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Among the many and varied areas that Vladimir Lifschitz has worked on
is reasoning about action and change, in particular with respect to action lan-
guages, where an action language in turn is based on the underlying semantic
notion of a transition system. Transition systems have been shown to be an el-
egant, deceptively simple, yet rich framework from which to address problems
of action consequence, causality, planning and the like. In this paper I consider
a problem in the interaction between reasoning about action, observations, and
the agent’s knowledge, specifically when an observation conflicts with the agent’s
knowledge; and so the agent must revise its knowledge. In particular, it is shown
how an agent’s initial belief set may be propagated through an action sequence
so that, in contrast to previous work, for a revision one does not need to refer
back to the initial state of the agent.

1 Introduction

An agent acting in some domain will generally have incomplete and possibly
incorrect knowledge regarding that domain. Semantically, an agent’s knowledge
K may be characterised by a set of interpretations, or possible worlds, consisting
of those worlds that, insofar as the agent is concerned, could be the actual
world. Assuming that there are no other agents (including a “nature” that might
provide stochastic events), there are two ways in which the agent’s knowledge
may evolve. First, it may execute actions. In this case, the agent’s new beliefs
can be semantically characterised by the image of each world in K under the
executed action. Hence the agent will believe that, if the action preconditions
hold, then after execution of the action, the action’s effects will hold. One means
of specifying the effects of actions is a transition system, where a transition
system is a directed graph in which vertices are labelled by possible states of
the world, and directed edges are labelled by the actions that take one state
of the world to another. So after executing action a, the agent’s beliefs will be
characterized by the a-accessible worlds from worlds in K.

Second, the agent may sense or observe the environment. Such knowledge-
producing actions don’t alter the (external) domain, but they do give the agent
information concerning the domain. Assuming that the agent’s beliefs are in
fact knowledge (and so the real world is among those in K), the sensing action



that reports that φ is true can be characterised semantically by intersecting the
K worlds with the φ-worlds. This works well enough if the agent’s beliefs are
correct, but in the case where the agent believes that φ is false yet senses that
φ is true, it will fall into inconsistency.

The obvious solution is to revise the agent’s beliefs by the result of sensing,
rather than simply expanding the agent’s beliefs by the new information. Such
a solution of course presupposes the existence of a revision function whereby,
from any knowledge base and formula for revision, a new knowledge base can be
determined. However, this still does not resolve all difficulties.

In particular, it seems that if an agent executes an interleaved series of actions
and observations, then its beliefs should be determined by iteratively executing
the resulting series of actions and belief revisions. That is, one would expect that
a Markovian process, in which the agent’s next belief state depends solely on its
previous state together with the relevant action, would be sufficient. However, as
we describe in the next section, this näıve approach may lead to incorrect results.
These problems have been resolved in an approach called belief evolution but,
in doing so, the desirable Markovian aspect is lost, in that one must refer back
to the agent’s initial state of beliefs in order to accommodate the result of an
observation.

The goal of this paper is to address this issue. That is, näıvely executing
a sequence of actions and revisions leads to problems; and the solution, belief
evolution, gives the correct result, but necessitates that each observation must be
projected back to the initial state. Here we give a procedure that is equivalent
to belief evolution but in which one doesn’t have to project each observation
back to the initial state. The solution is quite intuitive: in addition to keeping
track of the effects of actions via a transition system, one also keeps track of (i.e.
progresses) information obtained from observations.

In the next section we present the formal framework and discuss related
work. Following this we informally but more concretely sketch the problem and
solution. The next section gives the formal details. We conclude with a discussion
of related work and suggestions for future work.

2 Background

2.1 Transition Systems

The basic definitions of a transition system are taken from [10]. An action sig-
nature is a pair 〈F,A〉 where F,A are disjoint non-empty sets of symbols. F is
the set of fluent symbols and A is the set of action symbols. For simplicity we
assume that F and A are finite.

The fluent symbols in F are propositional variables. The action symbols in A
denote the actions that an agent may perform. The effects of actions are specified
by a transition system.

Definition 1. A transition system T for an action signature σ = 〈F,A〉 is a
pair 〈S,R〉 where



1. S is a set of propositional interpretations of F,
2. R ⊆ S ×A× S.

S is called the set of states and can be regarded as specifying the set of possible
worlds. R is the transition relation. If (s, a, s′) ∈ R, then s′ is a possible state
that could occur as a result of the action a being executed in state s. For formula
φ, ‖φ‖ is the set of states at which φ is true, that is ‖φ‖ = {s ∈ S | s |= φ}.

Transition systems can be represented as directed graphs, where each node
is labeled with a state and each edge is labeled with an element of A. We also
define for X ⊆ S

a(X) = {s′ ∈ S | ∃s ∈ X and (s, a, s′) ∈ R}
a−1(X) = {s ∈ S | ∃s′ ∈ X and (s, a, s′) ∈ R}.

For s ∈ S, a(s) is used to abbreviate a({s}) and similarly for a−1(s). This
extends in the obvious way to formulas; that is, we use a(φ) to mean a(‖φ‖).
Finally, for a sequence of actions

→
a = 〈a1, . . . , an〉 we extend the above so that

we have

→
a(S) = an(. . . a1(S) . . . )

→
a−1(S) = a−11 (. . . a−1n (S) . . . )

If there is exactly one possible resulting state s′ when a is executed in s for
every s ∈ S and a ∈ A, then T is deterministic. A minor but key point concerning
deterministic transition systems is that, while a(s) is a singleton, a−1(s) may not
be. We assume throughout this paper that a transition system is deterministic,
and that every action is executable in every state. If the transition system does
not specify the results of a particular action in a given state, we assume that the
state does not change when that action is executed. This is equivalent to adding
self loops for every action at every state where no transition is given.

2.2 Belief Revision

The central and best-known approach to belief change is the AGM approach
[1, 9, 19], named after the developers of the approach. In the AGM approach,
beliefs of an agent are modelled by a deductively closed set of formulas, or
belief set. Thus a belief set is a set of formulas K such that K = Cn(K) where
Cn(K) is the closure of K under classical logical consequence. It is assumed that
the underlying logic subsumes classical propositional logic. Formally, a revision
operator ∗ maps a belief set K and formula φ to a revised belief set K ∗ φ. The
AGM postulates for revision are as follows; the operator + stands for expansion,
where K + φ is defined to be Cn(K ∪ {φ}).

(K*1) K ∗ φ = Cn(K ∗ φ)
(K*2) φ ∈ K ∗ φ
(K*3) K ∗ φ ⊆ K + φ



(K*4) If ¬φ /∈ K then K + φ ⊆ K ∗ φ
(K*5) K ∗ φ is inconsistent only if φ is inconsistent
(K*6) If φ ≡ ψ then K ∗ φ = K ∗ ψ
(K*7) K ∗ (φ ∧ ψ) ⊆ K ∗ φ+ ψ
(K*8) If ¬ψ /∈ K ∗ φ then K ∗ φ+ ψ ⊆ K ∗ (φ ∧ ψ)

See [9, 19] for a discussion and motivation of these postulates.
Katsuno and Mendelzon [14] have shown that a necessary and sufficient con-

dition for constructing an AGM revision operator is that there is a function that
associates a total preorder on the set of possible worlds with any belief set K,
as follows:1

Definition 2. A faithful assignment is a function that maps each belief set K to
a total preorder �K on possible worlds such that for any possible worlds w1, w2:

1. If w1, w2 ∈ Mod(K) then w1 ≈K w2

2. If w1 ∈ Mod(K) and w2 6∈ Mod(K), then w1 ≺K w2.

The resulting preorder is called the faithful ranking associated with K. Intu-
itively, w1 �K w2 if w1 is at least as plausible as w2 according to the agent.
Katsuno and Mendelzon then provide the following representation result, where
t(W ) is the set of formulas of classical logic true in W :

Theorem 1. A revision operator ∗ satisfies postulates (K*1)–(K*8) iff there is
a faithful assignment that maps each belief set K to a total preorder �K such
that

K ∗ φ = t(min(Mod(φ),�K)).

Thus the revision of K by φ is characterised by those models of φ that are most
plausible according to the agent.

Various researchers have argued that, in order to address iterated belief revi-
sion, it is more appropriate to consider belief states (also called epistemic states)
as objects of revision. A general framework was proposed in [25], while the first
systematic exploration of this notion in Artificial Intelligence is reported in [6]. A
belief state K effectively encodes information regarding how the revision function
itself changes under a revision. The belief set corresponding to belief state K is
denoted Bel(K). A revision operator ∗ now maps a belief state K and formula φ
to a revised belief state K∗φ. The AGM revision postulates can be reformulated
by replacing instances of a revision, say K ∗ φ, by the belief set Bel(K ∗ φ), and
replacing (K*6) by:

(K*6) If K1 = K2 and φ ≡ ψ then Bel(K ∗ φ) = Bel(K ∗ ψ).

Darwiche and Pearl [6] extend the Katsuno and Mendelzon results as follows:

1 In [14] (and [6], below), an agent’s beliefs are represented by a formula rather than
a belief set; hence they adopt a different, but equivalent, set of postulates. Since we
deal with finite languages, the difference is immaterial.



Definition 3. A faithful assignment is a function that maps each belief state
K to a total preorder �K on possible worlds such that for any possible worlds
w1, w2:

1. If w1, w2 |= Bel(K) then w1 =K w2

2. If w1 |= Bel(K) and w2 6|= Bel(K), then w1 ≺K w2

Theorem 2. A revision operator ∗ satisfies postulates (K*1)–(K*8) iff there
exists a faithful assignment that maps each belief state K to a total preorder �K
such that

Mod(K ∗ φ) = min(Mod(φ),�K).

In the above theorem, Mod(K) is understood as Mod(Bel(K)).

2.3 Reasoning about Action and Knowledge

Gelfond and Lifschitz [10] provide an overview of action languages and transition
systems. Detailed, specific approaches can be found in, for example, [12, 11]. The
frameworks developed in these (and other related) papers specify syntactic con-
structs comprising an action language, where the semantics of these constructs
can be given in terms of a transition system. In such languages one can then
specify the preconditions and effects of actions, along with other related notions,
such as persistence of fluent values.

In [2] the base action language A is extended to allow observations of the
truth values of fluents and the actual occurrence of actions, while the entailment
relation allows for querying regarding types of hypothetical reasoning. This ap-
proach is extended in turn in [3], where it is employed in diagnostic reasoning
in an action framework. In [17, 24], the action language A is extended to handle
an agent’s knowledge and sensing actions. The representation of this in terms
of a transition system is clear and intuitive: The agent’s beliefs are modelled by
a set of states, or possible worlds, K; and in sensing that a formula φ is true,
all ¬φ worlds are removed from this set. Since it is assumed that an agent’s
beliefs are accurate, in that the real world is among those in K, sensing leads to
a monotonic refinement of the agent’s knowledge. (If nondeterministic actions
are allowed, as in [17], the agent’s ignorance may increase but it will never be
incorrect.)

There has been similar research in other formalisms for reasoning about ac-
tion, most notably in the situation calculus [16]. In brief, the situation calcu-
lus is a first-order2 theory in which fluents take a situation argument, and a
function do(a, s) yields the situation resulting from executing action a in situ-
ation s. Hence Red(A, s) indicates that object A is Red in situation s, while
¬Red(A, do(paintBlue,A, s)) indicates that A is not Red in the situation result-
ing from s in which the paintBlue action is executed.

Scherl and Levesque [21] extend the basic theory to account for an agent’s
knowledge, basically by axiomatising the modal logic S5 within the situation

2 Well, not quite, since there is an induction axiom on situations.



calculus, as well as sensing. [23] extends this approach to allow for a restricted
version of belief revision, in that a formula for revision must be true in the
domain. Thus, in [23] if one revises by φ and then ¬φ, inconsistency results.

3 Revision in Transition Systems

3.1 The Problem

It would seem to be a straightforward matter to address belief revision in a
transition system framework, by simply combining an account of reasoning about
knowledge with an account of belief revision. This in turn could be accomplished
by simply specifying a faithful assignment, as in Definition 2, for every set of
states. And indeed it is straightforward to incorporate belief revision in such
a manner. However, as [13] points out, iteratively determining the results of
actions and observations may yield incorrect results.

Example 1. Assume that there is a beaker containing either an acid (A) or a
base (¬A).3 As well, there is a piece of paper that the agent believes is litmus
paper (L). If litmus paper is dipped in acid it turns red (R), and if it is dipped
in a base it turns blue (B). The paper is initially white (¬R ∧ ¬B). The only
action is to dip the litmus paper into the liquid. The agent initially believes that
it is holding litmus paper and that the paper is white.

Consider where the agent dips the paper into the beaker, after which it
observes that the paper is white. There are AGM revision operators where in
the resulting belief state the agent believes that it is holding a piece of white
litmus paper. For example consider the Dalal [5] revision operator: The agent’s
beliefs are characterized by the possible worlds ARBL,ARBL; the image of these
worlds following a dip action is ARBL,ARBL. The agent observes that ¬R∧¬B
is true. The Dalal operator selects the closest worlds of the formula for revision
to the worlds characterising the agent’s beliefs, where “closeness” is defined by
the Hamming distance. In this case the closest worlds are ARBL,ARBL, so the
agent believes that it is holding white litmus paper. The same result obtains
with the Satoh [20] operator.4 Clearly this is an undesirable state, and instead
the agent should believe that the paper is not litmus paper.

To deal with such problems, [13] proposes a new operation, belief evolution,
defined in terms of existing action-update and revision operators. Example 1
illustrates that, if an agent has belief set K, then characterising the result of an
action a followed by a revision by φ as K ∗ a(φ) may lead to problems. In belief
evolution, the action a followed by a revision by φ is expressed as a(K ∗a−1(φ)).
That is, one doesn’t revise by φ following the action a; rather, given the pair
(a, φ), one considers those (initial) worlds which, after a is executed, yield φ
worlds. This set of worlds (that is, a−1(φ)) is used for revising the initial belief

3 To simplify matters, we disallow the possibility of a neutral pH. We obtain the same
results if the example is extended to allow that the liquid may be neutral.

4 This isn’t quite an AGM operator as the last postulate may not hold.



set K, and the result is progressed via a. It is shown that this formulation
gives the appropriate results. So in the preceding example, the agent will indeed
believe that the paper is not litmus paper. This operator naturally extends to
a sequence of actions

→
a = 〈a1, . . . , an〉, so that a revision by φ following this

sequence of actions would be computed via the extension
→
a(K ∗ →

a−1(φ)).
This is fine, but it implies that the Markovian aspect of the näıve procedure

(viz.
→
a(K)∗φ) is lost. Rather, a formula for revision φ is projected back through

the n actions, a revision is carried out, and the result progressed through the n
actions. Informally, it seems at best inconvenient to have to refer to the initial
belief state in order to carry out a revision at the end of a sequence of actions; as
well, it seems to be unnecessarily inefficient. (It can also be noted that switching
to a situation calculus setting, for example, doesn’t help, in that basic action
theories of the situation calculus are set up so that truth of fluents at a situation
can be determined by the initial state along with the actions executed.)

3.2 Revision in the Context of Sensing

However, let’s (re)examine what’s going on in Example 1. The definition of
a faithful ranking, Definition 2, stipulates that a total preorder is associated
with every set of possible worlds. Arguably, Example 1 illustrates that this is
inappropriate in an action context, in that the result of an action will give
information that will affect the results of revision. Thus, in Example 1 the agent
should not believe that the paper is litmus paper after the dipping action, because
the result of the dipping rules this out: litmus paper cannot be white when dipped
into a solution known to be non-neutral. Consequently revision, in one form or
another, needs to take this into account.

From the consideration that Definition 2 is inappropriate in an action setting,
it becomes clear why belief evolution works: one refers to only a single revision
operator, that defined by �K . For an observation that follows a sequence of
actions, one maps everything back to the original belief set, carries out revision
with respect to the initial belief set (and so with respect to the ranking �K),
and then progresses the results through the given action sequence.

The question arises as to whether one might be able to do better than with the
approach to belief evolution and fortunately, the answer is “yes”. The obvious
way to proceed is adopt the more general notion of belief state. Then, given
an action a in the initial state, one progresses not just the agent’s contingent
knowledge K, but also the belief state K. It turns out that things are a bit
more complicated than what this “obvious” solution suggests. Nonetheless, in
the next section we show how one can carry out actions and revisions in a
Markovian manner by keeping track of information gained from sensing.

4 The Approach

In what follows, we assume that we are given a deterministic transition system
T = 〈S,R〉 over a finite action signature σ = 〈F,A〉. As well, we assume that



we are given a belief state K where Bel(K) = K ⊆ S is a fixed set of states
representing the agent’s initial set of beliefs and �K is a faithful ranking as-
sociated with K giving the agent’s initial revision function. We will henceforth
understand an agent’s (contingent) beliefs to be characterised by a set of worlds;
thus the agent’s beliefs following a revision will similarly be a set of worlds.

An agent’s beliefs may change in one of two ways. It may execute an action,
in which case each state in K is mapped to another state. Given the fact that
we have a deterministic transition system, there is no uncertainty as to the
outcome of an action execution (although, of course, in some states an action
may be nonexecutable). Second, the agent may sense that a formula φ is true.
We assume that the agent believes that sensing is correct, and so the agent will
consequently accept that φ is true. In this case, the agent would revise its beliefs
according to an appropriate faithful ranking and, given this faithful ranking,
there is no uncertainty as to the outcome. The key point then is that following
any action sequence, we wish to be able to revise the agent’s beliefs; and to do
this we require, directly or implicitly, a ranking function over possible worlds.
We obtain such a ranking function by suitably progressing not just the agent’s
contingent beliefs, but also the agent’s ranking function �K.

The following definition specifies how a plausibility ranking will change fol-
lowing the execution of an action. A complication is that a possible world
w ∈ a(S) may be the image of more than one world in S, in that a−1(w) may
not be unique. Consequently, the rank of w ∈ a(S) is taken as the rank of the
minimally-ranked world in a−1(w).

Definition 4.
Let T = 〈S,R〉 be a transition system over σ = 〈F,A〉, and let �K be a total

preorder over S. For a ∈ A, define w1 �a(K) w2 iff
∃w′1, w′2 ∈ S where w′1 �K w′2 and

w′1 ∈ min(a−1(w1),�K), w′2 ∈ min(a−1(w2),�K)
Then we can define Mod(a(K) ∗ φ) as min(Mod(φ),�a(K)).

It follows straightforwardly that �a(K) is a total preorder over S with minimum
worlds given by Mod(a(K));5 we omit the proof.

What would be ideal is if Definition 4 preserved �-relations under actions,
and so one obtained that

Mod(a(K ∗ φ)) = Mod(a(K) ∗ a(φ)). (1)

However, it is easily shown that this is not the case, as illustrated by Figure 1.
On the left hand side we have the total preorder induced by K, and on the
right hand side we have the image of this preorder following action a. In both
cases the lower a world in a ranking, the more plausible that world is; hence the
agent’s (contingent) beliefs before and after execution of action a are given by
the consequences of p ∧ q.
5 Recall that for belief state K we define the set of models of the agent’s beliefs as
Mod(K) = Mod(Bel(K)).
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Let φ = (p ≡ ¬q). Then we have that

Mod(a(K ∗ φ)) = a({¬pq}) = {¬pq}
Mod(a(K) ∗ a(φ)) = a(K) ∗ {pq,¬pq} = { pq}

This example shows that neither containment in (1) holds.

However, consider again Example 1, but in the context of Definition 4. Since
the liquid is either an acid or a base, then if the paper is litmus paper, then
it is impossible for it to be white after the dipping action. Hence, white-litmus-
paper worlds should not take part in any subsequent revision, since they have
been ruled out by the action. This helps explain why belief evolution provides
the correct results: for an observation (here white, expressed as ¬R ∧ ¬B) that
is inconsistent with the agent’s beliefs following an action, it must be the case
that the agent’s original beliefs are inconsistent with the inverse image of the
observation under the action. That is, we have the elementary result:

Proposition 1. Let T = 〈S,R〉 be a transition system over σ = 〈F,A〉, a ∈ A,
and let K be a belief state.

If Mod(a(K)) ∩ ‖φ‖ = ∅ then Mod(K) ∩ a−1(‖φ‖) = ∅.

With belief evolution, an observation φ is projected back (via a−1) to the
original (pre-action) state of affairs, where revision takes place, thereby adjust-
ing the agent’s original, erroneous, set of beliefs. The result is then progressed
under the action a, (trivially) yielding a result compatible with a. As described,
implementing a reasonable notion of revision then involves regressing an action
sequence to the initial state, carrying out revision, and then progressing the
same sequence of actions. The fact that one can avoid this effort hinges on the
following result.6

Proposition 2. ‖φ‖ ∩ a(S) = a(a−1(φ))

6 The following results (clearly) assume the same antecedent conditions as Proposi-
toin 1. We omit their statement, for reasons of perspicuity.



On the left hand side we have those φ-worlds that are compatible with the exe-
cution of action a. The right hand side says that this is just the a-regression of
φ-worlds followed by their a-progression. The next result says that the regres-
sion/progression process in belief evolution can be restricted to the formula for
revision:

Proposition 3. Mod(a(K ∗ a−1(φ))) = Mod(a(K) ∗ a(a−1(φ)))

Corollary 1. Mod(
→
a(K ∗ →

a−1(φ))) = Mod(
→
a(K) ∗ →

a(
→
a−1(φ)))

Proposition 3 is just a weaker version of (1). On the left hand side we have the
expression for belief evolution. On the right hand side we have the progression
of the belief state, a(K), revised by the regression/progression of the formula for
revision. The corollary notes that this, unsurprisingly, extends to a sequence of
actions.

Combining the previous two propositions yields the following:

Proposition 4. Mod(a(K ∗ a−1(φ))) = Mod(a(K) ∗ (‖φ‖ ∩ a(S)))

Corollary 2. Mod(
→
a(K ∗ →

a−1(φ))) = Mod(
→
a(K) ∗ (‖φ‖ ∩ →

a(S)))

This shows that belief evolution (on the left hand side of the equality) can be
expressed as a simple revision (tracked via Definition 4) following a sequence of
actions. The (modest) complication is that one needs to also keep track of the
context implicit in the sensing action (a(S)), and limit the φ worlds involved in
the revision to these worlds. That is, the proposition shows belief evolution can
be computed by progressing the initial revision function, along with the set of
possible states (i.e. a(S)).

This then restores the Markovian aspect of iterated actions and revisions, in
that the right hand side of Proposition 4 makes reference to only the state of
affairs following execution of the action a. Conceptually this seems to be more
compelling than the original statement of belief evolution (given on the left hand
side of Proposition 4). As well, it may offer pragmatic advantages. Consider the
following informal argument: Assume that computing action effects, including
inverse actions, and revisions have equal, unit cost, and other operations (such
as intersection) have negligible cost. Given an initial belief state K, the cost
of computing the action/observation sequence 〈a1, φ1, . . . , an, φn〉 will have cost
n(n + 2) via belief evolution, but 3n via the right hand side of Proposition 4.
Hence we go from a quadratic to a linear number of operations. (This argu-
ment is admittedly a bit misleading, since belief revision is generally of greater
complexity than propositional reasoning [8]; and both approaches to computing
the agent’s beliefs following an action/observation sequence require n revisions.
However, it indicates that in an implementation there may nonetheless be advan-
tages to the latter approach, particularly in an approach to revision with good
expected computational properties, such as in Horn formula belief sets [7].)

The above results apply to an agent’s belief set. The question arises as to
whether one may be able to say something about the agent’s belief state. The
next result extends Proposition 4 from belief sets to belief states, with respect
to the specific approach to revision of [18].



Proposition 5. Let T = 〈S,R〉 be a transition system over σ = 〈F,A〉. Assume
that faithful rankings satisfy the additional conditions:

(CR1) If w1, w2 |= φ, then w1 �K w2 iff w1 �K∗φ w2

(CR2) If w1, w2 6|= φ, then w1 �K w2 iff w1 �K∗φ w2

(Lex) If w1 |= φ and w2 6|= φ then w1 ≺K w2

Then a(K ∗ a−1(φ)) = a(K) ∗ (‖φ‖ ∩ a(S)).

The semantic conditions (CR1), (CR2), and (Lex) characterise the specific ap-
proach discussed in [18]. (CR1), (CR2) are the first two (of four) conditions for
iterated revision from [6], although they were originally employed in the quanti-
tative setting for ordinal conditional functions, in [25]. (Lex) in turn implies the
conditions (CR3), (CR4) in [6].

This approach [18] gives very high priority to the formula for revision, in that
in revising by φ, all φ worlds are ranked as being more plausible than any ¬φ
world. In return, one obtains an operator that is conceptually simple and, for
the present case, compatible with an action framework.

5 Discussion

In this paper we have reformulated an approach to belief revision in an action
formalism, belief evolution, so that one doesn’t need to refer to the initial state
of the agent and the domain. To this end, a number of limiting assumptions
were made: it was assumed that action preconditions and effects are known, and
that actions are deterministic. As well, observations are correct. A fully general
account of belief change will need to relax these assumptions of course; however
the idea in this paper is to attempt to gain insight into the interaction of actions
and observations by considering a more manageable scenario.

5.1 Related Work

The assumptions made here are the same as those made in the account of belief
change in the situation calculus in [23]. Interestingly, the problem observed in
Example 1 doesn’t arise in [23], and we obtain that after observing that the paper
is white, the agent believes that the paper is not litmus paper. In the situation
calculus, situations are indexed by actions; and in those situations where the
agent is holding litmus paper, the paper will turn either red of blue, and those
situations where it is not litmus paper, the colour will remain unchanged. That
is, since situations record the actions taken, actions are implicitly part of the
subject of the revision process. As a result, in observing that ¬R ∧ ¬B is true,
it must be that the paper is not litmus paper.

In contrast, in the transition system approach, the link between an action
and the resulting state is not retained, in that for a world w ∈ a(K), a−1(w) is
not guaranteed to be a singleton, as it is in the situation calculus. The result is
that in the näıve approach, the agent may end up believing that it is holding



white litmus paper, since the link between litmus paper and colour after dipping
is lost. In essence, the situation calculus approach is finer grained and more
nuanced than extant approaches involving transition systems.7 So this raises the
question of whether one should opt for a theory such as the situation calculus,
over a simpler approach such as with a transition system.

While there are advantages to the situation calculus, particularly in terms
of expressibility, there are also advantages to the simpler approach, namely one
might expect it to be easier to implement and to be more computationally ef-
ficient, simply because less information is kept track of. Moreover, with the
situation calculus, at least with basic action theories, one essentially still needs
to regress to the initial state. While there will be cases where one may need
to reason among earlier circumstances (e.g.[4]), if one need not, then there will
presumably be advantages computationally to adopting a simpler, Markovian,
approach.

Regarding other work, the setting described in [3] is broadly similar to that
here. In [3], given an action language framework, diagnostic problem solving,
based on a set of observations, is developed. That is, given a definition of a
system, and a set of observations inconsistent with this system, the notion of a
diagnosis is defined to account for the abnormal behaviour. The setting of [3] is
much more specific than that of the present paper, but the overall direction and
goals are similar. Consequently, it would be an interesting question to see how
one approach may benefit the other. Thus the present approach may help expli-
cate the notion of observation in [3]; as well, by incorporating belief states, one
might obtain a more fine-grained diagnostic approach that could accommodate
observations and beliefs of varying reliability. On the other hand, by bringing in
specific notions (such as that of components, or distinguished sets of literals, or
specific action types) from a diagnostic setting, one might be able to provide an
account for revision in a specific, practical setting.

5.2 Extending the approach

There are several ways in which the approach may be generalised. To begin, we’ve
essentially been working with a single observation following an action sequence.
The natural extension to a set of observations interleaved with actions implicitly
assumes that the observations are, if not correct, at least consistent, taken as
a group. Thus, still assuming deterministic actions, the most straightforward
means of dealing with a set of observations is to first project all observations to
the final state. Under the assumption that this set is consistent, the intersection
of the resulting sets of worlds corresponds to the conjunction of these (projected)
observations, which can then be used for a revision.

Clearly however, observations may not be correct or compatible, and in belief
revision in general for example, the agent may be informed of something that is

7 Which is to say, there is no obstacle to formulating a situation-calculus like approach
involving transition systems, where one keeps track of trajectories of actions and
states of the world.



later contradicted. Hence in general one would need to be able to deal with an
alternating sequence of actions and observations, where observations may not
be correct. Given such a set of (possible incorrect or incompatible) observations,
one can still project (or progress) each observation individually through the
full sequence of actions, yielding a set of possibly incompatible observations,
together with the result of progressing the agent’s beliefs. One can then in some
fashion merge the resulting observations, to give an overall summation of the
observations that can then be used to revise the agent’s beliefs. This leaves open
the question of how to best merge the agent’s observations, but in this case there
is an extensive literature (for representative work, see for example [15]) and one
can treat the problem independently from reasoning about action.8

A second extension is to allow more general types of actions. It may be that
nondeterminism can be directly incorporated into the approach, provided that
a (nondeterministic) action results in equally-probably outcomes. Thus, in the
case where the agent tosses a fair coin for example, there are two possible out-
comes; while the final outcome is unknown, both outcomes will have the same
plausibility. Hence for revision, it may be that in this situation there is no real
complication beyond keeping track of the multiple outcomes. If a nondetermin-
istic action allows outcomes of differing likelihood, for example in allowing some
actions to occasionally fail or to yield unexpected outcomes, then it is not clear
how such outcomes should be reconciled with the agent’s plausibility ordering. A
second way in which actions can be generalised is in allowing exogenous actions.
In this case, an approach such as [22] may work here.
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