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Abstract

This paper presents a methodology for constructing belief
base contraction operators which preserve the syntactic struc-
ture of the initial belief base. We believe that preserving the
structure of the initial belief base is an important requirement
for practical belief base contraction. In our approach, indi-
vidual occurrences of propositional variables are differenti-
ated by the introduction of tags. Using the characterisation of
unsatisfiability provided by the connection method, we may
identify which specific variable occurrences result in a be-
lief being entailed, and thus apply selective substitutions for
these occurrences in order to block that entailment by effec-
tively cutting connections. The resulting belief base has a
structure almost identical to that of the initial belief base. We
demonstrate that these contraction operators satisfy a num-
ber of desirable properties. Next, we present an algorithm
for path-contraction and use it to show the corresponding de-
cision problem is in NP. Finally, we introduce the notion of
path-entailment to capture very precisely what is preserved
after a contraction, and show that the class of regular path-
contraction operators satisfy an analogue of Parikh’s postu-
late.

1 Introduction
Belief contraction is a form of belief change which occurs
whenever an agent realises that it holds a belief which is no
longer justified, and subsequently must modify its existing
beliefs to ensure that this specified belief is no longer en-
tailed by those beliefs it decides to retain. The challenge
is to preserve as many of its existing beliefs as possible.
This process is formalised as a belief contraction operator
− which takes a belief state κ alongside an existing belief φ
and produces a contracted knowledge base κ− φ.

Our contention is that belief contraction operators, and
belief change functions more generally, should satisfy a
principle of structural preservation analogous to the princi-
ple of categorical matching, which requires that the structure
of the contracted beliefs should resemble the structure of the
initial beliefs to the greatest extent possible. This is in con-
flict with purely semantic approaches to belief change, such
as the Katsuno–Mendelzon approach, which require syntax-
independence. This is also in conflict with approaches such
as prime implicate based belief revision (Bienvenu, Herzig,
and Qi 2008) which always convert the knowledge base into
disjunctive normal form, which would generally involve an

exponential cost as knowledge bases generally have the form
of a large conjunction of small beliefs. We believe that pur-
suing the principle of structural preservation will help close
the gap between practical belief representation and the rep-
resentations convenient for naive implementations of belief
change functions.

In this paper, we will introduce the class of path-
contraction operators which satisfy the principle of struc-
tural preservation. These will work by tagging every occur-
rence of a propositional variable within the existing belief
base with a unique tag, and then applying the connection
method (Bibel 1981) to determine which particular occur-
rences contribute to the unwanted belief being entailed. Us-
ing this information, a process of selective substitution of >
or ⊥ for these particular occurrences, which we call attenu-
ation, is employed to produce the resulting contracted belief
base. The nature of this construction means that these path-
contraction operators preserve the initial structure to a great
extent.

This can be understood from a tableaux perspective: in
order to compute κ − φ we proceed as follows. Assuming
κ ` φ it follows that κ∧¬φ is unsatisfiable, and therefore we
may construct a closed fully expanded tableaux for κ ∧ ¬φ.
At this point, we select one or more branches, and selec-
tively remove literals appearing along these branches which
originate in κ until at least one branch is open. This results
in a formula κ′ obtained from κ by our process of attenua-
tion, with the property that κ ` κ′ and κ′ 0 φ. Then, define
κ− φ as κ′.

In Section 2 we present background material on proposi-
tional matrices, the connection method, existing approaches
to belief base contraction, and on the distinction between
explicit an implicit beliefs. Section 3 introduces the tech-
nique of attenuation, the notion of a cutting, and uses these
to define the class of path-contraction operators which are
shown to satisfy a handful of desirable properties. Sec-
tion 4 presents a concrete algorithm for performing path-
contraction alongside a complexity analysis. In Section
5 we introduce the notion of path-entailment and path-
independence, which allow for characterising the preserva-
tion properties of path-contraction operators, and show an
analogue of Parikh’s Postulate to be satisfied by all regular
path-contraction operators. We next compare this to exist-
ing literature in Section 6, and finally offer a summary of



our contributions in Section 7.

2 Background Material
2.1 Propositional Logic
Let V = {p, q, r, . . . } be a finite set of propositional vari-
ables. The corresponding propositional language L is con-
structed from V by applying the propositional connectives
¬, ∧, ∨, and→. We will use φ, ψ, κ, . . . to range over propo-
sitional formulae in L. Propositional formulae of the form
¬p or p are called literals. When every negation occurring
in φ is the negation of a variable we say that φ is in nega-
tion normal form. When φ is a disjunction of conjunctions
of literals we say it is in disjunctive normal form, and when
φ is a conjunction of disjunctions of literals we say it is in
conjunctive normal form.

Functions ν, µ : V → {T, F} are referred to as truth-
value assignments or just as assignments. Given a propo-
sitional formula A we will write [φ] for the set of assign-
ments satisfying φ, with φ ` ψ indicating that [φ] ⊆ [ψ],
and φ ≡ ψ indicating that [φ] = [ψ]. In the case [φ] 6= ∅ we
say that φ is satisfiable.

2.2 Belief Base Contraction Operators
Belief contraction operators were formalised by Alchour-
ron, Gärdenfors, and Makinson (1985) as binary functions
− which map a belief state κ alongside a belief to con-
tract φ into a new contracted belief state κ − φ such that
κ− φ 0 φ. Working with a finite vocabulary, both the belief
state κ and the belief φ may be represented as propositional
formulae alongside the lines of (Katsuno and Mendelzon
1991). Among the many postulates discussed in the afore-
mentioned, there is an assumption that whenever κ1 ≡ κ2
then κ1 − φ ≡ κ2 − φ meaning that belief contraction is
meant to be syntax-independent. Rejecting this assumption
leads to the subject of belief base contraction.

In (Hansson 2012) a number of different properties are
proposed that a belief base contraction operator may be re-
quired to satisfy. For our purposes, we will work with a sub-
set of those postulates discussed in (Caridroit, Konieczny,
and Marquis 2017).

Definition 2.1. A binary function − from L × L → L is a
belief base contraction operator iff it satisfies the following
postulates:

C1. If 0 φ then κ− φ 0 φ.
C2. If ` φ then κ− φ = κ.
C3. κ ` κ− φ.
C4. If κ 0 φ then κ− φ = κ.

Postulate (C1) states that whenever φ is not a tautology,
then κ−φmust not entail φ. Postulate (C2) states that when-
ever φ is a tautology, then κ−φ should not change anything
as there is nothing which can be done to stop the entailment
of φ anyways. Postulate (C3) states that κ − φ must be a
consequence of κ, so that the process of contraction cannot
result in new beliefs being adopted. Finally, postulate (C4)
states that whenever φ is not a consequence of κ then con-
tracting κ by φ should result in nothing being changed. We

regard these postulates as serving to demarcate the broad-
est class of functions worth considering as belief base con-
traction operators, as the postulates capture very little of the
requirement of minimal change.

We will consider one further postulate later on. In order
to capture the requirement of minimal change, (Parikh 1999)
proposed to require that when some beliefs κ are being re-
vised by a new belief φ then those beliefs in κ irrelevant to
φ should remain unchanged. It is natural enough to rephrase
this for contraction as follows:
Definition 2.2. A belief base contraction operator − satis-
fies Parikh’s postulate if and only if for any formulae κ1,
κ2, and φ such that V (κ1) ∩ (V (κ2) ∪ V (φ)) = ∅ then it
follows that

P. (κ1 ∧ κ2)− φ ≡ κ1 ∧ (κ2 − φ).

2.3 Propositional Matrices
Our approach to belief contraction will involve the selective
substitution of > or ⊥ for propositional variables appearing
within the belief base κ. In order to facilitate this, we will
attach distinct tags to each separate occurrence of a proposi-
tional variable in κ. Our examples will use positive integers
for tags, but the choice is arbitrary. We will refer to propo-
sitional formulae in negation normal form which have been
annotated with tags as propositional matrices, and use the
variables A,B, C,K, . . . to range over them.
Definition 2.3. A matrix is an expression constructed via
the following rules:

1. The symbol > is a matrix.
2. If p is a variable and i is an tag then pi and ¬pi are ma-

trices.
3. If A and B are matrices with no tags in common, then

(A ∧ B) is a matrix.
4. If A and B are matrices with no tags in common, then

(A ∨ B) is a matrix.
5. Nothing else is a matrix.

It is worth noting that the use of the term “matrix”
for a formula in negation normal form within the connec-
tion method literature is motivated by a graphical notation
where-in disjunctions are represented by vertical juxtaposi-
tion, and conjunctions are represented by horizontal juxtapo-
sition, or vice versa depending on the author. To illustrate,
one might write

p1 ∧ (¬p2 ∨ q3) ∧ ¬q4 =

[
p1

[
¬p2
q3

]
¬q4

]
.

Our introduction of tags into the definition of a matrix
amounts to a slight simplification of the approach in (Kreitz
and Otten 1999; Otten 2011) which instead associates every
subformula with a position label of its own.

Although matrices are required to be in negation normal
form, we will sometimes write ¬A to refer to the matrix
obtained by temporarily treating A as a formula, and com-
puting the negation normal form of ¬A by pushing nega-
tions down while retaining the tags. For example, ¬(p1∨q2)
refers to the matrix ¬p1 ∧ ¬q2



Definition 2.4. We will write T (A) for the set of tags occur-
ring in A, and say that matrices A and B are tag-disjoint
when T (A) ∩ T (B) = ∅.

Definition 2.5. If p is a propositional variable then a matrix
of the form pi or ¬pi is called a literal. In the case the literal
pi or ¬pi appears in a matrix A we will say that i tags the
variable p.

Definition 2.6. The erasure of a matrix A is the proposi-
tional formula φ obtained by deleting the tags fromA, which
we denote by ε(A).

Example 2.1. The matrix p1∧ (¬p2∨q3)∧¬q4 has erasure
p ∧ (¬p ∨ q) ∧ ¬q.

When working with matrices we will say a truth-value
assignment ν satisfies A when ν satisfies ε(A). We will
also say thatA entails B and writeA ` B when ε(A) entails
ε(B).

2.4 Connections in Propositional Matrices
Unsatisfiability of propositional matrices may be charac-
terised in terms of paths and connections, where paths corre-
spond roughly to the disjuncts of a disjunctive normal form
of a formula, and connections correspond to pairs of com-
plementary literals in those disjuncts. In the context of au-
tomated reasoning, this has become known as the connec-
tion method which originates with (Bibel 1981) and (An-
drews 1976). Our presentation below is a variation on that
of (Wallen 1987) and (Otten 2011).

Definition 2.7. A path is a set p of literal matrices such
that each tag occurring in p occurs exactly once. If there
exists a variable p and tags i and j such that p contains pi
and ¬pj then {pi,¬pj} is called a connection in p, and p is
said to be connected. If p contains no connection, then p is
unconnected.

In order to construct the set of paths through a particular
matrix, we will employ the following two functions defined
on sets of paths:

Definition 2.8. If X and Y are sets of paths, then X ⊕ Y
and X ⊗ Y are defined as follows:

X ⊕ Y := X ∪ Y,
X ⊗ Y := {p ∪ q | p ∈ X and q ∈ Y } .

Definition 2.9. IfA is a matrix then the set of paths through
A, denoted by JAK, is defined by the following rules:

1. If A is > then JAK = {∅}.
2. If A is pi or ¬pi then JAK = {{A}}.
3. If A is (B ∨ C) then JAK = JBK⊕ JCK.

4. If A is (B ∧ C) then JAK = JBK⊗ JCK.

Computing the paths through a matrix effectively amounts
to converting the matrix into a disjunctive normal form by
relying solely on the associative, commutative, distributive,
and De Morgan laws.

Example 2.2. Consider the matrix p1 ∧ (¬p2 ∨ q3) ∧ ¬q4,
which is unsatisfiable and has the following paths:

Jp1 ∧ (¬p2 ∨ q3) ∧ ¬q4K
= Jp1K⊗ (J¬p2K⊕ Jq3K)⊗ J¬q4K
= {{p1}} ⊗ ({{¬p2}} ⊕ {{q3}})⊗ {{¬q4}}
= {{p1}} ⊗ ({{¬p2}, {q3}})⊗ {{¬q4}}
= {{p1,¬p2,¬q4}, {p1, q3,¬q4}}.

Observe that the first path contains the connection
{p1,¬p2} whereas the second path contains the connection
{q3,¬q4}, so that every path is connected. Recalling the
graphical notation

p1 ∧ (¬p2 ∨ q3) ∧ ¬q4 =

[
p1

[
¬p2
q3

]
¬q4

]
,

we see that the paths through a matrix correspond to hor-
izontal lines drawn across the matrix which intersect one
literal from every column.

That every path through our example matrix is connected,
and the matrix itself is unsatisfiable, is not a coincidence.
At the heart of the connection method in (Bibel 1981;
Andrews 1976) is a theorem stating that a matrix is unsat-
isfiable if and only if every path through the matrix is con-
nected. Although this characterisation is well known, given
our modified definitions for matrices and paths, we will take
a moment to prove this result for the convenience of the
reader. We start with the following lemma:
Lemma 2.1. An interpretation ν satisfies a matrix A if and
only if for some path p through A it follows that ν satisfies
every element of p.

Proof. SupposeA is a matrix and ν is an interpretation, and
proceed by induction on the complexity of A followed by
case analysis on the primary connective of the matrix under-
lying A.

1. In the case A is > then it follows that ν satisfies A, and ν
satisfies every element of the single path ∅ ∈ JAK.

2. In the case A is a literal pi or ¬pi, then ν satisfies A if
and only if it satisfies every element of the path {A}. As
JAK = {{A}} the conclusion follows.

3. In the case A is a disjunction (B ∨ C) suppose ν is a val-
uation satisfying A. It follows that ν satisfies either B or
C, and therefore by the induction hypothesis there either
exists a path p ∈ JBK such that ν satisfies every element
of p, or there exists a path p ∈ JCK such that ν satisfies
every element of p. Observing that JAK = JBK ⊕ JCK, it
follows in either case that there exists a path p ∈ JAK such
that ν satisfies every element of p as required. Conversely,
suppose that ν is a valuation such that there exists a path
p ∈ JAK such that ν satisfies every element of p. Observ-
ing that JAK = JBK ⊕ JCK it follows that either p ∈ JBK
in which case the induction hypothesis shows that ν satis-
fies B, or p ∈ JCK in which case the induction hypothesis
shows that ν satisfies C. In either case, it follows that ν
satisfies A = (B ∨ C) so the conclusion follows.



4. In the case A is a conjunction (B ∧ C) suppose ν is a val-
uation satisfying A. It follows that ν satisfies both B and
C, and therefore by the induction hypothesis there exists
a path q ∈ JBK such that ν satisfies every element of q,
and there also exists a path r ∈ JBK such that ν satisfies
every element of r. Observing that JAK = JBK ⊗ JCK it
follows that p = q∪r is a path through p such that ν satis-
fies every element of p, as required. Conversely, suppose
that ν is a valuation for which there exists a path p ∈ JAK
such that ν satisfies every element of p. Observing that
JAK = JBK⊗ JCK it follows that there exist paths q ∈ JBK
and r ∈ JCK such that p = q ∪ r. Therefore, as ν satisfies
every element of q and every element of r, by applying
the induction hypothesis it follows that ν satisfies B and
C, which is to say ν satisfies A = (B ∧ C) so the conclu-
sion follows.

Theorem 2.1. A matrixA is unsatisfiable if and only if every
path through A is connected.

Proof. Suppose thatA is unsatisfiable. Assume for the sake
of contradiction that there exists a path p through A which
contains no connection. Then consider an interpretation ν
such that ν(p) = > if pi ∈ p, ν(p) = ⊥ if ¬pi ∈ p, with
ν(p) chosen arbitrarily otherwise. It follows that ν satisfies
every element of the path p, and hence by the prior Lemma
2.1 ν satisfies A. This is a contradiction, so it must be that
every path through A was connected.

Conversely, suppose every path through A is connected
and assume for the sake of contradiction that ν is an inter-
pretation satisfying A. It follows that there exists a path p
such that ν satisfies every element of p. However, because
every path is connected, p is connected and therefore there
exists a variable p alongside tags i and j such that p contains
both pi and ¬pj . However, this means that ν(p) = > and
ν(p) = ⊥ which is a contradiction. Therefore, A must be
unsatisfiable.

2.5 Explicit and Implicit Beliefs
Requiring belief contraction operators to be invariant under
logical equivalence is unreasonable when studying resource-
limited agents. It becomes impossible to differentiate be-
tween the beliefs the agent holds, and the logical conse-
quences of those beliefs. Effectively, every consequence of
its beliefs must be treated as if it is instantaneously known,
and any contradictory beliefs results in every sentence being
believed.

These sorts of concerns motivated (Levesque 1984) to dif-
ferentiate between the explicit beliefs which an agent pos-
sesses, and those implicit beliefs which it would be able
to conclude based off of inferences from its explicit beliefs
given adequate time.

One concern is that explicitly believing A ∧ B seems
to imply one should explicitly believe A as well. Hence,
there is a need for an intermediate approach, wherein cer-
tain immediate consequences of explicit beliefs are regarded
as among the explicit beliefs, while consequences involving

more elaborate inferences are relegated to the category of
implicit belief.
Definition 2.10. Matrices A and B are path-equivalent iff
JAK = JBK.
Example 2.3. The matrices p1∨(q2∨r3) and r3∨(q2∨p1)
are path-equivalent, whereas the matrices p1 ∨ ¬p2 and >
are not path-equivalent.

In our approach, almost everything is invariant under
path-equivalence, or can be chosen to be so. It follows from
Lemma 2.1 that path-equivalence implies logical equiv-
alence, however path-equivalence is far more restrictive.
We consider path-equivalence to offer an intermediary be-
tween completely syntax-insensitive approaches which fail
to differentiate implicit and explicit beliefs, and completely
syntax-sensitive approaches which risk becoming ad-hoc.

3 Path-Contraction via Matrix Attenuation
In this section we introduce the class of path-contraction
operators which operate by applying selective substitutions
of > or ⊥ for particular occurrences of variables within a
matrix K in order to construct a matrix K′ which does not
entail another matrix A. We refer to this process of selec-
tive substitution as matrix attenuation. An advantage of ma-
trix attenuation is that it amounts to a straightforward edit
to the original knowledge base, without any requirement of
a costly conversion to a conjunctive or disjunctive normal
form. Hence, the path-contraction operators we obtain will
leave the structure of the knowledge bases being contracted
relatively unchanged.
Definition 3.1. The attenuation of a matrix A at a tag i is
the matrix Ai defined by the following rules:

1. If A is > then Ai = >.
2. If A is pj or ¬pj and i 6= j then Ai = A.
3. If A is pj or ¬pj and i = j then Ai = >.
4. If A is (B ∨ C) then Ai = (Bi ∨ Ci).
5. If A is (B ∧ C) then Ai = (Bi ∧ Ci).

It is possible to characterise the paths through an attenu-
ation of a matrix as being attenuations of the paths through
the matrix itself, where attenuations of paths are defined as
follows:
Definition 3.2. The attenuation of a path p at a tag i is the
path pi consisting of those literals in p not containing the
tag i.
Theorem 3.1. If A is a matrix and i is a tag then JAiK =
{pi | p ∈ JAK}.

Proof. Proceed by induction on the complexity of A, and
within the induction by case analysis.

1. If A is > then JAK = {∅} and Ai = A so it follows that

JAiK = J>K
= {∅}
= {∅i}
= {pi | p ∈ {∅}}
= {pi | p ∈ JAK}.



2. If A is pj or ¬pj then there are two cases. In the case
i = j then Ai = > it follows that

JAiK = J>K
= {∅}
= {{A}i}
= {pi | p ∈ {{A}}}
= {pi | p ∈ JAK}.

In the case i 6= j then Ai = A and it follows that

JAiK = {{A}}
= {{A}i}
= {pi | p ∈ {{A}}}
= {pi | p ∈ JAK}.

In either case, our choice satisfies the requirement.
3. If A is (B ∨ C) then by the induction hypothesis JBiK =
{qi | q ∈ JBK} and JCiK = {ri | r ∈ JCK}. Observing
Ai = (Bi ∨ Ci) it follows that

JAiK = JBi ∨ CiK
= JBiK ∪ JCiK
= {qi | q ∈ JBK} ∪ {ri | r ∈ JCK}
= {pi | p ∈ JBK ∪ JCK}
= {pi | p ∈ JAK}.

Thus, the requirement is satisfied.
4. If A is (B ∧ C) then by the induction hypothesis JBiK =
{qi | q ∈ JBK} and JCiK = {ri | r ∈ JCK}. Observing
Ai = (Bi ∧ Ci) it follows that

JAiK = JBi ∧ CiK
= JBiK⊗ JCiK
= {qi | q ∈ JBK} ⊗ {ri | r ∈ JCK}
= {qi ∪ ri | q ∈ JBK, r ∈ JCK}
= {(q ∪ r)i | q ∈ JBK, r ∈ JCK}
= {pi | p ∈ JBK⊗ JCK}
= {pi | p ∈ JAK}.

Thus, the requirement is satisfied.

Example 3.1. Consider the matrix p1∧ (¬p2∨q3)∧ (¬q4∨
r5) which logically entails r, and has the following paths:

Jp1 ∧ (¬p2 ∨ q3) ∧ (¬q4 ∨ r5)K

= Jp1K⊗ (J¬p2K⊕ Jq3K)⊗ (J¬q4K⊕ Jr5K)

= {{p1}} ⊗ ({{¬p2}} ⊕ {{q3}})⊗ ({{¬q4}} ⊕ {{r5}})
= {{p1}} ⊗ {{¬p2}, {q3}} ⊗ {{¬q4}, {r5}})
= {{p1,¬p2}, {p1, q3}} ⊗ {{¬q4}, {r5}})
= {{p1,¬p2,¬q4}, {p1, q3,¬q4},

{p1,¬p2, r5}, {p1, q3, r5}}.

Attenuating this matrix at the tag 3, we obtain the following
paths:

Jp1 ∧ (¬p2 ∨ >) ∧ (¬q4 ∨ r5)K

= Jp1K⊗ (J¬p2K⊕ J>K)⊗ (J¬q4K⊕ Jr5K)

= {{p1}} ⊗ ({{¬p2}} ⊕ {∅})⊗ ({{¬q4}} ⊕ {{r5}})
= {{p1}} ⊗ {{¬p2},∅} ⊗ {{¬q4}, {r5}})
= {{p1,¬p2}, {p1}} ⊗ {{¬q4}, {r5}})
= {{p1,¬p2,¬q4}, {p1,¬q4}, {p1,¬p2, r5}, {p1, r5}})

Notice that it is possible to build a valuation satisfying
{p1,¬q4} but not r. Therefore, it follows that via attenu-
ation we have prevented the logical entailment of r.

In the subsequent development we will make use of iter-
ated attenuations:

Definition 3.3. If I = {i1, i2, . . . , ik} is a finite set of tags
and A is a matrix then the attenuation of A by I is defined
as the iterated attenuation (. . . ((Ai1)i2) . . . )ik .

That this definition is well-defined follows from the fol-
lowing observation:

Observation 3.1. If i and j are tags and A is a matrix then
(Ai)j = (Aj)i and (Ai)i = Ai.

Path-contraction operators will compute a contraction of
K by A via attenuating a number of tags within a matrix K
to obtain a matrix KI which does not entail a matrix A. We
refer to these sets of tags I as cuttings.

Definition 3.4. If K and A are tag-disjoint matrices then a
cutting of K by A is either ∅ in the case K 0 A or ` A,
or a subset I of T (K) such that KI 0 A otherwise. It is a
regular cutting iff every tag in I tags a variable in K which
also appears in A.

Example 3.2. In our previous example of K = p1 ∧ (¬p2 ∨
q3) ∧ (¬q4 ∨ r5) it follows that {3} is a non-regular cutting
of K by r whereas {5} is a regular cutting of K by r.

We will see in Section 5 that working with regular cuttings
results in an analogue of Parikh’s Postulate being satisfied.
It is conceivable that additional restrictions on cuttings may
prove desirable. For instance, whenever I and J are sets
of tags with I ⊆ J then KI ` KJ and hence in the case
KI 0 A it follows that KJ 0 A as well. Seeking belief base
contraction operators which result in minimal change, i.e.
which preserve as many of the existing beliefs as possible,
suggests that we should always prefer KI to KJ , in effect
imposing a requirement that a cutting must be minimal with
respect to set inclusion. However, this will increase the com-
plexity of computing a cutting, and thus we do not take this
to be a defining feature of our approach. We leave the ques-
tion of additional restrictions on cuttings to the designers of
concrete path-contraction operators.

Definition 3.5. A binary function− : L×L→ L is a path-
contraction operator iff for all satisfiableK andA it follows
thatK−A = KI for some cutting I forA inK. It is regular
in the case K −A = KI for some regular cutting I .



Note our restriction to satisfiable formulae in the prior
definition. This is a matter of convenience. When A is un-
satisfiable then K ` A only holds when K is unsatisfiable
as well, making the situation rather uninteresting. Further,
when K is unsatisfiable, then it is implausible as a belief
state for an agent anyways.

There are a number of desirable properties satisfied by
path-contraction operators:

Theorem 3.2. Suppose that − is a path-contraction opera-
tor, then the following properties are satisfied:

1. K ` K −A.
2. If ` A then K −A = K.
3. If K 0 A then K −A = K.
4. If 0 A then K −A 0 A.

Proof.

1. It follows that K − A = KI and therefore K 
 KI =
K −A.

2. In this case ` A it follows by definition that ∅ is the only
cutting of K by A, and hence K −A = K∅ = K.

3. In the case K 0 A then ∅ is a cutting of K by A. As
∅ ⊆ I for every tag set I in K, it follows that ∅ is the
only cutting of K by A and thus K − A = K∅ = K
showing that K −A ` K.

4. In the case 0 A let I be a cutting of K by A such that
K−A = KI . Being that 0 A it follows that I is a minimal
set of tags such that KI 0 A, which is to say K−A 0 A.

It follows that every path-contraction operator produces
a belief base contraction operator in the following manner.
Given κ and φ choose tag-disjoint matrices K and A such
that κ is the erasure of K and φ is the erasure of A. Apply
the path-contraction operator to computeK−A, then define
κ − φ as the erasure of K − A. It follows by Theorem 3.2
that the binary function− on propositional formulae defined
above satisfies the requirements to be a belief base contrac-
tion operator. Example 4.1 in the next section shows this in
action.

4 An Algorithm for Regular
Path-Contraction

In this section we will present an algorithm for implement-
ing a regular path-contraction operator, and show that this
algorithm results in a decision procedure for testing whether
K − A entails B with complexity NP. Our algorithm will
make use of the notion of an extracted path, and the notion
of a cross-cut, which we now present.

Definition 4.1. If A is a satisfiable matrix with satisfying
assignment ν, then the extracted path ext(A, ν) is defined
by the following rules:

1. If A is > then ext(A, ν) = ∅.
2. If A is pi or ¬pi then ext(A, ν) = {A}.
3. If A is (B ∧ C) then ext(A, ν) = ext(B, ν) ∪ ext(C, ν).

4. If A is (B ∨ C) and ν satisfies B then ext(A, ν) =
ext(B, ν), otherwise ext(A, ν) = ext(C, ν).

Lemma 4.1. If ν is an assignment satisfying A then
ext(A, ν) is an unconnected path through A.

Definition 4.2. If p and q are unconnected paths then the
cross-cut, denoted by cr(p, q), is the set of tags i in p for
which there exists a tag j in q alongside a propositional
variable p such that either {pi,¬pj} or {¬pi, pj} is a con-
nection in p ∪ q.

Lemma 4.2. If K ` A, p is an unconnected path through
K, and q is an unconnected path through ¬A then cr(p, q)
is a regular cutting of K by A.

Proof. Suppose p is an unconnected path through K and
q is an unconnected path through ¬A. It follows that
r = p ∪ q is a path through K ∧ ¬A. By the as-
sumption that p and q are unconnected, it follows that ev-
ery connection in r may be written as {`i, `j} where `i

is in K and `j is in ¬A. Enumerating these connec-
tions as {`i1 , `j1}, {`i2 , `j2}, . . . , {`in , `jn} it follows that
cr(p, q) = {i1, i2, . . . , in}. Letting I = cr(p, q) it fol-
lows that rI is a unconnected path through (K ∧ ¬A)I . Be-
ing that I contains only tags appearing in K it follows that
(K ∧ ¬A)I = KI ∧ ¬A. Therefore rI is an unconnected
path through KI ∧ ¬A. By Theorem 2.1 it follows that
KI ∧ ¬A is satisfiable, showing that KI 0 A. If ` A then
there would exist no unconnected path through ¬A, contra-
dicting our hypotheses. If K 0 A this would also contradict
our hypothesis. Hence, I = cr(p, q) is a cutting of K by A.
Furthermore, as every tag in I appears in K, it follows that
I is a regular cutting of K by A.

Without further ado, we can present our algorithm as fol-
lows:

Algorithm 1 Path-Contraction Algorithm
Input: Initial beliefs K
Input: Contractum A
Output: The contracted beliefs K −A

1: if K 0 A or ` A then
2: return K
3: else
4: ν := a satisfying assignment for K
5: µ := a satisfying assignment for ¬A
6: p := ext(K, ν)
7: q := ext(¬A, µ)
8: I := cr(p, q)
9: return KI

10: end if

Depending on the satisfiability solver used, this algorithm
will produce different path-contraction operators. Further,
if the satisfiability solver is non-deterministic, as many sys-
tems with randomised restarts are, then the path-contraction
operator produced will be non-deterministic. However, fix-
ing a deterministic satisfiability solver, we obtain a deter-
ministic algorithm. Before turning to the correctness and



complexity of this algorithm, we present the following ex-
ample:

Example 4.1. Consider a propositional vocabulary where
p symbolises that Tweety is a penguin, b symbolises that
Tweety is a bird, and f symbolises that Tweety flies. Con-
sider the naive knowledge base κ defined as (p→ b)∧ (b→
f) which has the undesirable consequence φ := (p → f)
suggesting that were Tweety a penguin then Tweety could
fly. We will use our path-contraction algorithm to com-
pute κ − φ. First we tag everything to obtain the matrices
K := (¬p1 ∨ b2) ∧ (¬b3 ∨ f4) and A := (¬p5 ∨ f6).

AsK ` A and 0 A our algorithm must do some work. We
start by choosing a truth-value assignment ν satisfying K
such as the one satisfying p ∧ b ∧ f , alongside a truth-value
assignment µ satisfying ¬A = p5 ∧ ¬f6 such as the one
satisfying p ∧ b ∧ ¬f . Using these assignments, we extract
the path p = {b2, f4} through K alongside the path q =
{p5,¬f6} through ¬A.

Computing the cross-cut, we find I = cr(p, q) = {4}.
Our algorithm now returns KI = (¬p1 ∨ b2)∧ (¬b3 ∨>) =
(¬p1 ∨ b2). Erasing the tags gives the new knowledge base
¬p ∨ b.
Theorem 4.1. Algorithm 1 defines a regular path-
contraction operator.

Proof. For any satisfiable matrices K and A let K − A be
defined as the result returned by Algorithm 1. This is well-
defined as Algorithm 1 is deterministic once we fix deter-
ministic satisfiability solvers, and always terminates regard-
less. We must show that K − A = KI for some regular
cutting of K by A. In the case K 0 A or ` A then, by defi-
nition, I = ∅ is a regular cutting ofK byA, and furthermore
the algorithm returns K = KI . Otherwise, we proceed un-
der the assumption K ` A and 0 A. It follows that there
exists a truth value assignment ν satisfying K as well as a
truth value assignment µ satisfying ¬A. By Lemma 4.1 it
follows that p = ext(ν,K) is an unconnected path through
K, and q = ext(µ,¬K) is an unconnected path through A.
Further, recalling our assumption that K ` A it follows by
Lemma 4.2 that I = cr(p, q) is a regular cutting of K by
A. As the algorithm returns with K − A = KI this is also
fine. Hence, it follows that − is a regular path-contraction
operator.

Theorem 4.2. If − is the regular path-contraction opera-
tor defined by Algorithm 1 then the decision problem of de-
termining whether or not K − A ` B has worst-case time
complexity NP.

Proof. Let n be the sum of the size of K, the size of A, and
the number of variables in the language. We start by com-
putingK−A. Initially the algorithm calls into a satisfiability
solver twice on line (1) to determine whether K 0 A or ` A
hold. Assuming this is not the case, it then calls into a sat-
isfiability solver twice to produce the satisfying assignments
ν and µ on lines (4) and (5). Recursing over the matrices
K and A and labelling every subformula with the value it is
assigned by ν and µ respectively requires only O(n log n)
time, and after we can then compute p = ext(ν, κ) and

q = ext(µ,¬φ) on lines (6) and (7) using only O(n) time
in the size of the formula. Computing I = cr(p, q) on line
(8) can be done in time O(n2), and computing KI on line
(9) can be done in time O(n). With K − A = KI com-
puted, we now call into a satisfiability solver one last time
to determine whether K − A ` B. In total, we have done
a polynomial-time amount of work in addition to solving 5
instances of the satisfiability problem. As satisfiability has
worst-case time complexity NP, it follows that our decision
problem has worst-case time complexity NP as well.

The existence of a regular path-contraction operator with
a worst-case time complexity of NP is in sticking contrast
to other concrete belief change functions discussed in (Eiter
and Gottlob 1992) whose complexity is often Π2

p-complete.
Though, it must be pointed out that path-contraction oper-
ators comprise a class of operators of which Algorithm 1
contributes only a small subset, and it may ultimately prove
desirable to sacrifice some additional performance in order
to ensure stronger guarantees over the properties of the over-
all path-contraction operator.

5 Path-Entailment and Path-Independence
In this section we introduce the notion of path-entailment
which strengthens logical entailment to a structural property
of matrices. We will see that every matrix path-entails its
attenuations, and further that attenuation preserves the path-
entailment of matrices not containing the attenuated tag. Us-
ing path-entailment, we will be able to characterise further
the preservation properties of regular path-contraction oper-
ators.

Definition 5.1. If A and B are matrices such that for every
path p ∈ JAK there exists a path q ∈ JBK with p ⊇ q then
A path-entails B, which we indicate by writing A 
 B. We
also say that B is a path-consequence of A.

Example 5.1. Consider the matrixK defined as (¬p1∨q2)∧
(¬q3∨r4). The paths throughK are as follows: {¬p1,¬q3},
{¬p1, r4}, {q2,¬q3}, and finally {q2, r4}. As the paths
through ¬p1∨q2 are {¬p1} and {q2} it follows thatK path-
entails ¬p1∨q2, as each path throughK contains either ¬p1
or q2. However, despite ¬p1∨ r4 being logically entailed by
K, this is not a path-consequence of K for the reason that
the path {q2,¬q3} contains no path through ¬p1 ∨ r4.

Theorem 5.1. If A 
 B then A ` B.

Proof. Suppose that A 
 B, and consider an interpretation
ν which satisfies A. By Lemma 2.1 this means that there
exists a path p ∈ JAK such that ν satisfies every element of
p. Under our assumption that A 
 B it follows that there
exists some path q ∈ JBK such that p ⊇ q. However, this
means that ν satisfies every element of q, which by Lemma
2.1 implies ν satisfies B. With ν being arbitrary, it follows
that A ` B.

Theorem 5.2.
1. A 
 A.
2. If A 
 B and B 
 C then A 
 C.
3. If A 
 C and B is tag-disjoint with A then A ∧ B 
 C.



4. If A is a matrix and i is a tag then A 
 Ai.
5. If A 
 B ∧ C then A 
 B.
6. If A 
 B then A 
 B ∨ C.

Proof.

1. Immediate.
2. Suppose A 
 A and A 
 A. Suppose that p ∈ JAK

and observe that A 
 B implies there exists some q ∈
JBK such that p ⊇ q, and furthermore observe that B 

C implies there exists some r ∈ JCK with q ⊇ r. By
transitivity it follows that p ⊇ r. With p being arbitrary, it
follows that A 
 C.

3. Suppose p is a path throughA∧B and observe there exist
paths q1 ∈ JAK and q2 ∈ JqK with p = q1 ∪ q2. As
A 
 C there exists a path r ∈ JCK such that q1 ⊇ r. As
p = q1 ∪ q2 it follows that p ⊇ r. With p being arbitrary,
it then follows that A ∧ B 
 C.

4. Suppose p is a path throughA, then it follows that p ⊇ pi
and pi ∈ JAiK. Hence, A 
 Ai.

5. Suppose A 
 B ∧ C and consider a path p ∈ JAK. It
follows that there exists a path q ∈ JB ∧ CK such that
p ⊇ q, however as JB ∧ CK it follows that q = q1 ∪ q2
for some q1 ∈ JBK and q2 ∈ JB2K showing that p ⊇ q1
where q1 ∈ Jq1K. With p being arbitrary, it then follows
that A 
 B.

6. Suppose p is a path through A. It follows from the as-
sumption that A 
 B then there exists a path q ∈ JBK
such that p ⊇ q. As JB ∨ CK = JBK ∪ JCK, this implies
that there exists a path q ∈ JB ∨ CK with p ⊇ q. Hence,
A 
 B ∨ C.

Note that properties (1), (2), and (3) of Theorem 5.2
correspond to the requirements for path-entailment to be
a Tarskian consequence relation, modulo the proviso of
the tag-disjointness for (3). Regardless, the motivation for
studying path-entailment is that we can easily formulate
a criterion for attenuation to preserve an individual path-
entailment, whereas in the case of logical entailment the sit-
uation is not straightforward.

Theorem 5.3. If A 
 B and i is an tag not occurring in B
then Ai 
 B.

Proof. Suppose that p ∈ JAiK. Then there exists a path
p′ ∈ JAK such that p = p′i, and as A 
 B there exists a path
q ∈ JBK such that p ⊇ q. However, as i does not occur in B
it follows that p = p′i ⊇ q. With p being arbitrary, it follows
that Ai 
 B.

As a corollary of Theorem 5.3, we will see that regular
path-contraction operators satisfy a structural analogue of
Parikh’s postulate. Rather than consider formulae κ logi-
cally equivalent to some conjunction κ1 ∧ κ2 with V (κ1) ∩
V (κ2) = ∅, we will consider matrices K which are path-
equivalent to a conjunctionK1∧K2 with V (K1)∩V (K2) =
∅. This is a stronger requirement, and as such this version of
Parikh’s Postulate will apply less frequently. Though, this is

not unreasonable given our position on the relevance of syn-
tax.

Definition 5.2. If X and Y are disjoint subsets of V with
V = X ∪ Y then X and Y are path-independent modulo
K iff there exist tag-disjoint matrices K1 and K2 such that
V (K1) ⊆ X , V (K2) ⊆ Y , and JKK = JK1 ∧ K2K. In this
case we say that (K1,K2) is a (X,Y )-splitting of K.

Example 5.2. Although the matrices p1∧(¬p2∨q3) and p1∧
q3 are logically equivalent, and it follows that {p} and {q})
are path-independent modulo p1 ∧ q3, it follows that Jp1 ∧
(¬p2∨q3)K = {{p1,¬p2}, {p1, q3}} cannot be expressed as
JK1∧K2K = JK1K⊗JK2K for anyK1 andK2 with V (K1) =
{p} and V (K2) = {q} showing that {p} and {q} are not
path-independent modulo p1 ∧ (¬p2 ∨ q3).

Theorem 5.4. Suppose that − is a regular path-contraction
operator, (K1,K2) is an (X,Y )-splitting of K, and that A
is a formula with V (A) ⊆ Y , then it follows that

(K1 ∧ K2)−A 
 K2.

Proof. As− is a regular path-contraction operator it follows
that there exists a regular cutting I of (K1 ∧ K2) by A such
that (K1∧K2)−A = (K1∧K2)I . As V (A)∩V (K2) = ∅ it
follows that every tag i in I tags a variable in A which does
not appear in K2. Hence, as K1 ∧ K2 
 K2 it follows from
Theorem 5.2 that (K1 ∧K2)−A = (K1 ∧K2)I 
 K2.

6 Discussion
6.1 Related Work
There are attempts to leverage the connection method and
similar techniques for belief contraction already in literature,
however we believe our work to be unique in utilising matrix
attenuation to preserve the structure of the original formula.

In (Bienvenu, Herzig, and Qi 2008), knowledge bases
are converted into prime implicate normal form, resulting
in a syntax-independent but nevertheless syntactic belief re-
vision function.

In (Schwind 2010) and (Schwind 2012) belief revision
functions are introduced which operate on implicants, which
are taken there to be roughly paths through matrices with
tags erased. These functions are required to satisfy the AGM
postulates, and thus correspond to belief revision rather than
belief base revision.

In (Gabbay, Rodrigues, and Russo 2010) a formulation
of the connection method for knowledge bases in disjunc-
tive normal form is utilised to repair inconsistent knowledge
bases. This is accomplished by replacing the knowledge
base with the disjunction formed by the conjunctions asso-
ciated with each maximally consistent subset of a path. This
can be further adapted to the process of belief revision by
assigning priorities to the different tags, and selecting max-
imal consistent subpaths which retain the highest priority
tags if at all possible. Our approach differs in that we do
not require conversion to disjunctive normal form, we pro-
duce a modification to the original formula, our approach
performs belief contraction, and our approach results in a
class of path-contraction operators.



6.2 Future Work
Clarifying the connection between path-contraction opera-
tors and other approaches to belief base contraction via hit-
ting sets and incision functions, as well as attempting to
obtain versions of properties such as core-retainment suit-
able for path-contraction remains an open problem. We be-
lieve that investigating “path-remainders” of K modulo A,
defined as those logically strongest K′ such that K 
 K′ yet
K′ 0 A will prove illuminating.

Variants of the connection method have been developed
for intuitionistic and modal logics (Wallen 1987), as well
as for the description logic ALC (Freitas and Otten 2016).
We believe that the theory of path-contraction operators in-
troduced here will generalise well to these formalisms. It
would also be interesting to investigate whether this ap-
proach also extends to tableaux methods for non-monotonic
logics (Olivetti 1999) such as sceptical default reasoning
(Bonatti and Olivetti 1997b) or circumscription (Bonatti and
Olivetti 1997a).

We are also interested in conducting an empirical study of
the performance of path-contraction operators. In order to
carry out path-contraction, an algorithm would essentially
have to locate an open branch in a tableau for K, an open
branch in a tableau for A, select a minimal cutting based
off these branches, and then perform a quadratic amount of
work to attenuate by that cutting in order to produce K−A.
Therefore, the majority of the complexity arises in locating
those open branches, and ensuring that resulting cutting is
minimal. Hence, we suspect that the performance of path-
contraction should be comparable to tableaux-based satisfi-
ability checking. It would also be interesting to obtain some
probabilistic estimates on the likelihood of obtaining a cut-
ting via randomly sampling paths, as a random path should
be able to be sampled from K ∧ ¬A in linear time. Fi-
nally, we conjecture that path-entailment can be decided in
polynomial-time.

7 Conclusion
In this paper we introduced the class of path-contraction
operators, which utilise the process of matrix attenuation
to carry out a form of belief base contraction in a manner
which leaves the syntactic structure of the original belief
base minimally changed. We have presented an algorithm
for implementing a path-contraction operator and shown it to
have complexity NP. We have further introduced the notion
of path-entailment, and shown that regular path-contraction
operators have desirable preservation properties which sub-
stantiate the claim that path-contraction operators are carry-
ing out only minimal changes to the original formula. Fi-
nally, we discussed where our approach fits in with other
related approaches to belief change.
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