
Dyadic Obligations over Complex Actions
as Deontic Constraints in the Situation Calculus

Jens Claßen , James Delgrande
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

jens classen@sfu.ca, jim@cs.sfu.ca

Abstract

With the advent of artificial agents in everyday life, it is
important that these agents are guided by social norms and
moral guidelines. Notions of obligation, permission, and the
like have traditionally been studied in the field of Deontic
Logic, where deontic assertions generally refer to what an
agent should or should not do; that is they refer to actions. In
Artificial Intelligence, the Situation Calculus is (arguably) the
best known and most studied formalism for reasoning about
action and change. In this paper, we integrate these two areas
by incorporating deontic notions into Situation Calculus the-
ories. We do this by considering deontic assertions as con-
straints, expressed as a set of conditionals, which apply to
complex actions expressed as GOLOG programs. These con-
straints induce a ranking of “ideality” over possible future
situations. This ranking in turn is used to guide an agent in its
planning deliberation, towards a course of action that adheres
best to the deontic constraints. Introducing a representation
for action aspects and new GOLOG constructs for joint and
negated actions, we present a formalization that includes a
wide class of (dyadic) deontic assertions, lets us distinguish
prima facie from all-things-considered obligations, and par-
ticularly addresses contrary-to-duty scenarios. We further-
more present results on compiling the deontic constraints di-
rectly into the Situation Calculus action theory, so as to obtain
an agent that respects the given norms, but works solely based
on standard reasoning and planning techniques.

1 Introduction
Artificial agents are playing an ever-greater role in our ev-
eryday lives. When they interact with humans or operate
in shared environments, it becomes increasingly important
that they are capable of subjecting their actions to social
norms and moral guidelines. Here, notions of obligation,
permission, prohibition and the like come into play, which
traditionally have been the subject of study in the field of
Deontic Logic (von Wright 1951; Gabbay et al. 2013). The
most cited and most studied system of deontic logic is Stan-
dard Deontic Logic (SDL), a variant of the modal logic KD
(Chellas 1980), where a modal operator Oφ is used to ex-
press that “φ is obligatory” or “it ought to be that φ”, per-
mission is defined as the dual of obligation (Pφ = ¬O¬φ),
and prohibition as the negation of permission (Fφ = ¬Pφ).

While SDL is simple and elegant, it is also some-
what weak and bears unintuitive consequences, traditionally

called “paradoxes”. In particular, it fails to handle contrary-
to-duty obligations (Chisholm 1963), which usually take the
form of conditional exhortations, and state what ought to be
done if one neglects a certain other duty. Albeit somewhat
brutal1, let us consider a popular example from the literature,
the “paradox of the gentle murder” (Forrester 1984):

1. Smith should not murder Jones.
2. If Smith murders Jones, he should do so gently.
3. Smith murders Jones.
This scenario is considered paradoxical because an encoding
in SDL entails that Smith should murder Jones, thus leading
to a contradiction with the first statement. Another well-
known scenario, originally suggested by Chisholm, can be
phrased as follows:

1. You ought to help your neighbour.
2. If you help your neighbour you should tell them.
3. If you don’t help your neighbour, you shouldn’t tell them.
4. You don’t help your neighbour.
These statements intuitively appear consistent and indepen-
dent from one another, yet different encodings in SDL either
lead to an inconsistency or one of the statements being deriv-
able from the others. It was soon recognized (Hansson 1969;
Goble 2003) that representing such statements by means of
monadic deontic modalities and material implications is in-
sufficient, and that it rather requires dyadic obligations like
O(tell/help) to express systems of defeasible conditionals.
Thus, dyadic deontic modalities do not merely distinguish
ideal from non-ideal worlds in a binary fashion, but order
possible worlds according to some preference relation, al-
lowing for differing “degrees of ideality”.

When it comes to reasoning about an agent’s actions and
the change they bring about, the Situation Calculus (Mc-
Carthy and Hayes 1969; Reiter 2001) is (arguably) the best
known and most studied formalism in Artificial Intelligence.

1It is straightforward to conceive of similarly structured, yet
harmless examples that are more appropriate in the context of ar-
tificial agents. For example, we may want a household robot be
subject to the constraint that it ought not touch a valuable antique
vase, but if it has to move the vase, it ought to do so gently. Nev-
ertheless, we will use Forrester’s example in this paper due to its
popularity in the literature.

As a dialect of standard first-order logic, it offers a great
deal of expressivity for formulating action theories that de-
fine the preconditions and effects of an agent’s primitive ac-
tions. These in turn can be composed into more complex
behaviours by means of the agent programming language
GOLOG (Levesque et al. 1997), which has been found es-
pecially useful for the control of mobile robots (Burgard
et al. 1999; Ferrein and Lakemeyer 2008). Consequently,
the integration of deontic concepts into the Situation Calcu-
lus has been investigated previously (Demolombe and del
Pilar Pozos Parra 2005; Demolombe and del Pilar Pozos
Parra 2009), but this line of research followed formalizations
based on SDL very closely. In particular, deontic modalities
were applied to state properties (“ought-to-be”), but addi-
tionally could change due to actions. For example, a vehi-
cle is permitted to be in an intersection if the traffic light is
green; turning the light red then removes this permission.

In this paper, we take a different approach and assume
that the actions themselves are subject to deontic constraints
(“ought-to-do”). Inspired by the aforementioned classical
approaches to “contrary-to-duty” scenarios, we propose to
employ dyadic obligations in the form of defeasible con-
ditionals, with the difference that instead of propositions,
they will apply to complex actions from a fragment of the
GOLOG language. A rule like δ ⇒ γ then is to be under-
stood as a deontic constraint saying that in case the agent is
committed to a course of action according to δ (e.g., murder-
ing Jones), it ought to follow a course of action according to
γ (e.g., murdering Jones gently). Instead of possible worlds,
such conditionals rank the reachable situations by their de-
ontic “ideality”, and so when deliberating about what to do
next, such ranks will guide the agent towards a course of ac-
tion adhering best to the given deontic constraints. Our for-
malization includes a representation for action aspects such
as “gently” in the Situation Calculus, and extends GOLOG
by constructs for joint and negated actions. We also present
a method for compiling deontic constraints into standard Sit-
uation Calculus action theories, thus making them available
to existing Situation Calculus/GOLOG systems, without the
need for additional reasoning machinery.

The rest of this paper is organized as follows. Section 2
presents the formal preliminaries for the Situation Calculus
and GOLOG, which we extend in Section 3 by the concepts
of action aspects, joint actions, and action negation. In Sec-
tion 4 we present our main framework, where we first dis-
tinguish prima facie from all-things-considered obligations,
and afterwards discuss two systems of dyadic obligations
over complex actions: Non-temporal constraints talk about
alternatives for single actions (e.g., the Forrester scenario),
whereas temporal constraints refer to subsequent or previ-
ous actions (e.g., the Chisholm scenario). Section 5 shows
an approach for compiling constraints into action theories,
after which we review related work and conclude.

2 Preliminaries
2.1 The Situation Calculus
The Situation Calculus (McCarthy and Hayes 1969; Reiter
2001) is a dialect of first-order logic, with some second-

order features, for reasoning about action and change. The
universe of discourse is assumed to consist of the three
sorts actions, situations, and objects (everything else). Sit-
uations describe possible sequences of actions, where a
term do(α, σ) denotes the situation resulting from apply-
ing action α in situation σ, and S0 is a constant that
stands for the initial situation. For example, the term
do(eat(pizza), do(put(napkin), S0)) means the situation
reached by first putting a napkin on one’s lap, and then eat-
ing a pizza. As notional convention, we will use σ (possibly
with decorations) to denote terms of sort situation, and s
(possibly with decorations) as situation variables in formu-
las. Similarly, α and β will refer to action terms, whereas a
is used as an action variable. For notational convenience we
further extend do to also work on sequences ~α of actions:

do(〈〉, σ)
.
= σ, do(~α · β, σ)

.
= do(β, do(~α, σ))

We use 〈. . .〉 for sequence literals, so 〈〉 stands for the empty
sequence, and the above example situation could be written
as do(〈put(napkin), eat(pizza)〉, S0).

Changing properties are represented by means of flu-
ents, which are functions and predicates that take a situ-
ation as their last argument. For example, Hungry(x, s)
may express that person x is hungry in situation s, and so
¬Hungry(jones, do(eat(pizza), S0)) says that Jones is not
hungry anymore after eating pizza. A formula is called uni-
form in σ if the only situation term it mentions is σ, and σ
only occurs in the situation argument of fluents (so quantifi-
cation or equalities over situations are ruled out). For exam-
ple, Hungry(jones, s) is uniform in s.

Following (Reiter 2001), we use a basic action theory
(BAT) D = D0 ∪ Dpost ∪ Dfnd ∪ Duna to encode a dy-
namic domain. The initial theory D0 is a description of
the initial situation consisting of formulas uniform in S0.
Dpost is a set of successor state axioms (SSA) of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s), one for each relational fluent
F , where ΦF (~x, a, s) is a formula uniform in situation s,
and similar for functional fluents. (As convention, free vari-
ables are understood as being universally quantified from
the outside.) For the sake of simplicity, we ignore precondi-
tions completely. Next, a BAT contains foundational axioms
Dfnd , which includes a unique names axiom

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2 (1)

for situations, as well as

¬s @ S0 and s @ do(a, s′) ≡ s v s′, (2)

that define “@” as the subhistory relation among situations,
with s v s′ abbreviating s @ s′∨ s = s′. Duna finally is the
set of unique names axioms for actions.

2.2 GOLOG

The agent programming language GOLOG (Levesque et al.
1997) is defined on top of the Situation Calculus, allowing
for composing more complex actions (also called programs)
out of the primitive actions described in a BAT. Here, we
consider the fragment consisting of the constructs of prim-
itive actions α, test conditions φ? (where φ is a formula

with all situation arguments suppressed), sequential execu-
tion δ1; δ2, nondeterministic branching δ1 + δ2, and non-
deterministic choice (“pick”) πv.δ. We leave out nondeter-
ministic iteration for simplicity. Programs are interpreted
through predicate Do(δ, s, s′), intuitively expressing that a
successful execution of δ exists that starts in situation s and
leads to situation s′ (note that due to nondeterminism, a pro-
gram δ in general admits several different executions):
Definition 1. Do(δ, s, s′) is defined as a macro:

Do(α, s, s′)
.
= s′ = do(α, s)

Do(φ?, s, s′)
.
= φ[s] ∧ s = s′

Do(δ1; δ2, s, s
′)

.
= ∃s′′. Do(δ1, s, s

′′) ∧Do(δ2, s
′′, s′)

Do(δ1 + δ2, s, s
′)

.
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′)

Do(πv.δ, s, s′)
.
= ∃vDo(δ, s, s′)

where φ[s] denotes the result of restoring situation argument
s to any fluent occurring in φ (e.g. if φ is Hungry(jones),
then φ[s] stands for Hungry(jones, s)).

3 Extensions to the Situation Calculus
3.1 Action Aspects
When encoding a dynamic domain with a BAT, we would
typically represent a fact such as “the agent eats a pizza”
by means of an action term eat(pizza). That is to say, an
action name usually corresponds to the verb describing the
act in question, and its parameter(s) to the object(s) being
affected. (In a multi-agent scenario it makes sense to also
name the subject, i.e. the acting agent, as parameter, but here
we only consider single-agent domains and hence leave the
agent implicit.) For the purpose of planning, this is usually
sufficient, as we are only interested in the outcome of ac-
tions. Eating something will have the effect that the agent
is satiated, and closing a door will result in the door being
closed, no matter in what exact manner the agent performs
these actions. This changes once we take social aspects into
consideration, where some ways of doing something may be
more or less appropriate, and where this may vary depending
on the circumstances. For example, when eating pizza, eat-
ing with one’s hands may be acceptable, but not when eating
a steak. Similarly, closing a door by letting it slam shut will
not be frowned upon in a loud factory environment, but in a
library, we should rather close it gently.

Aspects like these, typically expressed through adver-
bials, go unmentioned most of the time when they are not
relevant in the given context. We could encode them by
means of additional parameters (e.g., eat(pizza, hands)),
but this would mean that we have to foresee every one such
aspect when defining the symbols of our action theory, and
may result in actions taking a large number of parameters
most of which are irrelevant in most contexts. Instead, we
propose the following encoding, which among other things
allows for a convenient notation that is closer to how we
would express things in natural language.

We reserve the last argument of any action function for
its aspects, for better notational distinction separated by a
semicolon from “normal” parameters. Aspects of a concrete

instance of an action are given in terms of a finite set of
constant symbols. For example, instead of a unary eat(x)
action, we would use eat(x; y), where x is the normal ar-
gument representing the food being eaten, while y stands
for the finitely many aspects being explicitly involved. In-
stances of the eat action then include eat(pizza; {hands}),
eat(pizza; {}), and eat(x, {hands,noisy}), and closing a
door gently is encoded as close(door ; {gently}). The in-
tended reading is that an action term mentioning more as-
pects is more specific than one that mentions fewer (in terms
of set containment). Hence, eat(pizza; {}) (eating a pizza)
subsumes eat(pizza; {hands}) (eating a pizza with one’s
hands) in the sense that the latter requires that one eats
with one’s hands, while the former may or may not involve
using one’s hands. Aspects can also be negated, so that
e.g. eat(pizza; {hands}) means eating pizza not with ones
hands, which is again a more specific case of eat(pizza; {}).

To define aspects formally, we make use of reification and
introduce a special rigid, binary predicate HasAspect(y, x).
For a finite set of (both positive and negative) aspects Γ =
{c1, . . . , ck, ck+1, . . . , ck+m}, let

HasAspects(y,Γ)
.
=

k∧
i=1

HasAspect(y, ci) ∧
k+m∧
i=k+1

¬HasAspect(y, ci) (3)

where y serves as a placeholder for the set of aspects associ-
ated with the action, and the (¬)HasAspect(y, ci) conjuncts
express the presence (or absence) of the corresponding ci in
that set. For every such Γ, we include the statement

∃y. HasAspects(y,Γ) (4)

into the foundational axioms Dfnd of our BAT D.
We may then make use of actions with aspects within

complex actions and formulas. For formulas, without loss
of generality, we assume that action terms A(~x; Γ) only oc-
cur in equational subformulas of the form (a = A(~x; Γ)),
where the left-hand side is an action variable a.2 Then let

a = A(~x; Γ)
.
= ∃y.HasAspects(y,Γ) ∧ a = A(~x, y). (5)

Aspects in complex actions can be understood as a macro:

A(~x; Γ)
.
= πy. HasAspects(y,Γ)?;A(~x, y). (6)

The corresponding A(~x, y) is a standard action term whose
effects are defined as usual in the BAT, only with the extra y
argument. As mentioned above, we expect that normally y
would not have any influence on effects, e.g. the SSA

Hungry(do(a, s)) ≡ Hungry(s) ∧ ¬∃y a = eat(pizza, y)

simply requires such a y (not) to exist (though nothing keeps
us from referring to aspects in the SSA by means of the
HasAspect predicate, should we so desire).

For our further treatment we introduce a more general
class of action expressions by extending a similar definition
from (Baader and Zarrieß 2013) as follows:

2Note that we can use existential quantifiers to rewrite a formula
such as s′ = do(A(~x; Γ), s) to ∃a. a = A(~x; Γ) ∧ s′ = do(a, s).

Definition 2. The guarded actions are the least set such that
• any primitive action α is a guarded action and
• if γ is a guarded action, then so are πx.γ and φ?; γ, where
x is a variable and φ a situation-suppressed formula.
A guarded action hence is a primitive action, possibly

preceded by a sequence of pick operators and test condi-
tions. While any action with aspects falls into this cate-
gory, guarded actions generally may include multiple picks
and tests that refer to (rigid and fluent) predicates other than
HasAspect . An important special case is the “wildcard” ac-
tion, i.e., the nondeterministic choice of a single action:

> .
= πa. a (7)

3.2 Joint and Negated Actions
For the purpose of expressing permission and prohibition
with regards to actions, we have to include two additional
notions into the GOLOG language. On the one hand, we
need to be able to say that the agent adheres to two or more
courses of action simultaneously. On the other hand, we
require to express that the agent does not follow a certain
course of action, i.e. refrains from its execution. For this
purpose, we extend GOLOG by two additional constructs,
namely for joint actions and action negation.

The definition of joint actions is straightforward. We add
the following macro to the ones given in Definition 1:
Definition 3 (Joint Actions).

Do(δ1 × δ2, s, s′)
.
= Do(δ1, s, s

′) ∧Do(δ2, s, s
′)

Executing the two programs δ1 and δ2 jointly thus means
the agent chooses an action sequence that is admitted by
both δ1 and δ2 at the same time. For example, if walk , sing
and talk are primitive actions, joining (walk + sing) and
(sing + talk) yields a program only admitting sing . The
× operator hence intuitively behaves like intersection, and
should not be confused with concurrent execution, where
primitive actions such as walk and sing can be performed
simultaneously, and where interactions between the simul-
taneous actions’ preconditions and effects have to be taken
into consideration. Here, the agent still executes single prim-
itive actions one at a time, only that the space of possible
executions may be constrained by multiple GOLOG program
expressions. This definition fits in rather nicely as × corre-
sponds to conjunction in the same way that + corresponds
to disjunction, or π to existential quantification.

Unfortunately, it is less straightforward to define a widely
applicable notion of what it means to negate complex
actions. In analogy to what is said above, one might
be tempted to simply use logical negation, i.e., define
Do(δ, s, s′) as ¬Do(δ, s, s′). However, this would have the
undesired effect that δ would suddenly connect pairs of sit-
uations s and s′ that are otherwise unreachable from one
another. An absurd example is that the action of not eating a
pizza could thus bring the agent back to S0, i.e., travel back
in time! We therefore at least have to restrict the set of situa-
tions s′ reachable by not doing δ to the ones that can actually
be reached through some sequence of primitive actions:

Do(δ, s, s′)
.
= s v s′ ∧ ¬Do(δ, s, s′) (8)

Since situations are merely action sequences, this relativized
action negation is much easier to define in the Situation Cal-
culus than in formalisms of dynamic logic (Broersen 2004),
where the exact semantics of negation depends on what
other constructs are included in the action algebra.

However, (8) causes other problems when we consider se-
quences of actions. Meyer (1988) argues that it makes sense
to understand a negated sequence δ1; δ2 as being equivalent
to δ1+δ1; δ2, i.e., in order to not do δ1 followed by δ2, either
do something that is not δ1, or, if you do δ1, do something
different from δ2 afterwards. This is one of five postulates
he presents “must reasonably hold” in the sense that they
alone entail many important theorems for his formalism, for
example the fact that a sequence 〈α, β〉 is obligatory just in
case α is obligatory, and β is obligatory after doing α. Sadly,
with (8) we obtain that one way of not doing a primitive ac-
tion α is to do the sequence 〈α, β〉, and so his postulate does
not apply here. One option would be to adopt the action
semantics proposed in (Meyer 1988). It is however quite in-
volved, as every complex action is identified with the set of
infinite traces that have a finite prefix admitted by that ac-
tion. Another possibility would be to take inspiration from
another proposal (Wansing 2004) where refraining from a
sequence δ1; δ2 is understood as refraining from all its parts,
i.e., equating δ1; δ2 with δ1; δ2. While this is technically
pleasing, Broersen (2004) argues that this may be too strong
of an assumption in many contexts.

For the purpose of this paper, we only really need to ap-
ply negation to program expressions whose “duration” is ex-
actly one action, meaning programs that only admit action
sequences of length one (if any). Intuitively, we want that
refraining from a program δ of this kind means executing
a single action that is not among those admitted by δ. We
therefore use the following, restricted variant of (8):

Definition 4 (Negated Actions).

Do(δ, s, s′)
.
= ∃a. s′ = do(a, s) ∧ ¬Do(δ, s, s′)

This lets us identify a subset of programs for which it is
“safe” to apply this limited type of negation:

Definition 5. We define the guarded-action fragment as the
set of expressions admitted by the grammar

δ ::= γ | δ | δ + δ | δ × δ

where γ denotes a guarded action.

Since > is a guarded action, ⊥ .
= > (“failure”) is in the

guarded-action fragment. For any two programs δ1, δ2, let

δ1 ≡ δ2
.
= Dfnd |= Do(δ1, s, s

′) ≡ Do(δ2, s, s
′).

Then, not to much of a surprise, we get:

Proposition 6. The guarded-action fragment is a Boolean
algebra:

1. (δ1 + δ2) + δ3 ≡ δ1 + (δ2 + δ3) (+ is associative)
2. δ1 + δ2 ≡ δ2 + δ1 (+ is commutative)
3. δ1 +⊥ ≡ δ1 (⊥ is the neutral element wrt +)
4. δ1 + (δ2 × δ3) ≡ (δ1 + δ2)× (δ1 + δ3) (+ distributivity)

5. δ1 + δ1 ≡ δ1 (+ is idempotent)
6. δ1 + δ1 ≡ > (complement wrt +)
7. (δ1 × δ2)× δ3 ≡ δ1 × (δ2 × δ3) (× is associative)
8. δ1 × δ2 ≡ δ2 × δ1 (× is commutative)
9. δ1 ×> ≡ δ1 (> is the neutral element wrt ×)

10. δ1 × (δ2 + δ3) ≡ (δ1 × δ2) + (δ1 × δ3) (× distributivity)
11. δ1 × δ1 ≡ δ1 (× is idempotent)
12. δ1 × δ1 ≡ ⊥ (complement wrt ×)

As a direct consequence, we get that the usual rules for dou-
ble negation and De Morgan’s laws apply:
Proposition 7. For δ1, δ2 from the guarded-action fragment,

1. δ1 ≡ δ1 2. δ1 × δ2 ≡ δ1+δ2 3. δ1 + δ2 ≡ δ1×δ2
As GOLOG was originally inspired by, among other things,
dynamic logic, the following is perhaps even less surprising:
Proposition 8. The fragment of GOLOG consisting of +
(nondeterministic choice), ; (sequence), and ∗ (iteration)
make up a Kleene algebra, where ⊥ is again the neutral
element wrt +, and where the neutral element wrt ; is the
empty program nil

.
= TRUE?. In particular, we have that

⊥; δ ≡ ⊥.

Note that Propositions 6 and 8 talk about fragments, and that
GOLOG is still more than just a combination of these two
algebras. Through incorporating first-order aspects in the
form of test conditions, pick operators, and successor state
axioms, it allows for defining dynamic domains at a much
finer level of granularity. In particular, programs and even
actions have an internal structure, and so it is useful to have
the following comparison operator:

δ1 B δ2
.
= Dfnd |= Do(δ1, s, s

′) ⊃ Do(δ2, s, s
′)

δ1 B δ2 thus expresses that δ1 is more specific than δ2 in
the sense that every action sequence admitted by δ1 is also
admitted by δ2. An important special case is:
Proposition 9. If Γ1 and Γ2 are finite sets of action aspects
such that Γ1 ⊇ Γ2, then A(~x; Γ1) BA(~x; Γ2).
Moreover, if one complex action is more specific than an-
other, the following simplifications are possible:
Proposition 10. Let δ1 B δ2. Then

1. δ1 × δ2 ≡ δ1 2. δ1 × δ2 ≡ δ2 3. δ1 × δ2 ≡ ⊥
Finally, for single-action programs, joint execution dis-
tributes over sequence:
Proposition 11. Let δ1, . . . , δ4 be of the guarded-action
fragment. Then (δ1; δ2)× (δ3; δ4) ≡ (δ1× δ3); (δ2× δ4).

4 The Main Framework
Our goal is to define a deontic preference relation ≺ over
pairs of situations. Intuitively, s ≺ s′ means that the situa-
tion described by s is preferred, or more ideal, than the one
denoted by s′. When the agent is deliberating and consider-
ing different alternative courses of action, it can choose the
one that will lead it to the most ideal (i.e., minimal) situation
in terms of ≺. While there exist many conceivable ways of

specifying such a relation, we will describe one with some
desirable properties below. For now, all we require is that ≺
is asymmetric. As usual, we understand � as the reflexive
closure of≺. Once a deontic preference relation is fixed, we
can use it to define dyadic notions of obligation, permission
and prohibition. For this purpose, let the minimal situations
σ′ wrt ≺ reachable by means of a program δ from a starting
situation σ be given through the following:

MinDo(≺, δ, σ, σ′) .
=

Do(δ, σ, σ′) ∧ ¬∃s. Do(δ, σ, s) ∧ (s ≺ σ′) (9)

Then we define:
Definition 12. Given a deontic preference relation ≺ over
situations, two programs δ and γ, and a situation term σ, the
fact that γ is obligatory given δ in σ is defined by

obl(γ | δ)[σ]
.
= ∀s. Do(γ, σ, s) ≡ MinDo(≺, δ, σ, s).

The fact that γ is permitted given δ in σ is expressed as

per(γ | δ)[σ]
.
= ∀s. Do(γ, σ, s) ⊃ MinDo(≺, δ, σ, s).

Here we deviate from the standard definition where obliga-
tion is a normal (KD) modality, which in our framework
would translate to saying that every minimal δ-situation is
also a γ-situation. Instead we require that γ represents all
and only the minimal δ-situations for it to be obligatory.
Furthermore, our definition of permission is not the dual of
obligation, but a variant of strong permission, where γ be-
ing permitted means all its reachable situations are among
the ideal ones. We thus follow ideas similar to those under-
lying minimal deontic (action) logics (van Benthem 1979;
Trypuz and Kulicki 2015), which lets us avoid some of the
standard paradoxes of SDL that result from reading logical
disjunction as free choice and including the axiom of ne-
cessitation (any logical consequence of an obligation is an
obligation itself). For example, if m stands for “mail the
letter”, and b for “burn the letter”, then in SDL Om entails
O(m ∨ b), but it is counter-intuitive that an obligation to
mail the letter means one has the free choice between mail-
ing or burning it (Ross 1930). On the other hand, in the
above definition, the + operator indeed denotes a free choice
for the agent, and no necessitation applies. Consequently,
obl(m | >)[σ] does not entail obl(m+ b | >)[σ]. Similarly,
free choice permission means that if one is permitted to do
a or b, then this should entail both the permission for a and
for b, yet P(a ∨ b) ⊃ Pa ∧Pb is not a theorem of SDL. On
the other hand, Definition 12 yields that per(γ1 + γ2 | δ)[σ]
in fact implies per(γ1 | δ)[σ] ∧ per(γ2 | δ)[σ].

A difference is that here we see obl(γ | δ)[σ] and
per(γ | δ)[σ] merely as emergent notions, derived from the
normative system encoded by ≺. One could view this as
a case of a common distinction made in Deontic Logic:
For one, prima facie obligations represent general, possi-
bly conflicting, moral principles imposed on the agent by
some moral authority, its conscience or the like. For another,
all-things-considered obligations determine what ought to
be done in a particular situation, when all circumstances
are taken into consideration, and after conflicting moral
principles were weighed against each other (Horty 2003).

obl(γ | δ)[σ] then describes the result of the agent’s moral
deliberation, signifying that if a course of action according
to δ is under consideration, γ specifies all and only options
leading to ideal outcomes, whereas per(γ | δ)[σ] expresses
that every choice admitted by γ is guaranteed to be ideal.

4.1 Action Conditionals
Many ways of defining a deontic preference relation are con-
ceivable. Here we propose to employ conditional rules that
describe deontic constraints in a defeasible, declarative and
qualitative fashion, and let the combined influence of these
constraints induce our overall preference relation.

Already in the case of propositional formulas, defining an
appropriate semantics for defeasible conditionals is an issue
in and of itself. Various systems have been proposed over
the years, all with their individual strengths and weaknesses
(Kern-Isberner and Eichhorn 2014). For the sake of simplic-
ity, we here consider the popular and well-understood ap-
proach of rational closure (Kraus, Lehmann, and Magidor
1990), which was shown to be equivalent to 1-entailment
in System Z (Pearl and Goldszmidt 1990). To determine a
unique ranking induced by a finite set of conditionals, we
follow the construction presented in (Lehmann and Magidor
1992), with the difference that in place of propositional for-
mulas, we consider complex actions. Here, instead of possi-
ble worlds, antecedents and consequences of a rule are to be
understood in terms of the situations they can reach. Conse-
quently, the notion of consistency of propositional formulae
is replaced by that of executability of programs.
Definition 13. A conditional is an expression of the form

δ ⇒ γ

where δ and γ are from the guarded-action fragment. We
read δ ⇒ γ as “if the agent is committed to the course of
action described by δ, it ought to do γ.” The special case
> ⇒ γ denotes an unconditional deontic constraint and is
to be read as “the agent ought to do γ.”

Note that ⇒ is a special symbol denoting a defeasible
conditional, and not to be confused with material implica-
tion. For the latter, because of the fact that our variant of
GOLOG includes not only the disjunction, but also negation
and conjunction of actions, we can define the following:
Definition 14. For a conditional r = (δ ⇒ γ), its material-
ized counterpart is given by

M(r)
.
= (δ + γ)

For R = {r1, . . . , rk}, let M(R)
.
= M(r1)× · · · ×M(rk).

Definition 15. Given a ground situation term σ, and a fi-
nite set of conditionals R, the formula expressing that con-
ditional r = (δ ⇒ γ) is exceptional for R is defined as

Exc(r,R, σ)
.
= ¬∃s. Do(M(R)× δ, σ, s).

Intuitively, a conditional is exceptional wrt R when its an-
tecedent cannot be executed concurrently with M(R).
Definition 16. A BAT D induces a ranking over a finite set
of conditionals R wrt a ground situation term σ as follows:

R0(σ) := R

Ri+1(σ) := {r ∈ Ri | D |= Exc(r,Ri, σ)}

The rank of a ground situation term σ′ from the point of
view of σ, given D and R is then given by

rank(D, R)[σ, σ′]
.
= min{i | D |= Do(M(Ri), σ, σ

′)}
Note that eachRi+1 is a subset of the correspondingRi, and
so the inductive construction will converge after at most |R|
steps, when at some point no more rule is removed.
Example 17 (Forrester’s Paradox). The aforementioned
contrary-to-duty scenario of the “gentle murderer” is ex-
pressed by the following set of rules R:

> ⇒ murder(jones; {}) (10)
murder(jones; {}) ⇒ murder(jones; {gently}) (11)

saying that generally, Smith (the agent) should not murder
Jones, but if he does, he ought to do so gently. Let D be
any BAT that contains the foundational axioms (fluents and
action effects are not required for this scenario), and σ be an
arbitrary ground situation. In order to determine the ranking
for R wrt D and s, let R0 = R = {(10), (11)}. To obtain
R1, we first have to construct the materialized version ofR0.
In the following, let m stand for murder(jones; {}) and g
for murder(jones; {gently}). For rule (10), with Proposi-
tion 6 we obtain >+m ≡ ⊥+m ≡ m, and thus

M(R0) ≡ m× (m+ g)

≡ (m×m) + (m× g) ≡ m+⊥ ≡ m.

The second last simplification step is because g B m by
Prop. 9, and so m × g ≡ ⊥ due to Prop. 10 (it is impos-
sible to refrain from murdering while murdering gently).

To determine which rules are exceptional, note thatm×>
admits any action that is not an instance of murder , while
m×m ≡ ⊥ does not admit any actions. Therefore,

D 6|= ¬∃s. Do(m×>, σ, s) ⇒ D 6|= Exc((10), R0, σ),

D |= ¬∃s. Do(m×m,σ, s) ⇒ D |= Exc((11), R0, σ).

Hence, R1 = {(11)} and M(R1) ≡ m+ g. With

(m+ g)×m ≡ (m×m) + (g ×m)

≡ ⊥+ (g ×m) ≡ g ×m ≡ g

we get D 6|= ¬∃s. Do((m + g) × m,σ, s), i.e., D 6|=
Exc((11), R1, σ), hence R2 = ∅ and M(R2) = >. We
thus end up with

M(R0) ≡ m, M(R1) ≡ m+ g, M(R2) ≡ >
which induces the following ranking:

rank(D, R)[σ, do(a, σ)] =
0, a 6= murder(jones; {})
1, a = murder(jones; {gently})
2, a = murder(jones; {gently})

Example 18 (The Pizza Example). To demonstrate how our
approach deals with specificity, consider the following sce-
nario adapted from (Horty 2014):

πx. eat(x; {}) ⇒ πx. eat(x; {hands}) (12)
eat(pizza; {}) ⇒ eat(pizza; {hands}) (13)

The first statement expresses that generally, when eating,
one ought not eat with one’s hands. The second one says
that when eating pizza, one ought to eat with one’s hands.

Let e stand for πx. eat(x; {}), h for πx. eat(x; {hands}),
p for eat(pizza; {}), and ph for eat(pizza; {hands}). Ob-
viously, ph B h, ph B p, h B e, p B e, and ph B e, so for
R0 = {(12), (13)} we get

M(R0) ≡ (e+ h) × (p+ ph)
≡ (e× p) + (e× ph) + (h× p) + (h× ph)
≡ e + ⊥ + (h× p) + ⊥
≡ e+ (h× p)

For arbitrary D and σ, we get D 6|= Exc((12), R0, σ), but
D |= Exc((13), R0, σ). Hence, R1 = {(13)}, R2 = ∅, and

rank(D, R)[σ, do(a, σ)] =

0, ∀x, y. a 6= eat(x; y) ∨
∃x. a = eat(x; {hands}) ∧ x 6= pizza

1, a = eat(pizza; {hands})
2, a = eat(pizza; {hands}) ∨
∃x. a = eat(x; {hands}) ∧ x 6= pizza

This correctly encodes that one ought not eat with one’s
hands, except when eating pizza. However, another perhaps
undesired consequence is that generally, one ought not eat
pizza. This is because the system of rational closure, which
we adapted for the sake of simplicity, is intended for reason-
ing about normality, and so some of its inferences may be
too strong under a deontic interpretation. For future work,
we want to study how the framework can be adapted to fol-
low different styles of conditional reasoning such as the one
described in (Delgrande 2020).

4.2 Temporal Action Conditionals
Many scenarios, such as the Chisholm example, involve
some sort of temporal aspect. Specifically, we want to be
able to express that the agent ought to do a specific action
after or before doing a certain other action it intends to do.
For these cases, we propose the following:

Definition 19. The two types of temporal conditionals are

δ ⇒a γ and δ ⇒b γ,

where again δ and γ are from the guarded-action fragment.
We read δ ⇒a γ as “if committed to doing δ, the agent
ought to do γ afterwards”, and δ ⇒b γ as “. . . before”. Once
again, the special case with > as the antecedent denotes an
unconditional, or universal obligation.

For these new types of conditionals, we accordingly adapt
the notions of materializing and exceptionality:

Definition 20. For temporal conditionals, let

M(δ ⇒a γ)
.
= (δ;>+>; γ)

M(δ ⇒b γ)
.
= (>; δ + γ;>)

As before, for a finite set R = {r1, . . . , rk} we understand
M(R) as M(r1)× · · · ×M(rk).

Definition 21. Given a ground situation term σ, and a finite
set of temporal conditionals R, the formula expressing the
fact that temporal conditional r = (δ ⇒x γ), x ∈ {a, b} is
exceptional for R is defined as

Exc(δ ⇒a γ,R, σ)
.
= ¬∃s. Do(M(R)× (δ;>), σ, s)

Exc(δ ⇒b γ,R, σ)
.
= ¬∃s. Do(M(R)× (>; δ), σ, s)

Rankings are defined as before (Definition 16).
Example 22 (The Chisholm Paradox). The first three state-
ments of the Chisholm scenario can be expressed as:

> ⇒a help (14)
help ⇒b tell (15)

help ⇒b tell (16)

The first rule states that generally, the agent ought to go help
the neighbours. The second one means that when the agent
intends to go and help, it should tell the neighbours imme-
diately before. If on the other hand, says the third rule, the
agent does not intend to go and help, it ought not tell them.

In the following, let h stand for the action term help, and t
for tell . Materializing R0 = {(14), (15), (16)} then yields:

M((14)) = (>;>) + (>;h) ≡ (>;h)

M((15)) = (>;h) + (t;>)

M((16)) = (>;h) + (t;>) ≡ (>;h) + (t;>)

Recall that M(R0) is given by the conjunction of these three
expressions. Since according to Proposition 6, the usual dis-
tributive laws apply, we can again “multiply” them out. Ob-
serve that (>;h) is incompatible with (>;h), and that (t;>)
contradicts with (t;>). The result is hence equivalent to
(>;h)× (t;>), which in turn can be simplified to (t;h) us-
ing Propositions 11 and 6. Therefore,

D 6|= ¬∃s.Do((t;h)× (>;>), σ, s) (≡ Exc((14), R0, σ))

D 6|= ¬∃s.Do((t;h)× (>;h), σ, s) (≡ Exc((15), R0, σ))

D |= ¬∃s.Do((t;h)× (>;h), σ, s) (≡ Exc((16), R0, σ))

Because rule (16) is the only exceptional one, we obtain
R1 = {(16)} and M(R1) ≡ >;h + t;>. The rule is
obviously not exceptional with itself, so R2 = ∅, hence
M(R2) = >. We thus end up with

M(R0) ≡ t;h, M(R1) ≡ >;h+ t;>, M(R2) ≡ >

which induces the following ranking:

rank(D, R)[σ, do(〈a, b〉, σ)] =

0, a = tell ∧ b = help

1, a 6= tell

2, a = tell ∧ b 6= help

4.3 A Deontic Preference Relation over Situations
What is left now is to define how the rankings induced by
conditional rules for single situation terms σ can be com-
bined into one general deontic preference relation≺. Again,
various definitions are conceivable, and we only describe
one such option here that we believe is useful. Recall that we

want to use deontic conditionals as constraints that govern
the general behaviour of the agent. That is to say we assume
that the agent is deliberating over a course of action to solve
a bigger task, and we would like it to choose one whose en-
tire execution violates as few constraints as possible, if any.

Here we propose a simple additive model where the total
rank of a situation is determined by adding all ranks assigned
to preceding situations by preceding situations:

drank(D, R)[σ]
.
=

∑
σ′vσ′′vσ

rank(D, R)[σ′, σ′′]

The intuition here is that once a “bad” action (e.g., murder-
ing) has been performed, all subsequent situations will be
ranked as less ideal. There is no way of undoing a bad act,
and any further bad deed makes the situation less and less
ideal. The deontic preference relation then simply compares
the total ranks of both situations:

σ ≺ σ′ .
= drank(D, R)[σ] < drank(D, R)[σ′]

5 Compiling Deontic Constraints into BATs
So far, we defined rankings and preference relations as meta-
theoretic notions. For practical application, it would be use-
ful to be able to express them within the standard framework
of BATs, without the need for additional reasoning machin-
ery. Thus, they could be easily integrated into existing so-
lutions based on the Situation Calculus and GOLOG, whose
close relation (in terms of inter-compilability) to planning
languages such as STRIPS (Lin and Reiter 1997) and
PDDL (Baier, Fritz, and McIlraith 2007; Röger, Helmert,
and Nebel 2008) moreover would similarly allow to incor-
porate the encoded norms and guidelines into planning tasks.

In this section, we therefore present a simple approach for
compiling deontic constraints, from a restricted fragment,
directly into a classical BAT. The result of this preprocess-
ing step will contain an additional numeric fluent whose
value corresponds to the rank of the current situation, and
thus can serve as a metric to be minimized by the planner
when searching for an action execution sequence. For this
purpose, we identify sufficient conditions for when such a
compilation is possible. First, notice that in all examples
discussed so far, the ground situation σ didn’t actually mat-
ter when determining the ranking. Formally:

Definition 23. We say that a ranking is situation indepen-
dent iff for all ground situations terms σ and σ′ and all
ground action sequences ~α,

rank(D, R)[σ, do(~α, σ)] = rank(D, R)[σ′, do(~α, σ′)]

The following is easy to see:

Proposition 24. If the rules in a set R of (temporal) con-
ditionals do not mention any fluents (inside test conditions
φ?), the induced ranking is situation independent.

Next, notice that our ranking definitions required a rule to be
entailed to be exceptional by the BAT in order to be included
in the next rank. If a rule is not included, it may be because
it is actually not exceptional, or simply because the BAT
does not contain sufficient information to decide whether the

program expression in question is executable, e.g. if it starts
with a test condition φ? about whose truth value the agent is
ignorant. Since including such epistemic notions would be
beyond the scope of this paper, we require the following:
Definition 25. We say that a BATD and a set of conditionals
R is exceptionality determinate iff for every r ∈ R, every
subset R′ ⊆ R, and every ground situation term σ,

D 6|= Exc(r,R′, σ) iff D |= ¬Exc(r,R′, σ) (17)

One way to ensure this property is the following:
Proposition 26. If D is consistent, and the only test condi-
tions occurring in rules in R are due to action aspects, D
and R are exceptionality determinate.
Note that Propositions 24 and 26 apply to all examples in
this paper. For representing ordinal ranks in BATs, we now
introduce a new functional fluent ideal(s), expressing the
“degree of ideality” situation s has wrt the action sequence it
represents, where higher values stand for less ideal situations
and 0 is optimal. Let the initial theory D0 contain the axiom

ideal(S0) = 0, (18)

The value may increase due to actions, as per the SSA

ideal(do(a, s)) = ideal(s) + bad(a, s). (19)

The potential increase is given by means of another func-
tional fluent bad(a, s), describing how “bad” it is to do ac-
tion a in situation s, again expressed by a natural number.

5.1 The Non-Temporal Case
For defining the badness of actions in the non-temporal case,
suppose we determined a ranking for an arbitrary ground
situation σ (e.g., S0). The result consists of a finite number
of rule sets R0, . . . , Rk whose materialized counterparts

M(R0) ≡ δ0, M(R1) ≡ δ1, . . . M(Rk) ≡ δk
are program expressions from the guarded-action fragment.
Under the assumption of situation-independence, for every
action a and situation s, whatever program δi with minimal
index i allows to execute a in s determines that i is the rank
s assigns to do(a, s). To compile this information into an
SSA, we have to express it in terms of a formula uniform
in s. For this purpose, we define the following operator that
takes a program δ from the guarded-action fragment, an ac-
tion variable a, and a situation variable s:
Definition 27.

1. C[α, a, s] = (a = α)

2. C[φ?; δ, a, s] = φ[s] ∧ C[δ, a, s]

3. C[πv.δ, a, s] = ∃v. C[δ, a, s]

4. C[δ, a, s] = ¬C[δ, a, s]

5. C[δ1 + δ2, a, s] = C[δ1, a, s] ∨ C[δ2, a, s]

6. C[δ1 × δ2, a, s] = C[δ1, a, s] ∧ C[δ2, a, s]

C[δ, a, s] yields a formula that correctly describes the exe-
cutability of a in s according to δ as follows:
Lemma 28. Let δ be from the guarded-action fragment.
Then C[δ, a, s] is uniform in s and

D |= ∀a, s. C[δ, a, s] ≡ Do(δ, s, do(a, s))

Note that the formula Do(δ, s, do(a, s)) almost already has
the right form, except for the fact that we have to apply
foundational axiom (1) to replace expressions of the form
(do(α1, s) = do(α2, s)) by (α1 = α2) and s = s by TRUE.
With this operator, we can now define an axiom for bad :

bad(a, s) = b ≡
k∨
i=0

(b = i) ∧ C[δi, a, s] ∧
i−1∧
j=0

¬C[δj , a, s]

(20)

Theorem 29. Let D be a BAT, R a set of non-temporal de-
ontic constraints, and DR be the result of extending D with
axioms (18) – (20). Then for every ground situation term σ,

drank(D, R)[σ] = d iff DR |= ideal(σ) = d

For example, in the Forrester scenario, after simplification,
we get the following axiom:

bad(a, s) = b ≡ b = 0 ∧ a 6= murder(jones; {})∨
b = 1 ∧ a = murder(jones; {gently})∨
b = 2 ∧ a = murder(jones; {gently})

In practice, it will be useful to simplify action expressions
early on as we did in Examples 17, 18, and 22, using prop-
erties from Propositions 6–11 as rewriting rules. Since the
guarded-action fragment is a Boolean algebra, knowledge
compilation techniques for propositional logic are applica-
ble, e.g. ordered binary decision diagrams (Bryant 1986).

5.2 The Temporal Case
In the temporal case, instead of single actions, we have to
consider sequences of two actions. Formally, we are dealing
with {×,+}-combinations of expressions of the form γ; δ,
where γ and δ are from the guarded-action fragment. To
devise a bad axiom of the appropriate form, we need to be
able to “remember” which ones of these γs on the left-hand
side of a “;” occurred just before the current situation. We do
so by introducing finitely many additional fluent predicates
Did [γ](s), where for each one D0 contains the axiom

¬Did [γ](S0) (21)

and Dpost contains the SSA

Did [γ](do(a, s)) ≡ C[γ, a, s]. (22)

We then use these when encoding program executability into
our axioms:
Definition 30. For the temporal case, we extend Definition
27 to include the following inductive rule:

7. C[γ; δ, a, s] = Did [γ](s) ∧ C[δ, a, s]

We obtain a similar lemma as in the non-temporal case:
Lemma 31. If δ is a program expression obtained in the
temporal case, C[δ, a, s] is uniform in s and

D |= ∀a, s. C[δ, a, s] ≡ ∃s′. Do(δ, s′, do(a, s))

In words, C[δ, a, s] is true just in case doing a in s is an
action that completes the execution of δ, which started in
some previous situation s′. Then we have:

Theorem 32. Let D be a BAT, R a set of temporal deontic
constraints, andDR be the result of extendingD with axioms
(18) – (22). Then for every ground situation term σ,

drank(D, R)[σ] = d iff DR |= ideal(σ) = d

For example, in the Chisholm scenario, we get:

bad(a, s) = b ≡ b = 0 ∧Did [tell](s) ∧ a = help ∨
b = 1 ∧ ¬Did [tell](s) ∨
b = 2 ∧Did [tell](s) ∧ a 6= help

6 Discussion
While many early researchers applied deontic operators to
propositions, in his seminal article, von Wright (1951) orig-
inally introduced deontic modalities as applying to action
types. He argued that a suitable deontic logic needs to be
built upon the foundation of a more general theory of action
(von Wright 1963). Deontic action logic is still an active
area of research, and more recent contributions include work
due to Trypuz and Kulicki (2015), who study deontic notions
over expressions of a Boolean algebra of actions. Moreover,
there is increasing interest in integrating normative reason-
ing into (multi-) agent systems (Chopra et al. 2018).

One prominent approach is to use stit (“see to it that”)
semantics (Horty 2001), which employs a branching time
structure similar to Situation Calculus, and so defeasible
dyadic obligations can be used to define preference relations
over histories (Bartha 1999). However, actions in stit do
not have proper names or types, but are described purely
through their effects, making it difficult to deal with con-
straints over complex actions. It has been proposed to re-
introduce action types into stit, for example to for represent-
ing epistemic obligations (Horty 2019), but this raises the
question whether a formalism that is based on action types
in the first place would not be more appropriate.

Another line of research uses variants of dynamic logic
(Segerberg 2012; Meyer 2019). Meyer’s deontic dynamic
logic PDeL applies deontic operators to (complex) action
types, where a special proposition V denotes a violation,
and prohibition (Fα .

= [α]V), permission (Pα .
= ¬Fα) and

obligation (Oα .
= Fα) of an action α are defined in terms of

whether α brings about V . While the formalism is elegant
and could address many of the classical deontic paradoxes,
contrary-to-duty scenarios proved to be more difficult and
required additional machinery in the form of multiple viola-
tion atoms V1, V2, . . . as well as accordingly indexed modal
operators O1,F2,. . . (Dignum, Meyer, and Wieringa 1994).

In this paper, we presented an alternative approach where
contrary-to-duty statements are instead represented through
dyadic deontic constraints over complex actions. This not
only allows to express ought-to-do constraints in a straight-
forward manner, but also to compile them directly into the
agent’s action theory, thus making them immediately acces-
sible to standard Situation Calculus reasoning and planning
systems. For future work, we want to study how the frag-
ment our approach is currently able to handle can be ex-
tended, especially with regards to larger subsets of GOLOG
that include iteration.

Acknowledgements
We gratefully acknowledge financial support from the Nat-
ural Sciences and Engineering Research Council of Canada
and thank the referees for their valuable comments.

References
Baader, F., and Zarrieß, B. 2013. Verification of Golog
programs over description logic actions. In FroCoS, volume
8152 of LNAI. Springer.
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-art
planners. In ICAPS, 26–33. AAAI Press.
Bartha, P. 1999. Moral preference, contrary-to-duty obliga-
tion and defeasible oughts. Norms, logics and information
systems: new studies in deontic logic and computer science
93–108.
Broersen, J. M. 2004. Action negation and alternative reduc-
tions for dynamic deontic logics. Journal of Applied Logic
2(1):153–168.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Burgard, W.; Cremers, A. B.; Fox, D.; Hähnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1999.
Experiences with an interactive museum tour-guide robot.
Artificial Intelligence 114(1–2):3–55.
Chellas, B. F. 1980. Modal Logic: An Introduction. Cam-
bridge University Press.
Chisholm, R. M. 1963. Contrary-to-duty imperatives and
deontic logic. Analysis 24(2):33–36.
Chopra, A.; van der Torre, L.; Verhagen, H.; and Villata, S.
2018. Handbook of Normative Multiagent Systems. College
Publications.
Delgrande, J. 2020. A preference-based approach to defea-
sible deontic inference. In KR. AAAI Press.
Demolombe, R., and del Pilar Pozos Parra, M. 2005. The
Chisholm paradox and the situation calculus. In ISMIS, vol-
ume 3488 of LNCS, 425–434. Springer.
Demolombe, R., and del Pilar Pozos Parra, M. 2009. In-
tegrating state constraints and obligations in situation calcu-
lus. Inteligencia Artificial, Revista Iberoamericana de In-
teligencia Artificial 13(41):54–63.
Dignum, F.; Meyer, J. C.; and Wieringa, R. J. 1994. A
dynamic logic for reasoning about sub-ideal states. In Pro-
ceedings of the ECAI 1994 Workshop on Artificial Norma-
tive Reasoning, 79–92.
Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot
control in highly dynamic domains. Robotics and Au-
tonomous Systems.
Forrester, J. W. 1984. Gentle murder, or the adverbial samar-
itan. Journal of Philosophy 81(4):193–197.
Gabbay, D.; Horty, J.; Parent, X.; van der Meyden, R.; and
van der Torre, L. 2013. Handbook of Deontic Logic and
Normative Systems. College Publications.

Goble, L. 2003. Preference semantics for deontic logic part
I — simple models. Logique et Analyse 46(183/184):383–
418.
Hansson, B. 1969. An analysis of some deontic logics. Noûs
3(4):373–398.
Horty, J. F. 2001. Agency and Deontic Logic. Oxford Uni-
versity Press.
Horty, J. F. 2003. Reasoning with moral conflicts. Noûs
37(4):557–605.
Horty, J. F. 2014. Deontic modals: Why abandon the classi-
cal semantics? Pacific Philosophical Quarterly 95(4):424–
460.
Horty, J. 2019. Epistemic oughts in stit semantics. Ergo –
An Open Access Journal of Philosophy 6:71–120.
Kern-Isberner, G., and Eichhorn, C. 2014. Structural in-
ference from conditional knowledge bases. Studia Logica
102(4):751–769.
Kraus, S.; Lehmann, D. J.; and Magidor, M. 1990. Non-
monotonic reasoning, preferential models and cumulative
logics. Artificial Intelligence 44(1-2):167–207.
Lehmann, D. J., and Magidor, M. 1992. What does a
conditional knowledge base entail? Artificial Intelligence
55(1):1–60.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Programming
31(1–3):59–83.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92(1–2):131–167.
McCarthy, J., and Hayes, P. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. In Ma-
chine Intelligence 4. New York: American Elsevier. 463–
502.
Meyer, J. C. 1988. A different approach to deontic logic:
deontic logic viewed as a variant of dynamic logic. Notre
Dame Journal of Formal Logic 29(1):109–136.
Meyer, J.-J. 2019. Deontic dynamic logic: a retrospective.
Filosofiska Notiser 6(1):63–76.
Pearl, J., and Goldszmidt, M. 1990. On the relation between
rational closure and System-Z. In NMR.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Röger, G.; Helmert, M.; and Nebel, B. 2008. On the rela-
tive expressiveness of ADL and Golog: The last piece in the
puzzle. In KR, 544–550. AAAI Press.
Ross, W. D. 1930. The Right and the Good. Oxford Univer-
sity Press.
Segerberg, K. 2012. D∆l: A dynamic deontic logic. Syn-
these 185(Supplement-1):1–17.
Trypuz, R., and Kulicki, P. 2015. On deontic action logics
based on boolean algebra. Journal of Logic and Computa-
tion 25(5):1241–1260.
van Benthem, J. 1979. Minimal deontic logics. Bulletin of
the Section of Logic 8(1):36–40.

von Wright, G. H. 1951. Deontic logic. Mind 60(237):1–15.
von Wright, G. H. 1963. Norm and action: a logical en-
quiry. Routledge and Kegan Paul.
Wansing, H. 2004. On the negation of action types: Con-
structive concurrent PDL. In Logic Methodology and Phi-
losophy of Science: Proceedings of the Twelfth International
Congress, 207–225. College Publications.

	Introduction
	Preliminaries
	The Situation Calculus
	Golog

	Extensions to the Situation Calculus
	Action Aspects
	Joint and Negated Actions

	The Main Framework
	Action Conditionals
	Temporal Action Conditionals
	A Deontic Preference Relation over Situations

	Compiling Deontic Constraints into BATs
	The Non-Temporal Case
	The Temporal Case

	Discussion

