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Abstract

In this paper we present an approach to defeasible deontic
inference. Given a set of rules R expressing conditional obli-
gations and a formula  giving contingent information, the
goal is to determine the most desirable outcome with respect
to this information. Semantically, the rules R induce a partial
preorder on the set of models, giving the relative desirability
of each model. Then the set of minimal v models charac-
terises the best that can be attained given that v holds. A syn-
tactic approach is also given, in terms of maximal subsets of
material counterparts of rules in R, and that yields a formula
that expresses the best outcome possible given that v holds.
These approaches are shown to coincide, providing an ana-
logue to a soundness and completeness result. Complexity is
not unreasonable, being at the second level of the polynomial
hierarchy when the underlying logic is propositional logic.
The approach yields desirable and intuitive results, including
for the various “paradoxes” of deontic reasoning. The ap-
proach also highlights an interesting difference in how speci-
ficity is dealt with in nonmonotonic and deontic reasoning.

1 Introduction

With the advent and expected proliferation of artificial
agents, it is crucial that these agents operate not just to ac-
complish their goals and aims, but that they do so in con-
formity with commonsense guidelines and norms, and with
respect to various moral and ethical criteria. Deontic logic is
the area of logic that addresses notions such as these, dealing
with concepts such as obligation, permission, prohibition,
and the like. It can be thought of as stipulating what an agent
should or should not do, or what it may do or ought to do.
Thus, an assertion such as one shouldn’t eat with the hands
states what is preferable for an agent to do, even though the
agent may be perfectly capable of eating with its hands. In
the general case, a deontic assertion may be overruled by a
more specific one, such as when eating pizza one should eat
with the hands. While the focus here is on the behaviour of
agents, the area has also seen significant activity in a variety
of other fields, including linguistics, philosophy, and law.
Approaches to deontic reasoning have often been ex-
pressed as a modal logic, with an operator O(¢), read as
“¢ ought to be done (or ought to be the case),” or a binary
modal operator O(¢|1)), read as “if 1 is the case (or is done)
then ¢ ought to be the case (done)”. Other formalisms have
also been employed, including approaches to nonmonotonic

reasoning. However, it has proven to be very difficult to pro-
vide an appropriate system for reasoning about obligation.

In this paper the goal is not to provide a logic of obligation
per se. Instead, we are interested in using the information in
a set of deontic assertions to determine what may ideally be
attained. The question we are concerned with is, given a set
of deontic assertions (perhaps obtained in part via reasoning
in some deontic logic) and contingent information about a
domain, what is the best that can be expected or attained?
For example, given that one should not eat with the hands
but if eating pizza, one should eat with the hands, and that
one is eating out on a Thursday, the best outcome is to not
eat with the hands; given the additional information that a
veggie pizza is served, the best option is that one eats with
the hands. The overall goal is to provide a justifiable, com-
putational account for dealing with a set of such assertions.

We begin with an underlying logic that contains classi-
cal propositional logic. A set of rules R provides assertions
of conditional obligation, where the antecedent and conse-
quent of these rules are formulas in the underlying logic.
Two means of reasoning with the set of rules are developed,
corresponding to semantic and proof-theoretic aspects of the
approach. First, the rules induce a partial preorder on the set
of models of the language, where the ordering gives the rel-
ative “goodness” of a model. Then, given that +y is the case,
the minimal v models in the preorder determine what ought
to be the case or, equivalently, the best possible overall out-
come. Second, a syntactic approach is given that yields a
formula that expresses the best outcome possible, given that
v is the case. This is carried out in terms of maximal sub-
sets of material counterparts of rules in R consistent with
~. These approaches are shown to coincide, in that for any
formula +, the set of least v models in the ordering exactly
characterises the “expansion” of y according to R.

The resulting approach is simple, but arguably works
well: a wide variety of examples are handled appropriately,
including the standard “paradoxes” of deontic reasoning.
The specificity of a rule’s antecedent is taken into account,
so that more specific rules override less specific rules. As
well, reasoning in the case of violated obligations is appro-
priately handled. In each part of the approach, a single out-
come is obtained: semantically a single preorder over mod-
els is induced while syntactically one obtains a single for-
mula. Complexity is manageable, with the main decision



problems at the second level of the polynomial hierarchy for
propositional logic.

The next section goes over background material. Sec-
tion 3 describes the approach informally and Section 4 gives
the formal details. The following section briefly considers
extensions of the approach. Section 6 discusses how the ap-
proach differs from conditional accounts of nonmonotonic-
ity, after which we briefly conclude.

2 Background
2.1 Notation

We will generally work with an arbitrary logic that con-
tains classical propositional logic, expressed in a language
L that contains the propositional connectives =, A, V, D and
=. (The assumption of propositional logic is not a require-
ment, but it makes the presentation easier.) Examples will
be given using classical propositional logic. Lower case En-
glish letters will denote atoms, and a propositional model
may be given as a juxtaposition of literals. Formulas will
be denoted by lower case Greek letters ¢, 1, ..., possibly
primed or subscripted. M is the set of models, or possi-
ble worlds. Individual possible worlds are denoted by w,
possibly primed or subscripted. The fact that formula ¢ is
true at possible world w is denoted w = ¢. For a for-
mula (set of formulas) ¢, [¢] is the set of models of ¢, i.e.
[¢] = {w € M | w [= ¢}. All other notions, such as logical
entailment, validity, etc., are standard. T is taken to be some
tautology, while L is defined to be = T.

We will deal with a finite set of rules R where r € R is of
the form ¢ — 1) for ¢,¢ € L. Forarule r : ¢ — 1 define
the body b(r) = ¢ and head h(r) = 1. These rules express
conditional obligations, and so ¢ — 1 expresses that, all
other things being equal, if ¢ then it is better (obligatory,
etc.) that ¢». We will later see how to express conditional
permission in the framework.

The relation < will be a partial preorder (i.e. a reflexive
and transitive binary relation) on possible worlds, with < as
its strict part. Generally < will be induced from the set R,
and denoted <g. Define:

min(¢, <) = {w | w = ¢ and Aw’ s.t. w’' <w,w’ |= ¢}
Last, in examples the following notation will be convenient:
For worlds w1, . . ., Wy,

(Wi, .., Wp) < (Wpat, .oy Win)

will indicate that w; < w; for1 <i<n <j<m.

2.2 Related Work

Deontic logic has generally been investigated as a type of
modal logic, beginning with (von Wright 1951). The most
familiar of these logics is called Standard Deontic Logic
(SDL); see (Hilpinen and McNamara 2013) for a survey.
SDL uses a unary modal operator O¢, read as “it is oblig-
atory that ¢” or “it ought to the the case that ¢”. Other
operators, such as for permission or prohibition, are ex-
pressed in terms of O. SDL coincides with the modal logic
KD (Chellas 1980), which is characterised by serial Kripke
structures. In proof theoretic terms, the logic extends propo-
sitional logic by the axioms and rule of inference:

K: O(¢ D) D (04 D OY)
D: O¢ D ~0—-¢
N: From I~ ¢ infer - O¢

While the logic is simple and rather weak,' it also allows
what are argued to be unintuitive results. For example, con-
flicting obligations of the form O¢ A O—¢ are inconsistent.
As well, one obtains what has been called Ross’s paradox:

Example 2.1 /. You should mail the letter.
2. You should mail the letter or burn it.

The second assertion is a logical consequence of the first.
However, this seems counterintuitive; for example, if I'm
unable to mail the letter, then I can at least satisfy the second,
derived, obligation by burning the letter. As a consequence,
yet weaker logics have been proposed. Unsurprisingly such
logics have been criticised as being overly weak.

Another issue deals with what should be done in the case
of a violated (or contrary-to-duty) obligation. Consider the
so-called Chisholm paradox (Chisholm 1963):

Example 2.2 1. You ought to help your neighbour.

2. If you help your neighbour you should tell them.

3. If you don’t help your neighbour, you shouldn’t tell them.
4. You don’t help your neighbour.

While each assertion appears independent of the other three,
in an encoding with a unary operator the fourth is derivable
from the first three, see for example (McNamara 2019). Mc-
Namara (2019) goes on to argue that this example cannot be
adequately represented by any combination of a unary deon-
tic operator and a material conditional.

Another, related difficulty is known as Forrester’s paradox
(Forrester 1984). Consider the assertions?

Example 2.3 I. Smith should not kill Jones.
2. If Smith kills Jones, he should do so gently.
3. Smith kills Jones.

In the standard account of deontic logic these sentences (to-
gether with the implied assertion that if someone is killed
gently then they are killed) are jointly inconsistent.

As a consequence, there has been substantial work regard-
ing conditional obligation. A conditional obligation “if ¢
then it should be that ) is usually written O(v/¢). Seman-
tically this can be interpreted as saying that in the “best” ¢
worlds, v is also true. A model then is most often composed
of an ordering < on possible worlds, where for worlds w;,
we if w1 =X wqy then wy is “better” than ws. The original
work here is (Hansson 1971). Lewis (1973), in an explo-
ration of counterfactuals, suggests such a preference-based
semantics for deontic logic. Hansson (1990; 2004) also ad-
dresses plausibility and preference in unconditional deontic
logic. Goble (2003) similarly presents results for monadic

'KD is also proposed as a logic of probabilistic certainty, ac-
cording to Girdenfors (1975), which is to say KD (and so SDL)
does not distinguish obligation from probabilistic certainty.

2A less dramatic version of this problem reflecting the kind of
application we have in mind is: The door should not be closed; if
the door is closed it should be done gently; the door is to be closed.



and conditional deontic logics based on a preference rank-
ing given by a total preorder on worlds.

Binary modal operators for conditional obligation allow a
representation of not just contrary-to-duty obligations, but
also of prima facie obligations or defeasible obligations.
Consider the following example:?

Example 2.4 1. You should not eat with your hands.
2. If eating pizza, you should eat with your hands.

Thus if one is eating pizza, then one ought to eat with the
hands; while the antecedent of the first obligation is also
satisfied, it is “overridden” by the second. That is, as with
normality defaults, one wants to apply the more specific rule.
Contrast this with Example 2.3, where the second obligation
states what should be the case when the first is violated.

Horty (1993; 2014) has suggested that deontic reasoning
be situated in a nonmonotonic framework, not just for ad-
dressing conflicting norms and handling specificity, but also
for deriving unconditional obligations, or so-called dyadic
detachment. (Thus, in this last case, from O¢ and O(v)/¢)
obtaining O “when justified”.) In his account, a condi-
tional obligation O(v¢/¢) is treated as an inference rule,
much as in default logic (Reiter 1980). One obligation
O(11/d1) overrides another O(vp2/p2) just if ¢1 D ¢2 and
11 A 19 is inconsistent with contingent domain knowledge.
A fixed-point definition is given that specifies a set of ex-
tensions, or maximal sets of formulas describing what one
ought to do. Specificity is taken into account, and so for Ex-
ample 2.4, if one is eating pizza, only the second obligation
is considered. Related work includes (McCarty 1994). van
der Torre (1994) analyzes violated obligations and defeasi-
bility in this framework, and extends the approach to cover
violated obligations; this is extended to a general conditional
logic framework in (van der Torre and Tan 1995).

Factual detachment is also considered in (Strafler 2011),
which proposes an approach with focus on specificity and
contrary-to-duty instances. Normative reasoning has also
been addressed in abstract argumentation systems; for ex-
ample, (Straer and Arieli 2015) model deontic conflict,
contrary-to-duty and specificity via argumentative attacks.
Ryu (1995) augments a conditional deontic logic (due to van
Fraassen) with defeasible reasoning, also taking specificity
into account. Other work, including (Ryu and Lee 1995;
Antoniou, Dimaresis, and Governatori 2009), bases defeasi-
ble deontic reasoning on defeasible logic (Nute 1994).

Bartha (1999) presents an approach for defeasible detach-
ment in the branching time formalism of (Horty and Bel-
nap 1995). He adopts the same definition of one conditional
obligation overriding another, but uses it to induce a prefer-
ence order over histories. Minimal elements in the ordering
determine the definite obligations of an agent. Kowalski and
Satoh (2018) addresses defeasible obligation using abduc-
tive logic programs, in which obligations are treated as a
means of goal satisfaction.

In a different direction, Makinson and van der
Torre (2000) introduce input-output logic. A conditional

3This is a syntactic variant of an example due to John Horty, in
which one eats asparagus instead of pizza.

norm is represented as a pair (a, z) of formulas in proposi-
tional logic, where a is the input and represents a condition
or situation, while z is the output and expresses what is de-
sirable, or what should hold. Various systems are specified
by adding rules governing such norms. The basic system
contains strengthening of antecedents, and so is too strong
to handle defeasible obligations of the pizza-eating variety.
This is addressed by employing constraints, using notions
from belief change and nonmonotonic reasoning.

3 The Approach: Intuitions

It has proven to be very difficult to provide a logic of obliga-
tion, that is, a formal account of what obligations follow log-
ically from others. Here we deal with an orthogonal prob-
lem: Given a set of deontic rules (perhaps obtained in part
via reasoning in some understood deontic logic) along with
domain-specific information, we wish to determine the best
overall outcome that can be attained. This distinction be-
tween the goals of a deontic logic and the present approach
is well illustrated by Forrester’s paradox. As a problem of
logic, it has been called “the deepest problem of all” (Goble
1991). However, for commonsense reasoning it is (at least
seemingly) straightforward: Given the assertions in Exam-
ple 2.3, it is clearly not acceptable that Smith kill Jones. If
Smith nonetheless does kill Jones, then the best outcome is
that he does it gently. No problem arises since in the latter
case it is a given that a person is going to be killed and the
issue is to determine the best thing that can be done in these
circumstances.

The general problem we consider is the following: We
are given an agent in some domain; we have a set of gen-
eral rules to guide the agent’s behaviour; and we want to
determine what the best is that can be attained in any set
of circumstances. An important point to note is that, given
a set of conditional obligations R and contingent informa-
tion -y, the goal is not to determine what is obligatory with
respect to . Rather, the goal is to determine what should
be the case, or what would be best, given R and ~. To il-
lustrate, consider the rule “if the sun is shining, you should
put on sunglasses”.* Then, given that one is not wearing
sunglasses, it is (deontically) preferable that the sun is not
shining, since otherwise the obligation would be violated.
In contrast, it doesn’t make sense to say that if one is not
wearing sunglasses then it is obligatory that the sun is not
shining.

To this end, a logic with language £ containing classical
propositional logic is given for describing a domain. In ad-
dition, we have a set of rules R where » € R is of the form
¢ — 1 for ¢, € L. Arule ¢ — 1 has the reading “if ¢
is true then 1) is obligatory (or should be the case or should
be done).”> We also allow rules of the form ¢ —p ¥ with
the reading “if ¢ is true then 1) is permissible”’; however, as
will be shown in the next section, rules of permission can be
reduced to obligations. A key stance of the approach is that

*1 thank a referee for suggesting this example.

SThere is an issue as to whether an obligation applies to an ac-
tion, outcome, or both. We assume this is dealt with in the language
L, which could refer to time points, actions, etc.



the rules in R constrain an agent’s behaviour;® this stance
can be expressed informally as: Anything is permissible un-
less ruled out by an obligation in R. Thus, if R = ) an
agent is constrained by no obligations. This also has the ef-
fect that rules expressing permissions serve only to cancel
obligations; again this is covered in the next section.

Two (equivalent) approaches are given: In the first, the
rules R induce a partial preorder over worlds, and the min-
imal ~y worlds characterise what the best is that may be at-
tained. In the second, the rules are mapped to material con-
ditionals, and a procedure is given for determining maximal
consistent (with respect to «) sets of rules, again express-
ing the best that may be attained. For the first approach, a
key intuition is that one wants to avoid (or not-prefer) pos-
sible worlds with violated obligations. Thus, for ¢ — 1,
ifw, E ¢ D v and we = ¢ A =) then, all other things
being equal, w, is preferred to wo, that is, wy < ws. To see
why this is desirable, consider the assertion if it’s raining
one should take an umbrella, say r — u. Clearly a r A u
world is preferable to a r A —u world. However a —r world
is also preferable to a » A —u world: the former violates no
norm and is thus acceptable while the latter is undesirable.
This leads to the key intuition (or perhaps stance) in specify-
ing a preference ordering, and that is that one wants to avoid
worlds with violated obligations; worlds with verified obli-
gations (e.g. with A u) and inapplicable obligations (viz.
—r) are deontically “the same”.

This differs from approaches involving normality con-
ditionals (e.g. (Boutilier 1994; Geffner and Pearl 1992))
as well as most approaches to deontic conditionals (e.g.
(Horty 1993; Bartha 1999; van der Torre and Tan 1999;
Goble 2003)). In these approaches for ¢ — 9, if wy = ¢AY
and wy = ¢ A — then, all else being equal, wy < wo; if
ws = —¢, then there is no preference relation between this
world and w; or wy. We return to this point in Section 6.

A further consideration is that for conflicting rules, a
stronger, or more specific, rule takes precedence over a
weaker or less specific rule. For example, consider a first-
aid agent with rules that if someone is overheated (h), they
should be given water (d, for “drink™), unless they have a
decreased level of consciousness (—c) (since they might as-
pirate the water):

ri:h—d, r9:hA-c— —d. @))

It is better to give a hot, conscious subject water than not
to do so; i.e. we would have the preference between worlds:
hed < he—d. However consider the two worlds A—c—d
and h—cd. In both worlds a person is hot and not con-
scious, and is given water in one world but not in the other.
Each world violates a rule; however the more specific rule
ro should “override” the less specific rule r; and we would
have the preference: h—c—d < h—cd.

There is a second means by which one rule may take
precedence over another, in the case of violated obligations.
Consider the Forrester paradox, which can be expressed by

SThis is not the only role or view regarding norms; for exam-
ple, they have been employed in multi-agent systems, and provide
mechanisms that facilitate collaboration and cooperation.

the rules T — —m and m — g. All other things being
equal, a world satisfying -m will be most preferred (since
no obligation is violated); a world with mg would be less
preferred (since the first obligation is violated) and a world
with m—g would be least preferred since both obligations
are violated.

Given these considerations, a preference order on possible
worlds can be defined by, for wy, we € M, w; is at least as
preferred as wo, w1 = wa, just if the set of violated “appli-
cable” rules at wy is a subset of those at wo. This is a rather
simple notion, since all rules are treated as being equally im-
portant, but it provides a basic approach from which further
elaborations can be addressed (see Section 5). This yields a
preference order over worlds. Then, given contingent infor-
mation vy, we have that v is a preferred outcome if it is true
at all minimal v worlds.

This provides a semantic characterization and justifica-
tion of the best that can be attained in different circum-
stances. However it is not particularly suited for inference.
Consequently, an equivalent computational account is also
provided, which allows a direct implementation of the ap-
proach. Informally, rules are “compiled” into material con-
ditionals taking specificity into account and, given a formula
~ representing what is contingently true, maximal consistent
subsets of the rules with respect to + are defined. The dis-
junction of these sets is then shown to exactly characterise
the first approach. The next section gives the formal details.

4 The Approach: Formal Details

As described, we begin with a base logic with language £
containing classical propositional logic for describing a do-
main. A set of rules R expresses conditional obligations
where r € R is of the form ¢ — ¥ for ¢,¢ € L. No re-
striction is placed on the form of the rules in R; for example,
a — —a is fine, as is the pair a — b, a — —b.

For dealing with specificity, we identify those pairs of
rules whose heads are jointly inconsistent, and where the
body of one implies the body of the other. (Recall that Horty
(1993) uses the same definition.)

Definition 4.1
ro<dri if  Fb(r1) D b(re) and = —(h(r1) A h(r2))
ro<dry if 719 <ryandnotry Iro

ro < 71 is read as rq (strictly) dominates rs. Intuitively, if
the bodies of both rules are satisfied, the more specific rule,
r1, takes precedence over ro. Clearly < is irreflexive and is
not transitive.

Possible worlds with violated obligations are less desir-
able. Consider a rule r € R and world w € M where
w = b(r) A =h(r). If there is no rule 7’ that dominates
(i.e. no 7’ is such that 7 <1 r’) then this counts against the
overall preferability of w. If there is a rule ' € R such
that » <7’ and w = b(r") A h(r’), then this “overrides” the
falsified obligation r. This isn’t the case if w | —b(r’).
Consequently we want to consider those falsified rules like
7 such that for all <9 7’ we have w [~ b(r’).

Consider our earlier example (1), in which if a person is
overheated then you should given them water, h — d, and
let w be a world where w = hA—d. Considering just the rule



h — d, this would count against the overall preferability of
w. However, we also have the obligation that if someone is
overheated and has a decreased level of consciousness then
one should not give them water: h A =¢ — —d. There are
now two possibilities:

e w = c¢. Then at w a subject is overheated, conscious,
and not given water. This is undesirable: the first rule is
falsified, and the stronger rule is inapplicable.

e w = —c. At w a subject is overheated, not fully con-
scious, and not given water. In this case, while the first
rule is falsified, it is overridden by the more specific rule.

In general, a world is less desirable depending on its set
of falsified obligations, where each falsified obligation is not
overridden by a more specific rule. This leads to the follow-
ing definition.

Definition 4.2 Forw € M, F,,(w,R) = {r € R |
w = b(r) A=h(r) and ¥r! such that r <r',w = —b(r') }

Then a preference order on possible worlds based on “rele-
vant” falsified obligations can be defined:

Definition 4.3 For set of rules R, and wy,ws € M,
wy =g w2 iff Fp(wi,R) C Fp,(w2,R)

Definition 4.3 provides a basic and intuitive notion of pref-
erence between worlds. It is based on the assumption that all
rules in R have equal weight. While this is often an oversim-
plification, it provides an appropriate point for examining
properties of the approach and considering various exam-
ples. We later consider in Section 5 how the approach can
be augmented, so that the rules in R come with a ranking,
reflecting a rule’s relative (deontic) importance.

Given the above definitions, we can now describe how
a conditional permission ¢ —, % is handled within the
present framework. We define:

d—=pth = ONY =

Consider the rule ¢ A ¢» — 1. On the one hand, it ap-
pears to be vacuous, in that it cannot be falsified, and so is
never a member of any F},,(w, R) in Definition 4.2. On the
other hand, it can override (or defeat) another obligation,
as given in Definition 4.1, and so can “rule out” members
of F,,(w,R) in Definition 4.2. Consider a variant of the
pizza-eating example, in which one should not eat with the
hands, but in eating pizza it is permissible to use the hands:
ry: T — =h,ry i p =, h(e rog: pAh — h). Clearly
a —p—h world is minimal according to Definition 4.3. How-
ever, it can also be verified that a p—h world is also minimal;
if rule 5 were p — h this would not be the case.

Given a preference ordering on worlds from Defini-
tion 4.3, one can determine what is (deontically) the best
that can be attained, or is most preferable, in the case that ~y
is true, by examining the minimum ~-worlds in the ordering.

Definition 4.4 Given a set of rules R,
1 is (deontically) preferred given v, v f, iff
min(=g, [7]) € [¢]

The following are essentially observations:

Proposition 1

1. K is a preference relation (Kraus, Lehmann, and Magi-

dor 1990).

2. Iftf —y then ~ ptp implies v o).

While Item 1 states that b is a preference relation, there is
a key difference: the rules R induce a single partial preorder
on worlds whereas in (Kraus, Lehmann, and Magidor 1990),
a consequence relation has a corresponding set of preorders
on worlds, comprising the models in their approach. This
means that the present approach accommodates irrelevant
properties. For example, given a vocabulary {a, b, c}, from
R = {a — b} we obtain a A ¢ pb.

This brings up an important distinction between the rules
in R and the obtained relation given by (. We have, for
instance, that ¢ f1) A x implies ¢ f1) and ¢ pvx; this fol-
lows immediately from the definition of kv, which in turn
was defined from <g. However, the two sets of rules:

Ri={a—ba—c} and Ry={a— (bAC)}

are in no sense equivalent, since the resulting preference or-
derings, <g, and <p,, are different (see the first example in
Section 4.2).

Similarly, from R3 = {a — b,b — ¢} we obtain a hc.
This is a defeasible notion; if we added the rule a — —¢
then a ¢ would no longer hold. For rules Ry = {a —
¢, b — c}, we get that ¢ holds in the minimal a Vb worlds, so
aVb pec. ForRs = {a — b} we get —b p~—a. (For example,
if pizza should be eaten with the hands and one is not eating
with the hands, then in the deontically best worlds, one is not
eating pizza.) Further examples are discussed in Section 4.2.

4.1 The Computational Approach

Definition 4.3 provides a semantic account for a set of rules
R, from which inferences regarding obligation can be ob-
tained (Definition 4.4). While in principle this is all one
needs, in practice it is infeasible to work with a preorder over
all possible worlds. In this section we develop an equivalent
formulation based on maximal sets of formulas.

We start with a formula ~ that represents what is contin-
gently known about a domain; the rules in R are then used
to augment this information to express what should be the
case, given that v is true. To this end, the rules in R are
transformed into material conditionals in which the infor-
mation in more specific, conflicting, rules is taken into ac-
count. An expansion of v by a maximal consistent set of
such rules gives a maximal set of beliefs that could be held
by the agent; the disjunction of these expansions then speci-
fies what is deontically best in the case that « holds.

To this end the set of rules that dominate r is defined by:

O(ry={r"eR|r<r'}
In the next definition, for a rule r, »< is r but with the ad-
ditional assertion in the body that no dominating rule is ap-

plicable. Then R is the resulting set of rules in which this
specificity information is incorporated.

Definition 4.5 For a set of rules R and v € R, define:
r = (b(r) AApeob(r')) D h(r)
RY = {r9|reR}



The next definition specifies for rules R and formula ~,
the sets of rules that are maxcon with respect to R and ;
this is the subsets of R< that are maximal consistent with +.

Definition 4.6
MC(y,R) = {R' TR | R’ is maxcon wrt v}
where R’ is maxcon with respect to vy iff

1. RRU{y} ¥/ Land
2. VR" where R" C R” C R<, we have R" U {7} - L.

The set of contingent deontic outcomes that may justifiably
be held is given by ~ along with the set of maximal sets of
applicable rules:

Definition 4.7 E(v,R) = 7 A Vg crrern (AR)

Given this, it can be shown that the set of models of E(y,R)
is exactly the minimal models of v in <g. To this end, Defi-
nition 4.2 can be rewritten as:

Fruw,R) = {r € R | w = b(r) A=h(r) A Ao ("))
The following dual notion will be used:
Forw e M, Sp(w,R) =R\ F,(w,R).
Lemmad4.l S,,(w,R) = {reR|wkE=r}
Proof of Lemma:
Sm(w,R) = R\ F,(w,R)
= R\{reR[w=b(r) A=h(r) A (Areowr)=b(r')}
{r e RJw Eb(r) A=h(r) A (Aweow)=b(r))}

= {reR|wl ~(b(r) A=h(r) A (Aveow b))}
= {reRJw~((r) A (Aveor=b(r)) A =h(r)}
= {reRJw =) A(Aveorb(r') V h(r)}
= {reR|wE () A (Apeomb(r'))) D h(r)}

{reR|lwEr?'}t 0O

We obtain:
Theorem 4.1 [E(v,R)] = min(vy, <g)

Proof:
=)

Letw € [E(y,R)] and so w E v A Vyrerer) (AR
Thus w = 7. Also for some R € MC(y, ) We have
wpER.

We are to show that w € min(vy, <g), i.e. that there is no
w’ such that w’ |= v and w’ < w. Toward a contradiction,
assume otherwise, and let w’ be a world such that w’ |
and w’ < w.

Since w’ < w, we have by definition that F,,(w’,R) C
F,(w,R), and hence R\ F,,(w,R) C R\ F,,(w',R) and
thus from the definition of S,, that S, (w,R) C S, (w’, R).

From Lemma 4.1 we have that S, (w, R) is the maximum
subset of RY (Definition 4.5) satisfied at w. But this is just
R’ above, where R’ € M C(+,R).

ButR' = S,,(w,R) C S, (w', R) along with w |= ~ and
w’ |= 7y, implies that R’ is not maximal, contradicting R" €
MC(~,R). Hence our assumption that w ¢ min(y, <g) is
incorrect, and so w € min(vy, <g).

(<)

Assume that w & [E(vy,R)]. We are to show that w &
min(7y, <R).

Trivially if w }~ 7 then w & min(vy, <g), so we can
assume that w = 7.

Since we have w = 7 and w ¢ [E(v,R)] by Defini-
tion 4.7 we get w & [Vgrepro(y.r) (AR)], or that w = R’
for every R" € MC(~,R).

Consider
R = {reRjwkE=@r)A N\ -b(")Dh(r)}
r’€O0(r)
= {reR|wEr}.
From Lemma 4.1 we have R’ = S, (w, R).

Since w = yAR? it follows that y AR is consistent. Thus
according to Definition 4.6 there is a set R” where R° C R”
and R” € MC(~,R). Since we have that w [~ R’ for every
R’ € MC(v,R) this means that in fact R” C R".

Letw’ € [R"];s0 R” = S,,(w’,R) by Lemma 4.1.

Then, since R ¢ R”, R = S,,(w,R), and R =
S (w’, R), we have that S, (w,R) C Sy, (w’,R). This in
turn means that R \ F,,(w,R) C R\ F,,(w’,R) or that
F,,(w',R) C Fp,(w,R).

Consequently, w’ <g w and since w’ = v, w | v, we
have w ¢ min(y, <g), as desired. O

While there are computational challenges, these are no
worse than those of similar approaches in nonmonotonic and
preferential reasoning.

Theorem 4.2 Let the underlying logic be classical proposi-
tional logic. Deciding E(v,R) = 1 is II5-complete.

Proof Outline: Deciding for r, 7’ € R whether r’ <1 r holds
is in AP and consequently so is deciding if r € R<.

Then the complementary problem can be proved, that
E(v,R) / 4 is XB-complete, analogous to (Nebel
1998)[Theorem 5.2].

We conclude this part with a result concerning back-
ground knowledge. Often an agent’s knowledge can be di-
vided into two parts: background information holding across
all instances of the domain (like domain constraints), and
instance-specific information, such as one block happens to
be on top of another. These two parts are combined in the
formula v in Definitions 4.4 and 4.7. An alternative is to
define <g with respect to just those worlds that are pos-
sible according to the background knowledge, and not to
all logically-possible worlds. Then ~ in Definition 4.4 just
needs to refer to instance-specific information. The next
result shows that these two approaches coincide. For the
next result only we introduce the following notation. For
W C M:

[Yw = [INW and: vy by ¢ iff min(=Zg, [YJw) € [¢]w-.
Below, A will represent general background knowledge.
Theorem 4.3 Let A C L. Then for a set of rules R, we have

YAABY iy bopay?-



Proof:
Let D = [A].

(=) Assume that vy A A k1), which is to say that min(=<g
Iy AA]) € ] min(=2R, [y AA])is {w € M | w =
yAAandVw' st w' EyAAw <g w= w <R w}.
This is readily seen to be the same as {w € D | w [
v and V' s.t. w’ | v, w =g w = w <g w'} which is just
min(=g, [y]p). Consequently, we have min(=g, [y]p) C
¥)m. Now, since min(=g,[y]p) € D, we obtain that
min(=g, [7]p) C [¥]m N D. Since [Y]p N D = [Y]p we
obtain min(=<g, [7]p) C [¢]p, and so vy fpth.

(<) Assume that v ) or min(=g,[7]p) < [¢]p.
min(=g, [y]p) isjust {w € D | w = yand Vo' s.t. w’ |
v,w' =g w = w =g w'} which can be rewritten as
{lweM|wEvyAAandVw' st w' |E v AA W =g
w = w =g w'} which is min(=g, [y A Ajm).

Consequently we have that min(=g,[y]p) = m
, [¥ A A)am) and so we get that min(=<g, [y AA]m) C [¢]p.

Since [¢]p C [¢], we obtain that min(=g, [y A Ajp) C
[¢)] or that vy A A ot O

4.2 Examples

Several examples were given following Definition 4.4. Here
we consider in detail further illustrative examples, including
those in Section 2.2.

Consider first the simple set of rules Ry = {ry : T —
a, r2 : T — b}. We obtain the ordering:’

ab <gr, (a—b,—ab) <gr, —a—b

So, it is best if both rules are satisfied, and worst if neither
are satisfied. We obtain T fva. Also —b fva, so even when
T — bis falsified, it is better that a be the case than —a.

In contrast, consider Ry = {T — a A b}. We obtain:

ab <R, (a—b,—ab,-a-b).

In R; we have two separate obligations whereas in Ry we
have a single composite obligation. In both cases we obtain
that T poa A b.

Consider next the pizza example, first that you should not
eat with your hands, but if you eat pizza you should eat with
your hands:

ri: T —-handre:p—h
1. For R = {ry} we obtain (ph, =ph, —-p—h) <r p—h

Thus if one is not eating pizza, it doesn’t matter what one

is doing with their hands; if eating pizza, eating with the

hands is better than not.

2. For R = {ry, 2} we get (ph, ~p—h) <gr (p—h,-ph)
Thus it is best to eat with the hands iff one is eating pizza.
(See Section 6 for a discussion.)

3. Consider next the addition of a rule that if you eat with
your hands you should wash them afterwards: 3 : b — w

"Recall we use the notation (w1, . .., Wn) < (Wnt1, .., Wm)
to indicate that w; < w; for1 <i<n <j < m.

For R = {ry, ro, 73} we obtain:

(phw, —p=hw, —p-h-w) <gr
(ph—w, p~hw, p=h—w, —phw)
(ph—w, —phw) <g —ph—w
Inferences can be “read off” the ordering, but among oth-
ers, if you eat pizza it’s best to use your hands and wash

them afterwards, and if you don’t eat pizza but eat with
your hands again it’s best to wash them afterwards.

4. Last, consider where one should not eat with the hands,

but if eating pizza it is permissible to eat with the hands.
We have the rules:

ri: T —-handry:p—p h
but where in fact 79 is p A h — h. For R = {ry,r2} we
obtain

(ph, =p=h,p=h) <r —ph.

Thus, if eating pizza, it is acceptable to either eat with the
hands or not. The world in which pizza isn’t eaten but one
eats with the hands is worse than other worlds.

The various “paradoxes” described in Section 2.2 are han-
dled appropriately.® We discuss each in turn.

Ross’s Paradox (Ex. 2.1): Let the set of propositional
atoms be P = {m, b} with m for “mail the letter” and b
for “burn the letter”. Consider the sets of rules:

Ri={T—=m} and Re={T —>m, T —=>mVb}

For R; we obtain the ordering
(mb,m=b) <R, (—-mb, ~m—b)

Thus, in the best states of affairs one mails the letter; there
is no result concerning burning, beyond the fact that burning
and not burning are both permissible. The same result holds
if the letter is not mailed. For Ry we obtain

(mb, m—b) <r, —mb <r, —m-b

Here, quite reasonably, if the letter is not mailed, then the
second obligation can be satisfied by burning it.

The Chisholm Paradox (Ex. 2.2): We have the encoding:
R={T —=h, h—>t, ~h — -t}

along with contingent information v = —h. We obtain:
ht <g  h—=t and ht <gr —h—t <gr —ht

The best thing to do is to help your neighbour and to tell
them. In the instance at hand, where you don’t help your
neighbour, the best thing to do is to not tell them that you
will. This is given in the fact that the minimum —h model is
—h—t, so we obtain —h po—t.

8By “handled” I don’t want to suggest that any sort of overar-
ching solution is provided for these problems. Rather, the claim
is that appropriate nonmonotonic inferences are obtained for these
examples which have proven problematic for logics of obligation.



The Forrester Paradox (Ex. 2.3): The encoding is:
R={T — -m, m — g}

We might interpret the rule m — g as “if you murder some-
one, you should be gentle”. Since m and g are independent
here, we obtain the ordering on possible worlds:

(-mg,~m-g) < mg < m-g

In the most preferred worlds one does not murder, since at
these worlds —m is true. If you do murder someone then in
the best such worlds one is gentle (i.e. in the minimum m
world g is true.)

However, this is not the standard interpretation, which in-
stead is “if you murder someone (m) they should be gently
murdered (g)”. That is, there is the implicit constraint that
g O m. This can be handled in two ways. First, we can con-
sider what holds in the minimum g D m worlds in the above
ordering; we obtain -m—g. Second, we can consider g O m
as a domain constraint, and so disregard g—m worlds. The
leadup to Theorem 4.3 shows how this can be expressed, and
the theorem itself shows that we obtain the same results as
in the first alternative.

Potentially Troublesome Examples: We next consider
some examples that might appear to be problematic, but that
are arguably handled appropriately.

e Mutually defeating obligations: R = {a — -a,—-a —
a}. There is no preference between a and —a worlds.

e R = {a — —a}. In the preference ordering, every —a
world is preferred to every a world.

e R ={a — b,b — —a}. In the resulting preference order-
ing, every —a world is preferred to every a world.

e R = {a = b,—a — b}. Every b world is preferred to
every —b world.

e Conflicting obligations: R = {a — b,a — —b}. In the
deontically best worlds —a holds (i.e. we have T —a)
since no obligation is violated when a is false. Otherwise,
ab and a—b worlds are equally ranked.

e R={T —a, T — —b,a — b}. (Horty 2007) Given the
specificity relation between the last two rules, we obtain
the ordering: ab < (a—b, ~a—b) < —ab.

Preferences on Obligations: We have seen how a more
specific rule may take precedence over a less specific rule. It
seems that in a given context we can also use the form of a
rule to encode preferences among obligations. Consider the
set of rules:

{a = ba—bVc}

These rules induce the following ordering on worlds:
(abe,ab—cy < a—bc < a—b-c

In the best a worlds we have that b is true, but in the best
a N\ —b worlds we have that c¢ is true. Hence these rules can
be interpreted as expressing the preference:

“If a then it should be that b, but if not b then ¢.”

Next, consider the rules:
{a = ba—=bAc}
These rules induce the following ordering on worlds:
abc < ab—c < (a—be, a—b—c)

In the best a worlds we have that b A ¢ is true, but in the best
a N\ —c¢ worlds we have that b is true. Hence these rules can
be interpreted as expressing the preference:

“If a then it should be that b A ¢, but if b, ¢ can’t both
hold, it should be that b.

This suggests (in the realm of future work) that it may
be feasible to specify a higher-level language for obligation
and permission-style constraints that can be translated (or
“compiled”) into the present approach.

5 Adding Weights to Rules

Clearly, not all obligations are of equal importance. Here we
extend the approach so that a rule may have an associated
weight specifying that rule’s importance or perhaps degree
of strength. Two possibilities are considered, quantitative
and qualitative weights. In a quantitative approach, the idea
is that enough violated lower-ranked obligations can even-
tually outweigh a higher-ranked obligation. For example,
while it is (presumably) a major gaffe to disparage a host’s
choice of wine, it would be better to do this than it would
be to violate a number of lesser obligations, such as eating
pizza with knife and fork, not putting a napkin on your lap,
and so on.

On the other hand, there may be preferences that no num-
ber of lower-ranked obligations will ever jointly outweigh.
For example, one should never kill another person, and no
number of violated polite-society obligations would ever
outweigh such an obligation.

Quantitative Weights Here, positive integers are attached
to rules, indicating a rule’s importance. Given a function
from rules to positive integers, W : R — NT, we define

w1 jR wao iff Z W(T) S Z W(’/‘)

7€ Fm (w1,R) r€Fpy, (w2,R)

This variant is a modification of the original approach. If the
weights are uniformly 1, then the above equation reduces to:

w1 jR w2 iff |Fm(w1,R)\ S |Fm(w2,R)|.

Compare this with Definition 4.2.

For example, consider the rules asserting that you should
not eat with your hands, you should have a napkin on your
lap, and you shouldn’t insult your host’s choice of wine:

ry: T —=-2h, re: T —=m, rg: T — —i.

Given the weights: W(ry) =1, W(ry) =1, W(r3) = 4 we
obtain the ordering: —hn—i < (hn—i, ~h-n—i) < h—-n-i
< —hni < (hni, ~h—ni) < h—ni

Thus it is always better to not insult your host’s wine than to
do so; otherwise, the ordering is determined by which of the
other rules are violated. If we had W (r3) = 2, then it would
be just as bad to insult the wine as it is to eat with the hands
and not use a napkin.



Qualitative Weights Here ranks are attached to a rule
in the spirit of ordinal conditional rankings (Spohn 1988).
Ranks are given by a function from R to the natural num-
bers, R : R — N, where conventionally there is a rule with
rank 0. Violated rules at a lower rank never outweigh rules
at a higher rank.

It is convenient to consider R as partitioned into disjoint
sets of rules (Rg,Ry,...) in which r € R; iff R(r) = 4.
Then we can define < in terms of a lexicographic order:

w1 <R we iff 3 > 0 s.t. Fm(thz) C Fm(wg,Rz)
and F,,(w1,R;) = F,,(we,R;) forevery j > i

w1 =R W2 iff Vi > 0, Fm(wl,Ri) = Fm(’LUQ,RZ)

This is an extension of the original approach, since if all rules
have rank zero, the above reduces to Definition 4.2. For
example, consider the rules asserting that you should not eat
with your hands and that you shouldn’t kill people:

ri: T —==h,re: T — —m,with R(r1) =0, R(rg) =1

This gives the ordering: —h—m < h—m < ~hm < hm.
Finally, these approaches can be combined in the obvi-
ous way, where each rule is assigned a rank and then a
weight within that rank. The ranking on rules would in-
duce a total preorder on worlds, and then the weights on
rules would further “refine” each set of equivalently-ranked
worlds. Thus rules involving life-and-death matters would
be assigned some non-zero rank, while rules involving so-
cial mores would (presumably) be assigned a rank of zero.

6 Comparison with Normality Conditionals

We agree with Horty (1993) that conditional deontic rea-
soning is a form of nonmonotonic reasoning. However, we
suggest that deontic conditionals differ from normality con-
ditionals in a couple of key aspects. We have noted that our
approach yields a unique ordering over possible worlds, or a
single deontic extension. In this way it is more like the ra-
tional closure (Lehmann and Magidor 1992), which yields
a unique ordering, than default logic (Reiter 1980), which
may produce multiple extensions.

However, most notably, in conditional reasoning involv-
ing normality defaults, specificity information is reflected in
the resulting ranking. Consider our pizza-eating example:

T —=-h,p—h 2)

but consider it under a normality interpretation; that is, inter-
pret the conditionals as stating that normally one doesn’t eat
with the hands; but in eating pizza one normally eats with
the hands. One obtains (e.g. in (Kraus, Lehmann, and Magi-
dor 1990; Boutilier 1994) and most others) the ordering:

—-p-h < ph <p-h and -p-h < —ph

Thus most normally one isn’t eating with the hands. More-
over, in these approaches, the following is a theorem:

(T—==-hAp—=h)DT —-p

and so most normally pizza isn’t eaten. While this seems
fine for a normality interpretation, it is clearly too strong for

a deontic interpretation: Given that one should in general
not eat with the hands, but that if eating pizza one should eat
with the hands, it is unreasonable to conclude that in general
one should not eat pizza.

Under our treatment of specificity with deontic condition-
als (Definition 4.3), things are different. We have the order-
ing corresponding to the deontic interpretation of (2):

(ph,—~p—h) < (p—h,-ph)

Here, in the most desirable worlds, either one is eating pizza
with the hands, or else is not eating pizza and not using the
hands. Neither of the situations ph and —p—h is better than
the other. This is as it should be: a world in which one
is eating pizza with the hands is exactly as good as one in
which one is not eating pizza and not using the hands.

This difference is a result of the difference in how a condi-
tional ¢ — 1 is interpreted. In a logic of normality we have
that (all other things being equal) ¢ A ¢ worlds are preferred
to ¢ A— worlds. For the deontic interpretation we have that
(all other things being equal) ¢ D v worlds are preferred to
¢ A\ =) worlds.

7 Conclusion

In this paper we have presented an approach to defeasible
deontic reasoning. The general idea is that a set of rules R
expresses notions of conditional obligation and permission.
The task at hand is to suitably “apply” the rules within a
given context. To this end, in semantic terms, these rules
induce a partial preorder on the set of models, giving the
relative desirability of each model. For contingent informa-
tion +, the set of least y-models in the ordering then gives
the best, or most desirable, states of affairs. A syntactic ap-
proach is also given whereby from a set of rules and a for-
mula ~ one obtains a formula that expresses the best out-
come possible, given that ~ is the case. These approaches
coincide, in that for any formula -, the least set of models in
the ordering induced from the rules exactly characterises the
expansion of ~ according to R.

The approach yields desirable results, both for basic ex-
amples and for the various “paradoxes” of deontic reason-
ing. The second approach is readily implementable and so,
for further work, it would be of interest to see how this
approach could be implemented in conjunction with (for
example) some planner. Complexity is the same as most
approaches in nonmonotonic reasoning being (for proposi-
tional logic) at the second level of the polynomial hierarchy.
Last, we argue that properties of defeasible deontic condi-
tionals differ from those of normality conditionals in the lit-
erature.
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