since,
among other things, for any bird x it isn’t the case that x normally flies (a
penguin doesn’t for example). To address issues concerning quantification and
modalities, [Delgrande, 1998] suggests that the conditional connective ⇒ be a
variable-binding operator, and so our canonical example would be expressed
Bird(x)⇒x Fly(x).

Yet another alternative is to embrace concepts as objects in a domain of
discourse, and declare that B ⇒ F is a formula in some logic of concepts. Since
the area of description logics can be seen as addressing (monotonic) logics of
concepts, a possible course of action is to define a description logic for defaults.
A goal then would be to define a suitable notion of “default subsumption”,
writing something like Bird vd Fly. However, in these cases we are back to
regarding defaults as assertions, and so inference regarding individuals would
be a separate issue.

So to conclude this subsection, we suggested previously that defaults are ex-
pressed at a level independent of individuals, and that inferences about defaults
are similarly independent of individuals. Moreover, defaults concern open do-
mains, that is they encompass all past, present, future, and possible individuals.
On the other hand, default inference concerns specific individuals, and, putting
it more strongly, default inference involves reasoning about a specific individual
or individuals. Thus, the argument: “Adults are normally employed; therefore
adults are normally employed or happy” is independent of any particular indi-
vidual. A default conclusion about (adult) Chris is a different matter and is
on a different level. Otherwise, if these levels are conflated, this can lead to
undesirable conclusions such as the example from circumscription “every bird
except for the known exceptions flies”.

It can be observed that this is exactly the same situation that one has
in databases. Thus for example a relation schema is defined prior to there
being any database instances, and integrity constraints provide general con-
straints, and are also expressed independently of a database instance. Query-
ing a database involves reasoning about individuals, in that for a simple query,
a set of instances satisfying the query is returned.

3.2 Defaults: Rules vs. Conditionals

If we consider default inference, there are two distinct interpretations of a
default with respect to its applicability. On the one hand, applying a default
can be regarded as employing something like a defeasible rule of inference.
Default logic falls into this category and, indeed, defaults in Default Logic
have been referred to as “domain specific rules of inference”. Hence if one
knows that an individual is a bird then, lacking information to the contrary,
one concludes that it flies. If one knows of an individual that it does not fly,
then nothing can be concluded about birdhood.
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On the other hand, applying a default can be regarded as reasoning with
a weak or defeasible material conditional. Circumscription is in this category;
for a formula such as (Bird ∧ ¬AbF ) ⊃ Fly, if circumscribing yields that AbF
is false, then one ends up effectively with a material conditional Bird ⊃ Fly
which, if Bird is true, allows one to deduce Fly. And if one knows that ¬Fly
is true, one can conclude ¬Bird. Without going into details, the standard
way of closing a (rational) nonmonotonic inference relation, given by the ratio-
nal closure, also exhibits material-conditional-like behaviour in the absence of
exceptional conditions as does, for example, conditional entailment.

Both interpretations have received criticisms or can be shown to lead to
unfortunate properties. For example, in the case of Default Logic, one cannot
reason by cases: given that birds normally fly, as do bats, and given that an
individual is either a bird or bat, one cannot conclude that it flies. However,
approaches that behave like weak material conditionals also have difficulties.
Consider the defaults that if someone gets a salary increase then they’re nor-
mally happy, and if they break their leg then they’re not happy; also assume
that Chris gets a salary increase. In a circumscriptive abnormality theory this
can be expressed as follows:

∀x.(Raise(x) ∧ ¬AbR(x)) ⊃ Happy(x),

∀x.(BreakLeg(x) ∧ ¬AbB(x)) ⊃ ¬Happy(x),

Raise(chris)

Given nothing else, we conclude ¬BreakLeg(chris). This is clearly an unde-
sirable consequence. We get similar problems with the rational closure, condi-
tional entailment, and other such approaches.11 This last example also appears
to be fatal. In circumscription, for example, it is not at all clear how this be-
haviour can be blocked, or even if it can be blocked. Consequently, we take
this example as being decisive and so accept that:

With respect to defaults, inference is rule-like and not (material)
conditional-like.

4 Defaults as Näıve Scientific Theories

The conclusion of the previous section is problematic: Most approaches to
default reasoning fall into the weak-material-conditional category and those
that don’t, namely Default Logic and related systems, provide only a basic
mechanism for inference that does not reflect how one would wish to reason
with defaults. This then suggests that it would be instructive to first study
the phenomena modelled by approaches to defaults – that is, consider what it
is in the world that’s being represented, and then use such a study to drive

11A possible rejoinder is that such approaches are not intended to be used for reasoning
about normality properties of individuals. Such a rejoinder is well taken. However, differ-
ent approaches may nevertheless be examined with respect to their overall applicability in
different situations.
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a study of what constitutes desirable default inferences. To this end, in this
section I argue that defaults are best regarded as statements in a näıve scientific
theory. (For an excellent discussion, see [Putnam, 1975].) From this I argue
that relevance is the key notion needed to formalise default inference.

4.1 What is a Default?

Assume that we live in a Newtonian universe, and consider the following asser-
tion.

Example 1 Planets move in ellipses.

In our Newtonian universe, this statement would be accepted as true. However,
on the other hand, no planet would ever be observed to move in an ellipse.
Rather, if one plotted the path of a planet, it would be observed to more or
less follow an ellipse. If asked about this discrepancy, an astronomer would
excuse the error by saying that the measuring instruments weren’t exact, or
that there was atmospheric interference, or that there were other bodies whose
gravitational influence needed to be taken into account, or some such conditions
interfered with the observations. If pressed, the astronomer might assert that
if the universe consisted only of a star and its orbiting planet, only then would
the planet would move in a perfect ellipse. Nevertheless (back in the real
world), the statement “planets move in ellipses” is nonetheless useful: it can
be accepted as true, in that any deviation from an ellipse can be explained in
principle by other real or hypothesised bodies, instrument errors, etc. Moreover
the statement has predictive value: the orbit of the moon can still be calculated
very accurately, and in fact deviations in Uranus’ orbit led to the discovery of
Neptune.

“Planets move in ellipses” is clearly a scientific assertion, and can be con-
sidered as part of a näıve scientific theory, in that it is a qualitative outcome
of a more precise expression (using the inverse square law of gravitation) of an
underlying theory. As well, it clearly has the flavour of a default.

Consider the next example:

Example 2

1. Brass doorknobs disinfect themselves of bacteria within eight hours.

2. Copper conducts electricity.

3. Copper has atomic number 29.

The first statement certainly sounds like a default, as does the second. Both
in fact are true12 though both allow exceptions. Copper wire immersed in water
does not conduct electricity, for example. However, the third statement is quite
different in character. In particular, it is definitional, and specifies an essential
property of copper. (Thus a mass of atoms each with atomic number 28 isn’t
an exceptional chunk of copper; rather it is nickel.) In fact, the properties of

12Brass is a copper compound and copper has germicidal properties.
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copper can be determined or justified via its atomic structure. That is, atomic
structure allows a precise definition of an element, and this can be used to give
an account of the previous default statements.

So arguably, a default such as “birds fly” is an assertion in a näıve scientific
theory, the same way that “copper conducts electricity” is. Similarly, “birds
fly” asserts that in some sense flight is part of the meaning of bird. Or, phrased
differently, if we had a complete theory of birds, we could exactly account for
flight as a property of birds. Note that, by this account, it is possible for “birds
fly” to be true, while no existing bird in fact flies. So while this provides a
means of determining the meaning of “birds fly”, it has nothing to say about
default inference.

4.2 Representing Defaults

The previous section raises the question: how does one reason about sentences
in a “näıve scientific theory”? Arguably there is already a logic for defaults,
given by the so-called “conservative core” [Pearl, 1989] and (re)discovered by
various researchers or appearing under different guises, see [Adams, 1975, Pearl,
1988, Kraus, Lehmann, and Magidor, 1990, Lamarre, 1991, Boutilier, 1992,
Dubois, Lang, and Prade, 1994], among others. This also is the system of
preferential reasoning [Kraus et al., 1990] referred to earlier with respect to
nonmonotonic inference relations. In the version described here, a (weak) con-
ditional operator ⇒ is introduced into propositional logic, as we’ve already
seen. The operator⇒ is a binary modal operator, and its semantics is given in
terms of a standard Kripke structure, where the accessibility relation is given
by a preorder over possible worlds. This preorder reflects a notion of relative
normality between possible worlds. Then, informally, α⇒ β is true at a world,
just if β is true at all least α worlds. The intuition then is that α⇒ β is true
at a world, just if, looking at the “most normal” α worlds, β is true at all these
worlds. Hence “birds fly” is true just if in the least exceptional worlds (and
so ignoring things like being a penguin, having a broken wing, etc.) in which
there are birds, birds fly. Formally there is little to add:13

Sentences are interpreted in terms of a model M = 〈W,≤, P 〉 where:

1. W is a set (of possible worlds),

2. the accessibility relation ≤ ⊆ W ×W is transitive and reflexive, and

3. P : P 7→ 2W .

Truth conditions for the standard connectives are as in propositional logic,
while for the weak conditional we have:

|=M
w α⇒ β iff: for every w1 ∈ min(α,≤) we have w1 |= β

13The point in providing a sketch of a formal development isn’t necessarily to establish a
definitive logic for defaults; while it (or a slightly stronger logic) is the accepted account, it
is possible that someone will come along with a superior account of defaults. If this were the
case then the discussion here would remain unchanged.

15



where min(α,≤) is the set of least worlds according to ≤ in which α is true.
So based on this and the previous discussion, we can regard a default as

a counterfactual normative statement. That is “birds fly” can be interpreted
as, “for any individual bird x, in the most normal of possible affairs, x would
fly” or “if x were a normal bird, then x would fly”. One can then make a
nonmonotonic inference by assuming that, given a set of defaults, states of
affairs are ranked as normal as consistently possible with those defaults, and
that given contingent information, the actual world is among those ranked least
in which the contingent information is true.14

The difficulty is that this doesn’t quite work for inference. Thus, given that
one agrees that a normal bird flies, has feathers, builds a nest, etc. then if one
knows only that an individual is a bird, then indeed it will be concluded that
the individual flies, has feathers, builds a nest, etc. A problem arises however
if one knows that an individual bird does not fly. Then this individual can’t
be a normal bird, and so one can’t use the default that normal birds build
nests. This suggests that nonmonotonic inference based on a notion of strict
minimality of worlds, based in turn on aggregated normality information, is
not entirely appropriate for inference involving defaults. The next subsection
proposes an alternative.

4.3 Reasoning with Defaults of Normality

Consider again näıve scientific theories, and consider a length x of copper wire.
We would conclude that x conducts electricity if

1. we had no further information;

2. we knew only that it was mined at Copper Mountain;15 or

3. we knew only that it had bends in it.

We would not conclude that x conducts electricity if

1. we tested it and it didn’t conduct electricity;

2. we knew it had significant impurities; or

3. it was immersed in water.

Thus, for limiting cases, if all we knew was that the antecedent of a default
were true then we would apply the default; if we knew that the consequence
were false, we would not apply it. Otherwise, one might note that the location
where the wire was mined and the fact it has bends are irrelevant with respect
to conducting electricity, while the presence of impurities and water are clearly
relevant. So essentially we want to say of x that it conducts electricity if there
is nothing known that is relevant to it not conducting electricity. This indicates

14In fact this is a sketch of the intuitions underlying [Pearl, 1990]. The rational closure
[Lehmann and Magidor, 1992] is founded on differing intuitions, though in a strong sense the
same inferences are obtained. [Lehmann and Magidor, 1992, p. 28] also suggests that “any
reasonable system should endorse any assertion contained in the rational closure”.

15in southern British Columbia, Canada where indeed copper is mined.
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that a theory of relevance (or perhaps reasons [Horty, 2010]) is the appropriate
notion needed for default inference.

Relevance An incorporation of relevance represents a shift in how defaults
would be handled. Previously, for default α ⇒ β (or nonmonotonic inference
relation α |∼β), default inference was effected by assuming that the present
state of affairs was as normal as consistently possible. Thus if one knew of an
individual only that it was a bird, then one would conclude by default that it
flies. If one knew also that it didn’t build nests, then the normality assumption
would no longer hold (since a non-nest-building bird isn’t normal) and so either
one would lose the inference about flying, or else it would have to be restored
by other means, such as the lexicographic closure [Benferhat, Cayrol, Dubois,
Lang, and Prade, 1993, Lehmann, 1995].

Relevance on the other hand appears most naturally, at least in this context
[Delgrande and Pelletier, 1998], to be a ternary relation: one might say for
example that having a broken wing is relevant to a bird flying. Intuitively, a
default α ⇒ β provides a means of concluding β from α. Roughly, one would
want to say that β can be concluded on the basis of α if there is nothing
blocking the inference, or if there is no reason that the inference should be
blocked, or if there is nothing relevant that would lead one to not draw the
conclusion given in the consequent.

It might seem that this line of intuitions ultimately leads back to circum-
scriptive abnormality theories perhaps, or consistency conditions as found in
Default Logic. Thus, so the argument might run, in an abnormality theory one
says that a bird flies unless it is in some fashion abnormal with respect to flight
and surely (so the argument might run) this is just another way of saying that
there is no known reason for it to not fly, or there is nothing relevant known
concerning flight. While it is true that things could be phrased in terms of
abnormality (or, for that matter, consistency), there is a big difference: we
are now working within a logic of conditionals, and not an augmentation of
classical logic.

Consider how we might formalise a notion of relevance toward default in-
ference. In outline, one wants to say something like:

Informal Definition:

Given: a set of defaults T and facts F .

Conclude β by default if:

1. There is α⇒ β where T |= α⇒ β and F |= α.

2. If T |= γ ⇒ ¬β where F |= γ then T ∪ F |= α ⊃ γ.

The informal definition says that β can be concluded if

1. there is a reason to do so, and

2. there is nothing relevant blocking the inference.
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Consider where we have the defaults that birds fly, animals do not fly, and
birds with broken wings don’t fly, along with the fact that birds are animals:

Bird⇒ Fly, Animal⇒ ¬Fly,

Bird ∧BrokenWing ⇒ ¬Fly, �(Bird ⊃ Animal)

If we are given that an individual is a bird (α in the informal definition), then
we will conclude that it flies (β). Although the individual is also an animal (γ)
and animals don’t fly, the notion of being a bird is more specific than that of
being an animal (i.e. F |= α ⊃ γ). On the other hand, if the bird has an injured
wing, then clearly there is relevant information (viz. γ = Bird∧BrokenWing)
as to why it does not fly by default.

Relevance: Other Conditionals In the previous section, we described the
“standard” logic of defaults, given as a specific conditional logic. This logic is
but one of a large family of conditional logics, where conditional logics have
been used also to formalise notions including counterfactuals, deontics, hypo-
theticals, causality, etc. [Lewis, 1973, Chellas, 1980, Nute, 1984]. Although such
notions haven’t received the attention of normality defaults, it seems clear that
one can reason by default in any such logic. Thus, for example, if one should
not speed when driving a car, but that it is permissible to speed if it allows
one to avoid an accident, then if in fact one is driving then it is a reasonable
conclusion, all other things being equal, that one should not speed.

As well, a notion of relevance seems equally pertinent in reasoning with
these other conditionals. Thus although in general one should not speed, but
one may speed if speeding allows one to avoid an accident, then avoiding an
accident is a relevant factor in determining how fast one may drive. On the
other hand, the colour of one’s car is not relevant, and the fact that one is
late for an appointment should not be relevant. This suggest that relevance
is the appropriate mechanism for weak conditionals and default inference in
general. As well, it seems that a general account of relevance may lead to
a satisfactory account for default reasoning, as well as defeasible reasoning
with counterfactuals, deontics, causality, etc. Last, it can be noted that the
informal definition given above is expressed independently of any specific logic,
and so an overarching account of relevance (as a ternary relation with respect
to weak conditionals) may provide a unifying framework for an extended notion
of defeasible reasoning.

5 Conclusion

This paper has examined the notion of (normality) defaults in nonmonotonic
reasoning. We noted that early work, as exemplified by Default Logic and cir-
cumscription, focussed on developing inference mechanisms and then on using
such mechanisms to try to suitably encode reasoning with defaults. Similar
remarks apply to subsequent work, represented by applications of nonmono-
tonic inference relations and conditional logics to defaults, even though such
work began with a semantic account of defaults. Since no extant approach
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satisfactorily captures default reasoning, we suggested that a suitable strat-
egy is to step back and consider first the phenomenon that is being modelled,
that is, determining what a default such as “birds fly” means. This requires
distinguishing the representation (or assertion) of a default from an inference
involving the application of the default. The former is either true of false, while
the latter is (in the case of defaults) rational or not rational.

Along the way, I suggested or noted that:

1. A default is essentially a semantic notion, in that a default or set of de-
faults can be replaced by logically equivalent defaults without altering the
meaning of the theory. Default inference on the other hand is syntactic,
in that replacing a set of defaults with an equivalent set of defaults may
result in different default conclusions.

2. A general first-order default, as a proposition, is independent of specific
individuals and applies to open domains. Default reasoning on the other
hand concerns inference of properties of individuals. Thus, “birds fly” is
expressed independently of any individual, but default inference concerns
specific individuals. Reasoning about a population as a whole is best
approached at the level of reasoning about defaults. Mixing these two
levels yields conclusions such as “every bird except known exceptions
flies”.

This split is analogous to that in database systems where the database
schema and integrity constraints corresponds to defaults (along with other
general information concerning a domain), while querying a database in-
stance corresponds to default reasoning about individuals over contingent
information.

3. Default reasoning is analogous to reasoning with a rule, not a version
of a weak (material) conditional. This suggests that we have a ways to
go with respect to getting the inferences right, since most approaches to
default inference are closer to the weak-(material-)conditional interpre-
tation. This latter group includes approaches using circumscription, as
well as conditional entailment, and the rational closure and related ap-
proaches. Default Logic obviously involves rules, but in this case one has
a general inference mechanism only, but where there is little connection
between the inference mechanism and how one might want to reason with
defaults.

I argued that an appropriate theory of defaults involves adopting (or speci-
fying) an appropriate conditional logic for representing normality defaults. This
logic might well be provided by the so-called “conservative core”, or a slightly
stronger variant given by a conditional logic based on a notion of normality
reflected by a total preorder over possible worlds.16

Given such a logic, one can then ask What are the principles that justify
a default inference? For normality defaults, default inference hinges on a for-
malisation of relevance or reasons. As well, this notion of founding default

16And so corresponding to the rational systems of [Lehmann and Magidor, 1992].
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inference on relevant properties also appears applicable to the full range of
conditional logics, and so applicable to approaches for reasoning with counter-
factuals, norms, deontics, causality, etc.
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