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Abstract

Forgetting has been addressed in various areas in KR, includ-
ing classical logic, logic programming, modal logic, and de-
scription logics. Here, we view forgetting as an abstract oper-
ator, independent of the underlying logic. We argue that for-
getting amounts to a reduction in the signature of a language
of a logic, and that the result of forgetting elements of a sig-
nature in a theory is the set of logical consequences over the
reduced language. This definition offers several advantages.
It provides a uniform approach to forgetting, applicable to
any logic with a well-defined consequence relation. Obtained
results are thus applicable to all subsumed formal systems,
and typically are obtained much more straightforwardly. The
approach also leads to insights with respect to specific logics:
forgetting in first-order logic is somewhat different from the
accepted approach; and the definition applied to logic pro-
grams yields a new syntax-independent notion of forgetting.

Introduction
Forgetting has been studied in the context of various logical
systems, including classical propositional logic (PC), first-
order logic (FOL), logic programming, modal logics, and
description logics. While there is no generally-agreed upon
definition, a common intuition is that in forgetting an agent
becomes ignorant of, or unaware of, some part of its lan-
guage.

Forgetting potentially has several pragmatic uses. For ex-
ample, forgetting the part of a knowledge base (KB) that
is irrelevant to a query may yield more efficient query-
answering. Forgetting may provide a formal account of
predicate hiding. As well, forgetting may be used in sum-
marising a KB or reusing part of a KB or in clarifying rela-
tions between predicates.

A typical approach to addressing forgetting is to specify
a host logic, give intuitions, and then provide a formal def-
inition. Consequently, forgetting has been addressed with
respect to various logics and with differing intuitions, but
with no consensus as to what it means as a general concept.

In this paper, forgetting is addressed as an abstract belief
change operator, independent of any specific formal system.
The goal is to investigate forgetting at the knowledge level
and thus independent of syntax. Our thesis is that forgetting
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amounts to a reduction in the signature of a language of a
logic. This approach to forgetting is not new; in fact it is,
implicitly or explicitly, the most common definition for the
term.

This means that, for a given logic over a language with
signature σ, forgetting σ′ ⊆ σ from a KB K is the set of
consequences of K expressible over σ\σ′. This definition
is very simple but offers several advantages. Foremost, it
provides a uniform approach, applicable to any logic with
a well-defined consequence relation. By taking a general
view, various issues are clarified, unified, and simplified.
Obtained results are obviously applicable to all subsumed
formal systems, and many results follow immediately. An
inference-based perspective leads to simpler techniques for
computing forgetting in some cases. Since forgetting results
in a theory, the main computational challenge is to, if possi-
ble, determine a finite representation of forgetting, or a uni-
form interpolant. Notably, a uniform interpolant may not
exist (e.g., in FOL) whereas forgetting remains well-defined.

The next section reviews related work while the third sec-
tion presents notation and definitions. The fourth section
presents the general approach. The next section briefly dis-
cusses applying the approach to specific logics. This is fol-
lowed by a concluding section.

Background
The best-know definition of forgetting is due to George
Boole, wherein forgetting an atom p from formula φ is given
by φ[p/>] ∨ φ[p/⊥]. (Lin and Reiter 1994) addresses for-
getting in FOL. In logic programming, work has focussed
on computing forgetting via program transformations. E.g.,1
(Eiter and Wang 2008) give an algorithm for computing for-
getting in disjunctive logic programming. These approaches
are syntactic, in that forgetting may produce different results
for two programs that are strongly equivalent.

In modal logic, most work on forgetting per se has dealt
with epistemic logic, although some work (e.g. (Ghilardi
1995)) addresses uniform interpolation. (van Ditmarsch et
al. 2009) present an approach wherein “becoming ignorant”
is modelled as an event in a dynamic epistemic logic. Ac-
cording to (van Ditmarsch et al. 2009), there is no hard no-
tion of what it means to forget something, whereas in the

1The set of references is limited due to space contraints.



present approach, forgetting is uniquely defined.
In description logic, work has also focussed on uniform

interpolation. E.g. (Konev et al. 2009) addresses uniform in-
terpolation in EL. Characterizations of uniform interpolants
are given via bisimulations between models. Work specifi-
cally on forgetting includes (Wang et al. 2010), which ad-
dresses the problem in ALC.

Formal Preliminaries
For an understood signature, a logic for a language is given
in terms of a consequence relation `. The relation ` is as-
sumed to be a Tarskian consequence relation; that is, it satis-
fies reflexivity, cut, and monotony. We allow sets of formu-
las on the right hand side of `. Γ ↔ Ψ abbreviates Γ ` Ψ
and Ψ ` Γ. As well, Cn(Γ) = {φ | Γ ` φ}.

The set of interpretations is denoted by Ω, where the logic
and signature are understood from the context. w |= φ de-
notes that φ is true in interpretation w. Mod(φ) is the set of
models of φ. Γ |= φ just if Mod(Γ) ⊆ Mod(φ). For the
logics we consider, we have that Γ |= φ iff Γ ` φ.
σ (σ′, etc.) denotes a signature for a (given) logic. Lσ is

the language defined over σ, where the language and conse-
quence relation are clear from the context. Sig(Γ) denotes
the signature of Γ, i.e. the nonlogical symbols mentioned in
formulas in Γ. We also use Sig(w) to denote the signature
associated with interpretation w.

The above notions may where appropriate be subscripted
by a signature. E.g. for an understood logic, Ωσ denotes the
set of interpretations over, or restricted to, σ. In particular,
Cnσ(Γ) = {φ | Γ ` φ where φ ∈ Lσ}

Let σ and σ′ be signatures where σ ⊂ σ′. Then σ is
a reduct2 of σ′, and σ′ is an expansion of σ. If also w ∈
Ωσ , w′ ∈ Ωσ′ , and w and w′ agree on the interpretation of
symbols in σ then w is the σ-reduct of w′, and w′ is a σ′-
expansion of w. w′

|σ is the reduct of w′ with respect to σ
whereas w↑σ′ is the set of expansions of w with respect to
σ′. This notation extends to sets of models and formulas in
the obvious way. E.g. for σ ⊆ σ′, Γ|σ is the set of formulas
in Γ with signature in σ.

The Approach
Our central definition is the following.

Definition 1 Assume some fixed logic with language L and
signature σ. Let Γ ⊆ Lσ . The result of forgetting σ′ in Γ,
denoted F(Γ, σ′), is given by:

F(Γ, σ′) = Cnσ(Γ) ∩ Lσ\σ′ .

While this definition is very simple, it specifies a unique,
unambiguous operator, applicable to any “reasonable” logic.
Notably, it applies to logics for which an interpolation the-
orem does not hold, such as classical FOL, S4, and various
relevance logics and description logics. The characterization
in Definition 1 is at the knowledge level and yields a theory.
A key question then is to determine those instances of F

2This term is standard in model theory. It should not be con-
fused with the term reduct in answer set programming.

that may be finitely characterized, i.e. for which a uniform
interpolant exists.
F(Γ, σ′) results in a reduced language (unless σ ∩ σ′ =

∅). We can re-express forgetting in the original language (as
many approaches do) via:

FO(Γ, σ′) = Cnσ(F(Γ, σ′))

The following results are elementary, but show that the
definition of forgetting has the “right” properties.
Proposition 1 Let Γ and Γ′ be sets of sentences.

1. Γ ` F(Γ, σ)

2. If Γ↔ Γ′ then F(Γ, σ)↔ F(Γ′, σ)

3. F(Γ, σ) = Cnσ′(F(Γ, σ)) where σ′ = Sig(Γ) \ σ.
4. F(Γ, σ1 ∪ σ2) = F(F(Γ, σ1), σ2))

5. Γ is a conservative extension of F(Γ, σ).

Thus, forgetting yields no new consequences; it is indepen-
dent of syntax and results in a deductively-closed theory.
Part 4 shows that forgetting is decomposable with respect
to a signature; hence it is commutative with respect to its
second argument. Last, in forgetting, no results over the re-
duced signature are lost.

The next results give a model-based characterisation.
Proposition 2 Let σ′ ⊆ σ, and let Γ ⊆ Lσ .

1. Modσ\σ′(F(Γ, σ′)) = Modσ(Γ)|(σ\σ′)

2. Modσ(F(Γ, σ′)) = (Modσ(Γ)|(σ\σ′))↑σ

Thus the models of F(Γ, σ′) are exactly the models of Γ
restricted to the signature σ \ σ′. The second part expresses
forgetting with respect to the original signature. The form in
Proposition 2.2 has frequently appeared in the literature for
characterising forgetting.

(Zhang and Zhou 2009) give four postulates characteris-
ing their approach to forgetting in S5. An analogous result
follows here.

Definition 2 Signature σ is irrelevant to Γ, IR(Γ, σ), iff
there is Γ′ such that Γ↔ Γ′ and Sig(Γ′) ∩ σ = ∅.
Proposition 3 Γ′ = FO(Γ, σ′) iff

1. Γ ` Γ′

2. If IR(φ, σ′) and Γ ` φ then Γ′ ` φ
3. If IR(φ, σ′) and Γ 6` φ then Γ′ 6` φ
4. IR(Γ′, σ′)

Applying the Framework
We next instantiate the approach to specific logical systems,
including PC, FOL, a relevance logic, and disjunctive logic
programs. Given space constraints, some familiarity with
these approaches is assumed.

Propositional Logic For this part, L is the language of
PC, and P , a signature, is a set of propositional atoms.
For set of formulas Γ, ΓCNF is the clause form of Γ,
expressed as a set of sets of literals. Res(S, p) is the
set of resolvants of clauses in S with respect to p; e.g.
for S = {{p, q}, {¬p, r}, {¬p, s}, {t}}, Res(S, p) =
{{q, r}, {q, s}}. We obtain:



Theorem 1 Let Γ ⊆ L and p ∈ P .

1. F(Γ, p)↔ Γ[p/>] ∨ Γ[p/⊥] for finite Γ.
2. F(Γ, p)↔ ΓCNF |(P\{p}) ∪ Res(ΓCNF , p).

The first part shows that, restricted to PC, the result of for-
getting according to Definition 1 coincides with the Boole
definition. The second part gives an alternative means of
computing forgetting that offers several advantages over the
Boole definition. The Boole definition, while easily com-
putable, only works for a finite set of formulas and results in
a disjunction as the top-level connective in a KB (which in
general may be awkward to work with). It does not readily
extend to other logics including, as we will argue, FOL.

For the second means of computing forgetting, there is
no need to require a finite KB, and the resulting KB is in
a more useful form. However, it may result in a quadratic
(in the number of clauses mentioning p) blowup of the KB.
Other properties are inherited from Proposition 1 and 3.
The model-theoretic characterisation of forgetting in PC is
a corollary to Proposition 2.

First-Order Logic In FOL, nonlogical symbols are of two
sorts: predicate and function symbols. (Lin and Reiter 1994)
define the forgetting of a predicate symbol via interpreta-
tions, using a definition analogous to Proposition 2. Forget-
ting a constant symbol doesn’t appear to have been consid-
ered in the literature (nor for that matter, arbitrary function
symbols). For forgetting a constant symbol we have the fol-
lowing.
Proposition 4 Let Γ ⊂ Lσ be finite, c a constant, and Γc =
{φ ∈ Γ | c ∈ σ(φ)}. For x not appearing in Γ we have:

F(Γ, c) ↔ (Γ \ Γc) ∪ {∃x ∧µ∈Γc
µ[c/x]}.

Lin and Reiter also discuss forgetting a ground atomic
formula. Our definition of forgetting is inapplicable in
this case. Moreover, if Definition 1 were modified to ad-
mit ground atomic formulas, it would produce unaccept-
able results. E.g. consider forgetting that John is a student,
st(J), in Γ by taking the set of consequences Γ′ ⊆ Γ that
don’t mention st(J). Then Γ′ would still contain ∃x(x =
J ∧ st(x)), since this is a consequence of Γ that does not
mention st(J). So not only does Γ′ still entail st(J), but Γ′

is also not a (deductively-closed) theory.
We suggest that st(J), or any well-formed formula for

that matter, is not an appropriate object for forgetting: st(J)
is an assertion and the removal of this fact is in fact the re-
moval of a proposition. In such a case the appropriate belief
change operation is contraction. See the full paper for de-
tails.

Relevance Logic We next consider the relevance logic
of first degree entailment Efde (Anderson and Belnap Jr.
1975), a logic weaker than classical PC. Efde provides an
example where the standard Boole definition of forgetting is
unsuitable. A formula of Efde is of the form φ → ψ where
φ, ψ are propositional formulas formed using the standard
connectives ∧, ∨, ¬ but not mentioning →. In Efde, the
so-called “paradoxes of implication” such as p ∧ ¬p → φ
and φ→ p ∨ ¬p are missing. See (Anderson and Belnap Jr.
1975) for an axiomatisation and semantic theory.

If we write φ � ψ for φ → ψ and ψ → φ, then it can
be shown that φ � φ′ holds where φ′ is φ in CNF. More-
over, for φ, ψ in CNF, determining whether φ → ψ holds
can be easily determined: the entailment holds just when for
each clause (disjunction) C in ψ there is a clause in φ whose
literals are are among those in C.

With these facts, it is straightforward to define forgetting
in Efde. For Γ a set of propositional formulas formed using
connectives ∧, ∨, ¬, define Cn(Γ) by:

Cn(Γ) = {φ | Γ→ φ}.

Then Definition 1 can be applied. We obtain:
Theorem 2 Let Γ be a set of propositional formulas formed
using ∧, ∨, ¬. Then

F(Γ, p) � {C ∈ ΓCNF | not: p→ C}.

Thus forgetting p from Γ is characterised by just those
clauses in Γ, in CNF, that don’t mention p. So forgetting
in this case is a trivial operation once a KB is in CNF.

Logic Programming We turn next to answer set program-
ming (ASP) (Gelfond and Lifschitz 1988). A (disjunctive)
logic program (DLP) over a set of atoms A is a finite set of
rules of the form

a1; . . . ; am ← b1, . . . , bn,∼c1, . . . ,∼cp
where ai, bj , ck ∈ A and 0 ≤ m,n, p.

Operators ‘;’ and ‘,’ express disjunction and conjunction
respectively. For atom a, ∼a is (default) negation. A pro-
gram induces 0, 1, or more answer sets, roughly, minimal
sets of atoms that satisfy the rules. The difficulty is that a
program is nonmonotonic with respect to its answer sets.
E.g., the program {q ← ∼p} has answer set {q} while
{q ← ∼p, p} has answer set {p}.

More recently ASP has been put on a monotonic foot-
ing with a notion called strong equivalence (Lifschitz et al.
2001) that provides an account of logical equivalence for
programs. Subsequently, (Wong 2008) has provided an in-
ferential system for disjunctive rules that preserves strong
equivalence. The set of inference rules may be found in the
aforecited reference; the key point is that these rules allow a
consequence relation Cn(·) to be defined, and consequently
Definition 1 can be used.

Moreover, we can define a notion analogous to Res in
Theorem 1 for computing forget in a DLP. That is, for a
DLP P and atom a, we can define ResLP (P, a) to be a set
of rules such that

1. each rule in ResLP (P, a) is obtained by a single applica-
tion of an inference rule to rules in P ; and

2. no rule in ResLP (P, a) mentions a.

Then we obtain the result:
Theorem 3 Let P be a DLP and a ∈ A. Then:

F(P, a)↔ P|(A\{a}) ∪ ResLP (P, a).

The relation↔ is that of strong equivalence. Since we in-
herit the results of Proposition 1 and 3, the results of forget-
ting are independent of syntax, even though the expression



on the right hand side of Theorem 3 is a set of rules obtained
by transforming and selecting rules in P . As in PC, forget-
ting an atom results in at worst a quadratic blowup in the size
of the program. This then results in an interesting operator:
As indicated in the Background section, there has been sub-
stantial effort in addressing forgetting in ASP. Such previous
work is syntactic, in that the result of forgetting depends on
the form of the underlying logic program, whereas the cur-
rent approach is independent of how a program is expressed.

Other Logics Clearly the approach can be extended to
other classes of logics. Thus, there is no obstacle in principle
to providing a syntactic definition (analogous to Theorem 3)
for forgetting in S5, for example by exploiting the inferen-
tial system RS5 of (Enjalbert and Fariñas del Cerro 1989).
Further, the central definitions are applicable to description
logics. The current approach then provides a definition of
forgetting regardless of whether a particular system has the
uniform interpolation property or not.

Conclusion

We have presented an account of forgetting as an abstract,
knowledge level, belief change operator, in which forget-
ting constitutes a reduction in the signature of a KB. By tak-
ing a general view, various issues are clarified, unified, and
simplified. To this end, the central definition is applicable
to any logic with a well-defined consequence relation, and
the results obtained are applicable to all subsumed logics.
For a given logic and signature, we obtain a unique, syntax-
independent operation of forgetting, independent also of a
domain of application. Thus, to this last point, forgetting
doesn’t involve losing information about a domain per se
but rather involves losing the ability to express, or represent,
information about the domain.

We argue that this view leads to insights with respect to
specific logics. In the literature, there is no universally-
agreed on use of the term forgetting, and it has been used
for conceptually different phenomena. Some approaches de-
scribe forgetting as “becoming ignorant” or base intuitions
on forgetting knowledge. Such approaches would appear to
address some form of contraction in an agent’s knowledge.

We have considered “instantiations” of forgetting in PC,
FOL, a relevance logic, and in disjunctive logic programs.
Forgetting in FOL is somewhat different from the accepted
approach; forgetting is readily definable in at least some rel-
evance logics; and the definition applied to disjunctive logic
programs yields a new syntax-independent definition of for-
getting. Forgetting has most often been identified with uni-
form interpolation. Indeed there is a close relation: a uni-
form interpolant is a syntactic object, which may or may
not exist for a given logic. Forgetting, in contrast, is well-
defined for any “reasonable” logic. If a uniform interpolant
exists, it corresponds to a (finite) representation of the result
of forgetting. In fact, the key computational question for
forgetting is whether a uniform interpolant exists and, if so,
how it is determined.

References
A.R. Anderson and N.D. Belnap Jr. Entailment: The Logic
of Relevance and Necessity, Vol. I. Princeton University
Press, 1975.
Thomas Eiter and Kewen Wang. Forgetting in answer set
programming. Artificial Intelligence, 172(14):1644–1672,
2008.
Patrice Enjalbert and Luis Fariñas del Cerro. Modal res-
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