
What Next for ASP?
(A Not-Entirely-Well-Informed Opinion)

James Delgrande

School of Computing Science
Simon Fraser University

Burnaby BC, V5A 1S6, Canada
jim@cs.sfu.ca

Preamble: The inception of Answer Set Programming (ASP) can be marked by
the appearance of the stable model semantics [GL88], something over 20 years
ago. The roots of ASP in turn can be traced to work in nonmonotonic reasoning,
notably Default Logic [Rei80]. With the advent of efficient ASP solvers, as exem-
plified by smodels [NS97] and dlv [ELM+97], there was a great deal of interest
and excitement over the application of ASP (broadly taken) to various problems,
along with its use as a modelling tool. Indeed, applications have been proposed
in a wide variety of fields, including bioinformatics, configuration, database in-
tegration, diagnosis, hardware design, insurance industry applications, model
checking, phylogenesis, planning, security protocols, and high-level control of
the US space shuttle [Sch08]. In concert with these applications, there has been
a widespread flowering of ASP solvers built on various technologies [DVB+09].

With these successes, attention has turned to the application of ASP to other
interesting and challenging problems. Since it can be argued (or at least taken
as a position for debate) than any research in CS should be with an eye to
eventual practical application, the question of the application of ASP can be
seen as obliquely asking, What is the potential role of ASP in AI/CS/the world
at large?

Applying ASP: Broadly, and for purposes of discussion,1 we can consider three
non-exclusive and non-exhaustive areas of application: to other areas of AI, to
areas of interest in mathematics, and to “real world” problems. Consider each
in turn:

ASP and AI: To consider the role of ASP in AI is to essentially ask about the
suitability of ASP for providing general KR languages. Certainly, earlier surveys
such as [BG94,DB96] regarded Knowledge Representation and Reasoning as the
principal focus of ASP, as implicitly does [Bar03].

Two points can be made in this regard. First, the trend with respect to appli-
cations is away from KR. Witness, for example, the problem suite in [DVB+09],

1 which is to say this classification shouldn’t be taken too seriously



2 What Next for ASP?

which would seem to not have a great deal to do with KR.2 As well, as imple-
mentations have developed and evolve, enhancements have been added to the
language; these can be declarative (e.g. aggregates and cardinality constraints)
or procedural (e.g. adding options to control search). In the latter case, repre-
sentational force is lost, in favour of procedural gain. Second, and counter to the
first point, research in ASP on KR can nonetheless be regarded as alive and well,
given work on strongly related topics such as action languages and causal rep-
resentations, and representations of interesting domains using such formalisms
(e.g. [AEL+04]). This suggests of course the potential role of ASP as a target
language for higher-level encodings of problems.3

ASP and mathematics: Most of the challenge problems for ASP are from graph
theory, combinatorics, or number theory. This arguably reflects the shift in em-
phasis toward solving constraint problems (or maybe just the prevalence of toy
problems from these areas). Regardless, most proposed applications seem to lie
in these areas, one way or another. So one possibility is to attempt to solve spe-
cific open problems in mathematics via ASP. One example is determining the
fifth Schur number;4 a second is suggested at the conclusion of this article.

ASP and “real world” problems: This of course is a highly interesting, difficult,
and potentially important long-term use of ASP. There are various impediments
that need to be addressed; in particular, current implementations would need
to scale up in various ways. Grounding is clearly a bottleneck. As well, there
is a need for a general programming methodology, and perhaps a better under-
standing of the relation between problem type and search strategy. Similarly
there would seem to be a need for programming environments and tools for the
construction of large programs. Work on locality (perhaps involving conditional
independence structures) and structuring blocks of rules would be useful. Cer-
tainly if similar work in KR (e.g. [Mor98]) is anything to go by, such applications
promise to be messy.

A Modest Proposal: A specific problem area that falls into the second cate-
gory above, yet may have practical application while skirting issues concerning
scalability and software engineering, is that of balanced incomplete block designs
(BIBD) [CD06]. Roughly a BIBD is a set X and a collection of subsets of X,
called blocks, such that each block is the same size and each element of X appears

2 For a perhaps unfair comparison, consider in contrast the Challenge Problems for
Commonsense Reasoning at www-formal.stanford.edu/leora/commonsense.

3 This also suggests an interesting project, comparing the two leading logic program-
ming paradigms via their respective ease (or lack thereof) for representing action
formalisms: The University of Toronto action group translates the situation calculus
into PROLOG typically, while action languages may be translated into extended
logic programs.

4 I’ve shamelessly cribbed this example from Torsten Schaub’s position paper, who in
turn credits it to Mirek Truszczyński.



What Next for ASP? 3

in the same number of blocks. Hence BIBDs come with a compact, austere, the-
oretical specification. They also have significant real world application, as they
are fundamental in experimental design, and have applications in software test-
ing and cryptography. They encompass a large class of problems, and include
as subareas Steiner triple systems, finite projective planes, and Latin squares.
Moreover, they would seem ideally suitable for ASP encodings, as the general
problem for BIBDs is to find a solution for a given set of parameters or show
that no solution exists.

References

[AEL+04] V. Akman, S. Erdoǧan, J. Lee, V. Lifschitz, and H. Turner. Representing
the zoo world and the traffic world in the language of the causal calculator.
Artificial Intelligence, 153(1-2):105–140, 2004.

[Bar03] C. Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

[BG94] Chitta Baral and Michael Gelfond. Logic programming and knowledge rep-
resentation. Journal of Logic Programming, 19:73–148, 1994.

[CD06] Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of Combinatorial
Designs, Second Edition. Chapman & Hall/CRC, 2006.

[DB96] J. Dix and G. Brewka. Knowledge representation with logic programs. Fach-
berichte Informatik 15–96, Universität Koblenz-Landau, 1996.

[DVB+09] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński.
The second answer set programming competition. In E. Erdem, F. Lin,
and T. Schaub, editors, Proc. LPNMR, volume 5753 of Lecture Notes in
Artificial Intelligence. Springer Verlag, 2009.

[ELM+97] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, , and F. Scarcello. A deductive
system for nonmonotonic reasoning. In J. Dix, U. Furbach, and A. Nerode,
editors, Proc. LPNMR, volume 1265 of Lecture Notes in Artificial Intelli-
gence, pages 363–374. Springer Verlag, 1997.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proc. ICLP, pages 1070–1080.
The MIT Press, 1988.

[Mor98] L. Morgenstern. Inheritance comes of age: Applying nonmonotonic tech-
niques to problems in industry. Artificial Intelligence, 103:1–34, 1998.

[NS97] I. Niemelä and P. Simons. Smodels: An implementation of the stable model
and well-founded semantics for normal logic programs. In J. Dix, U. Furbach,
and A. Nerode, editors, Proc. LPNMR, volume 1265 of Lecture Notes in
Artificial Intelligence, pages 420–429. Springer-Verlag, 1997.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–
132, 1980.

[Sch08] T. Schaub. Here’s the beef: Answer set programming ! In A. Dovier, M. Gar-
cia de la Banda, and E. Pontelli, editors, Proc. ICLP, volume 5366 of Lecture
Notes in Computer Science. Springer-Verlag, 2008.


