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Abstract

A strong intuition for AGM belief change operations,
Gärdenfors suggests, is that formulas that are independent
of a change should remain intact. Based on this intuition,
Farias and Herzig axiomatize a dependence relation w.r.t. a
belief set, and formalize the connection between dependence
and belief change. In this paper, we introduce base depen-
dence as a relation between formulas w.r.t. a belief base. After
an axiomatization of base dependence, we formalize the con-
nection between base dependence and a particular belief base
change operation, saturated kernel contraction. Moreover, we
prove that base dependence is a reversible generalization of
Farias and Herzig’s dependence. That is, in the special case
when the underlying belief base is deductively closed (i.e.,
it is a belief set), base dependence reduces to dependence.
Finally, an intriguing feature of Farias and Herzig’s formalism
is that it meets other criteria for dependence, namely, Keynes’
conjunction criterion for dependence (CCD) and Grdenfors’
conjunction criterion for independence (CCI). We show that
our base dependence formalism also meets these criteria. More
interestingly, we offer a more specific criterion that implies
both CCD and CCI, and show our base dependence formalism
also meets this new criterion.

Introduction
Belief Change
The AGM paradigm of belief change studies the dynamics
of belief states in light of new information (Alchourrn, GŁr-
denfors, and Makinson 1985). For theoretical simplification,
AGM idealizes a belief state as a belief set or a theory: a set
of logical formulas that is closed under implication.

An important variant of the original AGM approach uses
belief bases instead of using belief sets. Belief bases are not
necessarily deductively closed, and they are usually finite.
Thus, they are more suitable to be represented in finite ma-
chines. Also, many authors have argued that, compared to
belief sets, belief bases are more expressive (Hansson 2003),
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and they are more tolerant of inconsistency (Hansson and
Wassermann 2002). Therefore, belief bases can be more
useful in practice than belief sets.

Belief Change and Dependence
A long standing intuition concerning belief change is that
formulas independent of a change should remain intact (GŁr-
denfors 1990). In Belief Change and Dependence, Farias del
Cerro and Herzig (1996) (FH) attempt to ground this intuition
by axiomatizing a particular dependence relation in a close
relationship to belief change. FH’s work is particularly inter-
esting and unique in the sense that it fits the original AGM
model of belief change. Their stated aim is both “to give a
formal account of the notion of dependence, and to employ
it in belief change.” This deep integration into the AGM
model sets apart their work from other works on relevance or
dependence in the context of belief change.

Belief Change and Base Dependence
A natural next step is to find a similar connection between
dependence and belief base contraction. We call such a
dependence (or relevance) relation base dependence (or base
relevance). In this work, we provide an axiomatization of
base dependence, and establish its relation to belief base
contraction. Interestingly, base dependence turns out to be a
reversible generalization of FH’s dependence. That is, in the
special case that a belief base is deductively closed (i.e., it is
a belief set), the base dependence relation reduces to FH’s
original dependence relation.

Composite Dependence
One interesting aspect of FH’s work is that some of the ax-
ioms that they use to capture the concept of dependence come
from intuitions put forward previously. For example, Keynes
(1921) holds that there is an intuitive relationship between
relevance (dependence) and logical conjunction that should
stay valid for any reasonable definition of relevance. Call-
ing it the Conjunction Criterion for Dependence, CCD, FH
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formulate it as follows:

If δ depends on α and δ depends on β
then δ depends on α ∧ β. (CCD)

Moreover, Gärdenfors (1978) puts forward another prin-
ciple that he believes should hold for relevance/dependence
relations, the Conjunction Criterion for Independence, CCI.

If δ is independent of α and δ is independent of β
then δ is independent of α ∧ β.

It maintains its intuitive appeal in its contrapositive form:

If δ depends on α ∧ β then
δ depends on α or δ depends on β. (CCI)

Notably, our formalism preserves both CCD and CCI. Fur-
thermore, we offer a new and more specific criterion for
dependence, which we call the Conjunction Criterion of De-
pendence Factoring, CCDF. We show that CCDF implies
both CCD and CCI, and that our base dependence formalism
meets the three criteria: CCDF and so CCD and CCI.

Contributions
The contributions in this work are as follows. We offer an
axiomatization of base dependence for belief base formulas,
and we provide characterization theorems relating base de-
pendence to belief base contraction. We then show that base
dependence is a reversible generalization of FH’s dependence
relation. We also show that while generalizing the depen-
dence relation, base dependence preserves some of the most
interesting properties of dependence, particularly, Keynes’
CCD, and Grdenfors’ CCI. Finally we put forward a more
specific conjunction criterion of dependence, CCDF, that im-
plies both CCD and CCI, and show that this new criterion is
also met by base dependence.

Background
Formal Preliminaries
We assume L to be a propositional language defined on
a finite set of propositional variables or atoms V with the
usual Boolean operators negation ¬, conjunction ∧, disjunc-
tion ∨, and implication →. We will use lower case Greek
letters α, β, δ, etc. as meta variables over sentences in L.
For convenience, we introduce the sentential constants >
and ⊥ representing truth and falsity respectively. A logi-
cal consequence α of a set of formulas B is represented by
B ` α. Also Cn is a consequence operator, a total func-
tion taking sets of formulas to sets of formulas, defined as
Cn(B) = {α | B ` α}.

For the proofs of theorems in this paper, please refer to
(Oveisi 2013).

Belief Contraction
To model rational belief change, AGM uses rationality postu-
lates to describe what constitute operators for belief change
and it also specifies how to construct such operators. The

belief contraction postulates are as follows:

(÷ 1)K ÷α is a belief set (closure)
(÷ 2)K ÷α ⊆ K (inclusion)
(÷ 3) If α /∈ K then K ÷α = K (vacuity)
(÷ 4) If 0 α then α /∈ K ÷α (success)
(÷ 5) If α ∈ K then K ⊆ (K ÷α) +α (recovery)
(÷ 6) If ` α↔ β then K ÷α = K ÷β (extensionality)
(÷ 7)K ÷α ∩K ÷β ⊆ K ÷α ∧ β

(conjunctive overlap)
(÷ 8) If α /∈ K ÷α ∧ β then K ÷α ∧ β ⊆ K ÷α

(conjunctive inclusion)

For motivation and interpretation of these postulates see (GŁr-
denfors 1988). Any operator ÷ on K satisfying postulates
(÷ 1)–(÷ 6) is called a basic AGM contraction operator. The
supplementary postulates (÷ 7) and (÷ 8) specify proper-
ties of composite belief contraction operators, which involve
contraction by conjunction of sentences. Indeed, AGM also
provides a third composite contraction postulate:

EitherK ÷α ∧ β = K ÷α, or

K ÷α ∧ β = K ÷β, or

K ÷α ∧ β = K ÷α ∩K ÷β.
(conjunctive factoring)

A basic AGM contraction operator that satisfies conjunctive
factoring, also satisfies both (÷ 7) and (÷ 8), and vice versa
(Alchourrn, GŁrdenfors, and Makinson 1985).

Some of our beliefs are more epistemically entrenched
than others, making them harder to give up. Based on this in-
tuition, Grdenfors (1988) introduced epistemic entrenchment,
and defined the properties of an order relation≤ between sen-
tences. Grdenfors and Makinson (1988) show that an AGM
contraction operator ÷ can be constructed using a ≤ relation,
and that, conversely, an epistemic entrenchment relation ≤
can be constructed using an AGM contraction operator ÷.

Turning now to belief base contraction, as with Hansson
(1999), we assume that an operation needs to at least satisfy
success and inclusion to be considered a belief contraction.

Definition 1. An operator ÷ for a set B is an operator of
contraction if and only if it satisfies success and inclusion.

Some other contraction axioms are listed below:

B ∩ Cn(B÷α) ⊆ B÷α (relative closure)

If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B
then B÷α = B÷β (uniformity)

If β ∈ B and β /∈ B÷α then (relevance)

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some

B÷α ⊆ B′ ⊆ B
If β ∈ B and β /∈ B÷α then (core-retainment)

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B
Different combinations of the contraction axioms specify

different contraction operations. In particular, we note the
following:
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Partial meet contraction: (÷ 1)–(÷ 6) (Alchourrn, GŁr-
denfors, and Makinson 1985); or success, inclusion,
relevance and uniformity (Hansson 2003).

Kernel contraction: success, inclusion, core-retainment
and uniformity (Hansson 1995).

Saturated (or smooth) kernel contraction: success,
inclusion, core-retainment, uniformity and relative
closure (Hansson 1995).

Belief Change and Dependence
Farias del Cerro and Herzig (1996) formalized the notion of
dependence and its connection with belief change, in a similar
approach to Gärdenfors and Makinson (1988) for epistemic
entrenchment. To formalize dependence, they investigate a
binary relation ; on formulas. α;β reads as “β depends on
α” (or equivalently “α is relevant to β”). Independence, then,
is denoted by 6;, which is the complement of ;, so α 6;β
reads as “β is independent of α” (or “α is irrelevant to β”).
They provide the following axiomatization of dependence.

If α↔ β and α; δ then β; δ (LEl)
If α↔ β and δ;α then δ;β (LEr)

If α ∧ β; δ then α; δ or β; δ (CCIl)
If δ;α ∧ β then δ;α or δ;β (CCIr)
α ∈ K iff either ` α or α;β for some β

(Def-K)
If α;β then α;α (Cond-ID)
If ` α ∨ β then α 6;β (Disj)

If α; δ and α ∧ β;α then α ∧ β; δ (CCDl
0)

If δ;α and β;β then δ;α ∧ β (CCDr
0)

The following are also derivable principles:
If α; δ and β; δ then α ∧ β; δ. (CCDl)
If δ;α and δ;β then δ;α ∧ β. (CCDr)

For motivation and interpretation of these postulates,
please refer to their work. Here, it suffices to note that
Keynes’ CCD and Grdenfors’ CCI are represented by CCDl

and CCIl, respectively.
FH’s dependence relation is defined as follows:

Definition 2. A relation ; is a dependence relation if and
only if it satisfies the axioms LEl, LEr, CCIl, CCIr, Def-K,
Cond-ID, Disj, CCDl

0 and CCDr
0.

For studying the relationship between dependence and
belief change, FH use the following preservation criterion as
their guiding principle:

“If a belief state is revised by a sentence A, then all
sentences in K that are independent of the validity of A
should be retained in the revised state of belief” (GŁr-
denfors 1990).

For example, if β ∈ K to begin with, but β /∈ K ÷α, then
we can say that β depends on α, or α;β.

Similar to epistemic entrenchment, to provide the connec-
tion between dependence and contraction, FH introduce two
conditions, namely, Cond; and Cond÷.

α;β iff β ∈ K and β /∈ K ÷α. (Cond;)

This equivalence condition allows one to define ; based
on a given AGM contraction operation ÷ for belief set K.
Theorem 3 (FH). Given two relations ; and ÷ such that
Cond; holds, if ÷ is an AGM contraction, then ; is a
dependence relation.

The next condition allows defining an AGM contraction
operation ÷, given a dependence relation ;.

β ∈ K ÷α iff either ` β or β;β and α 6;β.
(Cond÷)

An AGM contraction operation ÷ is defined with respect
to some belief set K. Thus, ÷ obtained via Cond÷ also
requires an associated K to be specified. For this purpose,
FH provide the following definition for the belief set K;:

K; = {α | ` α or α;β for some β}.
For the sake of brevity, FH simply use K to refer to K;

afterwards. The next theorem defines a contraction operation,
given a dependence relation using Cond÷.
Theorem 4 (FH). Given two relations ; and ÷ such that
Cond÷ holds, if ; is a dependence relation then ÷ is an
AGM contraction.

As the last step, FH need to complete the link between
AGM contraction and dependence using a characterization
theorem to state that for any two arbitrary relations ; and
÷ that satisfy Cond;, ÷ is an AGM contraction iff ; is a
dependence relation. To achieve this, however, it turns out
that they first have to make the following assumption:
Remark 5. In order to establish an axiomatic characterization
based on Cond;, it is assumed that the relation ÷ satisfies
inclusion, K ÷α ⊆ K.
Theorem 6 (FH). Let two relations ; and ÷ be such that
÷ satisfies inclusion and that Cond; holds. Then ÷ is an
AGM contraction if and only if ; is a dependence relation.

This completes FH’s work. Also another characterization
theorem that they provide for a weaker dependence relation
proves to be useful in our study.
Theorem 7 (FH). Let two relations ; and÷ be such that÷
satisfies inclusion and that Cond; holds. Then ÷ is a basic
AGM contraction satisfying (÷ 1)–(÷ 6) if and only if ;
is a dependence relation satisfying LEl, LEr, CCIr, Def-K,
Cond-ID, Disj and CCDr

0.

Belief Change and Base Dependence
Overview and Problem Definition
Gärdenfors’ preservation criterion, as with FH, lays the foun-
dation of the present work. Our work is another attempt to
connect notions of dependence and belief change, but using
belief bases instead of belief sets.

As discussed, belief bases are a generalization of belief
sets. Hence, it seems natural to anticipate that base depen-
dence also be a generalization of FH’s dependence relation.
Furthermore, base dependence should ideally be a reversible
generalization of dependence. That is, where a base depen-
dence relation corresponds to a belief set, the base depen-
dence relation should reduce to FH’s dependence.
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Finally, one significant feature of FH’s formalism is that
it adheres to Keynes’ CCD and Gärdenfors’ CCI. We would
like to preserve this characteristic of FH’s dependence while
generalizing it to base dependence. It turns out that our base
dependence formalism meets a third maxim, CCDF, that
implies both CCD and CCI.

Characteristics of an Anticipated Solution
A formalization of Gärdenfors’ preservation criterion that
involves belief bases instead of belief sets should still retain
the general scheme of FH’s work. More specifically, we need
an axiomatization of base dependence, as well as a suitable
corresponding belief base contraction. We also need a con-
ditional, similar to FH’s Cond;, that allows construction
of a base dependence given a base contraction, and another
conditional, similar to FH’s Cond÷, that allows construction
of a base contraction using a base dependence.

As discussed, base dependence should be a reversible gen-
eralization of FH’s dependence. Naturally, an appropriate
base contraction to correspond to base dependence must also
be a reversible generalization of AGM contraction.

Finally, our base dependence and its corresponding base
contraction must be such that CCD and CCI (and ideally
CCDF) are satisfied.

These characteristics are pictured in Figure 1, located to-
ward the end of our paper. The remainder of this work is to
establish the background concepts and theorems necessary
to justify the diagram in Figure 1.

Base Dependence
The meaning of “dependence” in base dependence is the same
as what Fariñas and Herzig (and Grdenfors) studied, which
refers to the dependence or relevance of logical statements
towards one another. Using their notation, we read α;β as
“β depends on α” or “doubting in α leads to doubting in β.”

In FH’s study, dependence can only happen between (con-
tingent) sentences from K:

If α;β then α ∈ K and β ∈ K.
If B is a base for K, K = Cn(B), then we have:

If α;β then α ∈ Cn(B) and β ∈ Cn(B). (1)

One way to generalize the dependence relation ; is to
make α or β be from B instead of Cn(B). Therefore, our
sought-for base dependence should somehow involve formu-
las explicitly mentioned in a belief base, thus the name.

Using ;̄ to denote base dependence, we read α ;̄β as
“β base-depends on α,” which is the same as α;β except
that α ;̄β also implies that α or β or both are formulas in
the base. Now, we need to decide which one of these three
alternatives should be the case.

If α ;̄β then α ∈ B and β ∈ Cn(B) (2a)
If α ;̄β then α ∈ Cn(B) and β ∈ B (2b)
If α ;̄β then α ∈ B and β ∈ B. (2c)

We believe the third alternative (2c), requiring both α and β
to be in B, appears to be too strong to try first. The second
alternative (2b) offers a more interesting semantics, compared

to the first alternative (2a). The second alternative means that
“doubting in α leads to doubting in β from the base.” It allows
us to study how the statements in the base depend on, or are
susceptible to, changes of other statements. Stated in terms of
belief change, it means contracting B by any formula α from
the infinite set Cn(B) can result in removal of β from the
finite set B \B÷α. On the other hand, the first alternative
(2a) means contracting B by any formula α from the usually
finite set B can result in removal of β from the infinite set
Cn(B) \ Cn(B÷α).

Therefore, although the alternatives (2a) and (2c) remain
open and may be found useful in other studies, we proceed
with (2b), and from now on we assume α ;̄β requires that
β ∈ B:

If α ;̄β then β ∈ B. (3)
It turns out that (3) does not need to be explicitly specified
as an axiom. Rather, it will be implied by other axioms and
conditions for base dependence which will be put forward in
the upcoming sections (e.g., Def-B and Cond;̄).
Example 8. Assume Mary believes that p, q and q → r; i.e.,
B = {p, q, q → r}. By implication, she also believes that r,
as it is entailed by q and q → r. Now, say, for some reason,
she starts to doubt that r is true. Consequently, this leads her
to also doubt either q, or q → r, or even both. Thus we know
that at least one of r ;̄ q or r ;̄(q → r) hold, and that r 6;̄ p
and r 6;̄ r.

Mutual Construction
From Contraction to Base Dependence As discussed ear-
lier, FH use Cond; to construct a dependence relation via
a given AGM contraction. Cond; can be straightforwardly
transformed to an equivalent base-generated representation.
That is, ifK = Cn(B) and÷ is a base-generated contraction,
which exists for any given AGM contraction (Hansson 1993),
then Cond; can be stated as follows:

α;β iff β ∈ Cn(B) and β /∈ Cn(B÷α).
(Cond;)

Note that we have used the same name “Cond;” here
since this is only an alternative representation. This new,
base-generated representation makes it easier to compare and
contrast Cond; with the corresponding conditions for belief
bases that will be introduced shortly.

If α;β then β is retracted as a result of α’s contraction,
so β ∈ [Cn(B) \ Cn(B÷α)]. For base dependence, we
assume that (3) holds: if α ;̄β then β ∈ B. Thus, it is
intuitively appealing to say that if α ;̄β, then β is retracted
from B as a result of α’s contraction, so β ∈ [B \ B÷α].
With this intuition in mind, we propose the following to
correspond to FH’s Cond;:

α ;̄β iff β ∈ B and β /∈ B÷α. (Cond;̄)
Notice that in common with FH, if α is a tautology, no

formula contributes to its truth, and α ;̄β cannot hold for
any β. Also, if β is not in B, then α ;̄β cannot hold for
any α by definition. Therefore, both β;β and β ;̄β imply
that β is contingent, and the latter additionally implies that
β is in B. This will prove useful in the next section when
constructing contraction operations using (base) dependence,
via Cond÷ and Cond÷̄.
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From Base Dependence to Contraction We first provide
a simplifying notation B̀ to help represent tautologies present
in the base.
Definition 9. Given a base B and an entailment relation `,
the base entailment relation

B̀
is defined as follows: A

B̀
β

if and only if β ∈ B and A ` β.
A useful special case is when A = ∅. For example, B̀ β

means β is a tautology in the base: β ∈ B and ` β. One
important usage is to help handling tautologies in base de-
pendence axioms. Such axioms are primarily concerned with
contingencies, but they have to also deal with tautologies,
usually as exceptional cases.

Next, we need to reconstruct belief bases, given base de-
pendence relations. We saw that FH provide the following:

K; = {α | ` α or α;β for some β}.
Note that we could swap the role of α and β above and

obtain the same results:

K; = {β | ` β or α;β for some α}.
Similarly, a base dependence relation ;̄ is associated with

a belief base B. Thus, it should be possible to recreate the
associated belief base B via a given ;̄ relation:

B;̄ = {β | α ;̄β for some α} .
Note, however, that one caveat is that B;̄ will not contain

any tautologies that may be in B. Still, we can say that B
and B;̄ are equivalent for most practical purposes. Also,
their closure is obviously equivalent:

Cn(B;̄) = Cn(B).

If in addition to the base dependence relation ;̄, we are
also given

B̀
that identifies tautologies in the base, then we

can have the following, which guarantees that B;̄ = B:

B;̄ = {β |
B̀
β or α ;̄β for some α}

In the rest of this work, we assume B;̄ = B. In the worst
case scenario, there are tautologies in B and only ;̄ is given,
so the tautologies in B are not present in B;̄.

Now for Cond÷̄, again we start with Cond÷. As in the
case of Cond;, we present a straightforward transformation
to the equivalent base-generated operation. Again, we reuse
the equation’s name, “Cond÷”:

β ∈ Cn(B÷α) iff either ` β or β;β and α 6;β.
(Cond÷)

Cond÷ says β ∈ Cn(B÷α) means either that β is a tau-
tology, or that β is a contingent truth, β;β, but contraction
by α does not lead to retraction of β, meaning α 6;β.

To adapt this for belief bases, we need something along
the line of the following: β ∈ B÷α means either that β is
a tautology in B,

B̀
β, or that β is a contingent truth in B,

β ;̄β, but contraction by α does not lead to retraction of β
from B, α 6;̄β:

β ∈ B÷α iff either
B̀
β or β ;̄β and α 6;̄β.

(Cond÷̄)

Basic Postulates of Base Dependence
A goal of this work is to provide an axiomatization of base
dependence as a generalization of FH’s dependence. It turns
out that some of base dependence axioms closely resemble
dependence axioms (e.g. Cond-IDB), and some remain valid
and derivable but are no longer needed as axioms (e.g. DisjB).
Yet, there are also some other axioms offered for base depen-
dence (e.g. redundancy) that are not similar to any of the
dependence axioms. The following are the basic postulates
of base dependence.

β ∈ B iff either
B̀
β or α ;̄β for some α.

(Def-B)

If α ;̄β then β ;̄β. (Cond-IDB)

If α ∈ Cn(B′) iff β ∈ Cn(B′) for all B′ ⊆ B
then α ;̄ δ iff β ;̄ δ. (conjugation)

If α ;̄β then (contribution)

α /∈ Cn(B′) and α ∈ Cn(B′ ∪ {β}) for some B′ ⊆ B.
If α ∈ Cn(B′) and B′ ⊆ B then (modularity)

either ` α or α ;̄β for some β ∈ B′.

If β ∈ Cn(B′) and B′ ⊆ B then (redundancy)

either α 6;̄β or α ;̄ δ for some δ ∈ B′.

A brief description of these axioms is as follows:
(Def-B) To say that β is in the base, β ∈ B, is equivalent to

saying either that β is a tautology in the base,
B̀
β, or that

it is a contingency in the base. The contingent truth of β
then has to be inferentially relevant to some (contingent)
formula α (where α could be β), so α ;̄β.

(Cond-IDB) The inferential relevance between α and β
means that neither is a tautology. Also, β is in the base
because α ;̄β. Thus, β is a contingency in the base, or
β ;̄β.

(conjugation) When α and β are logically equivalent, `
α ↔ β, there is inferential relevance between α and δ
from B if and only if there is inferential relevance between
β and δ. This makes sense not only for α and β, but also
for the formulas that are true just because α or β are true.

(contribution) This axiom says that if β from B is inferen-
tially relevant to α then β must somehow contribute to the
justification of α.

(modularity) Consider a subset B′ ⊆ B that implies α, α ∈
Cn(B′). This could be because α is a tautology. But
when 6` α, there is some β from the same subset B′ that
base-depends on α.

(redundancy) To consider the principal case of redundancy,
assume that: β ∈ Cn(B′) and B′ ⊆ B and α ;̄β. When
β ∈ B′, α ;̄ δ for some δ ∈ B′ trivially holds because
then δ could be β which means α ;̄β, which is assumed.
When β /∈ B′, there is some redundancy in the base B
because on the one hand β ∈ B (as α ;̄β), and on the
other hand there is B′ ⊆ B such that β /∈ B′ but β ∈
Cn(B′). Thus, in order for α ;̄β to hold, α ;̄ δ should
also hold at least for one formula δ ∈ B′.
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The following principles, which are derivable from the above
axioms, also have counterpart in FH’s framework:

If ` α ∨ β then α 6;̄β. (DisjB)

If ` α↔ β and α ;̄ δ then β ;̄ δ. (LEB)

Example 10. Assume that B = {p ↔ q, p ∨ q, p}, and
that ;̄ is a relation such that (p ∧ q) ;̄(p ∨ q) and (p ∧
q) 6;̄ p hold. We show that ;̄ violates redundancy. Let
B′ = {p}. Clearly B′ ⊆ B and p ∨ q ∈ Cn(B′), and,
by assumption, (p ∧ q) ;̄(p ∨ q). Thus, by redundancy,
(p ∧ q) ;̄ δ for some δ ∈ B′. Since B′ = {p}, δ has to be
p, so (p∧ q) ;̄ p. This contradicts the initial assumption that
(p ∧ q) 6;̄ p.
Definition 11. A relation ;̄ is a base dependence if and
only if it satisfies the axioms Def-B, Cond-IDB , conjugation,
contribution, modularity and redundancy.

Notice that so far we have not specified any criteria on how
to handle conjunctions, which we will do shortly.

Saturated Kernel Contraction and Base Dependence
As discussed, we need a base contraction to correspond to
base dependence. We also saw that a suitable candidate
base contraction must be a reversible generalization of AGM
contraction. Indeed, saturated kernel contraction is a subclass
of kernel contraction that is a reversible generalization of
basic AGM contraction. That is, saturated kernel contraction
is a base contraction, and when it corresponds to a belief set,
it is equivalent to AGM partial meet contraction (Hansson
1995).

In this section, we show that indeed saturated kernel con-
traction and base dependence have a mutual correspondence.

From Base Dependence to Contraction To construct a
contraction operator ÷, assume all the following are present:
a base dependence relation ;̄ (Definition 11), a list of tau-
tologies present in the base T ⊆ B where T = {β |

B̀
β},

and the Cond÷̄.
We do not need to assume that B is provided because it

can be obtained using ;̄ and
B̀

.
Theorem 12 states that the contraction operator÷ obtained

from ;̄ is indeed a saturated kernel contraction.
Theorem 12 (Base Dependence to Contraction). Given
relations ;̄ and÷ for baseB such that Cond÷̄ holds, if ;̄ is
a base dependence, then ÷ is a saturated kernel contraction.

To prove this theorem, we assume the Cond÷̄ and postu-
lates of base dependence hold, and we show one by one that
the postulates of saturated kernel contraction also hold.

From Contraction to Base Dependence This subsection
shows how to obtain a base dependence ;̄ relation given
a saturated kernel contraction operator ÷. We assume the
following are present: a saturated kernel contraction operator
÷, and the Cond;̄. Theorem 13 states that, given the above
assumptions, all axioms of base dependence ;̄ relation are
satisfied.
Theorem 13 (Contraction to Base Dependence). Given
relations ;̄ and÷ for baseB such that Cond;̄ holds, if÷ is
a saturated kernel contraction, then ;̄ is a base dependence.

For this theorem, assuming the Cond;̄ and axioms of
saturated kernel contraction, we show one by one that the
properties of base dependence hold.

Axiomatic Characterization We now need an axiomatic
characterization theorem. We also adopt the FH assump-
tion in Remark 5, which means that inclusion needs to be
assumed in the characterization theorem. The rationale for
this assumption is as follows. When constructing the ;̄ rela-
tion using a contraction operation via Cond;̄, the set of all
β such that α ;̄β is equal to those β ∈ B and β /∈ B÷α,
or using set difference notation β ∈ B \ (B÷α). We know
as a matter of fact that B÷α ⊆ B holds because, by Defini-
tion 1, any contraction operator satisfies inclusion. However,
even if, for the sake of argument, ÷ did not satisfy inclusion
and there were some statements in B÷α that were not in
B, such statements would have been lost in the set differ-
ence β ∈ B \ (B÷α). That, in turn, means that to use ;̄

to construct a contraction ÷ via Cond;̄, we do not have
enough information to prove or disprove inclusion. Instead,
we have to assume that ÷ already satisfies inclusion. Since
all contraction operations satisfy inclusion, this assumption
is not a serious loss of generality.
Theorem 14 (Characterization). Let the relations ;̄ and
÷ for base B be such that ÷ satisfies inclusion and that
Cond;̄ holds. Then, ÷ is a saturated kernel contraction if
and only if ;̄ is a base dependence.

To prove this characterization theorem, we show that in
presence of inclusion, Cond;̄ entails Cond÷̄. Thus, assum-
ing inclusion and Cond;̄, based on Theorems 12 and 13,
saturated kernel contraction and base dependence are logi-
cally equivalent.

Conjunction Criterion of Dependence Factoring
We have seen Keynes’ CCD and Grdenfors’ CCI, and the
respective dependence axioms CCDl and CCIl. Likewise, we
have:

If α ;̄ δ and β ;̄ δ then α ∧ β ;̄ δ. (CCDB)

If α ∧ β ;̄ δ then α ;̄ δ or β ;̄ δ. (CCIB)
CCD and CCI state intuitions regarding dependence on

conjunctions in the form of conditional statements. One
wonders whether it is possible to capture such intuitions
regarding dependence on conjunctions using equivalences.
Such a statement would have to capture different cases. That
is, for any reasonable dependence relation, at least one of the
following statements hold:
Case 1: The set of formulas that depend on α∧β is the same

as the set of those that depend on α
Case 2: The set of formulas that depend on α∧β is the same

as the set of those that depend on β
Case 3: The set of formulas that depend on α∧β is the same

as the set of those that depend on α or depend on β
Using set notation, these cases can be stated as follows:

Either {δ | α ∧ β ;̄ δ} = {δ | α ;̄ δ}, or

{δ | α ∧ β ;̄ δ} = {δ | β ;̄ δ}, or

{δ | α ∧ β ;̄ δ} = {δ | α ;̄ δ} ∪ {δ | β ;̄ δ}
(4)
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or equivalently,

Either [α ∧ β ;̄ δ1 iff α ;̄ δ1], or

[α ∧ β ;̄ δ2 iff β ;̄ δ2], or

[α ∧ β ;̄ δ3 iff α ;̄ δ3 or β ;̄ δ3].

(CCDFB)

Each line of CCDFB needs to use a unique variable name
δ1, δ2 and δ3 because, in each line of (4), {δ | α ∧ β ;̄ δ}
refers to a different set.

CCDFB is a formalization of the intuition expressed in
the three cases above, which we restate more concisely as
follows, calling it the Conjunction Criterion of Dependence
Factoring, CCDF:

The set of all formulas that depend on α ∧ β
is the same as the set of all formulas that
depend on α, or on β, or on either of them.

(CCDF)

Indeed, CCDF may be considered as a third maxim for de-
pendence of conjunctions in addition to Keynes’ CCD and
Grdenfors’ CCI.

As a side note, although it seems that the third clause of
CCDFB should be redundant, in light of the first two, in fact
it isn’t.

Example 15. Assume α, β, θ1, θ2 and θ3 are formulas and
;̄ is a relation such that

α ∧ β ;̄ θ1 α ;̄ θ1 β 6;̄ θ1

α ∧ β ;̄ θ2 α 6;̄ θ2 β ;̄ θ2

α ∧ β ;̄ θ3 α ;̄ θ3 β ;̄ θ3.

Clearly, ;̄ violates the first two clauses of CCDFB , but not
the third one. This may be easier to see using (4). Note that
{δ | α∧ β ;̄ δ} = {θ1, θ2, θ3}, {δ | α ;̄ δ} = {θ1, θ3} and
{δ | β ;̄ δ} = {θ2, θ3}, which satisfy the third clause of (4)
but not the first two.

As a second note, CCDFB is only one way of formalizing
CCDF, using base dependence relation; of course, it can
also be formalized using FH’s dependence relation as shown
below, which we call CCDFl:

Either [α ∧ β; δ1 iff α; δ1], or

[α ∧ β; δ2 iff β; δ2], or

[α ∧ β; δ3 iff α; δ3 or β; δ3].

(CCDFl)

Finally, an important observation here is that CCDFB is a
more specific criterion than CCDB and CCIB , and it implies
both of them.

Theorem 16. If a relation ;̄ satisfies CCDFB , then it also
satisfies both CCDB and CCIB .

Notice that although Theorem 16 is stated in terms of
base dependence ;̄, it does not have to be. Indeed, the
theorem (and its proof) may straightforwardly be restated in
terms of CCDF that implies both CCD and CCI. As such, the
dependence version of CCDF, i.e. CCDFl, also implies both
FH’s CCDl and CCIl.

The following are all the conjunction criteria and related
axioms we have discussed:

Criterion Dependence Base Dependence
CCD (Keynes) CCDl (FH) CCDB

CCI (Grdenfors) CCIl (FH) CCIB

CCDF CCDFl CCDFB

We may now state axiomatic characterization and its asso-
ciated theorems, with the addition of corresponding conjunc-
tion criteria as follows.

Theorem 17 (Base Dependence to Contraction). Given re-
lations ;̄ and÷ for baseB such that Cond÷̄ holds, if ;̄ is a
base dependence that satisfies CCDFB , then÷ is a saturated
kernel contraction that satisfies conjunctive factoring.

Theorem 18 (Contraction to Base Dependence). Given
relations ;̄ and ÷ for base B such that Cond;̄ holds,
if ÷ is a saturated kernel contraction that satisfies
conjunctive factoring, then ;̄ is a base dependence that
satisfies CCDFB .

Theorem 19 (Main Characterization). Let the relations
;̄ and ÷ for base B be such that ÷ satisfies inclusion,
B÷α ⊆ B, and that Cond;̄ holds: α ;̄β iff β ∈
B and β /∈ B÷α. Then, ÷ is a saturated kernel contrac-
tion that satisfies conjunctive factoring if and only if ;̄ is a
base dependence that satisfies CCDFB .

Base Dependence as a Reversible
Generalization of Dependence

Last, we show that base dependence is a reversible general-
ization of FH’s dependence.

Theorem 20 (Dependence Generalization). Let relations
;̄, ; and ÷ for base B be such that Cond;̄ and Cond;
hold and inclusion is satisfied. In the case where B is logi-
cally closed,
(1) the following are logically equivalent:

a) ;̄ is a base dependence, which satisfies Def-B,
Cond-IDB , conjugation, contribution, modularity and
redundancy

b) ; is a dependence that satisfies Def-K, Cond-ID, Disj,
LEl, LEr, CCIr and CCDr

0

c) ÷ is a saturated kernel contraction, which satisfies
success, inclusion, core-retainment, uniformity and
relative closure

d) ÷ is a basic AGM contraction, which satisfies
(÷ 1)–(÷ 6)

(2) if any one of 1.a–1.d above hold, then ;̄ reduces to ;:
α ;̄β iff α;β.

Now everything is in place to extend the formalism for
a base dependence relation ;̄ that also satisfies CCDFB .
Satisfying CCDFB allows ;̄ to meet both CCD and CCI.

Theorem 21 (Dependence Generalization with Conjunc-
tion). Let relations ;̄, ; and ÷ for base B be such that
Cond;̄ and Cond; hold and inclusion is satisfied. In the
case where B is logically closed,

157



Base Dependence

Def-B, Cond-IDB, conjugation,
contribution, modularity, redundancy

and

CCDFB

Saturated Kernel Contraction

success, inclusion, uniformity,
core-retainment, relative closure

and

conjunctive factoring

Cond!̄ Cond÷̄

Dependence

Def-K, Cond-ID, Disj,
LEl, LEr, CCIl, CCIr, CCDl

0, CCDr
0

AGM Contraction

(÷ 1), . . . , (÷ 6),
(÷ 7), (÷ 8)

Cond! Cond÷

Figure 1: Belief Change and Base Dependence (omitting the underlined axioms results in a weaker characterization)

(1) the following are logically equivalent:
a) ;̄ is a base dependence that satisfies Def-B,
Cond-IDB , conjugation, contribution, modularity,
redundancy and CCDFB

b) ; is a dependence, which satisfies Def-K, Cond-ID,
Disj, LEl, LEr, CCIl, CCIr, CCDl

0 and CCDr
0

c) ÷ is a saturated kernel contraction that satis-
fies success, inclusion, core-retainment, uniformity,
relative closure and conjunctive factoring

d) ÷ is an AGM contraction, which satisfies (÷ 1)–(÷ 6),
(÷ 7) and (÷ 8)

(2) if any one of 1.a–1.d above hold, then ;̄ reduces to ;:
α ;̄β iff α;β.

This concludes our work. The diagram in Figure 1 captures
the key results from Theorems 12-21.

Discussion and Related Work
There are several works that define the concepts of rele-
vance and dependence of formulas. Hansson and Wasser-
mann (2002) propose that these can be classified into two
groups. Some authors capture relevance/dependence of for-
mulas through syntactical means such as variable sharing
and language splitting, including (Parikh 1999; Chopra and
Parikh 2000; Makinson and Kourousias 2006; Kourousias
and Makinson 2007; Makinson 2007; Ji, Qi, and Haase 2008;
Suntisrivaraporn et al. 2008; Ismail and Kasrin 2010; Wu,
Zhang, and Zhang 2011; Perrussel, Marchi, and Zhang 2011;
Falappa et al. 2011). Other authors have focused on in-
ferential dependency of formulas, or, in other words, how
some formulas deductively contribute to inference of other
formulas. Examples of this approach include (Farias del
Cerro and Herzig 1996; Hansson and Wassermann 2002;

Cuenca Grau, Halaschek-Wiener, and Kazakov 2007), as
well as the work reported in the present paper. Typically,
syntactical approaches are simpler and computationally more
efficient compared to inferential approaches. However, the
latter usually provide a more accurate and tighter definition
of relevance and dependence than syntactical approaches.

What sets FH’s work and our work apart from all other
works, is the integration with the theory of belief change.
This has an important implication: it provides the most the-
oretically accurate definition of dependence in the context
of belief change. For example, because FH construct their
dependence relation using AGM contraction, any other defi-
nition of dependence that is put forward to be used in relation
to AGM contraction is either as good as their dependence
relation or less accurate in capturing dependence of formulas
in this context. Of course, being a generalization of FH’s
work, our framework inherits this property for belief sets, and
preserves it for belief bases as well.

Conclusion

With these results, we have provided a formalism of
Gärdenfors’ preservation criterion such that it generalizes
the dependence formalism studied by FH so that it works
for belief bases (and belief sets). In the case when a belief
base is closed the generalized dependence, base dependence,
is equivalent to the original FH dependence relation. While
generalizing FH’s work, it preserves some of the important
characteristics of their study such as Keynes’ conjunction
criterion for dependence (CCD) and Grdenfors’ conjunction
criterion for independence (CCI). Additionally, we provide
a more specific intuition called conjunction criterion of de-
pendence factoring, CCDF, that encompasses both Keynes’
CCD and Grdenfors’ CCI intuitions.
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