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Abstract

We present an approach for incorporating qualitative condi-
tional independence into belief revision. Our stance is that,
as with probability, conditional independence arises far more
frequently than the unconditional independence studied in
previous work. Our approach uses multivalued dependencies
to represent domain-dependent conditional independence as-
sertions. In particular, the multivalued dependency X � Y
expresses that assertions over the subvocabularies Y and Y
are independent whenever complete information is known
about the subvocabulary X . We introduce the class of par-
tially compliant revision operators, wherein revising a KB
satisfying X � Y by a formula expressed over Y results
in the part of the KB expressed over Y remaining unchanged.
This helps ensure that partially compliant revision operators
result in minimal changes to existing beliefs, as irrelevant ex-
isting beliefs are left unchanged. Furthermore, we identify
a subclass of partially compliant operators, called fully com-
pliant operators, for which the same is true when revising by
a formula expressed over XY rather than just Y . For both
classes, we provide representation results which characterise
compliance semantically in terms of faithful rankings. Fi-
nally, we compare our use of multivalued dependencies to
existing work on independence in belief revision.

1 Introduction
Belief revision is concerned with the situation in which an
agent is confronted with a new fact to incorporate into its be-
lief set. If the new fact is inconsistent with the current belief
set, the challenge is to revise these beliefs so that as many of
the current beliefs as possible are retained while incorporat-
ing the new fact and maintaining consistency. This process
is formalised as a belief revision operator ∗ which takes a
current knowledge base K and a formula for revision φ and
produces a revised knowledge base K ∗ φ.

In order to formalise the requirement that revision should
result in a minimal change to existing beliefs, a number of
authors have turned to irrelevance, suggesting that those be-
liefs irrelevant to the formula for revision should remain un-
changed (Gardenfors 1990). This also has the potential ad-
vantage of opening a pathway to more efficient belief revi-
sion operators, by being able to exclude irrelevant beliefs
from the revision process. However, so far, these notions of
irrelevance have been extremely strict, considering beliefs

as irrelevant only when there is no connection, however in-
direct, between them.

To see the issue, consider the following situation: an agent
is informed that refrigerators require power, power is gener-
ated in the local area by wind turbines, and wind turbines kill
birds. It would seem that information about birds would be
independent of information concerning refrigerators; how-
ever, this is not the case, given the link between refriger-
ators and birds mediated by wind turbines. Consequently,
existing approaches would consider refrigerators relevant to
birds. However, when revising our beliefs about birds there
would seem to be no reason for our beliefs about refrigera-
tors to change. Hence it seems we need a more nuanced and
general notion of irrelevance.

This situation has a parallel in probability theory. In prac-
tice, random variables are rarely independent. However,
they are frequently conditionally independent. As a result,
Bayesian networks have been developed to exploit condi-
tional independence properties, thereby overcoming the oth-
erwise seemingly-intractable complexity of probabilistic in-
ference (Pearl 2014).

In this paper we take a suitable analogue of conditional
independence for determining which beliefs may be consid-
ered irrelevant to others in a given context. We then ap-
ply this notion to belief revision, and we study those revi-
sion operators which comply with this formulation of condi-
tional independence. Our approach is given in terms of the
Katsuno-Mendelzon approach for belief revision. In our ap-
proach, we assume that conditional independence is a prop-
erty of the underlying domain, and we consequently assume
that a knowledge engineer has provided a collection of such
conditional independence assertions. These assertions can
then be taken into account in the belief revision process. To
this end, we study two related notions of what it means for
a belief revision operator to take into account conditional
independencies. We provide postulates that characterise
conditional independence in revision, and which generalise
previous approaches to (non-conditional, absolute) indepen-
dence. Furthermore, we provide representation results, giv-
ing conditions on faithful rankings which correspond to the
sets of postulates characterising conditional independence in
revision.

The next section covers background material: we first
present useful definitions and notation, after which we give



background material on belief revision, including existing
approaches to independence in belief revision, along with
conceptions of conditional independence in logic. Section 3
introduces the class of belief revision operators which par-
tially comply with a multivalued dependency, and charac-
terises partial compliance in terms of faithful rankings. Sec-
tion 4 studies the stronger property of full compliance with
a multivalued dependency, again with a characterisation in
terms of faithful rankings. In Section 5 we examine and
clarify the relationship between logical conditional indepen-
dence, multivalued dependencies, and syntax splitting. Fi-
nally, Section 6 discusses our approach, related work, and
future work, after which we have a brief conclusion.

2 Background Material
2.1 Preliminaries and Notation
Let V = {p, q, r, . . . } be a finite set of propositional vari-
ables, arbitrary subsets of which are denoted by X , Y ,
and Z. We sometimes juxtapose these subsets to represent
unions, e.g. XY = X∪Y . The relative complement V −X
will be denoted byX . Every subsetX of V induces a propo-
sitional language L(X) consisting of formulae constructed
from the elements of X by applying the propositional con-
nectives ¬, ∧, ∨, and→. We write L for the entire proposi-
tional language L(V ).

Lower case Greek letters φ, ψ, γ, . . . will be used to range
over formulae in a propositional language, with K playing
a special role of a formula thought of as representing the
knowledge base of an agent.

Also associated to every subset X of V is the set ΩX of
functions v : X → {T, F} referred to as models or possible
worlds overX . We will freely think of these possible worlds
as either these functions, or as conjunctions of the literals
satisfied by them. Hence, for us, {x 7→ T, y 7→ F} is the
same thing as x ∧ ¬y. Given a possible word u over V
alongside a subset X of V , we write uX for the reduct of u
to a possible world over X , that is the function uX : X →
{T, F} agreeing with u.

When φ is a formula we write [φ] for the set of models
over V satisfying φ, so that [φ] ⊆ ΩV . We write φ ` ψ to
indicate [φ] ⊆ [ψ], and φ ≡ ψ to indicate [φ] = [ψ].

We write V (φ) for the minimal set of propositional vari-
ables for which there exists a formula ψ logically equivalent
to φ containing only occurrences of variables in V (φ), for
instance V (q ∧ (p ∨ ¬p)) = {q}.

2.2 Projections of a Propositional Formula
In order to speak about components of a knowledge base
K expressed in various subvocabularies we will introduce
the following analogue of the projection operator from the
relational algebra (Abiteboul, Hull, and Vianu 1995).
Definition 2.1. If φ is a propositional formula, and X ⊆ V ,
then the projection φX of φ onto X is defined up to logical
equivalence as the formula φX such that

[φX ] = {u ∈ ΩV | ∃v ∈ [φ], vX = uX}.
Example 2.1. The projection of (p → q) ∧ (q → r) onto
{p, q} is (p→ q), whereas the projection of (p→ q)∧(q →
r) onto {q, r} is (q → r).

Regarding a set of possible worlds as tuples in a relation, it
follows that φX defines the set of worlds resulting from pro-
jecting this “relation” onto the “attributes” in X , then taking
the Cartesian product of this with all possible interpretations
of the remaining variables. This operator also appears as
the notion of a uniform interpolant, a model-theoretic reduct
(Hodges 1993), or as the dual of a forgetting operator1 (Del-
grande 2017). For our purposes, we will rely on the follow-
ing property of projections:
Theorem 2.1. If φ ` ψ and V (ψ) ⊆ X then φ ` φX and
φX ` ψ.

2.3 Revision Operators and Faithful Rankings
A belief revision operator, as formalised by Alchourron,
Gärdenfors, and Makinson (1985), is a binary function ∗
which maps a belief set K and a formula φ and produces
a revised belief set K ∗ φ in a manner satisfying the AGM
postulates. These postulates attempt to capture the require-
ment that K ∗ φ must include φ alongside as many beliefs
from K as possible, while maintaining consistency. In other
words, K ∗ φ results from a minimal change to the existing
belief set K which results in φ being believed. Note that be-
lief revision captures an agent revising its beliefs about the
present state of affairs, whereas updating its beliefs when
the state of the world changes is the subject of belief update
operators, cf. (Peppas 2008).

In our setting of a finite vocabulary, we can simplify mat-
ters by working instead with the Katsuno-Mendelzon ap-
proach wherein the belief sets K and K ∗ φ are represented
as single formulas, and the AGM postulates are rephrased in
the following manner (Katsuno and Mendelzon 1991).
Definition 2.2. A binary function ∗ : L × L → L is a be-
lief revision operator if it satisfies the following basic pos-
tulates:
R1. K ∗ ψ ` ψ;
R2. If K ∧ φ is satisfiable then K ∗ φ ≡ K ∧ φ;
R3. If φ is satisfiable then K ∗ φ is satisfiable;
R4. If K1 ≡ K2 and φ1 ≡ φ2 then K1 ∗ φ1 ≡ K2 ∗ φ2.
We will say that a belief revision operator ∗ satisfies the sup-
plementary postulates when it satisfies the following:
R5. (K ∗ φ) ∧ ψ ` K ∗ (φ ∧ ψ);
R6. If (K∗φ)∧ψ is satisfiable thenK∗(φ∧ψ) ` (K∗φ)∧ψ.

Unless we explicitly specify that a belief revision operator
satisfies the supplementary postulates, we will assume only
that the basic postulates are satisfied. Note that this parti-
tioning of the Katzuno-Mendelzon postulates into basic and
supplementary postulates exactly mirrors the organisation of
the original AGM postulates into basic and supplementary
postulates.

When working with belief revision operators satisfying
the basic and supplementary KM postulates, Katsuno and
Mendelzon (1991) show that we may semantically charac-
terise the belief revision operator as determining K ∗ φ by
selecting those worlds in [φ] which are minimally implau-
sible with respect to a ranking on worlds. To this end, they

1In the sense that φY ≡ forget(φ, V − Y ).



introduce binary relations≤K on worlds referred to as faith-
ful rankings wherein u ≤K v means that v is at least as im-
plausible as u from the perspective of an agent knowing only
K.

Definition 2.3. A faithful ranking forK is a binary relation
≤K on possible worlds which satisfies the following proper-
ties:

1. w ≤K w′ and w′ ≤K w′′ implies w ≤K w′′.
2. Either w ≤K w′ or w′ ≤K w.
3. w ≤K w′ for all w′ if and only if w |= K.

IfW is a set of possible worlds and≤ is a faithful ranking,
we write min(W,≤) for the set of worlds in W which are
minimal under≤. That is to say, x ∈ min(W,≤) if and only
if x ∈W and x ≤ y for all y ∈W .

Theorem 2.2 ((Katsuno and Mendelzon 1991)). A binary
function ∗ : L × L → L is a belief revision operator sat-
isfying the supplementary postulates if and only if for ev-
ery K there exists a faithful ranking ≤K for K such that
[K ∗ φ] = min([φ],≤K).

2.4 Relevance in Belief Revision
Although the general consensus is that a belief revision op-
erator must satisfy the KM postulates, these postulates place
few constraints on the behaviour of belief revision operators.
For instance, they fail to rule out the belief revision operator
defined by setting K ∗φ = K ∧φ if K ∧φ is consistent and
K ∗ φ = φ otherwise2. This is in tension with the objective
of belief revision to preserve as many of the original beliefs
as possible.

In (Parikh 1999) the notion of minimal change is ad-
dressed via considering an additional postulate asserting that
whenever the knowledge base is divisible into two unrelated
components, then revision by a formula pertaining to only
one of those components should leave the other component
unchanged. For a KM belief revision operator ∗, Parikh’s
postulate can be expressed as follows:

P If K ≡ K1 ∧ K2 where V (K1) ⊆ X1, V (K2) ⊆ X2,
X1 ∩X2 = ∅, and φ is such that V (φ) ⊆ X1 then

K ∗ φ ≡ (K1 ~ φ) ∧K2

where~ is a belief revision operator for the language X1.

The statement of Parikh’s postulate admits a weak reading
wherein ~ varies as a function of K, as well as a strong
reading wherein ~ is fixed. In order to clarify this situation,
Peppas et al.(2015) introduced the following variations (P1)
and (P2) of (P) which we state here in the KM setting:

P1. If V (K1) ∩ V (K2) = ∅ and V (φ) ⊆ V (K1) then
((K1 ∧K2) ∗ φ)V (K2) ≡ K2.

P2. If V (K1) ∩ V (K2) = ∅ and V (φ) ⊆ V (K1) then
((K1 ∧K2) ∗ φ)V (K1) ≡ (K1 ∗ φ)V (K1).

Intuitively, (P1) states that when revising K by φ, only
the part of K relevant to φ is revised. The role of (P2) is to

2Consider the rankings ≤K where u ≤K v for all u, v 6∈ [K].

ensure that whenever K1 and K2 agree on the beliefs rele-
vant to φ, then the revisions Ki ∗ φ change this part in the
same way.

Using these clarified postulates, Peppas et al. (2015) de-
velop a characterisation of those belief operators satisfying
(P1) and (P2), and show that Dalal’s belief revision operator
satisfies the basic and supplementary KM postulates as well
as (P1) and (P2). Subsequent work has extended these re-
sults to epistemic states (Kern-Isberner and Brewka 2017),
to belief contraction operators (Haldimann, Kern-Isberner,
and Beierle 2020), to epistemic entrenchments and selec-
tion functions (Aravanis, Peppas, and Williams 2019), and
to preferential entailment relations (Kern-Isberner, Beierle,
and Brewka 2020).

Rather than considering belief revision operators that sat-
isfy (P1), Delgrande and Pappas (2018) consider belief revi-
sion operators which satisfy an analogue of Parikh’s postu-
late for only certain theories and a subset of possible syntax
splittings. The idea is that the knowledge engineer will spec-
ify a number of irrelevance assertions σ � Y 3, and belief
revision operators will be required to comply with these as-
sertions in the following sense:
Definition 2.4. A belief revision operator ∗ complies with
σ � Y at K when either K 0 σ or for every consistent φ
with V (φ) ⊆ Y the following postulate is satisfied:
R If K ` ¬φ then K ∗ φ ≡ (K ∗ φ)Y ∧KY .

For a belief revision operator ∗ induced from a family
of faithful rankings {≤K}K , Delgrande and Pappas (2018)
show that complying with σ � Y is equivalent to stating
that, for every K entailing σ, the following postulates are
satisfied:
S1. If uY = vY , K ` ¬uY , and KY 0 ¬u then u ≤K v;
S2. If uY = vY , K ` ¬uY , KY 0 ¬u, and KY ` ¬v then
u <K v;

2.5 Conditional Independence
Parikh’s postulate, and the majority of approaches descend-
ing from it, suffers from the limitation that the knowledge
base must be able to be split into disjoint components in
order for the postulate to apply. This limitation is already
noted in (Chopra and Parikh 2000) which attempts to over-
come this limitation by introducing the notion of a belief
structure, which splits a knowledge base into a number of
compartments which may overlap in vocabulary. However
this compartmentalisation is fixed which can lead to infor-
mation being lost.

This situation has an analogue in probability theory,
where unconditional independence is a powerful but rarely
applicable assumption. Rather, it is conditional indepen-
dence which arises most frequently, and in fact has become
a central component of modern probabilistic modelling and
inference.

Inspired by probability theory, Darwiche (1997) intro-
duces a notion of conditional logical independence together

3For the reader familiar with multivalued dependencies, the
similarity of this notation was a deliberate choice in (Delgrande
and Peppas 2018).



with a number of equivalent characterisations tailored for
different reasoning problems. We will adopt the following
notion, adapted from (Lang and Marquis 1998) and (Lang,
Liberatore, and Marquis 2002).

Definition 2.5. If X , Y1, and Y2 are pairwise disjoint sub-
sets of V and K is a propositional formula over V then
Y1 and Y2 are conditionally independent given X mod-
ulo K when for any world u and formulae φ1 and φ2 with
V (φ1) ⊆ Y1 and V (φ2) ⊆ Y2 such that K ∧ uX ` φ1 ∨ φ2
either K ∧ uX ` φ1 or K ∧ uX ` φ2.

Example 2.2. The sets {p} and {r} are conditionally inde-
pendent given {q} modulo K := (p → q) ∧ (q → r). This
follows from Theorem 5.2 below. To verify this for a spe-
cific case, let u be an arbitrary possible world and consider
that K ∧ u{q} ` ¬p ∨ r. Either u(q) = F in which case
K ∧ u{q} ` ¬p, or u(q) = T in which case K ∧ u{q} ` r,
as required.

Taking inspiration instead from database theory, we can
regard the worlds satisfying a propositional formula K as
constituting a database table wherein the attributes are the
propositional variables in V . Then, we may consider the
notion of a multivalued dependency:

Definition 2.6. A propositional formulaK satisfies the mul-
tivalued dependency X � Y when for any models v and u
of K such that vX = uX there exists a model w of K such
that wY = vY and wY = uY .

Example 2.3. The formula K = (p→ q) ∧ (q → r) ∧ (q ∧
r → s) satisfies the multivalued dependencies {q} � {p}
and {q}� {r, s}.

In Section 5 we show that multivalued dependencies are
equivalent to a restricted case of conditional independence,
and that both are equivalent to a generalisation of Parikh’s
syntax-splittings.

3 Compliance with Multivalued
Dependencies

Parikh’s original postulate considers only unconditional in-
dependence. However unconditional independence is a
strong condition which is unrealistic to expect to hold often.
Consider even a seemingly clear situation, such as a knowl-
edge base containing knowledge about birds and knowledge
about refrigerators. These topics would seem to be indepen-
dent. However, suppose we have that refrigerators require
power, power is generated in the local area by wind turbines,
and wind turbines often kill birds. Now, the ability to split
the knowledge base is gone. However, we can observe that if
the only link between birds and refrigerators passes through
the language of wind turbines, then when revising knowl-
edge about birds, our knowledge concerning refrigerators is
not impacted, provided that our knowledge of wind turbines
is unaffected.

In our approach, the knowledge engineer will represent
their understanding of conditional independencies between
components of the knowledge base as a collection of mul-
tivalued dependencies. The intuitive interpretation being
that a multivalued dependency X � Y captures that the

only connections between knowledge over Y and knowl-
edge over Y arise from knowledge over X . In our exam-
ple scenario, knowledge about turbines comprises the only
connection between birds and refrigerators, so the knowl-
edge engineer would represent this via the multivalued de-
pendencies TurbineV ocabulary � BirdV ocabulary and
TurbineV ocabulary � RefrigeratorV ocabulary.

Once the knowledge engineer has selected a collection of
multivalued dependencies which capture the conditional in-
dependence relations between different areas of knowledge
being worked with, these multivalued dependencies are in-
corporated into the belief revision process by requiring com-
pliance in the following sense:

Definition 3.1. If X and Y are disjoint subsets of V then a
belief revision operator ∗ partially complies with X � Y if
the following postulate holds:

PCR. If K is consistent and satisfies X � Y , V (φ) ⊆ Y ,
and φ is consistent then

K ∗ φ ≡ (K ∗ φ)XY ∧KY .

Any belief revision operator partially complying with
X � Y must, when revising a knowledge base satisfying
X � Y by a consistent formula over Y , preserve the Y
component of the knowledge base unchanged. Returning
to our example, supposing our knowledge base K satisfies
TurbineV ocabulary � BirdV ocabulary and we revise
by some formula φ in the bird vocabulary, we would have
that knowledge over BirdV ocabulary is preserved. In par-
ticular, our beliefs concerning the relationship between tur-
bines and refrigerators could not be changed by any formula
φ only referring to birds.

We refer to this as only partial compliance, for in the
next section we will introduce a postulate which applies to
suitable φ with V (φ) ⊆ XY rather than just for φ with
V (φ) ⊆ Y .

3.1 Representation via Faithful Rankings
Those belief revision operators which partially comply with
a multivalued dependency can be characterised semantically
by conditions on their corresponding faithful rankings.

Definition 3.2. If ≤K is a faithful ranking for K then ≤K

partially respects X � Y if either K does not satisfy X �
Y or the following conditions are satisfied:

PCS1. If uXY = vXY , K ` ¬uY , u ∈ [KY ], and v <K u
then there exists w such that wY = uY and w <K v.

PCS2. If KY ` ¬v then there exists a world u ∈ [KY ] such
that uY = vY and u <K v.

Condition (PCS1) states that when worlds u and v with
uXY = vXY are ruled out by K on the basis of uY , yet u
is consistent with KY , then either u is at least as plausible
as v or there is some world w with wY = uY strictly more
plausible than both u and v. Condition (PCS2) further states
that a possible world v inconsistent with KY is always less
plausible than some possible world u satisfying KY , and
furthermore such a u may be obtained from v by modifying
only the variables in Y .



Theorem 3.1. If ∗ is a belief revision operator satisfying
the supplementary postulates which partially complies with
X � Y , then there exist faithful rankings {≤K}K which
partially respect X � Y such that [K ∗φ] = min([φ],≤K)
for all K and φ.

Proof. By Theorem 2.2 there exist faithful rankings {≤K}K
such that [K ∗ φ] = min([φ],≤K) for all K and φ. Suppose
∗ partially complies with X � Y and consider a consistent
formula K. In the case K does not satisfy X � Y then ≤K

partially respects X � Y in the trivial sense. Otherwise, K
satisfies X � Y and we must demonstrate that≤K satisfies
(PCS1) and (PCS2).

Part 1. Suppose that (PCR) holds. In order to verify
(PCS1), suppose that u and v are worlds such that uXY =
vXY , K ` ¬uY , and u ∈ [KY ], and v <K u. Applying
(PCR) it follows that

[(K ∗ uY )XY ] ∩ [KY ] = [K ∗ uY ].

Assume for the sake of contradiction that u ∈ [K ∗ uY ].
As u ∈ [uY ] and uXY = vXY it follows that v ∈ [uY ],
which means that u ≤K v. However, this contradicts our
assumption that v <K u, so it must be the case that u 6∈
[K ∗ uY ]. Therefore, as u ∈ [KY ], it follows that u 6∈
[(K ∗uY )XY ], and thus v 6∈ [(K ∗uY )XY ] as uXY = vXY .
Theorem 2.1 implies thatK ∗uY ` (K ∗uY )XY , hence v 6∈
[K∗uY ]. However, as [uY ] 6= ∅ there must exist some world
w ∈ [K ∗ uY ]. It follows that wY = uY , and furthermore
as v ∈ [uY ] yet v 6∈ [K ∗ uY ] it follows that w <K v as
required. Therefore, (PCS1) is satisfied.

Part 2. In order to verify (PCS2) suppose that v is a world
such that KY ` ¬v. Applying (PCR) it follows that

[K ∗ vY ] = [(K ∗ vY )XY ] ∩ [KY ].

By our supposition that KY ` ¬v it follows that v 6∈ [KY ],
and therefore v 6∈ [K ∗ vY ]. However, as [vY ] 6= ∅ it follows
that [K ∗ vY ] 6= ∅. Let u ∈ [K ∗ vY ] be arbitrary, and
observe that u ∈ [vY ] meaning uY = vY . As v ∈ [vY ]
but v 6∈ [K ∗ vY ] it follows then that u <K v as required.
Therefore, (PCS2) holds.

Theorem 3.2. If {≤K}K are faithful rankings which par-
tially respect X � Y , then the binary function defined by
[K ∗ φ] = min([φ],≤K) is a belief revision operator satis-
fying the supplementary postulates which partially complies
with X � Y .

Proof. By Theorem 2.2 it follows that ∗ is a belief revision
operator. Suppose K is a consistent formula such that ≤K

partially respects X � Y . In the case K does not sat-
isfy X � Y there is nothing to check, so assume K sat-
isfies X � Y . This means that ≤K satisfies (PCS1) and
(PCS2). Using this, we must demonstrate that [K ∗ φ] =
[(K∗φ)XY ]∩[KY ] whenever V (φ) ⊆ Y and φ is consistent.
In the case K ∧ φ is consistent then K ∗ φ ≡ K ∧ φ, and K
satisfyingX � Y meansK ≡ KXY ∧KY (cf. Theorem 5.3
below), henceK ∗φ ≡ KXY ∧KY ∧φ ≡ (K ∗φ)XY ∧KY .
Therefore, we will assume K ` ¬φ, in which case our proof
has two parts:

Part 1. In order to show [(K ∗ φ)XY ] ∩ [KY ] ⊆ [K ∗ φ]
suppose that u ∈ [(K ∗ φ)XY ] ∩ [KY ]. Being that u ∈
[(K ∗ φ)XY ] it follows that there exists v ∈ [K ∗ φ] such
that uXY = vXY . By our assumption that K ` ¬φ and
the observation that vY ` φ, it follows that K ` ¬vY . Be-
ing that uXY = vXY it follows that K ` ¬uY . Assume
for the sake of contradiction that v <K u. It then follows
from (PCS1) that there exists w with wY = uY = vY and
w <K v. However, v ∈ [φ] and wY = vY implies w ∈ [φ],
and therefore v ∈ [K ∗ φ] implies v ≤K w which contra-
dicts our assumption that w <K v. Therefore, our assump-
tion was wrong, so it must be the case that u ≤K v. This
means that u ∈ [φ] and v ∈ min([φ],≤K) which implies
u ∈ min([φ],≤K) = [K ∗ φ]. Thus, as u was arbitrary, it
follows that [(K ∗ φ)XY ] ∩ [KY ] ⊆ [K ∗ φ].

Part 2. In order to show [K ∗ φ] ⊆ [(K ∗ φ)XY ] ∩ [KY ]
start by observing that K ∗φ ` (K ∗φ)XY by Theorem 2.1.
Therefore, it suffices to verify that [K ∗φ] ⊆ [KY ]. Suppose
that v ∈ [K ∗ φ] but assume for the sake of contradiction
that v 6∈ [KY ]. It follows that KY ` ¬v, and therefore by
(PCS2) there exists a world u ∈ [KY ] such that uY = vY
and u <K v. Observing that v ∈ [φ], V (φ) ⊆ Y , and uY =
vY it follows that u ∈ [φ]. However, by our assumption that
v ∈ [K ∗ φ] this implies v ≤K u which is a contradiction
as u <K v. Therefore, it must be that v ∈ [KY ]. As v was
arbitrary, it follows that [K ∗ φ] ⊆ [(K ∗ φ)XY ] ∩ [KY ] as
required.

It follows that K ∗ φ ≡ (K ∗ φ)XY ∧KY , showing that
(PCR) holds.

3.2 Existence of Partially Compliant Operators
Parikh (1999) demonstrates the existence of a belief revision
operator satisfying postulate P as follows: Given a knowl-
edge base K and a formula φ to revise by which is incon-
sistent with K, first K is split as KY ∧KY where Y is the
smallest subset of V with V (φ) ⊆ Y andK satisfies ∅� Y .
K is then replaced by φ ∧ KY . In order to mirror this, we
need to show that we can construct such an analogous Y ,
which we refer to here as a section:
Definition 3.3. An X-section of φ is a subset Y ⊆ V (φ)
disjoint from X such that φ satisfies X � Y .

In order to construct a smallest section, we will make use
of the following properties of multivalued dependencies:
Lemma 3.1 (Abiteboul, Hull, and Vianu (1995)). 1. If
X � Y then X � V − Y ;

2. If Y ⊆ X then X � Y ;
3. If X � Y and Y � X then X � Z;
4. If X � Y then XZ � Y Z;

For any set of variablesX we can consider the set dK(X)
of Y such that K satisfies X � Y , that is

dK(X) := {Y | K satisfies X � Y }.
An important consequence of Lemma 3.1 is that dK(X)
forms a Boolean algebra:
Corollary 3.1 (Abiteboul, Hull, and Vianu (1995)). For any
K and X ⊆ V it follows that dK(X) is a Boolean algebra,
i.e. dK(X) is closed under unions, intersections, comple-
mentation, and it contains X .



Theorem 3.3 (Conditional Sectioning Theorem). If there is
an X-section of K containing V (φ) then there is a unique
smallest X-section of K containing V (ψ).

Proof. Simply take the intersection of all Y ∈ dK(X) such
that V (φ) ⊆ Y .

Theorem 3.4. For every X ⊆ V there exists a belief revi-
sion operator ∗ which satisfies the basic postulates and par-
tially complies with every X � Y where Y ⊆ V is disjoint
from X .

Proof. Construct a belief revision operator ∗ as follows. For
every K and φ define K ∗ φ as K ∧ φ in the case K ∧ φ is
consistent. Otherwise, if there is anX-section ofK contain-
ing V (φ) choose the smallest X-section Y of K containing
V (φ) and defineK ∗φ as (K)Y ∧φ. Otherwise, defineK ∗φ
as φ.

4 Full Compliance with Multivalued
Dependencies

Consider again an agent aware of wind turbines killing birds,
and powering refrigerators, but with no knowledge directly
linking birds and refrigerators. Suppose that this agent is
given a new fact that modern wind turbines stop momen-
tarily when an approaching bird is detected, in order to al-
low its safe passage, and consider how the agent may revise
its knowledge base. A revision operator that partially com-
plies with TurbineV ocabulary � BirdV ocabulary is not
useful here, since we are revising by a formula in the lan-
guage of both turbines and birds. However, since the new
knowledge is consistent with the fact that turbines power
refrigerators, it seems that there is no reason why knowl-
edge about refrigerators should be changed. Thus, we can
consider a stronger notion of compliance wherein we can
revise by knowledge containing the shared variables about
turbines.
Definition 4.1. If X and Y are disjoint subsets of V then a
belief revision operator ∗ fully complies with X � Y if the
following postulate holds:
CR. If K is consistent and satisfies X � Y , V (φ) ⊆ XY ,

and φ ∧KY is consistent then
K ∗ φ ≡ (K ∗ φ)XY ∧KY .

Requiring that a belief revision operator fully comply with
X � Y is stronger than requiring that it partially comply
with X � Y , for the reason that (CR) applies to a broader
class of formulae. Consequently, we obtain the following
relationship between full and partial compliance:
Theorem 4.1. If X and Y are disjoint subsets of V and ∗ is
a belief revision operator which fully complies withX � Y ,
then ∗ partially complies with X � Y .

Proof. Suppose K is a consistent formula satisfying X �
Y , and φ is a consistent formula with V (φ) ⊆ Y . As K
and φ are consistent and V (KY ) ∩ V (φ) = ∅ it follows
that KY ∧ φ is consistent, and hence we may apply (CR) to
write K ∗ φ ≡ (K ∗ φ)XY ∧ KY . Which is exactly what
was required to show (PCR) is satisfied. Hence, ∗ partially
complies with X � Y .

4.1 Representation via Faithful Rankings
As with (PCR), the postulate (CR) can be characterised in
terms of conditions (CS1), (CS2), and (CS3) on faithful
rankings. The stronger nature of (CR) will result in (CS1)
and (CS2) appearing much closer to the original conditions
(S1) and (S2) introduced in (Delgrande and Peppas 2018).
Definition 4.2. If ≤K is a faithful ranking for K then ≤K

fully respects X � Y if either K does not satisfy X � Y
or the following conditions are satisfied:

CS1. If uXY = vXY , K ` ¬uXY , and KY 0 ¬u then
u ≤K v.

CS2. If uXY = vXY , K ` ¬uXY , KY 0 ¬u, and KY `
¬v then u <K v.

CS3. If K ` ¬uXY , K ` ¬vXY , and KY 0 ¬uXY and
KY ` ¬vXY then there exists w with wXY = uXY and
w <K v.

Condition (CS1) states that whenever worlds u and v in-
compatible with K are such that uXY = vXY , and u is
consistent with KY , then v cannot be more plausible than
u. In the case v is itself inconsistent with KY , then (CS2)
strengthens this to say that u is strictly more plausible than
v. Finally, (CS3) ensures that whenever u is compatible with
KY and v is not, then u can be modified to be strictly more
plausible than v by modifying variables not in XY .

Demonstrating that a belief revision operator fully com-
plying with X � Y results in the conditions (CS1), (CS2),
and (CS3) being satisfied for the corresponding faithful
rankings proceeds along lines strongly reminiscent to Theo-
rem 2 of (Delgrande and Peppas 2018).
Theorem 4.2. If ∗ is a belief revision operator satisfy-
ing the supplementary postulates which fully complies with
X � Y , then there exist faithful rankings {≤K}K which
fully respects X � Y such that [K ∗φ] = min([φ],≤K) for
all K and φ.

Proof. By Theorem 2.2 there exist faithful rankings {≤K}K
such that [K ∗ φ] = min([φ],≤K) for all K and φ. Suppose
that ∗ fully complies with X � Y , and consider K satisfy-
ing X � Y . We must show that ≤K satisfies the conditions
(CS1), (CS2), and (CS3).

Part 1. Suppose u and v are worlds such that uXY =
vXY , K ` ¬uXY , and KY 0 ¬u. This last assumption im-
plies that uXY is consistent with KY , hence we may apply
the postulate (CR) to write

[K ∗ uXY ] = [(K ∗ uXY )XY ] ∩ [KY ]

= [uXY ] ∩ [KY ].

As KY 0 ¬u it follows that u ∈ [KY ], and tautologically
u ∈ [uXY ], so it follows that u ∈ [K ∗ uXY ]. Hence, as
v ∈ [uXY ] it follows that u ≤ v verifying (CS1).

Part 2. In order to see (CS2) suppose further that KY `
¬v. In this case, v 6∈ [K ∗ uXY ] hence u < v verifying
(CS2).

Part 3. In order to verify (CS3) suppose u and v are
worlds such that K ` ¬uXY , K ` ¬vXY , KY 0 uXY

and KY ` ¬vXY . Construct the formula φ = uXY ∨ vXY

and observe that vXY is consistent with KY and hence φ



is consistent with KY . However, φ is inconsistent with
K by our hypothesis. Therefore, we may apply (CR) to
write K ∗ φ ≡ (K ∗ φ)XY ∧ KY . By the success postu-
late, K ∗ φ ` φ ≡ uXY ∨ vXY . By (CR) we also know
K ∗ φ ` KY . However, we also know KY ` ¬vXY , and
therefore it follows that K ∗φ ` uXY . Hence, choosing any
w ∈ [K ∗ φ] it follows that wXY = uXY and w ≤ v. Being
that v 6∈ [K ∗ φ] yet v ∈ [φ] it follows that w < v.

Theorem 4.3. If {≤K}K are faithful rankings which fully
respects X � Y , then the binary function defined by
[K ∗φ] = min([φ],≤K) is a belief revision operator satisfy-
ing the supplementary postulates which fully complies with
X � Y .

Proof. By Theorem 2.2 it follows that ∗ is a belief revision
operator. Suppose ≤K fully respects X � Y . In the case
K does not satisfy X � Y then there is nothing to verify.
Assume K satisfies X � Y , so that ≤K satisfies (CS1),
(CS2), and (CS3). We must demonstrate that [K ∗ φ] =
[(K ∗ φ)XY ] ∩ [KY ] whenever V (φ) ⊆ XY and φ ∧ KY
is consistent. In the case K ∧ φ is consistent then K ∗ φ ≡
K ∧ φ, and K satisfying X � Y means K ≡ KXY ∧KY
(cf. Theorem 5.3 below), hence K ∗φ ≡ KXY ∧KY ∧φ ≡
(K ∗ φ)XY ∧KY . Therefore, we will assume K ` ¬φ, in
which case our proof has two parts:

Part 1. In order to show [(K ∗ φ)XY ] ∩ [KY ] ⊆ [K ∗ φ]
suppose that u ∈ [(K ∗ φ)XY ] ∩ [KY ]. Being that u ∈
[(K ∗ φ)XY ] it follows that there exists v ∈ [K ∗ φ] such
that uXY = vXY . Observe that K ` ¬φ, and furthermore
¬φ ` ¬uXY as uXY = vXY and v ∈ [φ]. Hence, K `
¬uXY . However, u ∈ [KY ] so KY 0 ¬u. Therefore, by
(CS1) it follows that u ≤K v. However, u ∈ [φ] and v ∈
min([φ],≤K) so it follows that u ∈ min([φ],≤K) = [K ∗
φ]. With u being arbitrary, it follows that [(K ∗ φ)XY ] ∩
[KY ] ⊆ [K ∗ φ] as required.

Part 2. In order to show [K ∗ φ] ⊆ [(K ∗ φ)XY ] ∩ [KY ]
consider a world v ∈ [K ∗φ] = min([φ],≤K ]), and observe
that v ∈ [(K ∗ φ)XY ] hence it suffices to show v ∈ [KY ].
Assume for the sake of contradiction that v 6∈ [KY ], which
is to say that KY ` ¬v. We have two cases:

1. In the case there exists a world u with uXY = vXY , and
KY 0 ¬u, argue as follows. As uXY = vXY and v ∈ [φ]
it follows that u ∈ [φ], and hence¬φ ` ¬uXY . Observing
that K ` ¬φ it follows that KY ` ¬uXY . As v 6∈ [KY ]
by our assumption, it follows that KY ` ¬v. Hence, by
(CS2), it follows that u <K v. However, u ∈ [φ] and
v ∈ min([φ],≤K) so this is a contradiction.

2. In the other case, KY ` ¬vXY . Recalling that KY is
consistent with φ, it follows that there exists a world u ∈
[KY ∧φ], for which we know thatK ` ¬uXY andKY X 0
¬uXY . However, by (CS3) we may conclude that there
exists w with wXY = uXY such that w < v. As φ is
expressed over the vocabulary XY and u ∈ [φ] it follows
that w ∈ [φ] and w <K v. However, this contradicts
v ∈ min([φ],≤K).

In both cases, a contradiction is achieved, so our assumption
that v 6∈ [KY ] must have been false. Hence, v ∈ [KY ] as

well. With v being arbitrary, we have shown [K ∗ φ] ⊆
[(K ∗ φ)XY ] ∩ [KY ].

4.2 Existence of Fully Compliant Operators
With this representation result in hand, the next question is
whether there exists a belief revision operator which fully
complies with an arbitrary multivalued dependency X �
Y where X need not be empty. Fortunately, the answer is
affirmative:

Theorem 4.4. If X and Y are disjoint then there exists a
belief revision operator ∗ satisfying the supplementary pos-
tulates which fully complies with X � Y .

Proof. It suffices to construct a family of faithful rankings
{≤K}K where each ≤K fully respects X � Y , in which
case the corresponding belief revision operator ∗ with [K ∗
φ] = min([φ],≤K) will fully comply with X � Y . Given
K define the function ρK : Ω→ N given by

ρK(u) :=

{
0 if u ∈ [K]
1 if u 6∈ [K] and KY 0 ¬u
2 otherwise

The ranking ≤K is defined by setting u ≤K v if and only
if ρK(u) ≤ ρK(v). As ρK(u) = 0 if and only if u ∈ [K],
it follows that the minimal worlds under ≤K are exactly the
worlds satisfying K. Hence, ≤K is a faithful ranking for K.

In order to argue ≤K fully respects X � Y assume that
K satisfies X � Y , and verify (CS1), (CS2), and (CS3) as
follows:

1. (CS1) Suppose that uXY = vXY , K ` ¬uXY , and KY 0
¬u. It follows that rK(u) = 1 and rK(v) ≥ 1, hence
u ≤K v as required.

2. (CS2) Suppose that uXY = vXY ,K ` ¬uXY ,KY 0 ¬u,
and KY ` ¬v. It follows that rK(u) = 1 and rK(v) = 2,
hence u <K v as required.

3. (CS3) Suppose that K ` ¬uXY , K ` ¬vXY , KY 0
¬uXY , and KY ` ¬vXY . As a consequence of KY `
¬vXY it follows that ρK(v) = 2. As KY 0 ¬uXY there
exists a world w with wXY = uXY and w ∈ [KY ], so
that ρK(w) = 1 and hence w <K u.

This leaves the open question of whether any set of mul-
tivalued dependencies can be simultaneously fully complied
with by some belief revision operator.

5 Syntax Splitting and MVDs
5.1 Syntax Splitting and Conditional

Independence
In this section we demonstrate that Parikh’s syntax split-
ting generalises naturally into the framework of multivalued
dependencies and conditional independence. We start by
showing that syntax splitting gives rise to conditional logical
independence via leveraging Craig’s Interpolation Theorem
(Craig 1957), which is stated as follows:



Theorem 5.1 (Craig’s Interpolation Theorem). If K ` ψ
then there exists φ with V (φ) ⊆ V (K) ∩ V (ψ) such that
K ` φ and φ ` ψ.

Theorem 5.2 (The Splitting Criterion). If Y1, Y2, andX are
pairwise disjoint sets of propositional variables then for any
propositional formulaeK1 andK2 such that V (K1) ⊆ Y1X
and V (K2) ⊆ Y2X it follows that Y1 and Y2 are indepen-
dent given X modulo K1 ∧K2.

Proof. Suppose u is a world, and φ1 and φ2 are proposi-
tional formulae with V (φ1) ⊆ Y1 and V (φ2) ⊆ Y2 such
that K1 ∧ K2 ∧ uX |− φ1 ∨ φ2. We must demonstrate that
either K1 ∧K2 ∧ uX |− φ1 or K1 ∧K2 ∧ uX |− φ2 holds.

It follows from our hypotheses thatK1∧uX∧¬φ1 |−φ2∨
¬K2 ∨¬uX . Applying Craig’s Interpolation Theorem there
exists an interpolant δ such that V (δ) ⊆ V (K1∧uX∧¬φ1)∩
V (φ2 ∨ ¬K2 ∨ ¬uX) and furthermore K1 ∧ uX ∧ ¬φ1 |− δ
and δ |− φ2 ∨ ¬K2 ∨ ¬uX .

Observing that V (K1 ∧ uX ∧ ¬φ1) ∩ V (φ2 ∨ ¬K2 ∨
¬uX) ⊆ (Y1X) ∩ (Y2X) = X it follows that V (δ) ⊆ X .
As every variable in X appears as a literal in uX , it follows
that either uX ` δ or uX ` ¬δ. This gives two cases:

1. In the case uX ` δ recall that δ |−φ2∨¬K2∨¬uX which
means K2 ∧ uX ∧ δ |− φ2 and hence K2 ∧ uX |− φ2.

2. In the case uX ` ¬δ recall that K1∧uX ∧¬φ1 |− δ hence
K1 ∧ uX ∧ ¬φ1 |− ⊥ and thus K1 ∧ uX |− φ1.

In either case, we can conclude eitherK1∧K2∧uX |−φ1
or K1 ∧ K2 ∧ uX |− φ2. With φ1 and φ2 being arbitrary,
it follows that Y1 and Y2 are independent given X modulo
K1 ∧K2.

The previous Theorem can be regarded as a special case
of Darwiche’s results on structured databases, which are
graphs similar to Bayesian networks whose vertices are la-
belled by components of a knowledge base in such a way
that conditional independencies may be read directly off the
graph itself (Darwiche 1997; Darwiche and Pearl 1994).

5.2 Relationship to Multivalued Dependencies
Our attention now turns to showing that multivalued depen-
dencies for propositional formulae arise as a special case of
Darwiche’s logical conditional independence.

Theorem 5.3 (Projection Criterion). Given a propositional
formula K and disjoint sets Y1, Y2, and X of propositional
variables, it follows that Y1 and Y2 are independent given
X modulo K if and only if KY1X ∧KY2X ` KY1Y2X holds.

Proof. Suppose that Y1 and Y2 are independent given X
moduloK, and consider a world u satisfying bothKY1X and
KY2X . We must demonstrate that u satisfies KY1Y2X . As-
sume for the sake of contradiction that u satisfies ¬KY1Y2X

as well. Construct the formulae φ1 and φ2 by choosing φ1
as the conjunction of literals over Y1 satisfied by u, and φ2
as the conjunction of literals over Y2 satisfied by u. Also
choose uX to be the conjunction of literals over X satisfied
by u. It follows thatK∧uX ` KY1Y2X ∧uX andKY1Y2X ∧
uX ` ¬φ1 ∨ ¬φ2 hence KY1Y2X ∧ uX ` ¬φ1 ∨ ¬φ2, for

otherwise there would exist a model ofKY1Y2X ∧uX equiv-
alent to u on Y1Y2X . Being that Y1 and Y2 are independent
given X modulo K, and uX is X-complete, it follows that
K ∧ uX ` ¬φ1 or K ∧ uX ` ¬φ2. However, this means
that either KY1X ∧ uX ` ¬φ1 or KY2X ∧ uX ` ¬φ2 which
is a contradiction as u satisfies φ1, φ2, uX , and both projec-
tions of K. Therefore, u is a model of KY1Y2X showing that
KY1X ∧KY2X ` KY1Y2X holds.

Conversely, suppose thatKY1X∧KY2X ` KY1Y2X holds.
Consider formulae φ1 and φ2 such that V (φ1) ⊆ Y1 and
V (φ2) ⊆ Y2 along with a world u such that K ∧ uX ` φ1 ∨
φ2. We must show that eitherK∧uX ` φ1 orK∧uX ` φ2.
Observe that KY1X ∧KY2X ∧ uX ` uX ` φ1 ∨ φ2 by the
Projection Theorem, and by the Splitting Criterion Y1 and Y2
are independent givenX moduloKY1X∧KY2X∧uX . Thus,
eitherKY1X∧KY2X∧uX ` φ1 orKY1X∧KY2X∧uX ` φ2,
hence either K ∧uX ` φ1 or K ∧uX ` φ2 as required.

It is worthwhile making two observations: as KY1Y2X `
KY1X ∧ KY2X always holds, so this projection criterion
can be rephrased as asserting independence if and only if
KY1Y2X ≡ KY1X ∧KY2X . Furthermore, KY1X ∧KY2X is
effectively a splitting of KY1Y2X which implies a converse
to the Splitting Criterion.

Theorem 5.4. If X and Y are disjoint subsets of V then a
propositional theory K satisfies X � Y if and only if Y
and V − (XY ) are independent given X modulo K.

Proof. By the Projection Criterion and our observation it
follows that Y and V − (XY ) are independent given X
if and only if K ≡ KXY ∧ KY . Observe that a world
w ∈ [KXY ∧ KY ] if and only if there exists u ∈ [KXY ]
and v ∈ [KY ] such that wXY = uXY and wY = vY . This
is in turn equivalent to having K satisfy X � Y .

It is now clear that multivalued dependencies, logical con-
ditional independence, and syntax splitting are different as-
pects of the same underlying phenomenon. As corollaries
of the Splitting Criterion, we see that (PCR) and (CR) en-
sure that belief revision operators preserve the satisfaction of
multivalued dependencies which are partially or fully com-
plied with.

Theorem 5.5. If ∗ is a belief revision operator which par-
tially complies with X � Y , K satisfies X � Y , and
V (φ) ⊆ Y then K ∗ φ satisfies X � Y .

Proof. Observe that when writingK ∗φ ≡ (K ∗φ)XY ∧KY

we have V ((K ∗ φ)XY ) ⊆ XY and V (KY ) ⊆ Y hence the
resulting theory satisfies X � Y via the Splitting Criterion.

Theorem 5.6. If ∗ is a belief revision operator which fully
complies with X � Y , K satisfies X � Y , and V (φ) ⊆
XY then K ∗ φ satisfies X � Y .

Proof. Observe that when writingK ∗φ ≡ (K ∗φ)XY ∧KY

we have V ((K ∗ φ)XY ) ⊆ XY and V (KY ) ⊆ Y hence the
resulting theory satisfies X � Y via the Splitting Criterion.



6 Discussion
6.1 Sources of Multivalued Dependencies
In our approach we consider multivalued dependencies to
be specified by the knowledge engineer as part of the do-
main knowledge, rather than extracted automatically from
the knowledge base. This avoids using possibly-spurious
conditional independencies that just happen to hold. As
well, we also avoid the cost of determining all potential
conditional independencies prior to a revision, given that
checking whether a single conditional independence holds
is known to be in Πp

2 (Lang, Liberatore, and Marquis 2002).
This raises the question of how a knowledge engineer

might determine appropriate multivalued dependencies This
question (in the analogous case of conditional irrelevance
assertions) is discussed in (Delgrande and Peppas 2018),
where a number of sources are suggested: knowledge about
the domain (e.g. birds and refrigerators are unrelated), a
causal theory, a Bayesian network, or some structural fea-
tures of a knowledge base which the knowledge engineer
deems essential.

In our setting, we can make this a bit more precise. Us-
ing the notion of a symbolic causal network introduced by
Darwiche and Pearl (1994), it follows from (Darwiche 1997)
that conditional independence properties can be read off di-
rectly from these networks just as they are for Bayesian net-
works in probability theory (Pearl 2014). Any multivalued
dependency obtained by this method will be non-spurious
since it would arise from the causal structure of the domain,
as given in the causal network. We believe further inves-
tigation of revision operators which comply with the entire
structure of a symbolic causal network is worthwhile.

6.2 Related Work
The approach of (Delgrande and Peppas 2018) is closest to
our work, which raises the question of whether the indepen-
dence assertions studied there are related to the conditional
independence assertions considered here. Clearly our mul-
tivalued dependencies have no mechanism for encoding the
selective behaviour of the condition σ in an assertion σ � Z
unless σ is tautologous, in which case it becomes equivalent
to the multivalued dependency ∅� Z.

In the reverse direction, suppose a multivalued depen-
dency X � Y were encoded via an independence asser-
tion σ � Z. There are two natural-appearing approaches to
consider:

1. If Z = Y then when revising K with K ` σ by φ with
V (φ) ⊆ Z = Y it would follows thatK ∗φ ≡ (K ∗φ)Y ∧
KY . Hence, we would have K ∗ φ satisfies ∅� Y . This
is far too strong, for this means that all beliefs relating X
and Y have been lost in the revision process, whereas we
know that (PCR) and (CR) would result in them having
been preserved.

2. If Z = XY then when revising K with K ` σ by φ
with V (φ) ⊆ Z = XY it would follow that K ∗ φ ≡
(K ∗φ)XY ∧KXY . Hence, we would haveK ∗φ satisfies
∅� XY . This is again far too strong, for this means that
all beliefs relating X and Y have been lost in the revision

process, whereas we know that (PCR) and (CR) would
result in them having been preserved.

Neither of these are tenable, which suggests that conditional
independence assertions cannot in general simulate the mul-
tivalued dependencies we consider in this work.

Our results on the relationship between multivalued de-
pendencies and syntax splitting apply as well in the uncon-
ditional setting. As an application, the postulates (P1) and
(P2) from (Peppas et al. 2015) can be restated as follows:

Theorem 6.1. Let ∗ be a belief revision operator.

• (P1) is equivalent to the following: if K satisfies ∅ � Y
and V (φ) ⊆ Y then (K ∗ φ)Y ≡ KY .

• (P2) is equivalent to the following: if K satisfies ∅ � Y
and V (φ) ⊆ Y then (K ∗ φ)Y ≡ (KY ∗ φ)Y .

6.3 Future Work
There are a number of opportunities for future work deriving
from the above. One immediate observation is that although
we demonstrate the classes of operators partially comply-
ing, or fully complying, with an arbitrary multivalued de-
pendency are non-empty, we have not demonstrated that any
reasonable-looking, “natural” belief revision operator reside
within these classes. Hence, the question remains of finding
interesting belief revision operators which satisfy our postu-
lates.

Another line of inquiry would be to ask how we can take
advantage of partial or full compliance to reduce the compu-
tational cost of belief revision. One possibility is to develop
efficient representations for rankings analogous to Bayesian
networks for probability distributions, which use the ranking
conditions (CS1), (CS2), and (CS3) to factor a ranking into
smaller components.

There are also a number of natural variations on our pos-
tulates which seem to merit consideration:

1. Study a “parallelised” variant of our postulates, wherein
we consider revising by φ ∧ ψ with V (φ) ⊆ XY and
V (ψ) ⊆ Y , with our postulate saying something like K ∗
(φ ∧ ψ) = (K ∗ φ)XY ∧ (K ∗ ψ)Y .

2. Study a “prioritised” variant of our postulates, wherein
we consider revising by φ with φ ∧KY is not necessarily
consistent, with our postulate saying something like K ∗
φ = KY ~ (K ∗ φ)XY for some operator ~.

3. Study belief revision operators which fully comply with
all multivalued dependencies simultaneously, and con-
sider the analogues of (P1) and (P2) in this case which
would amount to the following:

CP1. IfK satisfiesX � Y with Y ∩X = ∅ and V (φ) ⊆
Y then (K ∗ φ)Y ≡ KY .

CP2. IfK satisfiesX � Y with Y ∩X = ∅ and V (φ) ⊆
Y then (K ∗ φ)Y ≡ (KY ∗ φ)Y .

4. Study postulates which make use of conditional indepen-
dencies in the sense of Darwiche, which unlike multival-
ued dependencies need not partition the entire vocabulary.

Finally, it would be interesting to investigate whether
these postulates can be extended to nonmonotonic logics in



a manner analogous to the extension of Parikh’s syntax split-
ting paradigm in (Kern-Isberner, Beierle, and Brewka 2020).

7 Conclusion
The central challenge of belief revision is to efficiently and
plausibly restore consistency to a knowledge base after in-
corporating a contradictory proposition, and in a manner
which causes only minimal changes to existing beliefs. With
the standard postulates for belief revision failing to rule out
rather pathologically-destructive or bizarre operators, the
problem of formalising this requirement of minimality re-
mains an ongoing challenge. We believe that enforcing the
requirement that irrelevant beliefs are unchanged is an im-
portant aspect of minimal change.

In this work we have extended the previous study of un-
conditional independence in belief revision to accommo-
date conditional independence in the form of multivalued
dependencies. We have introduced two notions by which
a belief revision operator may comply with a multivalued
dependency, and characterised these postulates in terms of
conditions on faithful rankings. Further, we have endorsed
the perspective of (Delgrande and Peppas 2018) that condi-
tional independencies should be provided by the knowledge
engineer, rather than read off of the knowledge base. This
both avoids enforcing spurious conditional independencies,
and means that our operators are not required to carry out
the expensive task of checking for conditional independence
themselves.

Our hope is that these postulates will assist in identify-
ing those belief revision operators which can be truly said to
result in minimal changes to existing beliefs, and that these
operators will admit computationally efficient implementa-
tions by merit of being able to limit the amount of work
required to perform revisions.
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