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Beliefs, Belief Revision, and Noisy Sensors
JAMES DELGRANDE

ABSTRACT. In logical AI, an agent’s beliefs are typically categorical, in that they
are specified by a set of formulas. An agent may change its beliefs as a result of be-
ing informed in one fashion or another about some aspect of the world, or following
the execution of some action. The areas of belief revision and reasoning about action
deal with just such change in belief. However, most information about the real world
is not categorical. While there are well-established accounts for accommodating non-
categorical information via probability theory, it is worth asking whether probabilistic
information may be reconciled with the logical accounts of belief change. We present
such an account in this paper. An agent receives uncertain information as input and its
probabilities, expressed as probabilities on possible worlds, are updated via Bayesian
conditioning. A set of formulas among the (noncategorical) beliefs is identified as the
agent’s (categorical) belief set. This set is defined in terms of the most probable worlds
such that the summed probability of these worlds exceeds a given threshold. The effect
of this updating on the belief set is examined with respect to its appropriateness as a
revision operator. It proves to be the case that a subset of the classical AGM belief revi-
sion postulates are satisfied. Most significantly, the success postulate is not guaranteed
to hold. However it does hold after a sufficient number of iterations. Not is it the case
that in revising by a formula consistent with the agent’s beliefs, revision corresponds to
expansion. On the other hand, limiting cases of the presented approach correspond to
specific approaches to revision that have appeared in the literature.

It is a great pleasure to dedicate this paper to Hector Levesque on the occasion of his
60th birthday. While Hector’s work has broadly focussed on representational aspects of
an agent’s beliefs together with accounts of reasoning – whether epistemic, nonmonotonic,
limited, in a theory of action, or otherwise – it has certainly touched on many other areas
over the years. This paper outlines a possible linking of two such areas, that of reasoning
about noisy sensors on the one hand [Bacchus, Halpern, and Levesque 1999], and revision
in the presence of (categorical) observations on the other [Shapiro, Pagnucco, Lespérance,
and Levesque 2011].

1 Introduction
In logical AI, an agent is generally regarded as holding, or believing, some set of formulas
to be true. As well, an agent’s knowledge of a domain will most often be incomplete and
inaccurate. Consequently, an agent must change its beliefs in response to receiving new
information. Belief revision addresses the problem of how an agent may incorporate a new
formula into its set of beliefs. That is, the the agent has some set of beliefs K which are
accepted as holding in the domain of application, and the agent is given a new formula φ
which it is to incorporate into the set of beliefs. If φ is consistent but conflicts with K,
some beliefs will have to be dropped from K before φ can be added. The original and best-
known approach to belief revision is called the AGM approach [Alchourrón, Gärdenfors,
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and Makinson 1985; Gärdenfors 1988], named after the developers of this framework.
Subsequently, the area of belief revision has developed into an active area of research in
KR&R [Peppas 2007].

However, information about the world is often not categorical, but is received only with
a certain level of confidence. For example, an agent may make observations about the
world via sensors, but such sensors may be inaccurate or may provide incorrect informa-
tion. There are of course approaches for modifying an agent’s beliefs in such a situation,
most obviously via probability theory and using Bayesian conditioning (e.g. [Pearl 1988]).
However, in this case formulas are held with attached (subjective) probabilities, and are not
generally held as being absolutely true or false.

In one sense, these approaches seem to be addressing the same problem, since they
both consider the change in an agent’s beliefs in the presence of new information. Yet
the approaches also seem to be quite different. In the case of belief revision, an agent
accepts a certain set of beliefs as categorically holding, and another categorical belief is to
be consistently incorporated into this set. This approach is essentially qualitative, since the
sentences making up the agent’s knowledge base are (simply) believed to be true. In the
case of updating via Bayesian conditioning, beliefs are generally not held with certainty,
but rather with varying levels or degrees of confidence. The task then is to modify these
degrees of confidence, expressed as probabilities, as new evidence is received. Hence this
approach is fundamentally quantitative.

This division into qualitative and quantitative approaches to belief represents two fun-
damentally different ways of dealing with uncertain information, often referred to as the
logicist and probabilist camps. The distinction can be paraphrased as concerning on the
one hand those approaches that adopt a proposition as holding, but hedged in the sense that
one is prepared to give it, as opposed to accepting a proposition in a hedged fashion, in that
it isn’t held with certainty but just with some level of confidence [Kyburg 1994].

However, it can also be observed that categorical beliefs arise from noncategorical,
hedged claims: in fact, it can be argued that none of our knowledge about the world is
certain, yet we often – perhaps most often – act as if it were. Hence, not only do people act
assuming that the sun will rise tomorrow, they will usually act as if their car is guaranteed
to be where they parked it. Consequently, it is an interesting question to ask how one may
move from a noncategorical account of a domain to a categorical account. As alluded to
above, Kyburg, among others, has been occupied with this question. In this paper we take a
different tack and ask whether an underlying non-categorical approach, based on subjective
probabilities, may have something to say about the categorical approach of belief revision.
That is, evidence about the real world is generally uncertain, and it is of interest to examine
how such a setting may be reconciled with the assumptions underlying belief revision.

We begin with a simple model of an agent’s beliefs, in which probabilities are asso-
ciated with possible worlds which in turn characterise the agent’s subjective knowledge.
The agent’s accepted, categorical beliefs are characterised by the set of worlds with high-
est probability such that the sum of the probabilities over those worlds exceeds a certain
threshold. As new, uncertain information is received, the probabilities attached to worlds
are modified and the set of accepted beliefs consequently changes. One can then examine
the dynamics of these accepted beliefs to see how it accords with accounts of belief revi-
sion. Perhaps not surprisingly, only a subset of the AGM revision postulates are satisfied.
Most notably, if a formula φ is received with an attached probability, it does not necessarily
appear among the set of accepted beliefs. However, it proves to be the case that after some
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number of iterations of revision by φ, φ will come to be believed. This makes intuitive
sense: if one is informed of a formula with probability > .5, one may still not immediately
believe φ. However after repeated such reports one eventually accepts the formula. We
also examine variants of the approach. It proves to be the case that two extant approaches
to belief revision are closely related to instances of the approach developed here.

The next section reviews background material. Section 3 reviews the updating of proba-
bilities first, by way of motivation, in terms of formulas and second in terms of probabilities
on possible worlds. The following section motivates and defines the notion of epistemic
state as used in the paper. Section 5 describes belief revision in this framework, including
properties of the resulting revision operator and a comparison to related work. Section 6
gives a brief summary.

2 Background
2.1 Formal Preliminaries
Let P = {a, b, . . .} be a finite set of atomic sentences, and let L be the language over P
closed under the usual connectives ¬, ∧, ∨, and ⊃. The classical consequence relation is
denoted `; Cn(A) is the set of logical consequences of a formula or set of formulas A; that
is Cn(A) = {φ ∈ L | A ` φ}. > stands for some arbitrary tautology and ⊥ is defined
to be ¬>. Given two sets of formulas A and B, A + B denotes the expansion of A by B,
that is A + B = Cn(A ∪B). Expansion of a set of formulas A by a formula φ is defined
analogously. Sentences φ and ψ are logically equivalent, φ ≡ ψ, iff φ ` ψ and ψ ` φ.
This also extends to sets of formulas. A propositional interpretation (or possible world)
is a mapping from P to {true, false}. The set of interpretations of L is denoted WL.
A model of a sentence φ is an interpretation w that makes φ true according to the usual
definition of truth, and is denoted by w |= φ. We also write W |= φ if w |= φ for every
w ∈ W . Mod(A) is the set of models of the set of formulas A. Mod({φ}) is also written
as Mod(φ). For W ⊆ WL, we denote by T (W ) the set of sentences which are true in all
elements of W ; that is T (W ) = {φ ∈ L | w |= φ for every w ∈W}.

A total preorder � is a reflexive, transitive binary relation, such that either w1 � w2

or w2 � w1 for every w1, w2. As well, w1 ≺ w2 iff w1 � w2 and w2 6� w1. w1 = w2

abbreviatesw1 � w2 andw2 � w1. Given a set S and total preorder� defined on members
of S, we denote by min(S,�) the set of minimal elements of S in �.

Let ρ :WL 7→ [0, 1] be a function such that 0 ≤ ρ(w) ≤ 1 and
∑
w∈WL

ρ(w) = 1. ρ is a
probability assignment to worlds. We distinguish the function ρ> where ρ>(w) = 1

|WL| for
every world w, and we use ρ⊥ to denote the (non-probability) assignment where ρ⊥(w) =
1 for every world w. ρ> can be used to characterise a state of ignorance for an agent, while
ρ⊥ is a technical convenience that will be used to characterise an inconsistent set of beliefs.
Mention of probability assignments will include ρ⊥ as a special case. These functions are
extended to subsets of WL by, for W ⊆ WL, ρ(W ) =

∑
w∈W ρ(w). Informally, ρ(w)

is the (subjective) probability that, as far as the agent knows, w is the actual world being
modelled; and for W ⊆ WL, ρ(W ) is the probability that the real world is a member of
W . As will be later described, the function ρ can be taken as comprising the major part
of an agent’s epistemic state [Darwiche and Pearl 1997; Peppas 2007]. The probability of
a formula φ then is given by: Prρ(φ) =

∑
w|=φ ρ(w) = ρ(Mod(φ)). Conditional

probability is defined, as usual, by Prρ(φ|ψ) = Prρ(φ ∧ ψ)/Prρ(ψ) and is undefined
when Prρ(ψ) = 0.
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2.2 Belief revision
The AGM approach [Gärdenfors 1988] provides the best-known approach to belief revi-
sion. Belief change is described at the knowledge level, that is on an abstract level, inde-
pendent of how beliefs are represented and manipulated. An agent’s beliefs are modelled
by a set of sentences, or belief set, closed under the logical consequence operator of a
logic that includes classical propositional logic. Thus a belief set K satisfies the constraint:
φ ∈ K if and only if K ` φ. K can be understood as a partial theory of the world. K⊥ is
the inconsistent belief set (i.e. K⊥ = L).

In the revision of K by a formula φ, the intent is that φ is to be incorporated into K so
that the resulting belief set is consistent whenever φ is consistent. If φ is inconsistent with
K, revision will require the removal of beliefs from K in order to retain consistency. In
this approach, revision is a function from belief sets and formulas to belief sets. However,
various researchers have argued that it is more appropriate to consider epistemic states
(also called belief states) as objects of revision. An epistemic state K includes information
regarding how the revision function itself changes following a revision. The belief set
corresponding to belief state K is denoted Bel(K). As well, we will use the notation
Mod(K) to mean Mod(Bel(K)). Formally, a revision operator ∗ maps an epistemic state
K and new information φ to a revised epistemic stateK∗φ. Then, in the spirit of [Darwiche
and Pearl 1997], the AGM postulates for revision can be reformulated as follows:

(K ∗ 1) Bel(K ∗ φ) = Cn(Bel(K ∗ φ))

(K ∗ 2) φ ∈ Bel(K ∗ φ)

(K ∗ 3) Bel(K ∗ φ) ⊆ Bel(K) + φ

(K ∗ 4) If ¬φ /∈ Bel(K) then Bel(K) + φ ⊆ Bel(K ∗ φ)

(K ∗ 5) Bel(K ∗ φ) is inconsistent, only if 0 ¬φ

(K ∗ 6) If φ ≡ ψ then Bel(K ∗ φ) ≡ Bel(K ∗ ψ)

(K ∗ 7) Bel(K ∗ (φ ∧ ψ)) ⊆ Bel(K ∗ φ) + ψ

(K ∗ 8) If ¬ψ /∈ Bel(K ∗ φ) then Bel(K ∗ φ) + ψ ⊆ Bel(K ∗ (φ ∧ ψ))

The postulates express very basic properties for revision. Thus, the result of revising K
by φ is an epistemic state in which φ is believed in the corresponding belief set ((K ∗ 1),
(K ∗ 2)); whenever the result is consistent, the revised belief set consists of the expansion
of Bel(K) by φ ((K ∗ 3), (K ∗ 4)); the only time that Bel(K) is inconsistent is when φ
is inconsistent ((K ∗ 5)); and revision is independent of the syntactic form of the formula
for revision ((K ∗ 6)). The last two postulates state that whenever consistent, revision by a
conjunction corresponds to revision by one conjunct and expansion by the other.

Various constructions have been proposed to characterise belief revision. Katsuno and
Mendelzon [1991] have shown that a revision can be characterised in terms of a total pre-
order on the set of possible worlds. For epistemic state K, a faithful ranking on K is a total
preorder �K on the possible worlds WL, such that for any possible worlds w1, w2 ∈WL:

1. If w1, w2 |= Bel(K) then w1 =K w2

2. If w1 |= Bel(K) and w2 6|= Bel(K), then w1 ≺K w2
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Intuitively, w1 �K w2 if w1 is at least as plausible as w2 according to the agent. The
first condition asserts that all models of the agent’s knowledge are ranked equally, while
the second states that the models of the agent’s knowledge are lowest in the ranking. It
follows directly from the results of [Katsuno and Mendelzon 1991] that a revision operator
∗ satisfies (K ∗ 1)–(K ∗ 8) iff there exists a faithful ranking �K for an arbitrary belief state
K, such that for any sentence φ:

Bel(K ∗ φ) =
{
L if ` ¬φ
T (min(Mod(φ),�K)) otherwise

Thus when φ is satisfiable, the belief set corresponding toK∗φ is characterised by the least
φ models in the ranking �K.

The AGM postulates do not address properties of iterated belief revision. This has led
to the development of additional postulates for iterated revision; the best-known approach
is that of Darwiche and Pearl [1997]. They propose the following postulates, adapted
according to our notation:

C1 If ψ ` φ, then Bel((K ∗ φ) ∗ ψ) = Bel(K ∗ ψ)

C2 If ψ ` ¬φ, then Bel((K ∗ φ) ∗ ψ) = Bel(K ∗ ψ)

C3 If φ ∈ Bel(K ∗ ψ), then φ ∈ Bel((K ∗ φ) ∗ ψ)

C4 If ¬φ /∈ Bel(K ∗ ψ), then ¬φ /∈ Bel((K ∗ φ) ∗ ψ)

Darwiche and Pearl show that an AGM revision operator satisfies each of the Postulates
(C1)–(C4) iff the way it revises faithful rankings satisfies the respective conditions:

CR1 If w1, w2 |= φ, then w1 �K w2 iff w1 �K∗φ w2

CR2 If w1, w2 6|= φ, then w1 �K w2 iff w1 �K∗φ w2

CR3 If w1 |= φ and w2 6|= φ, then w1 ≺K w2 implies w1 ≺K∗φ w2

CR4 If w1 |= φ and w2 6|= φ, then w1 �K w2 implies w1 �K∗φ w2

Thus postulate (C1) asserts that revising by a formula and then by a logically stronger for-
mula yields the same belief set as simply revising by the stronger formula at the outset.
The corresponding semantic condition (CR1) asserts that in revising by a formula φ, the
relative ranking of φ worlds remains unchanged. The other postulates and semantic con-
ditions can be interpreted similarly. Subsequently, other approaches for iterated revision
have been proposed, including [Boutilier 1996; Nayak, Pagnucco, and Peppas 2003; Jin
and Thielscher 2007]. While interesting, we do not consider them further since they add
little to the exposition.

2.3 Related Work
In probability theory and related approaches, there has of course been work on incorpo-
rating new evidence to produce a new probability distribution. The simplest means of
updating probabilities is via conditionalisation: If an agent holds φ with probability q, and
so Pr(φ) = q, and the agent learns ψ with certainty, then one can define the updated
probability Pr′(φ) via

Pr′(φ) = Pr(φ|ψ) = Pr(φ ∧ ψ)/Prρ(ψ).
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Of course an agent may not learn ψ with certainty, but rather may change its probability
assignment to ψ from Pr(ψ) to a new value Pr′(ψ). The question then is how probabilities
assigned to other variables should be modified. Jeffrey [1983] proposes that for proposition
φ, the new probability should be given by what has come to be known as Jeffrey’s Rule for
updating probabilities:

Pr′(φ) = Pr(φ|ψ)Pr′(ψ) + Pr(φ|¬ψ)Pr′(¬ψ).

So Pr′(ψ) = q means that the agent has learned that the probability of ψ is q. In particular,
if the probability of ψ is further updated to Pr′′(ψ) but it turns out that Pr′′(ψ) = Pr′(ψ),
then the distributions Pr′ and Pr′′ will coincide.

This is orthogonal to our goals here. Instead, we are interested in the case where we have
some underlying proposition, say that a light is on, represented by on, and we are given an
observation Obson, where Obson has an attached probability. Then if the agent receives
repeated observations that the light is on, the agent’s confidence that on is true will increase
with each positive observation. Details are given in the next section; the main point here is
that Bayes’ Rule will be more appropriate in this case, where Bayes’ Rule is given by:

Pr(φ|ψ) = Pr(ψ|φ)Pr(φ)/Pr(ψ).

Previous research dealing with the intersection of belief revision and probability is gen-
erally concerned with revising a probability function. In such approaches, an agent’s belief
set K is given by those formulas that have probability 1.0. These formulas with probability
1.0 are referred to as the top of the probability function. For a revision K ∗φ, the probabil-
ity function is revised by φ, and the belief set corresponding to K ∗ φ is given by the top
of the resulting probability function. So such approaches allow the characterisation of not
just the agent’s beliefs, but also allow probabilities to be attached to non-beliefs. As will
be subsequently described, this is in contrast to the present approach, in which an agent’s
categorical beliefs will generally have probability less than 1.

One difficulty with revising probability functions is the non-uniqueness problem, that
there are many different probability functions that have K as their top. Lindström and
Rabinowicz [1989] consider various ways of dealing with this problem. Boutilier [1995]
considers the same general framework, but rather focuses on issues of iterated belief re-
vision. However the approach described herein addresses a different problem: a means
of incorporating uncertain information into a given probability function is assumed, and
the question addressed is how such an approach may be reconciled with AGM revision, or
alternatively, how such an approach may be considered as an instance (or proto-instance)
of revision. To this end, Gärdenfors [1988, Ch. 5] has also considered an extension of the
AGM approach to the revision of probability functions; we discuss this work in detail after
our approach has been presented.

With respect to qualitative, AGM-style belief revision, the approach at hand might seem
to be an instance of an improvement operator [Konieczny and Pino Pérez 2008]. An im-
provement operator according to Konieczny and Pino Pérez is a belief change operator
where new information isn’t necessarily immediately accepted. However plausibility is
increased and, after a sufficient number of iterations, the information will come to be be-
lieved. Interestingly, as we discuss later, the approach described here differs in significant
ways from those of [Konieczny and Pino Pérez 2008].

The setting adopted here is similar to that of [Bacchus, Halpern, and Levesque 1999]:
Agents receive uncertain information, and as a result alter their (probabilistic) beliefs about
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the world. However, the goals are quite different. [Bacchus, Halpern, and Levesque 1999]
is concerned with an extension of the situation calculus [Levesque, Pirri, and Reiter 1998]
to deal with noisy sensors. Consequently their focus is on a version of the situation calcu-
lus in which the agent doesn’t hold just categorical beliefs, but also probabilistic beliefs.
The main issue then is how to revise these probabilities in the presence of sensing and
non-sensing actions. In contrast, the present paper is concerned with the possible role of
probabilistic beliefs with respect to a (classical AGM-style) belief revision operator. We
further discuss this and other related work once the approach has been presented.

3 Unreliable Observations and Updating Probabilities
An agent will make observations concerning a domain. These observations may be un-
reliable, in that a value may be incorrectly sensed or reported. We wish to update the
probability assignment to possible worlds appropriately, given such a possibly-erroneous
observation. Consider first a situation in which an agent observes or senses φ with a given
probability q > .5. Our interpretation of this event is that φ is reported as being true, but
that the probability is 1− q that the sensing is incorrect (and so the probability is 1− q that
¬φ is in fact the case).1 Since q > .5, the agent’s confidence in φ will increase. We can
write Pr(Obsφ|φ) = q for the probability of observing that φ is true given that φ is in fact
true. As well, the agent will also have some prior probability Pr(φ) that φ is true. We wish
to compute the probability that φ is true given the new piece of evidence, Pr(φ|Obsφ).
This can be determined by Bayes’ Rule:

(1) Pr(φ|Obsφ) =
Pr(Obsφ|φ)Pr(φ)

Pr(Obsφ)
=

Pr(Obsφ|φ)Pr(φ)
Pr(Obsφ|φ)Pr(φ) + Pr(Obsφ|¬φ)Pr(¬φ)

For example assume that the agent has no prior information about a light being on or
not, and so Pr(on) = .5. As well, the light sensor is correct 80% of the time, and so
Pr(Obson|on) = .8 while Pr(Obson|¬on) = .2. Hence following an observation that the
light is on, we would obtain:

Pr(on|Obson) =
Pr(Obson|on)Pr(on)

Pr(Obson|on)Pr(on) + Pr(Obson|¬on)Pr(¬on)
= (.8× .5)/[(.8× .5) + (.2× .5)]
= .8.

Thus on observing that the light was on, the agent’s (subjective) probability that the light
was on would increase from .5 to .8. If the agent was to subsequently re-sense the light,
and again sense that the light was on, its degree of belief would then be given by:

Pr(on|Obson) =
Pr(Obson|on)Pr(on)

Pr(Obson|on)Pr(on) + Pr(Obson|¬on)Pr(¬on)
= (.8× .8)/[(.8× .8) + (.2× .2)]
≈ .94.

1The case of non-binary valued sensing is straightforward and adds nothing of additional interest with respect
to the problem at hand; see for example [Bacchus, Halpern, and Levesque 1999] for how this can be handled.
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Observations and possible worlds: The preceding discussion reviews how a probability
assignment to formulas may be updated given new information. Since we have a finite
language and a finite set of possible worlds, it is straightforward to extend this to updating
probabilities attached to worlds, and hence updating a probability function ρ. Since a world
may be associated with the conjunction of literals true at that world, we can repeat the steps
in the preceding section, but with respect to worlds.

Consider a situation in which we observe φ with probability q. As before, Obsφ is true
if φ is observed and false otherwise. We wish to update the probability that a world w is
the real world given this additional piece of information. That is, if φ is true at w then
the probability attached to ρ will increase, and decrease if φ is false at w. For a world
w ∈ WL, we have the prior probability assignment ρ(w). We can use this in probability
expressions by letting Prρ(w) be understood such that the occurrence ofw in Prρ(·) stands
for the (finite) conjunction of literals true in w, and thus Prρ(w) = ρ(w). Then, again with
Bayes’ rule we have:

(2) Prρ(w|Obsφ) =
Prρ(Obsφ|w)Prρ(w)

Prρ(Obsφ)

Thus on the left side of the equality, we wish to determine the (updated) probability of
w, given that φ is observed. For the numerator on the right hand side, Prρ(Obsφ|w) is the
probability of observing φ given that one is inw; this is just q ifw |= φ and 1−q otherwise.
Prρ(w) is just ρ(w). For the denominator, we have that

Prρ(Obsφ) = Prρ(Obsφ|φ)Prρ(φ) + Prρ(Obsφ|¬φ)Prρ(¬φ)
= q × ρ(Mod(φ)) + (1− q)× ρ(Mod(¬φ)).

This justifies the following definition.

DEFINITION 1. Let ρ be a probability assignment to worlds. Let φ ∈ L and q ∈ [0, 1].
Let η = ρ(Mod(φ))× q + ρ(Mod(¬φ))× (1− q).

Define the probability assignment ρ(φ, q) by:

ρ(φ, q) = ρ⊥ if η = 0; otherwise:

ρ(φ, q)(w) =

{
(ρ(w)× q)/η if w |= φ
(ρ(w)× (1− q))/η if w 6|= φ

Thus, for probability function ρ, a new probability function ρ(φ, q) results after sensing
φ with probability q. Observe that ρ(φ, q)(w) in Definition 1 corresponds to Prρ(w|Obsφ)
in (2). If η = 0, the updated probability assignment involves accepting with certainty
(i.e. q = 1) an impossible proposition (ρ(Mod(φ)) = 0), or rejecting with certainty a
necessarily true proposition. In either case, an incoherence state of affairs (ρ⊥) results.
Example: Consider Table 1. The first column lists possible worlds in terms of an assign-
ment of truth values to atoms, where a stands for ¬a. The second column gives an initial
probability function, while the next three columns show how ρ changes under different up-
dates. At the outset Pr(a) = .5, Pr(b) = .6, and Pr(c) = .5. Following an observation
of a with reliability .8, we obtain that Pr(a) = .8, Pr(b) = .6, and Pr(c) = .5. If we
iterate the process and again observe a with the same reliability, the probabilities become
Pr(a) = .9412, Pr(b) = .6, and Pr(c) = .5. Thus the probability of a increases, and the
probability of b and c varies depending on the probabilities assigned to individual worlds;
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Worlds ρ ρ(a, .8) ρ(a, .8)(a, .8) ρ(a, .8)(b, .8)
a, b, c .150 .240 .2824 .3333
a, b, c .150 .240 .2824 .3333

a, b, c .100 .160 .1882 .0556

a, b, c .100 .160 .1882 .0556
a, b, c .150 .060 .0176 .0972
a, b, c .150 .060 .0176 .0972

a, b, c .100 .040 .0118 .0139

a, b, c .100 .040 .0118 .0139

Table 1. Example of Updating Probabilities of Worlds

in the example they happen to be unchanged. Last if we sense a and then b, in both cases
with reliability .8 we obtain that Pr(a) = .7778, Pr(b) = .8610, and Pr(c) = .5.

4 Epistemic States: A Model of Categorical Belief based on
Noncategorical Belief

This section presents the notion of epistemic state as it is used in the present approach. We
first discuss intuitions then give the formal details.

4.1 Intuitions
An agent’s epistemic state K is given by a pair (ρ, c), where ρ is a probability assignment
over possible worlds and c is a confidence level. The probability function captures what the
agent knows about the world. We wish to say that an agent accepts a belief represented by a
formula just if, in some fashion, the probability of the formula exceeds the confidence level
c. Thus, the agent accepts a formula if its probability is “sufficiently high”. This notion of
acceptance is nonstandard, in that an accepted belief will be categorical yet its associated
probability may be less than 1. This is in contrast to the approaches combining probability
and revision described in Section 2.3, where the agent’s categorical beliefs have probability
1. This also is in contrast with [Bacchus, Halpern, and Levesque 1999], where non-beliefs
have probability 0. In any case, for us an accepted belief is one that is categorical, in that
the agent may act under the assumption that it is true, yet it is also noncategorical, in that its
probability is less than 1, and hence it can be given up following a revision. The issue then
becomes one of suitably defining the worlds characterising an agent’s accepted beliefs.

The most straightforward way of defining acceptance is to say that a formula φ is ac-
cepted just if ρ(Mod(φ)) ≥ c. This leads immediately to the lottery paradox [Kyburg
1961]. This problem is that for any c < 1.0 one can construct a scenario where p1, . . . , pn,
along with ¬p1 ∨ . . . ∨ ¬pn are all accepted. But the set consisting of these formulas is of
course inconsistent. The resolution proposed here is to focus instead on the set of possible
worlds characterising an agent’s beliefs. That is, the agent’s (categorical) beliefs will be
identified with a subset of possible worlds in which the set of beliefs is true. The issue then
is to determine the appropriate subset of possible worlds. To this end, we suggest that the
appropriate set of worlds is comprised of those worlds of greatest probability such that the
probability of the set exceeds c. Since the agent’s accepted beliefs are characterised by a
unique set of worlds, the lottery paradox doesn’t arise.
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The assumption that worlds with higher probability are to be preferred to those with
lower probability for characterising an agent’s beliefs can be justified by (at least) two
arguments. First, if an agent had to commit to a single world being the real world, then it
would choose a world w for which the probability ρ(w) was maximum; if it had to commit
to nworlds, then it would choose the nworlds with highest probability. Similarly, if it were
to choose the most likely set of worlds containing the real world, such that the probability of
the set exceeded a certain bound (here c), then it would choose the set of worlds of maximal
probability that meets or exceeds c. Since there is nothing that distinguishes worlds beyond
their probability, if ρ(w) = ρ(w′) then if w is in this set then so is w′.

A second argument is related to a principle of informational economy: It seems reason-
able to assume that, given a set of candidate belief sets, an agent will prefer a set that gives
more information over one that gives less. This is the case here. In general there will be
more than one set of worlds where the probability of the set exceeds c. The set composed
of worlds of maximal probability is generally also the set with the least number of worlds,
which in turn will correspond to the belief set with the maximum number of (logically
distinct) formulas. So this approach commits the agent to the maximum set of accepted
beliefs, where the overall probability of the set exceeds c.2 Such a set may be said to have
the greatest epistemic content among the candidate belief sets.

Thus an epistemic state consists principally of a probability function on possible worlds.
Via an assumption of maximality of beliefs (or maximal epistemic content), and given the
confidence level c, a set of accepted beliefs is defined. So this differs significantly from
prior work, in that an accepted formula will generally have an associated probability that
is less than 1.0. Arguably this makes sense: for example, I believe that my car is where I
left it this morning, in that I act as if this was a true fact even though I don’t hold that it is
an absolute certainty that the car is where I left it. If pressed, I would be happy to attach
a probability to the possibility of my car not being where I left it, but I would continue to
act as if it were (simply) true that my car was where I left it. Moreover, of course, I am
prepared to revise this belief if I receive information to the contrary.

4.2 Epistemic States: Formal Details
In this subsection we define our notion of epistemic state, and relate it to faithful rankings
that have been used to characterise AGM revision.

DEFINITION 2. K = (ρ, c) is an epistemic state, where:

• ρ is probability assignment to possible worlds and

• c ∈ (0, 1] is a confidence level.

As described, an epistemic state characterises the state of knowledge of the agent, both its
(contingent) beliefs as well as, implicitly, those beliefs that it would adopt or abandon in the
presence of new information. We need to also define the agent’s belief set or beliefs about
the world at hand. This is most easily done by first defining the worlds that characterise the
agent’s belief set, and then defining the belief set in terms of these worlds.

DEFINITION 3. For epistemic state K = (ρ, c), the set of worlds characterising the
agent’s belief set, Mod(K) ⊆WL, is the least set such that:

If ρ = ρ⊥ then Mod(K) = ∅; otherwise:
2These notions of course make sense only in a finite (under equivalence classes) language, which was assumed

at the outset.
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1. ρ(Mod(K)) ≥ c,

2. If w ∈Mod(K) and w′ 6∈Mod(K) then ρ(w) > ρ(w′).

Mod(·) is uniquely characterised; in particular we have that if ρ(w) = ρ(w′) then w ∈
Mod(K) iff w′ ∈Mod(K).
DEFINITION 4. For epistemic stateK, the agent’s accepted (categorical) beliefs,Bel(K),
are given by

Bel(K) = {φ |Mod(K) |= φ} = T (Mod(K)).

Thus, an agent accepts a sentence if it is sufficiently likely, and a sentence is “sufficiently
likely” if it is true in the set of most plausible worlds such that the probability of the set
exceeds the given confidence level. Since an agent’s beliefs are characterised by a single
set of possible worlds, the lottery paradox doesn’t arise.

This then describes the static aspects of an epistemic state. For the dynamic aspects (i.e.
revision) it will be useful to distinguish those formulas that are possible, in the sense that
they are conceivable, which is to say they have a non-zero probability. We use PossK(φ)
to indicate that, according to the agent involved, φ is possible; that is, there is possible
world w such that w |= φ and ρ(w) > 0. PossK(·) can be axiomatised as the modality ♦
in the modal logic S5 [Hughes and Cresswell 1996]. We have the simple consequence:

PROPOSITION 5. If not PossK(φ) then ¬φ ∈ Bel(K)
The probability assignment to possible worlds defines a ranking on worlds, where worlds

with higher probability are lower in the ranking:

DEFINITION 6. For given ρ, define rankρ(w) for every w ∈WL by:

1. rankρ(w) = 0 if 6 ∃w′ such that ρ(w′) > ρ(w)

2. Otherwise, rankρ(w) = 1 +max{rankρ(w′) : ρ(w′) > ρ(w)}.

Lastly, we can define a faithful ranking (as given in Section 2) to relate the ranking
defined here to rankings used in belief revision:

DEFINITION 7. The faithful ranking �K is given by:

1. If w1, w2 |= Bel(K) then w1 =K w2

2. If w1 |= Bel(K) and w2 6|= Bel(K) then w1 ≺K w2

3. Otherwise if rankρ(w1) ≤ rankρ(w2) then w1 �K w2.

Thus, a faithful ranking on worlds can be defined in a straightforward manner from an
epistemic state as given in Definition 2. The first two conditions stipulate that we have a
faithful ranking. The third condition ensures that we have total preorder that conforms to
the probability assignment for those worlds not in Mod(K). Clearly this faithful ranking
suppresses detail found in ρ. First, quantitative information is lost in going from Defini-
tion 2 to Definition 6. Second, gradations in an agent’s beliefs are lost: worlds in Mod(K)
may have varying probabilities, yet in the corresponding faithful ranking given in Defini-
tion 7, all worlds in Mod(K) are ranked equally. Consequently, the notion of epistemic
state as defined here is a richer structure than that of a faithful ordering.
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5 Belief Dynamics in a Probabilistic Framework
We next consider how this approach fits with work in belief revision. A natural way
to define the revision of an epistemic state K = (ρ, c) by φ with reliability q is to set
K ∗ (φ, q) = (ρ(φ, q), c). Of course, revision so defined is a ternary function, as opposed
to the usual expression of revision as a binary function, K ∗ φ. There are various ways in
which this mismatch may be resolved. First, we could simply regard revision in a proba-
bilistic framework as a ternary function, with the extra argument giving the reliability of
the observation. This is problematic, with regards to our aims, since a ternary operator rep-
resents a quantitative approach, where the degree of support q of φ is taken into account.
In contrast, AGM revision is qualitative, in that for a revision K ∗ φ, it is the (unqualified)
formula φ that is a subject of revision. This clash then highlights the main issue of this
paper: a probabilistic approach is intrinsically quantitative, while standard approaches to
belief revision are inherently qualitative.

In re-considering revision ∗ as a binary function, the intent is that in expressingK∗(φ, q)
as a binary function K ∗ φ, we want to study properties of the function ∗ without regard
to specific values assigned to q. Consequently, we assume that the reliability of a revision
is some fixed probability q. Given that the reliability is fixed, we can drop the probability
argument from a statement of revision, and simply write K ∗ φ. We later also consider the
situation where the reliability of observations may vary.

Revision by φ is intended to increase the agent’s confidence in φ, and so for K ∗ φ it
is understood that the probability of φ is greater than 0.5. Since revision corresponds to
the incorporation of contingent information, it is reasonable to assume that nothing can be
learned with certainty, and so we further assume that q < 1.3 Consequently, in what fol-
lows, we assume that the reliability of a revision is a fixed number q in the range (0.5, 1.0).

DEFINITION 8. Let q ∈ (0.5, 1.0) be fixed. Let K = (ρ, c) be an epistemic state and
φ ∈ L. Define the revision of K by φ by:

K ∗ φ = (ρ(φ, q), c)

Clearly one needs to know the value of q (along with K and φ) before being able to de-
termineK∗φ. However, without knowing the value of q, one can still investigate properties
of the class of revision functions, which is our goal here. Other aspects of the definition are
discussed below, in the discussion of postulates. We first revisit our previous example.

Example (continued): Consider again Table 1, and assume that our initial epistemic state
is given by K = (ρ, 0.9). At the outset, Bel(K) = Cn(>). If the probability associated
with the world given by {a, b, c} was .05, with the balance distributed uniformly across
other possible worlds, we would have Bel(K) = Cn(a ∨ b ∨ c).

We obtain that Bel(K ∗ a) = Cn(a ∨ b), and Bel(K ∗ a ∗ a) = Cn(a). We also obtain
Bel(K∗a∗b) = Cn(a ∨ b) and (not illustrated in Table 1)Bel(K∗a∗b∗b) = Cn(b). So, not
unexpectedly, for repeated iterations, the resulting belief set “converges” toward accepting
the iterated formula, with the results being biased by the initial probability distribution.

3It might be pointed out that a tautology can be learned with absolute certainty. However, it can be pointed out
in return that a tautology is in fact known with certainty, so the probability being 1 or less makes no difference. In
any case, we later examine the situation where q = 1.
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5.1 Properties of Probability-Based Belief Revision
Recall that PossK(φ) indicates that, according to the agent, φ is possible, in that there is w
such that w |= φ and ρ(w) > 0. K ∗n φ stands for the n-fold iteration of K ∗ φ, that is:

K ∗n φ =

{
K ∗ φ if n = 1
(K ∗n−1 φ) ∗ φ otherwise

We obtain the following results; numbering corresponds to the AGM revision postulates.

THEOREM 9. Let K be an epistemic state and φ, ψ ∈ L.

(K ∗ 1) Bel(K ∗ φ) = Cn(Bel(K ∗ φ))

(K ∗ 2a) If PossK(φ) then φ ∈ Bel(K ∗n φ) for some n > 0

(K ∗ 2b) If K 6= K⊥ and φ ∈ Bel(K) then φ ∈ Bel(K ∗ φ)

(K ∗ 2c) If K 6= K⊥ and not PossK(φ) then Bel(K ∗ φ) = Bel(K)

(K ∗ 5) Bel(K ∗ φ) is consistent.

(K ∗ 6) If φ ≡ ψ then Bel(K ∗ φ) ≡ Bel(K ∗ ψ)

Proof: (K∗1) follows directly from Definition 4. For (K∗2a), it follows from Definition 1
that if 0 < Prρ(φ) ≤ 1 then Prρ(φ) < Prρ(φ,q)(φ) ≤ 1.0, and so if we iterate a revision
by φ, the probability of φmonotonically increases, with upper bound 1.0. It follows that for
some n, Mod(K∗n φ) ⊆Mod(φ), and so for some n > 0, φ ∈ Bel(K∗n φ). (K∗ 2b) and
(K∗ 2c) have prerequisite condition that K is not the incoherent epistemic state. (K∗ 2b) is
obvious. For (K ∗ 2c), if K 6= K⊥ then if there are no φ-worlds with non-zero probability,
then Definition 1 can be seen to leave the probability function unchanged. For (K ∗ 5) it
can be seen from the definitions that if K 6= K⊥, then there will be worlds with a non-
zero probability, and so Mod(K) 6= ∅ in Definition 3, and so Bel(K) is well defined in
Definition 4 and specifically Bel(K) 6= L. In particular, in the case of a revision by an
inconsistent formula φ, we get that K ∗ φ = K: All φ worlds (of which there are none)
share in the probability q, and all ¬φ worlds share in the probability 1 − q. The result
is normalised, leaving the probabilities unchanged. If K = K⊥, then in Definition 1 we
get that η 6= 0, 0 < q < 1, and so the probability assignment ρ(φ, q) 6= ρ⊥, and so in
Definition 3 we obtain that Mod(K) 6= ∅. Postulate (K ∗ 6) holds trivially, but by virtue of
the fact that the reliability of an observation of φ is the same as that of ψ.

The weaker version of postulate (K ∗ 2), given by (K ∗ 2a), means that an agent will
accept that φ is true after a sufficient number of iterations (or “reports”) of φ. Hence,
despite the absence of other AGM postulates, the operator ∗ counts as a revision operator,
since the formula φ will eventually be accepted, provided that it is possible. Note that if a
formula φ is not possible, then from our earlier (non-revision) result

If not PossK(φ) then ¬φ ∈ Bel(K)

together with (K ∗ 5), we have that φ can never be accepted. As well, if φ is accepted,
it will continue to be accepted following revisions by φ (K ∗ 2b). This last point would
seem to be obvious, but is necessitated by the absence of a postulate of success and the
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absence of (K ∗ 4). If a formula φ is deemed to be not possible, but the agent is not in
the incoherent state K⊥, (K ∗ 2c) shows that revising by φ leaves the agent’s belief set
unchanged. While this may seem noncontentious, [Makinson 2011] discusses the case
where it may be meaningful to condition on a contingent formula whose probability is
zero. However, such a situation appears to rely on an underlying infinite domain.

It can be noted that K⊥ plays no interesting role in revisions; this is reflected by (K∗ 5),
which asserts that no revision can yield K⊥. Hence an epistemic state can be inconsistent
only if the original assignment of probabilities to worlds is the absurd probability assign-
ment ρ⊥. Any subsequent revision will have Bel(K⊥ ∗φ) 6= L. In particular if φ is⊥ then
ρ⊥(φ, q) = ρ> and so Bel(K⊥ ∗ ⊥) = Cn(>).

Postulate (K∗5) is quite strong, in that it imposes no conditions on the original epistemic
state K or the formula for revision. If one begins with the inconsistent epistemic state K⊥,
then revision is defined as being the same as a revision of the epistemic state of complete
ignorance ρ>. This is pragmatically useful: from K⊥, if one revises by a formula φ where
Pr(φ) 6= 0, then analogous to the AGM approach, one arrives at a consistent belief state.
This also goes beyond the AGM postulate (K ∗ 5), since if φ is held to be impossible (i.e.
there are no worlds with nonzero probability in which φ is true), then there will be worlds
in which ¬φ is true and with nonzero probability, and so revision yields meaningful results,
in particular yielding the epistemic state with probability function ρ>.

Postulate (K∗6) holds trivially, given the assumption that the reliability of an observation
of φ is the same as that of ψ. This assumption is, of course, limiting, and in the case where
observations may be made with differing degrees of reliability, the postulate would not
hold. It can be noted that in the case where observations may be made with differing
degrees of reliability, the postulate can be replaced by the weaker version:

If φ ≡ ψ then Bel(K ∗ φ) ⊆ Bel(K ∗ ψ) or Bel(K ∗ ψ) ⊆ Bel(K ∗ φ).

We next consider those postulates that don’t hold, and why they fail to hold. For a
counterexample for (K ∗ 3), let P = {a, b}, K = (ρ, 0.97), and ρ is given as follows:

ρ({a, b}) = .96 ρ({a,¬b}) = .02,
ρ({¬a, b}) = .01 ρ({¬a,¬b}) = .01

Bel(K) is characterised by {a, b}, {a,¬b},Bel(K) = Cn(a), and soBel(K)+a = Cn(a).
If we revise by a with confidence .8, we get

ρ(a, .9)({a, b}) ≈ .9746 ρ(a, .9)({a,¬b}) ≈ .0203
ρ(a, .9)({¬a, b}) ≈ .0025 ρ(a, .9)({¬a,¬b}) ≈ .0025

Thus Bel(K ∗ a) is characterised by {a, b}, i.e. Bel(K ∗ a) = Cn(a ∧ b) 6= Cn(a) =
Bel(K) + a. This illustrates a curious phenomenon: In the counterexample we have that
Bel(K) = Cn(a) yet Bel(K ∗ a) = Cn(a ∧ b). In revising by a, the probability of worlds
given by {a, b}, {a,¬b} both increase, but that of {a, b} increases so that its probability
exceeds the confidence level c, and so it alone characterises the agent’s set of accepted
beliefs. We discuss this behaviour later, once we have presented the approach as a whole.

For (K ∗ 4), it is possible to have formulas φ and ψ such that φ and ψ are logically
independent, Bel(K) = Cn(φ) and Bel(K∗ψ) = Cn(ψ), thus contradicting the postulate.
To see this, consider where P = {a, b}, and K = (ρ, 0.9) and where:

ρ({a, b}) = .46 ρ({a,¬b}) = .46,
ρ({¬a, b}) = .06 ρ({¬a,¬b}) = .02
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Bel(K) is characterised by {a, b}, {a,¬b}, i.e. Bel(K) = Cn(a), and so Bel(K) + b =
Cn(a ∧ b). If we revise by b with confidence .9, we get

ρ(b, .9)({a, b}) ≈ .802 ρ(b, .9)({a,¬b}) ≈ .089
ρ(b, .9)({¬a, b}) ≈ .105 ρ(b, .9)({¬a,¬b}) ≈ .004

Since ρ(b, .9)({a, b}) + ρ(b, .9)({¬a, b}) > .9 = c, we get thatBel(K∗b) is characterised
by {a, b}, {¬a, b} and so Bel(K) = Cn(b).

This illustrates another interesting point: not only does the postulate fail but, unlike
(K ∗ 2), it may fail over any number of iterations. For the example given, the probability
of the world given by {a, b} will converge to something just over .88, which is below the
given confidence level of c = 0.9. Since Cn(a, b) is the result of expansion in the example,
this shows that Cn(a, b) will never come to be accepted. Similar remarks hold for (K ∗ 8).

(K∗7) doesn’t hold for the same reason (K∗3) doesn’t. Substituting> for φ in (K∗7) in
fact yields (K ∗ 3). Similarly, (K ∗ 8) doesn’t hold for the same reason that (K ∗ 4) doesn’t.
Substituting > for φ in (K ∗ 8) yields (K ∗ 4).

5.2 Variants of the Approach
We next examine three variants of the approach. In the first, observations are made with
certainty. This variation coincides with an extant approach in belief revision. As well it has
close relations to Gärdenfors’ revision of probability functions; a discussion of the relation
with this latter work is deferred to the next section. In the second variant, observations are
made with near certainty; again this variant corresponds with an extant approach in belief
revision. In the last variant, informally possible worlds that characterise an agent’s beliefs
are retained after a revision if there is no reason to eliminate them.
Certain Observations Consider where observations are certain, and so the (binary) revi-
sion K∗φ corresponds to K∗ (φ, 1.0). Clearly, if ρ(w) = 0, then ρ(φ, 1.0)(w) = 0 for any
φ; that is, if a world had probability 0, then no observation is going to alter this probability.
As well, if w |= ¬φ then ρ(φ, 1.0)(w) = 0. So in a revision by φ with certainty, any ¬φ
world will receive probability 0, and by the previous observation, this probability of 0 will
remain fixed after subsequent revisions.

Thus in this case, revision is analogous to a form of expansion, but with respect to
the epistemic state K. So following a revision by φ, all ¬φ worlds are discarded from
the derived faithful ranking. This corresponds to revision in the approach of [Shapiro,
Pagnucco, Lespérance, and Levesque 2011], where their account of revision is embedded
in an account of reasoning about action. For their approach, a plausibility ordering over
worlds is given at each world. Observations are assumed to be correct; thus an observation
of φ means that ¬φ is impossible in the current world, and so all ¬φ worlds are discarded.
This also means that an observation of φ followed by ¬φ yields the inconsistent epistemic
state. This result can be justified by the argument that, if φ is observed with certainty, then
if the world does not change, then it is impossible for ¬φ to be observed. In this approach,
postulates (K ∗ 1)− (K*4), and (K ∗ 6) are shown to be satisfied.
Near-Certain Observations Consider where the binary revision K ∗ φ is defined to be
K ∗ (φ, 1.0 − ε), where ε is “sufficiently small” compared to the probabilities assigned
by ρ. If the minimum and maximum values in the range of ρ are minρ and maxρ, then
“sufficiently small” would mean that

max{ρ(w) | w ∈Mod(¬φ)} × ε < min{ρ(w) | w ∈Mod(φ)} × (1.0− ε).
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Thus for ρ′ = ρ(φ, 1.0 − ε) we would have for w |= φ, w′ 6|= φ that ρ′(w) > ρ′(w′).
This yields lexicographic revision [Nayak 1994] in which, in revising by φ, every φ world
is ranked below every ¬φ world, but the relative ranking of φ worlds (resp. ¬φ worlds) is
retained. In this approach, all AGM revision postulates hold.
Retaining Confirmed Possible Worlds The present approach clearly falls within belief
revision, since under reasonable conditions a formula will become accepted. However,
it has notable weaknesses compared to the AGM approach; in particular the postulates
(K ∗ 3), (K ∗ 4), (K ∗ 7), and (K ∗ 8) all fail. In the case of (K ∗ 4) and (K ∗ 8) this seems
unavoidable. However, an examination of (K∗3) and (K∗7) shows a curious phenomenon.
Consider (K ∗ 3): In the counterexample presented, the agent believed that the real world
was among the set of worlds {{a, b}, {a,¬b}}. On revising by a, the agent believed that
the real world was among the set of worlds {{a, b}}, which is to say, that {a, b} was the
real world. But this means is that {a,¬b} was considered to be possibly be the real world
according to the agent, but on receiving confirmatory evidence (viz. revision by a), this
world was dropped from the characterising set. But arguably if w may be the actual world
according to the agent, and the agent learns φ where w |= φ, then it seems that the agent
should still consider w as possibly being the actual world.

The reason for this phenomenon is clear: The probability of other worlds (in the exam-
ple, given by {a, b}) becomes large enough following revision so that the “dropped” world
isn’t required in making up Mod(K). To counteract this phenomenon, it seems reason-
able to assume that if an agent considers a world to be possible, then it remains possible
after confirmatory evidence. To this end, the approach can be modified so that one keeps
track of worlds considered possible by the agent, where these are the worlds characterising
the agent’s contingent beliefs. An epistemic state now would be a triple (ρ, c, B) where
B ⊆ WL characterises the agent’s belief set following a revision by φ with probability q.
Thus after revising by φ, the new value of B would be given by:

Mod((ρ(φ, q), c, B)) ∪ (Mod((ρ, c.B)) ∩Mod(φ)).

In this case postulates (K ∗ 3) and (K ∗ 7) also hold.

5.3 Iterated Belief Revision
Turning to iterated revision, it proves to be the case that three of the Darwiche-Pearl postu-
lates fail to hold. However, the reason that these postulates do not hold is not a result of the
probabilistic approach per se, but rather is a result of the expression of a belief set in terms
of possible worlds.

THEOREM 10. Let K be an epistemic state with associated revision operator ∗. Then K
satisfies C3.

Proof: For C3, we obtain that the semantic condition CR3 holds: If w1 |= φ and w2 6|= φ,
then w1 ≺K w2 implies that ρ(w1) < ρ(w2) from which it follows that ρ(φ, q)(w1) <
ρ(φ, q)(w2) and so w1 ≺K∗φ w2. By the same argument as [Darwiche and Pearl 1997,
Theorem 13], we get that C3 is satisfied.

K does not necessarily satisfy C1, C3, and C4. Consider C1, and let P = {a, b},
K = (ρ, 0.9), and where:

ρ({a, b}) = .85 ρ({a,¬b}) = .06,
ρ({¬a, b}) = .05 ρ({¬a,¬b}) = .04
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Bel(K) is characterised by {a, b}, {a,¬b} and so Bel(K) = Cn(a). If we revise by a with
confidence .7, we get

ρ(a, .7)({a, b}) ≈ .891 ρ(a, .7)({a,¬b}) ≈ .063
ρ(a, .7)({¬a, b}) ≈ .023 ρ(a, .7)({¬a,¬b}) ≈ .018

Thus Bel(K) = Bel(K ∗ a). If we again revise by a with confidence .7, we get

ρ(a, .7)({a, b}) ≈ .917 ρ(a, .7)({a,¬b}) ≈ .065
ρ(a, .7)({¬a, b}) ≈ .010 ρ(a, .7)({¬a,¬b}) ≈ .008

Since ρ(a, .9)({a, b}) > .9 = c, so Mod(K ∗ a ∗ a) = {a, b}. Hence Bel(K ∗ a) 6=
Bel(K ∗ a ∗ a), thereby violating C1.4 Other postulates fail for analogous reasons.

It is worth considering why most of the iteration postulates fail. Interestingly, for the
semantic conditions, CR1 – CR4, if expressions of the form w1 ≺K w2 are replaced by
expressions of the form ρ(w1) ≤ ρ(w2), then the modified conditions hold in the current
approach. That is, it is easily verified that all of the following hold:

THEOREM 11.

PCR1 If w1, w2 |= φ, then ρ(w1) ≤ ρ(w2) iff ρ(φ, q)(w1) ≤ ρ(φ, q)(w2).

PCR2 If w1, w2 6|= φ, then ρ(w1) ≤ ρ(w2) iff ρ(φ, q)(w1) ≤ ρ(φ, q)(w2).

PCR3 If w1 |= φ and w2 6|= φ, then ρ(w1) < ρ(w2) implies ρ(φ, q)(w1) < ρ(φ, q)(w2).

PCR4 If w1 |= φ and w2 6|= φ, then ρ(w1) ≤ ρ(w2) implies ρ(φ, q)(w1) ≤ ρ(φ, q)(w2).

Proof: Straightforward from Definition 1.

The problem is that our faithful ranking (Definition 7) doesn’t preserve the ordering
given by ρ. In particular, if w1, w2 ∈ Mod(K) then w1 =K w2 in the derived faithful
ranking, while most often we will have ρ(w1) 6= ρ(w2). Essentially, in moving from values
assigned via ρ to the faithful ranking, gradations (given by probabilities) among worlds in
Mod(K) are lost. That is, in a sense, the probabilistic approach provides a finer-grained
account of an epistemic state than is given by a faithful ranking on worlds, in that models
of the agent’s belief set also come with gradations of belief.

5.4 Relation with Other Work
Other Approaches to Revision We have already discussed the relation of the approach
to [Shapiro, Pagnucco, Lespérance, and Levesque 2011] and [Nayak 1994].

The work in belief change that is closest to that described here is that of improvement
operators [Konieczny and Pino Pérez 2008], where an an improvement operator is a be-
lief change operator in which new information isn’t necessarily immediately accepted, but
where the plausibility is increased. Thus after a sufficient number of iterations, the infor-
mation will come to be believed. The general idea of this approach then is similar to the
present approach. As well, in both approaches the success postulate does not necessarily
hold, so new information is not necessarily immediately accepted. However, beyond failure
of the success postulate, the approaches have quite different characteristics.

4In terms of CR1, we have {a, b} =K∗a {a,¬b} but {a, b} ≺K∗a∗a {a,¬b}, thereby violating CR1.
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In the postulate set following,5 ◦ is an improvement operator, and × is defined by:
K × φ = K ◦n φ where n is the first integer such that φ ∈ Bel(K ◦n φ).

(I1) There exists n such that φ ∈ Bel(K ◦n φ)

(I2) If ¬φ /∈ Bel(K) then Bel(K × φ) ≡ Bel(K) + φ

(I3) Bel(K ◦ φ) is inconsistent, only if 0 ¬φ

(I4) If φi ≡ ψi for 1 ≤ i ≤ n then Bel(K ◦ φ1 ◦ . . . ◦ φn) ≡ Bel(K ◦ ψ1 ◦ . . . ◦ ψn)

(I5) Bel(K × (φ ∧ ψ)) ⊆ Bel(K × φ) + ψ

(I6) If ¬ψ /∈ Bel(K × φ) then Bel(K × φ) + ψ ⊆ Bel(K × (φ ∧ ψ))

To show the approaches are independent, it suffices to compare (K∗3)/(K∗4) with (I2). Ac-
cording to (I2), after some number of iterations of an improvement operator, the resulting
belief set will correspond to expansion of the original belief set by the formula in question.
However, there are cases in which neither (K ∗ 3) nor (K ∗ 4) are satisfied regardless of the
number of iterations. Similar comments apply to (K ∗ 7) and (K ∗ 8), and (I5) and (I6),
respectively. The need for the extended postulate for irrelevance of syntax for epistemic
states I4 was noted in [Booth and Meyer 2006]. In the present approach (K ∗ 6) suffices.
Other Related Work As discussed in Section 2, earlier work dealing specifically with
revision and probability has been concerned with revising probability functions. Thus,
[Gärdenfors 1988; Lindström and Rabinowicz 1989; Boutilier 1995] deal with extensions
to the AGM approach for revising probability functions. In these approaches there is a
probability function associated with possible worlds, but where the agent’s belief set is
characterised by worlds with probability 1.0. For a revision K ∗ φ, φ represents new evi-
dence, and the probability function is revised by φ. The belief set corresponding to K ∗ φ
then is the set of propositions with probability 1.0. In contrast, in the approach at hand, an
agent’s accepted beliefs are characterised by a set of possible worlds whose overall proba-
bility in the general case will be less than 1.0. In a sense then there is finer granularity with
regards the present approach, since the worlds characterising a belief set may have varying
probability. As well, for us if a formula φ has probability of 1.0, then it cannot be removed
by subsequent revisions; a formula is accepted as true if its probability is sufficiently high,
although it may potentially be revised away. This arguably confirms to intuitions, in that if
a formula is held with complete certainty then it should be immune from revisions.

It was noted that [Bacchus, Halpern, and Levesque 1999] presents the same general set-
ting in which an agent receives possibly-unreliable observations. However, the concern
in this paper was to update probabilities associated with worlds and then to use this for
reasoning about dynamic domains expressed via the situation calculus. The approach at
hand employs the same method for updating probabilities but addresses the question of
how this may be regarded as, or used to formulate, an approach to belief revision. The
present approach also has finer granularity, in that in [Bacchus, Halpern, and Levesque
1999] non-beliefs are given by worlds with probability 0; in the approach at hand, non-
beliefs are those that fall outside the set of accepted beliefs, and may have non-zero prob-
ability. Again, arguably the present approach conforms to intuitions, since if a formula is
held to be impossible then it seems it should forever remain outside the realm of revision.

5[Konieczny and Pino Pérez 2008] follow [Katsuno and Mendelzon 1991], where the result of revision is a
formula, not a belief set. We rephrased the [Konieczny and Pino Pérez 2008] postulates in terms of belief sets. In
particular, (K∗3) and (K∗4) correspond to (I2), while (K∗7) and (K∗8) correspond to (I5) and (I6) respectively.
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6 Conclusion
We have explored an approach to beliefs and belief revision, based on an underlying model
of uncertain reasoning. With few exceptions, research in belief revision has dealt with cate-
gorical information in which an agent has some set of beliefs and the goal is to incorporate
a formula into this set of beliefs. However, most information about the real world is not
categorical, and arguably no non-tautological belief may be held with complete certainty.
To accommodate this, one alternative is to adopt a purely probabilistic framework for be-
lief change. However, such a framework ignores the fact that an agent may well accept a
formula as being true, even if this acceptance is tentative, or hedged in some fashion. So
another alternative, and the one followed here, is to begin with a probabilistic framework,
but also define a set of formulas that the agent accepts. Revision can then be defined in this
framework, and the effect of revision on the agent’s accepted beliefs examined.

To this end we assumed that an agent receives uncertain information as input, and the
agent’s probabilities on possible worlds are updated via Bayesian conditioning. A set of
formulas among the (noncategorical) beliefs is then identified as the agent’s (categorical)
belief set. We show that a subset of the AGM belief revision postulates are satisfied by this
approach. Most significantly, though not surprisingly, the success postulate is not guaran-
teed to hold, though it is after a sufficient number of iterations. As well, it proves to be
the case that in revising by a formula consistent with the agent’s beliefs, revision does not
necessarily correspond to expansion. As another point of interest, of the postulates for iter-
ated revision that we considered, only C3 holds. This is because, even though the updating
of the probability assignment ρ satisfies all of the corresponding semantic conditions, the
induced faithful ordering ≺K does not. Last, although the approach shares motivation and
intuitions with improvement operators, these approaches have different properties.

There are two ways that these results may be viewed with respect to classical AGM-style
belief revision. On the one hand, it could be suggested that the current approach simply
provides a revision operator that is substantially weaker than given in the AGM approach
and approaches to iterated revision. On the other hand, the AGM approach and approaches
to iterated revision have been justified by appeals to rationality, in that it is claimed that any
rational agent should conform to the AGM postulates and, say, the Darwiche/Pearl iteration
postulates. Thus, to the extent that the presented approach is rational, this would appear to
undermine the rationale of these approaches, at least in the case of uncertain information.
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