
AGM-Style Belief Revision of Logic Programs under
Answer Set Semantics?

James Delgrande1, Pavlos Peppas2, and Stefan Woltran3

1 School of Computing Science
Simon Fraser University

Burnaby, B.C.
Canada V5A 1S6

2 Dept of Business Administration
University of Patras

Patras 265 00, Greece
3 Institut für Informationssysteme

Technische Universität Wien
Favoritenstraße 9–11

A–1040 Vienna, Austria

Abstract. In the past few years, several approaches for revision (and update) of
logic programs have been studied. None of these however matched the generality
and elegance of the original AGM approach to revision in classical logic. One
particular obstacle is the underlying nonmonotonicity of the semantics of logic
programs. Recently however, specific revision operators based on the monotonic
concept of SE-models (which underlies the answer-set semantics of logic pro-
grams) have been proposed. Basing revision of logic programs on sets of SE-
models has the drawback that arbitrary sets of SE-models may not necessarily be
expressed via a logic program. This situation is similar to the emerging topic of
revision in fragments of classical logic. In this paper we show how nonetheless
classical AGM-style revision can be extended to various classes of logic pro-
grams using the concept of SE-models. That is, we rephrase the AGM postulates
in terms of logic programs, provide a semantic construction for revision opera-
tors, and then in a representation result show that these approaches coincide. This
work is interesting because, on the one hand it shows how the AGM approach can
be extended to a seemingly nonmonotonic framework, while on the other hand
the formal characterization may provide guiding principles for the development
of specific revision operators.

1 Introduction

Answer set programming [5] is an appealing approach for representing problems in
knowledge representation and reasoning. It has a conceptually simple theoretical foun-
dation, while at the same time being applicable to a wide range of practical problems.
As well, efficient ASP systems have become available. However, a logic program is not
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a static object in general, but rather it will evolve and be subject to change, whether
as a result of correcting information in the program, adding to the information already
present, or in some other fashion modifying the knowledge represented in the program.

In classical logic, the problem of handling knowledge in flux has been thoroughly
investigated (see [24] for an overview). The seminal AGM approach [1, 17], provides
a general, elegant, and widely accepted framework for this purpose. Central to this ap-
proach are powerful representation theorems, which aim to characterize all rational op-
erators satisfying certain postulates. Its generality, emphasizing logical formalization,
syntax independence, and minimal change, has made this approach a standard for in-
vestigating problems concerned with revision or update of knowledge bases, regardless
of the underlying semantics (see, for instance, [16] for AGM-style revision in terms of
description logics).

Although there has been very active research in revision (and update) of logic pro-
grams [31, 2, 20, 25, 14], the generality of the original AGM approach has not been
matched yet in any of these approaches. One obstacle is the underlying nonmonotonic-
ity of the semantics of logic programs, which has led to the study of postulates different
from the ones in the AGM approach, see e.g. [14, 23]. Recently however, specific revi-
sion operators based on the monotonic concept of SE-models [28] (which underlies the
answer-set semantics of logic programs [21]) have been proposed [12] together with
a suitable variant of the AGM postulates; see also [27] for a variant thereof. In recent
work [19], the notion of SE-models (and similar concepts) has been put in connection
to postulates for belief base change different from AGM.

However, representation theorems are still lacking. One problem is that arbitrary
sets of SE-models may not necessarily be expressed via a logic program. (While such
a requirement is crucial for a representation theorem, it is not problematic in classical
logic, at least in the finite case, since for any set of interpretations there is a set of for-
mulas having these interpretations as its models.) A similar challenge arises in another
emerging topic in the area of belief change, namely revision in fragments of classical
logic, see e.g. [10, 7]. To be more specific, consider the problem of revision in the Horn
fragment of classical logic. Since the models of Horn formulas satisfy a certain closure
property, the result of a revision requires that this property is obtained in order to be
represented in the Horn fragment, too. For representation theorems, it turned out that
one needs to suitably integrate this property to the concept of faithful assignments [18]
and to add an additional postulate [10].

In this paper we show how classical AGM-style revision can be extended to vari-
ous classes of logic programs using the concept of SE-models. We give representation
theorems for the AGM-style postulates proposed in [12] by exploiting, first, the recent
techniques for Horn revision due to [10] and, second, the properties that program classes
enjoy in terms of SE-models [13]. This allows us to give representation theorems for
the important classes of disjunctive (generalized and ordinary), normal, positive, and
Horn logic programs. This work is interesting because, on the one hand it shows how
the AGM approach can be extended to a seemingly nonmonotonic framework, while
on the other hand the formal characterization may provide guiding principles for the
development of specific revision operators beyond the ones suggested in [12].



The remainder of the paper is organized as follows. The next section reviews an-
swer set programming and belief revision, and surveys previous work in belief change
in logic programs. The following section examines the problems that arise in a direct
application of the AGM approach to answer set programming. Section 4 provides the
main formal results, comprising representation theorems for each of the major classes
of logic programs. The next section shows that the approach is compatible with iterated
revision, while the last section is a summary. Proofs of theorems are omitted due to
space considerations but are available on request.

2 Background and Formal Preliminaries

2.1 Answer Set Programming

Let A be a finite alphabet or set of propositional variables. A (generalised) logic pro-
gram (GLP) over an alphabet A is a finite set of rules of the form

a1; . . . ; am; ∼b1; . . . ;∼bn ← c1, . . . , cj , ∼d1, . . . ,∼dk (1)

where ap, bq, cr, ds ∈ A and p, q, r, s ≥ 0. Operators ‘;’ and ‘,’ express disjunctive and
conjunctive connectives. A (default) literal is an atom a or its (default) negation ∼a. A
rule r as in (1) is a fact if m = 1 and n = j = k = 0, and an integrity constraint if
m = n = 0, yielding an empty disjunction denoted by ⊥. LP will denote the set of
generalised logic programs. Unless stated otherwise, logic program will refer to a GLP.

A rule r as in (1) is called disjunctive if n = 0; normal if m ≤ 1 and n = 0; or
positive if n = k = 0. A program is a disjunctive logic program (DLP) if it consists
of disjunctive rules only. A program is a normal logic program (NLP) if it consists of
normal rules only. For completeness, we also consider positive logic programs (PLP),
consisting of positive rules, and Horn logic programs (HLP), consisting of rules that
are both positive and normal.

We define H(r) = {a1, . . . , am,∼b1, . . . ,∼bn} as the head of r and B(r) =
{c1, . . . , cj ,∼d1, . . . ,∼dk} as the body of r. Given a set X of literals, X+ = {a ∈
A | a ∈ X}, X− = {a ∈ A | ∼a ∈ X}, and∼X = {∼a | a ∈ X}. For simplicity, we
sometimes use a set-based notation, expressing a rule as in (1) as H(r)+;∼H(r)−←
B(r)+,∼B(r)−.

An interpretation is represented by the subset of atoms in A that are true in the
interpretation. A (classical) model of a program P is an interpretation in which all of
the rules in P are true according to the standard definition of truth in propositional
logic, and where default negation is treated as classical negation. Mod(P ) denotes the
set of classical models of P . The reduct of a program P with respect to a set of atoms
Y , denoted PY , is the set of rules:

{H(r)+← B(r)+ | r ∈ P, H(r)− ⊆ Y, B(r)− ∩ Y = ∅}.

Note that the reduct consists of negation-free rules only. An answer set Y of a pro-
gram P is a subset-minimal model of PY . The set of all answer sets of a program P is
denoted by AS (P ). For example, the program P = {a←, c; d← a,∼b} has answer
sets AS (P ) = {{a, c}, {a, d}}.



An SE interpretation [28] is a pair (X,Y ) of interpretations such that X ⊆ Y ⊆ A.
The set of all SE interpretations (over A) is denoted by SE . For simplicity, we often
drop set-notation within SE interpretations and simply write, e.g., (a, ab) instead of
({a}, {a, b}). An SE interpretation is an SE model of a program P if Y |= P and
X |= PY . The set of all SE models of a program P is denoted by SE (P ). Note that
Y is an answer set of P iff (Y, Y ) ∈ SE (P ) and for every X ⊂ Y , (X,Y ) 6∈ SE (P ).
Also, we have (Y, Y ) ∈ SE (P ) iff Y ∈ Mod(P ).

A program P is satisfiable just if SE (P ) 6= ∅. Two programs P and Q are strongly
equivalent, symbolically P ≡s Q, iff SE (P ) = SE (Q). Alternatively, P ≡s Q holds
iff AS (P ∪ R) = AS (Q ∪ R), for every program R [21]. We write P |=s Q iff
SE (P ) ⊆ SE (Q). This means that P is satisfiable iff P 6|=s ⊥.

One feature of SE models is that they contain “more information” than answer sets,
which makes them an appealing candidate for problems where programs are examined
with respect to further extension (in fact, this is what strong equivalence is about). We
illustrate this issue with the following well-known example, involving programs

P = {p; q ←} and Q =

{
p← ∼q
q ← ∼p

}
.

Here, we have AS (P ) = AS (Q) = {{p}, {q}}. However, the SE models (we list them
for A = {p, q}) differ:

SE (P )={(p, p), (q, q), (p, pq), (q, pq), (pq, pq)};
SE (Q)={(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, pq)}.

This is to be expected, since P and Q behave differently with respect to program ex-
tension, and thus are not strongly equivalent. Consider R = {p ← q, q ← p}. Then
AS (P ∪R) = {{p, q}}, while AS (Q ∪R) has no answer set.

Next, we recall several properties the set of SE-models satisfies for certain pro-
gram classes. These properties when suitably combined characterize a logic program
class C in a necessary (for any program P ∈ C, SE (P ) satisfies certain properties)
and sufficient (for each S satisfying these properties, there exists a P ∈ C, such that
SE (P ) = S) way; see [15, 6] and the overview [13]. The properties we require are
as follows: A set S of SE interpretations is well-defined if, for each (X,Y ) ∈ S,
also (Y, Y ) ∈ S. A well-defined set S of SE interpretations is complete if, for each
(X,Y ) ∈ S, also (X,Z) ∈ S, for any Y ⊆ Z with (Z,Z) ∈ S. A complete set S of
SE interpretations is closed under here-intersection if, for each (X,Z), (Y,Z) ∈ S also
(X∩Y, Z) ∈ S. A complete set S of SE interpretations is positive definable if, for each
(X,Y ) ∈ S, also (X,X) ∈ S. Last, a positive definable set S of SE interpretations is
Horn definable iff (X1, Y1), (X2, Y2) ∈ S implies that (X1 ∩ X2, Y1 ∩ Y2) ∈ S. In-
tuitively, these properties capture inherent features that the reducts of program classes
enjoy. For instance, for any positive program and any interpretation Y , it holds that
PY = P , as mirrored by the concept of positive definable. We have the following
results, c.f. [13].

– For each GLP P , SE (P ) is well defined.
– For each DLP P , SE (P ) is complete.



– For each NLP P , SE (P ) is closed under here-intersection.
– For each PLP P , SE (P ) is positive definable.
– For each HLP P , SE (P ) is Horn definable.

Moreover, for a set S of SE interpretations:

– if S is well defined, there exists a GLP P such that SE (P ) = S;
– if S is complete, there exists a DLP P such that SE (P ) = S;
– if S is closed under here-intersection, there exists a NLP P such that SE (P ) = S;
– if S is positive definable, there exists a PLP P such that SE (P ) = S; and
– if S is Horn definable, there exists a HLP P such that SE (P ) = S.

Consequently, for a set of SE models S, we define t(S) to be a least (with respect to SE
models) logic program whose SE models contain S. Note that such a program is unique,
up to strong equivalence. We also overload notation and in the case that W is a set of
classical interpretations, we define t(W ) to be a formula of propositional logic whose
models are exactly W . In both cases, since the alphabet is finite, t(·) is guaranteed to
exist.

2.2 Belief Revision

The best known work in belief revision is the AGM approach [1, 17], in which standards
for belief revision and contraction functions are given. In belief revision, a formula is
added to a knowledge base such that the resulting knowledge base is consistent (un-
less the formula to be added is inconsistent). In the AGM approach it is assumed that
a knowledge base receives information concerning a static domain. Belief states are
modeled by logically closed sets of sentences, called belief sets. Thus, a belief set is a
set K of sentences which satisfies the constraint

if K logically entails β, then β ∈ K.

K can be seen as comprising a partial theory of the world. For belief set K and formula
α, K + α is the deductive closure of K ∪ {α}, called the expansion of K by α. K⊥ is
the inconsistent belief set (i.e., K⊥ is the set of all formulas).

Subsequently, Katsuno and Mendelzon [18] reformulated the AGM approach so
that a knowledge base was represented by a formula in some language L. The follow-
ing postulates comprise Katsuno and Mendelzon’s reformulation of the AGM revision
postulates, where ∗ is a function from L × L to L:

(R1) ψ ∗ µ ` µ.
(R2) If ψ ∧ µ is satisfiable, then ψ ∗ µ↔ ψ ∧ µ.
(R3) If µ is satisfiable, then ψ ∗ µ is also satisfiable.
(R4) If ψ1 ↔ ψ2 and µ1 ↔ µ2, then ψ1 ∗ µ1 ↔ ψ2 ∗ µ2.
(R5) (ψ ∗ µ) ∧ φ ` ψ ∗ (µ ∧ φ).
(R6) If (ψ ∗ µ) ∧ φ is satisfiable, then ψ ∗ (µ ∧ φ) ` (ψ ∗ µ) ∧ φ.

Katsuno and Mendelzon also show that a necessary and sufficient condition for
constructing an AGM revision operator is that there is a function that associates a total
preorder on the set of interpretations with any formula ψ, as follows:



Definition 1. A faithful assignment is a function that maps each formula ψ to a total
preorder �ψ on the set of interpretationsM such that for any interpretations m1,m2:

1. If m1, m2 ∈ Mod(ψ) then m1 ≈ψ m2

2. If m1 ∈ Mod(ψ) and m2 6∈ Mod(ψ), then m1 ≺ψ m2.
3. If ψ ↔ µ then �ψ=�µ.

The resulting preorder is referred to as a faithful ranking associated with ψ. Intuitively,
m1 �ψ m2 if m1 is at least as plausible as m2 with respect to ψ. Katsuno and Mendel-
zon then provide the following representation result.

Theorem 1 ([18]). A revision operator * satisfies postulates (R1)–(R6) iff there exists
a faithful assignment that maps each formula ψ to a total preorder �ψ such that

ψ ∗ µ = t(min(Mod(µ),�ψ)).

Thus the revision of ψ by µ is characterized by those models of µ that are most plausible
according to the agent.

More recently there has been work in belief revision with respect to subsets of
propositional logic. [10] extends the AGM approach to Horn clause knowledge bases
while [7] addresses revision in other syntactic restrictions of propositional logic.

2.3 Belief Change in Logic Programming

Most previous work on belief change for logic programs is referred to as update. Repre-
sentative work includes [31, 2, 20, 14, 26, 30, 11]. Strictly speaking, however, such ap-
proaches generally do not address “update,” at least insofar as the term is understood in
the belief revision community, but rather general change to a logic program.

A typical approach (e.g. [14], [30], and [11]) for such updates is to consider a se-
quence of logic programs P1, P2, . . . , Pn, where for Pi, Pj , and i > j, the intuition
is that Pi has higher priority or precedence over Pj . Given such a sequence, a set of
answer sets is determined that in some sense respects the ordering. This may be done
by translating the sequence into a single logic program that contains an encoding of
the priorities, or by treating the sequence as a prioritized logic program, or by some
other appropriate method. The net result, one way or another, is that one obtains a set
of answer sets from such a program sequence. In particular, one does not obtain a new
program expressed in the language of the original logic programs. Hence, these ap-
proaches fall outside the general AGM belief revision paradigm. Such approaches are
also clearly syntactic in nature, and fall into the belief base category, rather than the
belief set category.

Several principles have nonetheless been proposed for logic program update. In
particular, [14] considers the question of what principles the update of logic programs
should satisfy. This is done by re-interpreting different AGM-style postulates for revis-
ing or updating classic knowledge bases, as well as introducing new principles. Among
the latter, we note the following:

Initialization ∅ ∗ P ≡ P .



Idempotency (P ∗ P ) ≡ P .
Tautology If Q is tautologous, then P ∗Q ≡ P .
Absorption If Q = R, then ((P ∗Q) ∗R) ≡ (P ∗Q).
Augmentation If Q ⊆ R, then ((P ∗Q) ∗R) ≡ (P ∗R).

It can be noted that if ⊆ and ≡ are interpreted in terms of strong equivalence, the
first four postulates are implied by the AGM postulates, while the last corresponds to the
first of the Darwiche and Pearl iteration postulates [8]. [23] also suggest the following
postulate, which is also implied by the AGM approach:

WIS If Q ≡s R, then (P ∗Q) ≡ (P ∗R).

Some work has focussed specifically on revision of logic programs. Early work
in this direction includes a series of investigations dealing with restoring consistency
for programs possessing no answer sets (e.g., [29]). Other work uses logic programs
under a variant of the stable semantics to specify database revision, i.e., the revision of
knowledge bases given as sets of atomic facts [22]. [12] addresses specific revision (and
belief merging) operators based on distances defined in terms of the SE models of the
underlying programs. As well, [9] considers the extent to which logic programs per se,
are compatible with the AGM approach to revision.

3 Recasting Belief Revision in Terms of Answer Set Programs

The postulates and semantic construction of Section 2 are easily adapted to logic pro-
grams; for this, we draw on material from [12, 10]. To begin, the expansion of logic
programs P and Q, P + Q, can be defined as a logic program R where SE (P ) ∩
SE (Q) = SE (R). It can be observed that logic program expansion is unproblematic,
since for any programs P , Q of a particular class, SE (P )∩SE (Q) satisfies the seman-
tic conditions for that class; for example if SE (P ) and SE (Q) are complete then so is
SE (P ) ∩ SE (Q).

For the postulates, we have the following, expressed in terms of logic programs. An
(AGM logic program) revision function ∗ is a function from LP ×LP to LP satisfying
the following postulates.

(L0) P ∗Q is a GLP.
(L1) P ∗Q |=s Q.
(L2) If P +Q is satisfiable, then P +Q ≡s P ∗Q.
(L3) If Q is satisfiable, then P ∗Q is satisfiable.
(L4) If P1≡sP2 and Q1≡sQ2, then P1 ∗Q1≡sP2 ∗Q2.
(L5) (P ∗Q) +R |=s P ∗ (Q+R).
(L6) If (P ∗Q) +R is satisfiable, then P ∗ (Q+R) |=s (P ∗Q) +R.

For later reference we also give a postulate adapted from a similarly-named postulate
from Horn revision [10].

(Acyc) If, for 0 ≤ i < n, we have (P ∗Qi+1) +Qi is satisfiable and (P ∗Q0) +Qn
is satisfiable, then (P ∗Qn) +Q0 is satisfiable.



As well, faithful assignments can be defined for logic programs and SE models,
basically by changing notation:

Definition 2. A faithful assignment is a function that maps each logic program P to a
total preorder �P on SE such that for m1, m2 ∈ SE:

1. If m1, m2 ∈ SE (P ) then m1 ≈P m2

2. If m1 ∈ SE (P ) and m2 6∈ SE (P ), then m1 ≺P m2.
3. If P ≡s Q then �P = �Q.

The resulting preorder is referred to as the faithful ranking associated with P . Finally,
one can define a function ∗ in terms of a faithful ranking by:

P ∗Q = t(min(SE (Q),�P )). (2)

The use of ∗ in (2) is suggestive; ideally one would next establish a correspondence
between functions that satisfy the postulates and those that can be specified via Defini-
tion 2. However, there are two difficulties that arise with the naı̈ve application of AGM
revision to logic programs:

1. Some postulates may not be satisfied in a faithful ranking.
2. Necessary logical consequences of (L*0)-(L*6) may not hold in some classes of

logic programs.

For the first problem, consider the following example involving normal logic pro-
grams:

P = {⊥ ← p, ⊥ ← q, ⊥ ← r.}
Q = {⊥ ← ∼p, ⊥ ← ∼q, ⊥ ← ∼r, r ← p, r ← q.}
R = {⊥ ← ∼p, ⊥ ← ∼q, ⊥ ← ∼r, r ← p, q, p← q, q ← p.}

We have the corresponding SE models:

SE(P ) = {(∅, ∅)}
SE(Q) = {(pqr, pqr), (pr, pqr), (qr, pqr), (r, pqr), (∅, pqr)}
SE(R) = {(pqr, pqr), (r, pqr), (∅, pqr)}

Now consider the total preorder over these SE models:

(∅, ∅) < [(pqr, pqr), (pr, pqr), (qr, pqr)] < (∅, pqr) < (r, pqr) < 〈rest〉

It can be verified that SE ((P ∗Q)+R) = {(pqr, pqr), (r, pqr)} and SE (P ∗(Q+R)) =
{(pqr, prq)}. However, this violates (L5).

The second problem is analogous to one that cropped up in [10] with respect to
Horn theories: due to the inferential weakness of Horn theories, an operator that sat-
isfied the Horn revision postulates was not strong enough to guarantee the existence
of a corresponding faithful ranking; instead the postulate (Acyc) (which is redundant
in classical AGM revision) was required. Informally, the problem with respect to Horn
theories was that, for two Horn formulas φ and ψ, φ ∨ φ is generally not Horn.



In terms of logic programs, one would require that, for programs P and Q, there
is a program with SE models given exactly by SE (P ) ∪ SE (Q). This is the case for
GLPs, but not for any of the other classes of logic programs that we consider. Hence we
obtain:

Theorem 2. For generalised logic programs, (Acyc) is a logical consequence of the
postulates (L*0) - (L*6).

This result does not obtain for other classes of logic programs, and so for these (Acyc)
is necessary.

4 Belief Revision of Answer Set Programs

To begin, we need to restrict candidate faithful rankings over SE models to just those
that are sensible with respect to a given class of logic programs. The next two definitions
serve to eliminate orderings which are incoherent with respect to a class of programs.

Definition 3. A set of SE models S is GLP (DLP, NLP, PLP, HLP) elementary iff there
exists a GLP (DLP, NLP, PLP, HLP) P such that S = SE (P ).

Definition 4. A faithful ranking on SE models�P is GLP (DLP, NLP, PLP, HLP) com-
pliant iff for every GLP (DLP, NLP, PLP, HLP) Q, we have that min(SE (Q),�P ) is
GLP (DLP, NLP, PLP, HLP) elementary.

We have the following conditions on faithful rankings that provide counterparts for
the notions of compliance, and that make it easier to work with a given ranking.

Definition 5. Let � be a faithful ranking on SE and let X,Y, Z ⊆ A.
Then � satisfies:
(G�) iff: if X ⊆ Y then (Y, Y ) � (X,Y ).
(D�) iff: � satisfies (G�) and

if X ⊆ Y ⊆ Z and (X,Y ) ≈ (Z,Z) then (X,Z) � (Z,Z).
(N�) iff: � satisfies (D�) and

if X,Y ⊆ Z and (X,Z) ≈ (Y, Z) then (X ∩ Y,Z) � (X,Z).
(P�) iff: � satisfies (D�) and

if X ⊆ Y then (X,X) � (X,Y ).
(H�) iff: � satisfies (P�) and

if X1 ⊆ Y1 and X2 ⊆ Y2 then (X1 ∩X1, Y1 ∩ Y2 � (X1, Y1).

Theorem 3. Let � be a faithful ranking on SE .

1. � is GLP compliant iff � satisfies (G�).
2. � is DLP compliant iff � satisfies (D�).
3. � is NLP compliant iff � satisfies (N�).
4. � is PLP compliant iff � satisfies (P�).
5. � is HLP compliant iff � satisfies (H�).



These notions of compliance on the one hand, and the postulate (Acyc) on the other,
prove to be sufficient to extend the AGM approach to capture revision in logic programs.
These results are described next.

The next two results (actually, two sets of results) constitute the two parts of a
representation theorem. For each, x is a class of logic programs, where x is one of GLP,
DLP, NLP, PLP, HLP, and (L0x) is postulate (L0) adjusted for class x. Then we have:

Theorem 4. Let P be a logic program of class x and� an x-compliant faithful ranking
associated withP . Define an operator ∗ : LP×LP 7→ LP byP∗Q = t(min(SE (Q),�
)). Then ∗ satisfies postulates (L0x) - (L6) and (Acyc).

Theorem 5. Let ∗ : LP × LP 7→ LP be a function satisfying postulates (L0x) - (L6)
and (Acyc). Then for fixed program P of class x, there is a faithful ranking� on SE such
that� is x-compliant and for every programQ of class x, P ∗Q = t(min(SE (Q),�)).

Proof Outline. Let P be a logic program of type x. For any two SE modelsm1

and m2, t({m1,m2}) was defined to be a least (with respect to characterizing
SE models) logic program of type x containing m1 and m2. A binary relation
�′ over SE models is defined by: m1 �′ m2 iff m1 ∈ SE (P ∗ t({m1,m2})).
(Note that a point of difficulty, and in contrast with the corresponding Katsuno-
Mendelzon proof for AGM revision, is that it is possible to have both m1 6∈
SE (P ∗ t({m1,m2})) and m2 6∈ SE (P ∗ t({m1,m2})).)
The relation �′ is in general not transitive; its transitive closure �∗ is, of
course, transitive, and moreover for arbitrary logic program Q of type x, the
minimal Q SE models in �∗ are shown to be the same as the SE models of
P ∗Q. Finally, �∗ is in general not total. The last step is to show that there is
a total preorder on SE models � such that for any program Q of type x, the
minimal Q SE models in �∗ and � coincide. 2

5 Iteration and GLP Belief Revision

The results of the previous section show that the classical AGM postulates can be recast
in a logic programming framework. In this section we show that this is also the case
for the Darwiche and Pearl postulates for iterated revision [8]. For simplicity and space
reasons we just treat GLPs.

The four postulates for iterated revision proposed by Darwiche and Pearl, call them
the DP postulates, have been characterized by corresponding restrictions on faithful
rankings. We express these conditions in terms of logic programs. Let P be a logic
program and � a faithful ranking with respect to P , and let us denote by �Q the total
preorder assigned to the logic program P ∗Q resulting from the revision of P by Q. To
save writing two sets of postulates, in the case of a logic program, SE (¬Q) is under-
stood to mean SE \ SE (Q). In [8] it was shown that the conditions (IL1) - (IL4) below
characterize (respectively) the four DP postulates (where, of course P and Q would be
formulas of propositional logic):

(IL1) If w,w′ ∈ SE (Q) then w ≺Q w′ iff w ≺ w′.



(IL2) If w,w′ ∈ SE (¬Q) then w ≺Q w′ iff w ≺ w′.
(IL3) If w ∈ SE (Q) and w′ ∈ SE (¬Q) then w ≺ w′ entails w ≺Q w′.
(IL4) If w ∈ SE (Q) and w′ ∈ SE (¬Q) then w � w′ entails w �Q w′.

The first two postulates assert that following revision by Q, (SE)-models of Q retain
their same relative ranking, as do non-models. The next two postulates assert roughly
that a non-(SE)-model of Q never becomes more plausible with respect to a model of
Q.

Thus to show that the DP postulates are consistent with (L0) - (L6) and (Acyc), it
suffices to prove the following result:

Theorem 6. Let P be a GLP, and � a GLP compliant, faithful ranking with respect to
P . Moreover, let ∗ be the GLP revision function induced from � via Definition 2. For
every GLP Q, there exists a GLP compliant, total preorder �Q, that is faithful with
respect to P ∗Q, and such that (IL1) - (IL4) are satisfied.

Proof. Let Q be any GLP. If Q is inconsistent, define �Q to be equal to �. Clearly,
in this case �Q satisfies (IL1) - (IL4). Moreover, since � is GLP compliant, so is �Q.
Finally for faithfulness, since Q is inconsistent, by (L1), SE (P ∗Q) = ∅ and therefore
�Q is trivially faithful with respect to P ∗ Q. Hence the theorem is true when Q is
inconsistent.

Assume now that Q is consistent. We define �Q as follows:

w �Q w′ iff w ∈ min(SE (Q),�) or w � w′ and w′ 6∈ min(SE (Q),�). (3)

According to (3), to construct �Q, one starts with � and simply places the mini-
mal Q SE models (with respect to �) at the beginning of the ranking; everything else
remains the same. This construction is not new. In the propositional setting it was pro-
posed and explored by Boutilier [3, 4] in his treatment of iterated revision; it is known
to satisfy (IL1) - (IL4).

The ranking �Q is clearly faithful with respect to P ∗ Q. For GLP compliance,
let w be a SE model (X,Y ) where X ⊂ Y , and let w′ be (Y, Y ). Since (G�) entails
GLP compliance, it suffices to show that w′ �Q w. We distinguish two cases. First
assume that w′ ∈ min(SE (Q),�). Then w′ ∈ min(SE ,�Q), and therefore w′ �Q w
as desired. Second assume that w′ 6∈ min(SE (Q),�). Since � is GLP compliant, by
(G�) it follows that w′ � w. Consequently, since w′ 6∈ min(SE (Q),�), by (3) we
obtain w′ �Q w. 2

6 Conclusion

In this paper we have shown how classical AGM-style revision may be expressed with
respect to the major classes of extended logic programs under the answer-set semantics.
That is, on the one hand we rephrased the AGM postulates in terms of logic programs
and on the other hand we provided a semantic construction for revision operators anal-
ogous to faithful rankings, but with respect to SE models. Except for generalised logic
programs, the postulate set had to be augmented by an “acyclicity” postulate; for the



ranking on SE models, rankings also have to satisfy a “compliance” condition, specific
to the class of logic programs being considered. Since both the new postulate and the
compliance conditions are redundant in belief revision with respect to classical logic (as
we have shown the additional postulate remains redundant for the most general class of
programs, GLPs), our approach in fact extends the AGM approach to logic programs.
Given these (postulational and semantic) characterizations, in a representation result
we then show that these characterizations capture the same set of revision functions for
each class of logic programs.

This work is interesting for several reasons. It shows how the AGM approach can
be extended to a seemingly nonmonotonic (and certainly nonclassical) framework. As
well, most previous work in logic program change was at the syntax level, in that the
results of belief change depended on how a program was expressed. In contract, the ap-
proach at hand deals with the semantic level, in which arbitrary syntactic commitments
don’t play a role. Presumably also, the formal characterization may provide guiding
principles for the development of specific revision operators.
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