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Abstract
The standard (AGM) approach to belief change assumes that
the underlying logic is at least as strong as classical propo-
sitional logic. This paper investigates an account of belief
change, specifically contraction, where the underlying logic
is that governing Horn clauses. Thus this work sheds light
on the theoretical underpinnings of belief change by weaken-
ing a fundamental assumption of the area. This topic is also
of independent interest since Horn clauses have been used in
areas such as deductive databases and logic programming. It
proves to be the case that there are two distinct classes of
contraction functions for Horn clauses: e-contraction, which
applies to entailed formulas, and i-contraction, which applies
to formulas leading to inconsistency. E-contraction is appli-
cable in yet weaker systems where there may be no notion
of negation (such as in definite clauses). I-contraction on the
other hand has severe limitations, which makes it of limited
use as a belief change operator. In both cases we explore the
class of maxichoice functions which, we argue, is the appro-
priate approach for contraction in Horn clauses theories.

Introduction
The area of belief change in knowledge representation is
concerned with how an agent may alter its corpus of be-
liefs in the presence of new information. For example, an
agent may contract, or reduce its stock of beliefs, revise
its beliefs in the face of new information, or may merge
several pieces of information. Contraction and revision
are in some sense the more basic operators (since they in-
volve a single agent and single piece of information), and
contraction is usually taken as the more fundamental op-
erator, in terms of which revision may be defined. The
best-known approach in this area is the so-called AGM
approach (Alchourrón, Gärdenfors, and Makinson 1985;
Gärdenfors 1988), named after the original developers.

This paper addresses belief change in the expressively
weaker language of Horn clauses, where a Horn clause can
be written as a rule in the form a1 ∧ a2 ∧ · · · ∧ an → a for
n ≥ 0, and where a, ai (1 ≤ i ≤ n) are atoms. (Thus, writ-
ten as a disjunction, a Horn clause can have at most one pos-
itive literal.) That is, we investigate belief change in which
the agent’s beliefs are represented in a Horn clause knowl-
edge base and the input is a conjunction of Horn clauses,
This topic is of interest for several reasons. First, it sheds
light on the theoretical underpinnings of belief change, in

that it weakens the assumption that the underlying logic is
at least propositional logic. In particular, the notion of con-
sistency plays an important role in contraction and revision.
Given the significantly weaker notion of negation in Horn
clauses, belief change with respect to Horn clauses needs
to contend with a correspondingly weaker notion of consis-
tency. Second, Horn clauses have found extensive use in AI
and database theory, in areas such as logic programming,
truth maintenance systems, and deductive databases.1 Thus,
belief change in such areas is a not unimportant question.
Last, as discussed next, belief change in Horn clauses is in-
teresting in its own right.

It proves to be the case that in a Horn clause knowledge
base there are two distinct types of contraction, depending
on how relative consistency between formulas is defined. In
the first case, called e-contraction, a Horn clause knowledge
base implies a formula, and we wish to weaken the knowl-
edge base so that the formula is not implied. In the sec-
ond case, i-contraction, adding a formula to a knowledge
base would result in inconsistency, and we wish to weaken
the knowledge base so that inconsistency would not result
if the formula were added. Two approaches for maxichoice
contraction are developed, corresponding to these two no-
tions of consistency. In the AGM approach, maxichoice
contraction has undesirable properties and in general is far
too strong. In contrast, maxichoice e-contraction appears to
be the appropriate approach for defining contraction: it has
good properties, and the problems of maxichoice AGM con-
traction do not arise here. For (maxichoice) i-contraction, it
is a different story, and problems analogous to maxichoice
AGM contraction arise; moreover this problem appears to be
fatal, in that moving to a notion of partial meet contraction
does not solve the problem.

The next section introduces belief change and Horn clause
reasoning. This is followed by material that is pertinent
to Horn clause belief contraction. The following section
gives the formal details: we provide a set of postulates for
e-contraction, and a representation result in terms of re-
mainder sets. Notably, the controversial recovery postu-
late does not hold. For i-contraction we similarly develop

1It should be pointed out that, while Horn clauses underlie logic
programming, the approach presented here does not involve logic
programming per se; in particular, negation as failure plays no role
in the approach nor in the underlying reasoning system.



an account in terms of remainder sets, and discuss where
problems arise. The paper concludes with a discussion on
prospects for other representation results and for belief revi-
sion in Horn clause theories.

Background: Belief Change
A common approach in addressing belief change is to pro-
vide a set of rationality postulates for belief change func-
tions. The AGM approach (Alchourrón, Gärdenfors, and
Makinson 1985; Gärdenfors 1988) provides the best-known
set of such postulates. The goal is to describe belief change
at the knowledge level, that is on an abstract level, indepen-
dent of how beliefs are represented and manipulated. Belief
states are modelled by sets of sentences, called belief sets,
closed under the logical consequence operator of a logic that
includes classical propositional logic in a language L. Thus
a belief set K satisfies the constraint:

If K logically entails φ then φ ∈ K.

For belief set K and formula φ, K + φ is the deductive clo-
sure of K ∪ {φ}, called the expansion of K by φ. K⊥ is the
inconsistent belief set (i.e. K⊥ = L). Expansion captures
the simplest form of belief change; it can be reasonably ap-
plied when new information is consistent with a belief set

Contraction represents the situation in which the reasoner
loses information. Informally, the contraction of a belief set
by a formula is another belief set in which that formula is not
believed. Formally, a contraction function −̇ is a function
from 2L × L to 2L satisfying the following postulates.

(K−̇1) K−̇φ is a belief set.

(K−̇2) K−̇φ ⊆ K.
(K−̇3) If φ 6∈ K, then K−̇φ = K.

(K−̇4) If not ` φ, then φ 6∈ K−̇φ.
(K−̇5) If φ ∈ K, then K ⊆ (K−̇φ) + φ.

(K−̇6) If ` φ ≡ ψ, then K−̇φ = K−̇ψ.
(K−̇7) K−̇φ ∩K−̇ψ ⊆ K−̇(φ ∧ ψ).
(K−̇8) If ψ 6∈ K−̇(ψ ∧ φ) then K−̇(φ ∧ ψ) ⊆ K−̇ψ.

Thus, contraction is meaningful for believed sentences
(K−̇3) and yields a belief set (K−̇1) in which the sentence
for contraction φ is not believed (unless φ is a tautology)
(K−̇4). No new sentences are believed (K−̇2). The fifth
postulate, the so-called recovery postulate, states that noth-
ing is lost if one contracts and expands by the same sentence.
This postulate is controversial; see (Hansson 1999) for a dis-
cussion and plausible counterexamples. The sixth postulate
asserts that contraction is independent of how a sentence
is expressed. The last two postulates express relations be-
tween contracting by conjunctions and contracting by the
constituent conjuncts. The first six postulates are referred to
as the basic postulates while the last two are referred to as
the extended postulates.

Revision represents the situation in which new informa-
tion may be inconsistent with the reasoner’s beliefs K, and
needs to be incorporated in a consistent manner where pos-
sible. A revision function ∗ is a function from 2L × L to

2L satisfying a set of postulates analogous to those for con-
traction; given space limitations we omit the postulate set.
Contraction is usually taken as being the more fundamental
operator for belief change. Revision can be defined in terms
of contraction by means of the Levi Identity:

K ∗ φ = (K−̇¬φ) + φ. (1)

Thus, to revise by φ, make K consistent with φ then expand
by φ. Contraction can be similarly defined in terms of revi-
sion by the Harper identity; we omit the details.

Various constructions have been proposed to characterise
belief change. An epistemic entrenchment ordering is a to-
tal preorder on sentences of the language, reflecting how
“entrenched” or strongly held each sentence is. It has
been shown (e.g. (Gärdenfors 1988)) that there is a corre-
spondence between entrenchment orderings and contraction
functions satisfying the AGM postulates. A second con-
struction is given by a system of spheres (Lewis 1971), com-
prising a total preorder on the set of interpretations of the
language such that the models of the belief set are least in
the ranking. (Grove 1988) shows a correspondence between
a class of systems of spheres and AGM revision functions.
A third construction (though chronologically the earliest) is
given by remainder sets. Roughly, given a belief set K and
formula φ, a remainder set of K with respect to φ is a max-
imal subset of K that fails to imply φ. A construction of
contraction functions can be given in terms of a transitive or-
dering over remainder sets, where the maximum element(s)
of the ordering determine the result of the contraction. Three
classes of contraction functions can be defined in this way:

Maxichoice contraction: Contraction is defined to corre-
spond to a single selected remainder set.

Full meet contraction: Contraction is defined to be the in-
tersection of all remainder sets.

Partial meet contraction: Contraction is defined to be the
intersection of some remainder sets.

In the AGM approach, maxichoice and full meet contrac-
tion have undesirable properties. In maxichoice contraction,
revision defined via the Levi identity has the property:

If K ` ¬φ then ∀ψ either ψ ∈ K ∗ φ or ¬ψ ∈ K ∗ φ (2)

Thus in a revision defined in terms of maxichoice contrac-
tion, for any sentence ψ, either ψ or its negation is believed.
While partial meet contraction avoids the triviality prob-
lems attending maxichoice and full meet contraction, it has
been suggested that it violates the principle of informational
economy that motivates AGM belief change (Levi 1991;
Rott 2000).

Belief revision represents the situation wherein an agent
receives information concerning some domain, perhaps con-
cerning the current state of the world, or equally well, per-
haps some point of time in the past. Belief update is a dis-
tinct operation that addresses the situation where, roughly,
an agent learns of the results of a change in the domain;
see (Katsuno and Mendelzon 1992) for a discussion of the
difference between revision and updating, along with a de-
velopment of update.



Last, there have been various specific approaches pro-
posed for defining belief revision. The two best-known
approaches are based on a notion of distance between the
models of the knowledge base and of the sentence for revi-
sion. The approach of (Dalal 1988) uses a distance mea-
sure based on the number of atoms with differing truth
values in two interpretations, while that of (Satoh 1988)
is based on set containment. Analogous approaches have
been proposed for defining update operators (Winslett 1988;
Forbus 1989).

Belief Change and Horn Clause Theories

Work involving belief change and Horn clause theories has
often focussed on particular approaches. The complexity of
specific approaches to revising or updating knowledge bases
is addressed in (Eiter and Gottlob 1992), covering both the
case where the knowledge base and formula for revision is
an arbitrary formula, and where they are conjunctions of
Horn clauses. (As might be expected, results are gener-
ally better in the Horn case.) (Liberatore 2000) considers
the problem of compact representation for revision in the
Horn case. Basically, given a knowledge base K and for-
mulaA, both Horn, the central problem addressed is whether
the knowledge base, revised according to a given operator,
may be represented by a propositional formula whose size is
polynomial with respect to the sizes of K and A.

(Langlois et al. 2008) approaches the study of revising
Horn formulas by characterising the existence of a com-
plement of a Horn consequence; such a complement cor-
responds to the result of a contraction operator. This work
may be seen as a specific instance of a general framework
developed in (Flouris, Plexousakis, and Antoniou 2004). In
(Flouris, Plexousakis, and Antoniou 2004), belief change is
studied under a broad notion of logic, where a logic is a
set closed under a Tarskian consequence operator (i.e. that
satisfies inclusion, A ⊆ Cn(A); idempotency, Cn(A) =
Cn(Cn(A)); and monotony, if A ⊆ B then Cn(A) ⊆
Cn(B)). In particular, they give a criterion for the existence
of a contraction operator satisfying the basic AGM postu-
lates in terms of decomposability. (Restall and Slaney 1995)
studies belief revision in the case of a logic weaker than clas-
sical propositional logic, that of a relevance logic.

In a somewhat different vein, there has been substan-
tial work on logic program updates. Such work addresses
a notion of belief change in the context of extended logic
programs under the answer set semantics (Baral 2003).
Roughly, such approaches consider the semantics of se-
quences of extended logic programs, (P1, . . . , Pn), where
the problem is to appropriately specify answer sets corre-
sponding to a given sequence. Typically such approaches
syntactically manipulate the rules in the constituent sets, and
often a notion of preference among rules is employed. A de-
tailed discussion of such approaches is beyond the scope of
this paper; however see (Eiter et al. 2002) for an excellent
survey.

Horn Clause Theories
Preliminary Considerations
We consider a finitary propositional language L, over a set
of atoms, or propositional letters, P = {a, b, c, . . . } that in-
cludes the distinguished atom ⊥, and truth-functional con-
nectives ∧ and →. In propositional logic, a Horn clause is
a clause (that is, a disjunction of literals) in which at most
one literal is unnegated. We adopt an alternative notation in
which a Horn clause is written as a rule r, in the form

a1 ∧ a2 ∧ · · · ∧ an → a (3)

where n ≥ 0, and a, ai (1 ≤ i ≤ n) are atoms. For rule r as
above, head(r) is a, and body(r) is the set {a1, a2, . . . , an}.
If n = 0, then r is a fact and we write a in place of→ a. If
a is ⊥ then r is an (integrity) constraint. A formula of L is
a conjunction of rules, optionally employing parentheses for
readability. Thus the following are formulas:

a, p ∧ (p ∧ q → r) ∧ (a ∧ b→ ⊥)

Allowing conjunctions of rules adds nothing of interest to
the expressibility of the language with respect to reasoning.
However, it adds to the expressibility of contraction, as we
are able to contract by more than a single Horn clause.

We adopt the following notation. Lower-case Greek char-
acters (φ, ψ, ξ, . . .), possibly subscripted, denote arbitrary
formulas ofL. Upper case Roman characters (A,B,K, . . . ),
possibly subscripted, denote sets of formulas.

An interpretation of L is a function I from P to {T, F}
where I(⊥) = F . M is the set of interpretations of L.
Sentences of L are true or false in an interpretation in the
expected way: For φ ∈ L, φ is true in I just if:

1. φ is a ∈ P and I(a) = T .
2. φ is φ1 ∧ φ2 and φ1, φ2 are true in I.
3. φ is a1 ∧ a2 ∧ · · · ∧ an → a and if every ai (1 ≤ i ≤ n)

is true in I then so is a.
φ is false just if it isn’t true according to the above. Hence,
to be clear, we do not employ negation as failure. An inter-
pretation I is a model of a sentence φ (or set of sentences),
written I |= φ, just if I makes φ true. See (Brachman and
Levesque 2004) for a discussion on the role of Horn clauses
in the wider area of knowledge representation.

Horn Clause Theories and Belief Sets
The following axioms and rules give an inference relation
for Horn clauses.2
Axioms:

1. ⊥ → a

2. a→ a

Rules:
1. From a1 ∧ · · · ∧ an → a and b1 ∧ · · · ∧ bn → ai

infer a1∧· · ·∧ai−1∧b1∧· · ·∧bn∧ai+1∧· · ·∧an → a

2Since the meaning is clear, and to keep notation to a minimum,
the atoms in the axiom schemas and first two rules are used as
variable schemas.



2. From a1 ∧ · · · ∧an → a infer a1 ∧ · · · ∧an ∧ b→ a

3. For rules r1, r2, if body(r1) = body(r2) and head(r1) =
head(r2) then from r1 infer r2.

4.(a) From φ ∧ ψ infer φ and ψ
(b) From φ, ψ infer φ ∧ ψ

Rule 3 allows us to derive, for example, a ∧ b → c from
b ∧ b ∧ a → c. A formula ψ can be derived from a set of
formulas A, written A `HC ψ, just if ψ can be obtained
from A by a finite number of applications of the above rules
and axioms; for simplicity we drop the subscript and write
A ` ψ. If A = {φ} is a singleton set then we just write
φ ` ψ. A set of formulas A ⊆ L is inconsistent just if
A ` ⊥. We use φ↔ ψ to represent logical equivalence, that
is φ ` ψ and ψ ` φ. Though it is not germane to this paper,
we have the following soundness and completeness result:

Theorem 1 Let A ⊆ L and φ ∈ L. Then
A ` φ iff: ∀I ∈M , if I |= A then I |= φ.

Cn(φ) is the set of deductive consequences of a formula
or set of formulas φ, that is, Cn(φ) = {ψ | φ ` ψ}. For
K ⊆ L,K is a belief set just if it satisfies the constraint: φ ∈
K iff K ` φ. The letters K, K1, K ′ etc. will exclusively
denote belief sets.

We obtain the following results that are consequences of
our working with a finite language.

Theorem 2 Let X be a belief set. Then there is a formula φ
such that Cn(φ) = X .

Theorem 3 Let X be a belief set and φ a formula such that
Cn(φ) = X , and let X ′ be a belief set and φ′ a formula
such that Cn(φ′) = X ′. Then we have φ ` φ′, φ′ ` φ iff
X = X ′.

Consistency and Horn Clause Belief Change
In classical logic we have the relation between consistency
and derivability:

A ` ¬φ iff A ∪ {φ} ` ⊥.

Here, with a Horn clause language, this equivalence fails and
we have two distinct relations between a set of formulas A
and a formula φ:

A ` φ (4)
A ∪ {φ} ` ⊥ (5)

The first case would have the meaning that A is inconsistent
with the negation of φ except, of course, the negation of a
general formula isn’t defined. In the second case, as usual,
φ is consistent with A if adding φ to A does not yield an
inconsistency. These two notions of consistency (4)-(5) lead
to two classes of belief contraction:

C1: K ` φ and we want a belief set such that K−̇e φ 6` φ.

C2: φ 6` ⊥, K∪{φ} ` ⊥ and we want a belief set such that
K−̇i φ ∪ {φ} 6` ⊥.

We refer to these types of (Horn clause) contraction op-
erators as entailment-based contraction (or e-contraction)

and inconsistency-based contraction (or i-contraction) re-
spectively. In AGM belief change, e-contraction and i-
contraction amount to the same thing; here, we have distinct
operators. For e-contraction, one has a belief set that entails
(hence the notation −̇e ) a formula, and one wants a weaker
belief set that doesn’t entail the formula. Arguably this is the
interpretation that one thinks of for “standard” belief con-
traction. E-contraction has the very appealing property that
it does not rely on notions of consistency or negation. Hence
it is appropriate in approaches that don’t employ these no-
tions. In fact, our results concerning −̇e apply to definite
clause theories,3 wherein there is no such thing as an incon-
sistent set of definite clauses. As well of course, K−̇e φ is
meaningful in the case where K ` ⊥, and in fact K−̇e⊥
could be employed to remove an inconsistency.

For i-contraction, one has a belief set K that is inconsis-
tent (hence −̇i ) with a formula, and wants a weaker belief
set such that adding the formula doesn’t yield inconsistency.
Hence, in the interesting case we do not contract by a for-
mula in a belief set, but rather we contract so that a formula
can be consistently added to a belief set. I-contraction would
seem to naturally yields a revision operator, using the Levi
Identity. Thus:

R: In the interesting case we have K ∪ φ ` ⊥ and we want a
consistent belief set such that K ∗i φ ` φ.

Unfortunately, it will prove to be the case that i-
contraction will prove unsuitable in other ways for defining
revision. Note there is no revision operator similarly defin-
able from e-contraction, since the negation of a formula is
not defined in our language L.

Horn Clause Contraction
Entailment-Based Contraction
For contraction, given a belief set K and a formula φ, the
aim is to remove the least set of formulas from K such that
a consistency condition involving φ holds. This notion is
captured by that of a remainder set; see (Hansson 1999) for
a thorough discussion. In the approach at hand there are
two notions of remainder set, corresponding to the two no-
tions of consistency as given in (4) and (5). This subsection
presents results concerning Horn clause remainder sets suit-
able for e-contraction and then uses these results as the basis
for specifying Horn clause contraction. The next subsection
covers similar ground for i-contraction.

Remainder Sets Our main definition is the same as that in
(Hansson 1999), but expressed with respect to Horn clauses.

Definition 1 Let K ⊆ L and let φ ∈ L.
K ↓eφ is the set of sets of formulas s.t. K ′ ∈ K ↓eφ iff

1. K ′ ⊆ K
2. K ′ 6` φ
3. 6 ∃K ′′ such that K ′ ⊂ K ′′ ⊆ K and K ′′ 6` φ.

3For our rule-based notation, a definite clause theory is a Horn
clause theory over alphabet P \ ⊥.



Each K ′ ∈ K ↓e φ is a remainder set with respect to K and
φ. Usually such a K ′ will just be referred to as a remainder
set, since the underlying belief set and formula are clear.

We have the following results concerning remainder sets
of Horn clause theories.

Theorem 4

1. If X ∈ K ↓eφ then X = Cn(X).
2. If X ⊆ K and φ 6∈ Cn(X) then ∃X ′ such that X ⊆
X ′ ∈ K ↓eφ.

3. K ↓eφ = ∅ iff ` φ.
4. If X ∈ K ↓eφ and ψ ∈ K, ψ 6∈ X then X ∪ {ψ} ` φ.
5. K ↓eφ = K ↓eψ iff: for every X ⊆ K, X ` φ iff X ` ψ.
6. If φ, ψ ∈ K then (K ↓eφ) ∩ (K ↓eψ) ⊆ K ↓e (φ ∧ ψ).
7. If φ, ψ ∈ K then K ↓e (φ ∧ ψ) ⊆ (K ↓eφ) ∪ (K ↓eψ).
8. If X ∈ K ↓eφ then there is X ′ ⊇ X such that X ′ ∈ K ↓e

(φ ∧ ψ).

The first part says that a remainder set is also a belief set.
The second part says that an arbitrary set of formulas that
fail to imply a formula can be expanded to a remainder set
that fails to imply that formula. Part 3 says that remain-
der sets exist, except in the trivial case where a tautology
is to be dropped, while the next part reflects the maximal-
ity of remainder sets. Part 5 is called choice expansion in
(Hansson 1999). While similar in form to the AGM postu-
late (K−̇7), there is no direct correspondence since (K−̇7)
specifies a relation between formulas, whereas this result is a
relation between remainder sets. In Part 6, replacing⊆ by =
gives what (Hansson 1999) calls choice distributivity; here
we have a somewhat weaker version. Part 7 gives a partial
converse to the containment in Part 6, as does Part 8.

We note two results that hold for remainder sets that are
based on classical propositional logic, but do not hold for
closed Horn theories.

1. If X ∈ K ↓eφ and ψ ∈ K then X ∪ {φ} ` ψ.
Counterexample:

Let K = Cn(a→ b), φ = a ∧ c→ b and ψ = a→
b.
Then K ↓e φ = {X} where X = Cn({a ∧ c ∧ i →
b | i ∈ P \ {a, c}}) We have that a → b ∈ K but
X ∪ {a ∧ c→ b} 6` a→ b.

2. If ψ ` φ then K ↓eφ ⊆ K ↓eψ.
Counterexample:

Let K = Cn(a → b), and let ψ = a → b and
φ = a ∧ c→ b.
Then K ↓e ψ = {X1} where X1 = Cn({a ∧ i →
b | i ∈ P \ {a}}) and K ↓e ψ = X2 where X2 =
Cn({a ∧ c ∧ i→ b | i ∈ P \ {a, c}}).
We get that K ↓e φ 6⊆ K ↓e ψ, since {X1} 6⊆ {X2}
(though of course X1 ⊆ X2).
Note also that

if ψ ` φ then
⋂
X∈K↓eφ

X ⊆
⋂
X∈K↓eψ

X

is a consequence of the last part of Theorem 4.

Defining Contraction via Remainder Sets We wish to
define contraction in terms of remainder sets. Typically
there are many remainder sets for any given set of formu-
las. For example, if K = Cn({p, q, r}) then among the
remainder sets of K ↓e (p ∧ q) will be a set containing
p and r but not q, and another containing p → q and
q → p but neither p nor q. The AGM approach assumes
the existence of a selection function that chooses remain-
der set(s) to be used for the contraction. However, selec-
tion functions alone lack sufficient structure to capture AGM
contraction, and so the standard approach also assumes
that the selection function is defined in terms of a transi-
tive preference ordering on remainder sets. The next four
definitions are based on definitions in (Gärdenfors 1988;
Hansson 1999).

Definition 2 Let K ⊆ L . γ is a selection function for K if,
for every φ ∈ L,

1. If K ↓eφ 6= ∅ then ∅ 6= γ(K ↓eφ) ⊆ K ↓eφ.
2. If K ↓eφ = ∅ then γ(K ↓eφ) = {K}.
Definition 3 Let γ be a selection function on K.
γ is relational if there is a binary relation ≤ over remain-

der sets of K such that for every φ, if K ↓eφ 6= ∅ then

γ(K ↓eφ) = {X ∈ K ↓eφ | for every X ′ ∈ K ↓eφ
we have X ′ ≤ X}.

γ is orderly iff γ is relational and the relation ≤ is a total
order (i.e. ≤ is reflexive, transitive, connected, and antisym-
metric).

Definition 4 Let γ be a selection function on K. The partial
meet contraction on a Horn clause belief setK generated by
γ is given by:4 K−̇e φ = γ(K ↓eφ).

Definition 5 Let K ⊆ L, γ a selection function, and −̇e the
partial meet contraction function generated by γ.

Then −̇e is a maxichoice e-contraction on K just if γ is
orderly.

This defines entailment-based maxichoice Horn clause be-
lief contraction. As mentioned earlier, the corresponding
AGM maxichoice operator is far too strong to be useful.
However here, in an inferentially weaker system, maxi-
choice belief contraction is an appropriate (arguably the ap-
propriate) contraction operator.
Example 1 Let K = Cn(p→ q) and φ = p ∧ r → q.

Then K−̇e φ 6` p→ q (since p→ q ` p ∧ r → q).
Thus K−̇e φ can be at most

Cn({p ∧ r ∧ i→ q | i ∈ P \ {p, r}}).
Example 2 Let K = Cn({p→ q, q → s, p→ r, r → s})
and φ = p→ s.

Then φ ∈ K but φ 6∈ K−̇e φ. Since K−̇e φ is a belief set,
K−̇e φ must exclude one of p→ q, q → s and one of p→ r,
r → s.

Consider the following postulate set.

(K−̇1) K−̇e φ is a belief set. (closure)
4In fact −̇e should be paramaterized by γ. Since we assume a

single γ at any point, this notation is unambiguous and simpler.



(K−̇2) K−̇e φ ⊆ K. (inclusion)
(K−̇3) If φ 6∈ K, then K−̇e φ = K. (vacuity)
(K−̇4) If not ` φ, then φ 6∈ K−̇e φ. (success)
(K−̇6) If φ↔ ψ, then K−̇e φ = K−̇eψ. (extensionality)
(K−̇T ) If ` φ then K−̇e φ = K (tautology)
(K−̇8e) If ψ 6∈ K−̇(ψ ∧ φ) then K−̇(φ ∧ ψ) = K−̇ψ.

(conjunctive equality)

Postulates (K−̇1) – (K−̇T ) are referred to as the basic
postulates for e-contraction, as they are analogous to the
AGM basic postulates (K−̇1) – (K−̇6). Similarly, (K−̇8e)
is referred to as the extended postulate for e-contraction.

(K−̇8e) is quite powerful, and reflects the fact that in the
representation result following, we have a total order over
remainder sets. We obtain the following consequences of
our postulate set:
Theorem 5

1. K−̇e φ = K−̇e φ ∧ ψ or K−̇eψ = K−̇e φ ∧ ψ
2. If φ 6∈ K then K−̇e φ ∧ ψ 6⊂ K−̇e φ.
3. If K ` φ, K ` ψ, K−̇e φ 6` ψ and K−̇eψ 6` φ then
K−̇e φ = K−̇eψ. (orderliness)

4. If φ ∈ K−̇e (φ∧ψ) then φ ∈ K−̇e (φ∧ψ∧δ) (conjunctive
trisection)
Since Theorem 5.1 clearly implies (K−̇7), a maxichoice

Horn clause operator satisfies all of the AGM postulates with
the exception of the recovery postulate. Example 1 provides
a counterexample to the recovery postulate. In this example,
we have for φ = p ∧ r → q that

Cn(p→ q) −̇e (p ∧ r → q) 6` p→ q.

We get (K−̇e φ) ∪ {φ} 6` p → q, violating recovery. As
another example showing the violation of recover, consider
K = Cn(a, b, c). There is no reason we could not have
K−̇e a = Cn(b), and quite clearly K−̇e a ∪ {a} 6` c.

The postulate (K−̇T ) (tautology, called failure in (Hans-
son 1999)) is derivable using the AGM postulates, but relies
on the recovery postulate (K−̇5) for its proof. Since we
lack the recovery postulate, it is required here as a postulate,
covering a special case, in its own right.

In the AGM approach, Theorem 5.1 entails the fullness
postulate:

If K ` ψ and K−̇e φ 6` ψ then K−̇e φ ∪ {ψ} ` φ.
However the derivation seems to require the recovery postu-
late, and so the derivation of fullness does not obtain. In the
AGM approach fullness leads to the unfortunate result that
in a revision function satisfying fullness, if K ∪ {φ} ` ⊥
then K ∗ φ is characterized by a single possible world or in-
terpretation (and so (2) obtains). This triviality result does
not obtain here as a result of the limited inferential capabili-
ties of Horn clauses.

We have the following representation result which, for
convenience, we divide into two parts:

Theorem 6 Let −̇e be a maxichoice e-contraction function
on Horn clause belief setK. Then −̇e satisfies the postulates
(K−̇1), (K−̇2), (K−̇3), (K−̇4), (K−̇6), (K−̇T ), (K−̇8e).

Theorem 7 Let −̇e be an operator on Horn clause belief
set K that satisfies the postulates (K−̇1), (K−̇2), (K−̇3),
(K−̇4), (K−̇6), (K−̇T ), (K−̇8e). Then −̇e is a maxichoice
e-contraction operator on K.

Inconsistency-Based Contraction
In this subsection, we develop inconsistency-based contrac-
tion, denoted −̇i . It proves be the case that there are some
very significant drawbacks to this type of contraction. First,
it is by no means clear that −̇i is an interesting contraction
operator, in that it appears to be very weak. Second is the
fact that it falls prey to the same triviality result as for stan-
dard AGM maxichoice contraction. However, in this case,
falling back to a partial meet operator is not an adequate so-
lution. These points are developed next.

To begin, underlying the semantic specification of −̇i we
have again the notion of a remainder set, suitably modified:

Definition 6 Let K ⊆ L and φ ∈ L .
K ↓iφ is the set such that K ′ ∈ K ↓iφ iff

1. K ′ ⊆ K
2. K ′ ∪ {φ} 6` ⊥
3. 6 ∃K ′′ such that K ′ ⊂ K ′′ ⊆ K and K ′′ ∪ {φ} 6` ⊥.

We obtain results similar to those of Theorem 4.

Theorem 8

1. If X ∈ K ↓iφ then X = Cn(X).
2. If X ⊆ K and X ∪ {φ} 6` ⊥ then ∃X ′ such that X ⊆
X ′ ∈ K ↓iφ.

3. K ↓iφ = ∅ iff φ ` ⊥.
4. If X ∈ K ↓iφ and ψ ∈ K, ψ 6∈ X then X ∪ {φ, ψ} ` ⊥.
5. K ↓i φ = K ↓iψ iff for every K ′ ⊆ K, K ′ ∪ {φ} 6` ⊥ iff
K ′ ∪ {ψ} 6` ⊥.

6. IfX ∈ K ↓iφ andX∪{φ, ψ} 6` ⊥ thenX ∈ K ↓i (φ∧ψ).
7. IfX ∈ K ↓i (φ∧ψ) then ∃X ′ such thatX ⊆ X ′ ∈ K ↓iφ.

We note two results that hold for remainder sets based on
classical propositional logic, but do not hold for closed Horn
theories under↓i.

1. If X ∈ K ↓iφ and X ∪ {ψ} 6` ⊥ then X ∈ K ↓i (φ ∧ ψ).
Counterexample:

Let K = Cn(a→ b), φ = b→ ⊥ and ψ = a.
Then K ↓i φ = {K}. K ∪ {ψ} 6` ⊥ but K 6∈ K ↓i
(φ ∧ ψ) = Cn({i ∧ a→ b | i ∈ P \ {a}}).

2. K ↓i (φ ∧ ψ) ⊆ K ↓iφ ∪K ↓iψ.
Counterexample:

Let K = Cn(a, b), ψ = a→ ⊥ and φ = b→ ⊥.
Then K ↓i (φ ∧ ψ) = {X} = {Cn({i→ a, j → b |
i, j ∈ P})}
K ↓iφ = {Xφ} = {Cn({i→ a | i ∈ P} ∪ {b})}
K ↓iψ = {Xψ} = {Cn({i→ b | i ∈ P}∪{a})}

Thus while we have X ⊆ Xφ ∪ Xψ we don’t have
{X} ⊆ {Xφ} ∪ {Xψ}.



We define i-contraction in terms of remainder sets in a
manner analogous to that for e-contraction. Definitions 2,
3, and 4 are repeated for −̇i , but referring to ↓i rather than
↓e. Hence, in the same way as for e-contraction, we first de-
fine a total order on remainder sets as a first step to defining
contraction in terms of such an ordering.

From this we give a definition for inconsistency-based
maxichoice Horn clause contraction functions:

Definition 7 Let K ⊆ L , let γ be a selection function on
i-remainder sets, and let −̇i be the partial meet contraction
function generated by γ.

Then −̇i is a maxichoice i-contraction on K just if γ is
orderly.

Before considering what postulates hold (i.e. are sound)
with respect to such an ordering, it is worthwhile consid-
ering those that do not. First, (K−̇7) does not hold. The
following provides a counterexample:

Example 3 Let K = Cn({p→ q}), φ = p, and ψ = q →
⊥. Then K−̇i φ = K−̇iψ = K, but p→ q 6∈ K−̇i (φ ∧ ψ).

For (K−̇8), consider the following relation, which is
clearly a consequence of (K−̇8):

K−̇(φ ∧ ψ) ⊆ K−̇ψ or K−̇(φ ∧ ψ) ⊆ K−̇φ. (6)

The next example shows that this relation, and conse-
quently (K−̇8) is not satisfied by a total (or indeed partial)
ordering on remainder sets.

Example 4 Let K = Cn({a, b, c, d}), φ = a ∧ b→ ⊥, and
ψ = c ∧ d→ ⊥.

Then there is an ordering on remainder sets so that
{b, c, d} ⊂ K−̇φ and {a, b, d} ⊂ K−̇ψ. Intuitively, for
a remainder set X = K−̇i (φ ∧ ψ) one would want either
a 6∈ X or c 6∈ X in order to satisfy (6).

However there is Y ∈ K ↓i (φ ∧ ψ), such that a, c ⊂
Y , and there is nothing preventing Y from being maximal
among the elements of K ↓i (φ ∧ ψ).

What these examples mean is that belief sets forK−̇φ and
K−̇ψ are essentially detached from those for K−̇(φ ∧ ψ).
Given that it is the interdependence among these elements in
AGM revision that allows the representation results (specif-
ically, enables the definition of an ordering on remainder
sets), it is unlikely that such a general result is possible here.

What can be obtained is considered next. A postulate set
for i-contraction is given as follows.

(K−̇1) K−̇i φ is a belief set. (closure)

(K−̇2) K−̇i φ ⊆ K. (inclusion)

(K−̇3i) If K ∪{φ} 6` ⊥ then K−̇i φ = K. (vacuity for −̇i )

(K−̇4i) If φ 6` ⊥ then K−̇i φ ∪ {φ} 6` ⊥ (success for −̇i )

(K−̇6) If φ↔ ψ then K−̇i φ = K−̇iψ. (extensionality)

(K−̇⊥) If φ ` ⊥ then K−̇i φ = K (falsity)

(K−̇7i) If K−̇i φ ∪ {φ, ψ} 6` ⊥ then K−̇i φ = K−̇i φ ∧ ψ.
(equality)

The basic postulate set is much the same as for e-contraction.
The postulates that differ ((K−̇3i), (K−̇4i), and (K−̇⊥),

do so on account of the different way e-contraction and i-
contraction relate to the fundamental intuitions (C1 vs. C2)
for contraction with respect to Horn clauses. (K−̇1) –
(K−̇⊥) are the basic postulates for i-contraction. (K−̇7i)
provides an “extended postulate” but it is clearly weak, and
inadequate to yield a general representation result.

We obtain instead a weaker result. Call a selection func-
tion γ singleton if for every φ, γ(K ↓e φ) = {X} for some
X ∈ K ↓e φ, and an i-contraction function singleton if it is
defined in terms of a singleton selection function. Then:

Theorem 9 Let −̇i be a maxichoice i-contraction operator
on Horn clause belief set K. Then −̇i satisfies the postu-
lates (K−̇1), (K−̇2), (K−̇3i), (K−̇4i), (K−̇6), (K−̇⊥),
(K−̇7i).

Theorem 10 If −̇i is an operator on Horn clause be-
lief set K that satisfies the postulates (K−̇1), (K−̇2),
(K−̇3i), (K−̇4i), (K−̇6), (K−̇⊥), then −̇i is a singleton
i-contraction operator on K.

However, the most negative result is the following:

Theorem 11 Let K be a belief set, a ∈ P, and a → ⊥ ∈
K. Then for every b ∈ P, we have: b ∈ (K−̇i a) + a or
b→ ⊥ ∈ (K−̇i a) + a.

Thus, if revision were defined in terms of i-contraction
and expansion via the Levi identity, then in the above noted-
case revision would result in a complete and consistent set
of literals – i.e. all structure of K, given in terms of Horn
clauses would be lost. The standard recourse in AGM con-
traction – moving to a partial meet contraction – is of little
help here, since one would still end up with a set of literals,
and again any prior structure in K would be lost.

Discussion
AGM Contraction and Horn Clause Contraction There
are several ways in which Horn clause contraction differs
from AGM contraction. First, of course, is the absence of
the recovery postulate. Arguably, at least for Horn clauses,
the recovery postulate is undesirable: For example, for e-
contraction, if a belief set contains the Horn clause closure
of p → q and one contracts by p ∧ r → q and then expands
by the same, it seems quite unreasonable that p → q be
obtained in the result.5

Second, in Horn clause contraction, maxichoice contrac-
tion appears to constitute the appropriate approach, in which
the result of a contraction is given semantically by a remain-
der set. In AGM belief change, a single remainder set leads
to change functions with undesirable properties,6 and so as
a solution to this problem, one typically defines belief con-
traction with respect to the intersection of select remainder
sets. This resolves the problem of undesirable properties, but
introduces another. As (Levi 1991) (as well as (Rott 2000))

5Unless, perhaps, one develops a non-Markovian approach
wherein the full sequence of changes bears on the final outcome.

6Essentially the problem with AGM maxichoice contraction is
that if α ∈ K then for every β either α ∨ β ∈ K−̇α or α ∨ ¬β ∈
K−̇α. This leads to the undesirable “fullness” result for revision
defined in terms of contraction by the Levi Identity.



points out, while a single remainder set meets the criterion
of informational economy, the intersection of remainder sets
does not. In e-contraction this dilemma does not arise, since
remainder sets for Horn clauses are better behaved than their
propositional logic counterparts.

The third difference is that with Horn clauses one has two
classes of contraction operators. In the first case, a formula
is entailed by a belief set and the desired outcome is a be-
lief set in which the formula is not entailed. In the second
case, the addition of a formula would lead to inconsistency
and the desired outcome is a smaller belief set to which this
formula can be safely added. As discussed, the first ap-
proach, e-contraction, is applicable for approaches that have
no notion of consistency or negation. Hence it is appropri-
ate for belief change with respect to definite clauses, where
the only needed belief change operators are contraction and
expansion. In contrast, the second approach, i-contraction,
appears to be too weak to be useful as a contraction oper-
ator; this is a disappointing result, as it would otherwise be
the appropriate contraction operator for defining revision via
the Levi identity.

Future Work From a technical point of view, it would be
interesting to investigate partial meet Horn clause contrac-
tion in the case of e-contraction. Although we have argued
that for Horn clauses theories all one needs is maxichoice
belief change, an investigation of partial meet contraction
for Horn clauses would illuminate the role of relative infer-
ential strength with respect to the underlying postulate set.

Another direction of interest would seem to be to inves-
tigate representation results with respect to epistemic en-
trenchment orderings and systems of spheres. There are
however obstacles to such potential alternative representa-
tion results. In the case of epistemic entrenchment orderings
for example, the standard definition of contraction refers to
arbitrary disjunctions which, of course, we don’t have ac-
cess to in Horn clauses. And for systems of spheres, there is
a problem that one loses the clean correspondence between
sets of possible worlds and theories.

A third interesting issue concerns the formulation of revi-
sion operators in Horn clause theories. The negative results
concerning the most promising approach, viz. i-contraction,
indicates that a base approach to belief change, where a
knowledge base is not necessarily logically closed, may be
the appropriate means to address revision.

Last, of course, it is of interest to see how and where
the approach may be applied, presumably in applications in-
volving some form of logic program, or perhaps in deductive
databases, or involving Horn-form integrity constraints.
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Proofs of main theorems
Proof 4:

1. If X = K then X = Cn(X) by definition; hence assume
that X 6= K. Assume that X ∈ K ↓eφ but X 6= Cn(X).
Let δ ∈ Cn(X) \X . Then X ⊂ X ∪ {δ} ⊆ K and X ∪
{δ} 6` φ, contradicting the assertion thanX is a remainder
set. Hence X 6= Cn(X) cannot be the case and so X =
Cn(X).

2. Let X ⊆ K and φ 6∈ Cn(X). If X = K then the result
follows trivially. So assume that X ⊂ K. We have that
X 6` φ. Given that we have a finite language, it is easy to
show that a maximal X ′ ⊇ X such that X ′ 6` φ satisfies
X ′ = Cn(X ′), and so X ′ ∈ K ↓eφ.

3. If K ↓eφ = ∅ then there is no K ′ ⊆ K such that K ′ 6` φ.
Specifically we have that it is not the case that for K ′ = ∅
that K ′ 6` φ, i.e. ` φ.
Similarly for the converse, if ` φ then there is no set of
formulas K ′ than fail to imply φ.

4. Assume that X ∈ K ↓e φ and ψ ∈ K, ψ 6∈ X . If X ∪
{ψ} 6` φ, then Cn(X ∪ {ψ}) contradicts the maximality
condition for X being a remainder set.

5. Left-to-right: Assume that K ↓eφ = K ↓eψ but for some
X ⊆ K, we have (without loss of generality) X ` φ but
X 6` ψ. So by Part 2 of the present theorem there is X ′
where X ⊆ X ′ and X ′ ∈ K ↓eψ. By assumption we also
have X ′ ∈ K ↓e φ. But X ` φ, X ⊆ X ′, hence X ′ ` φ,
contradiction.
Right-to-left: Assume that for every X ⊆ K, X ` φ
iff X ` ψ, but that K ↓e φ 6= K ↓e ψ. Without loss of
generality assume that there isX ∈ K ↓eφ andX 6∈ K ↓e
ψ. Thus X 6` φ and so by assumption (since X ⊆ K) we
have X 6` ψ. Since X 6∈ K ↓eψ, by Part 2 of the present
theorem there is X ′ where X ′ ⊃ X and X ′ 6` ψ. Hence
X ′ ∈ K ↓e ψ. Since X ′ 6` ψ, by our initial assumption
we have X ′ 6` φ, contradicting the fact that X ′ ⊃ X ∈
K ↓eφ.

6. We show that for φ, ψ ∈ K that X ∈ K ↓e φ and X ∈
K ↓eψ implies that X ∈ K ↓e (φ ∧ ψ).
X ∈ K ↓e φ implies that X 6` φ and for any X ′, X ⊂
X ′ ⊆ K implies that X ′ ` φ.
X ∈ K ↓e ψ implies that X 6` ψ and for any X ′, X ⊂
X ′ ⊆ K implies that X ′ ` ψ.
Therefore for X ∈ K ↓e φ and X ∈ K ↓e ψ we get
that X 6` φ ∧ ψ but for every X ′ ⊃ X where X ′ ⊆ K
we have X ′ ` φ, X ′ ` ψ whence X ′ ` φ ∧ ψ. Thus
X ∈ K ↓e (φ ∧ ψ).

7. Let φ, ψ ∈ K and X ∈ K ↓e (φ ∧ ψ). We show that
X ∈ K ↓eφ or X ∈ K ↓eψ.
Since X 6` φ ∧ ψ by assumption, we must have X 6` φ or
X 6` φ. Assume without loss of generality that X 6` φ.
For every X ′ ⊃ X and X ′ ⊆ K we have that X ′ ` φ∧ψ
(since X ∈ K ↓e (φ ∧ ψ)). Thus for every such X ′ we
have X ′ ` φ and so by definition X ∈ K ↓eφ.

8. Let X ∈ K ↓e φ. If X ` ψ then since X is a maximal
subset ofK that fails to imply φ thenX is also a maximal
subset of K that fails to imply φ ∧ ψ. Hence X ∈ K ↓e
(φ ∧ ψ).
If X 6` ψ then X 6` φ ∧ ψ. By Part 2 of the theorem there
is X ′ such that X ⊆ X ′ ∈ K ↓e (φ ∧ ψ).

Proof 5:
1. From (K−̇4) we have that K−̇e (φ ∧ ψ) 6` φ ∧ ψ

Hence K−̇e (φ ∧ ψ) 6` φ or K−̇e (φ ∧ ψ) 6` ψ.
Via (K−̇8e) we get K−̇eψ = K−̇e φ ∧ φ or K−̇eψ =
K−̇e φ ∧ ψ.

2. Assume that φ 6∈ K. We have that φ 6∈ K−̇e φ ∧ ψ or
φ ∈ K−̇e φ ∧ ψ. In the former case our result follows via
(K−̇8e).
In the latter case, if K−̇e φ ∧ ψ ⊂ K−̇e φ then φ ∈
K−̇e φ ∧ ψ would imply that φ ∈ K−̇e φ, contradicting
(K−̇4).

3. We show that orderliness is implied by K−̇7e, K−̇8e,
and K−̇F .
Assume that K ` φ, K ` ψ, K−̇e φ 6` ψ and K−̇eψ 6` φ.
From Theorem 5.1 we have that either K−̇e φ =
K−̇e (φ ∧ ψ) or K−̇eψ = K−̇e (φ ∧ ψ). Assume with-
out loss of generality that K−̇e φ = K−̇e (φ ∧ ψ). Since
K−̇e φ 6` ψ and K−̇e φ = K−̇e (φ ∧ ψ), we have that
K−̇e (φ ∧ ψ) 6` ψ.
K−̇8e then yields that K−̇e (φ ∧ ψ) = K−̇eψ. Since we
already have that K−̇e φ = K−̇e (φ ∧ ψ), we obtain that
K−̇e φ = K−̇eψ.

4. Omitted

Proof 6:
Let −̇e be a maxichoice e-contraction operator defined on

Horn clause belief set K, and letK be the set of Horn clause
belief sets contained in K.

Let γ be the selection function associated with −̇e , and let
≤ be the total order associated with γ.
K−̇e φ is defined by: IfK ` φ and 6` φ, thenK−̇e φ = K ′

where K ′ 6` φ and for every K ′′ where K ′′ 6` φ we have
K ′′ ≤ K ′. If K 6` φ or ` φ then K−̇e φ = K.

(K−̇1) is satisfied since −̇e is well defined, and ≤ is de-
fined on belief sets. (K−̇2) and (K−̇3) follow directly from
the definition of −̇e , as does (K−̇4). (K−̇6) is a conse-
quence of the fact that we’re working with belief sets: for
belief set K and φ↔ ψ we have φ ∈ K iff ψ ∈ K.

(K−̇T ) is a direct consequence of the definition of −̇e .
For (K−̇8e), assume that ψ 6∈ K−̇(ψ ∧ φ). Assume

towards a contradiction that K−̇(φ ∧ ψ) 6= K−̇ψ. Let



K ′ = K−̇(φ ∧ ψ) and K ′′ = K−̇ψ. We must have
K ′ < K ′′ or K ′′ < K ′ since ≤ is a total order. The for-
mer case is not possible, since K ′′ 6` φ ∧ ψ, contradicting
the maximality of K ′ in ≤ with respect to remainder sets
that fail to imply φ∧ψ. Similarly the latter case, K ′′ < K ′,
is not possible: we have K ′ 6` ψ since K ′ = K−̇(φ ∧ ψ)
and we assumed at the outset that ψ 6∈ K−̇(ψ ∧ φ). But
K ′ 6` ψ contradicts the maximality of K ′′ in ≤ with respect
to remainder sets that fail to imply ψ.

Proof 7: Let −̇e be an operator on Horn clause belief set K
that satisfies the postulates for e-contraction.

Define γ(K ↓eφ) = {K−̇e φ}.
We need to show first that

1. γ is well-defined;

2. γ is a maxichoice selection function; and

3. for every formula φ, ∩γ(K ↓eφ) = K−̇e φ.

These parts follow exactly as in (Hansson 1999, p. 128)
and are not repeated here.
For the extended postulate (K−̇8e), for remainder sets
X,Y ⊆ K, define X ≤ Y iff

1. Y = K, or

2.(a) there is φ ∈ K such that Y = K−̇e φ, and
(b) for every φwhere φ 6∈ X , φ 6∈ Y , we haveX = K−̇e φ

only if X = Y .

We show that ≤ is a total order over the set

{X | ∃φ such that X = K−̇e φ}.

1. Reflexivity: This is trivially satisfied.

2. Antisymmetry: Assume that X ≤ Y and Y ≤ X; we
show that X = Y .
Since X ≤ Y , according to condition 2(a) there is a for-
mula, φ, such that Y = K−̇e φ. As well, condition 2(b)
stipulates that for every δ such that δ 6∈ X and δ 6∈ Y ,
X = K−̇e δ implies that X = Y .
Since Y ≤ X , according to condition 2(a) there is a for-
mula, ψ, such that X = K−̇eψ. As well, condition 2(b)
stipulates that for every δ such that δ 6∈ Y and δ 6∈ X ,
Y = K−̇e δ implies that X = Y .
From Theorem 5.1 we have K−̇e φ = K−̇e φ ∧ ψ or
K−̇eψ = K−̇e φ ∧ ψ.
Assume first that Y = K−̇e φ = K−̇e φ ∧ ψ.
Since Y ≤ X and φ∧ψ 6∈ X , φ∧ψ 6∈ Y , condition 2(b)
requires that X = Y .
In the same manner, for the case X = K−̇e φ = K−̇e φ∧
ψ we obtain that X = Y .

3. Connectedness: We need to show for every X , Y that
X ≤ Y or Y ≤ X . Assume towards a contradiction that
there are X , Y where X < Y and Y < X .
Since X < Y we have X ≤ Y and X 6= Y . From
condition 2(b) we have that for every δ such that δ 6∈ Y
and δ 6∈ X , if X = K−̇e δ then X = Y . Since X 6= Y by
assumption, this means that for every δ such that δ 6∈ Y
and δ 6∈ X , then X 6= K−̇e δ.

Since Y < X , an analogous argument gives that for every
δ such that δ 6∈ Y and δ 6∈ X , then Y 6= K−̇e δ.
By condition 2(a) there are formulas φ, ψ such that X =
K−̇e φ and Y = K−̇eψ. It follows that φ ∧ ψ 6∈ X ,
φ ∧ ψ 6∈ Y ,
Since X < Y , this means that X 6= K−̇e (φ ∧ ψ); since
Y < X , this means that Y 6= K−̇e (φ ∧ ψ).
But Theorem 5.1 requires that X = K−̇e φ = K−̇e (φ ∧
ψ) or Y = K−̇eψ = K−̇e (φ ∧ ψ), contradiction.

4. Transitivity: Assume that X ≤ Y , and Y ≤ Z; we need
to show that X ≤ Z.
If Z = K then our result follows from condition 1 of the
definition of ≤.
If Y = Z then our result follows directly from conditions
2(a) and 2(b).
If X = Y then our result follows directly from conditions
2(a) and 2(b).
Consequently, assume that Z 6= K, Y 6= Z, X 6= Y .
In order to show that X ≤ Z, by the preceding assump-
tion, condition 1 doesn’t apply; so we need to show con-
ditions 2(a) and 2(b). Condition 2(a) follows from the fact
that Y ≤ Z.
To show condition 2(b) assume that there is φ ∈ K such
that φ 6∈ X and φ 6∈ Z. As well, towards a contradiction
assume that X = K−̇e φ.
Since Y ≤ Z there is ψ such that Z = K−̇eψ.
Since X ≤ Y there is δ such that Y = K−̇e δ.
Theorem 5.1 gives that K−̇eψ = K−̇e (ψ ∧ δ) or
K−̇e δ = K−̇e (ψ ∧ δ). Condition 2(b) implies that in
fact K−̇eψ = K−̇e (ψ ∧ δ).
Turning to X ≤ Y , we have from before that for φ,
δ as above, X = K−̇e φ and Y = K−̇e δ. Apply-
ing Theorem 5.1 we have that K−̇e δ = K−̇e (φ ∧ δ)
or K−̇e φ = K−̇e (φ ∧ δ). Condition 2(b) implies that
K−̇e δ = K−̇e (φ ∧ δ).
Applying the same argument to Z = K−̇eψ = K−̇e (ψ∧
δ) and Y = K−̇e δ = K−̇e (φ ∧ δ), and applying The-
orem 5.1 gives that K−̇e (ψ ∧ δ) = K−̇e (φ ∧ ψ ∧ δ) or
K−̇e (φ ∧ δ) = K−̇e (φ ∧ ψ ∧ δ) and condition 2(b) re-
quires that in fact K−̇e (ψ∧ δ) = K−̇e (φ∧ψ∧ δ), hence
Z = K−̇e (φ ∧ ψ ∧ δ)
By assumption we have that φ 6∈ Z, and so φ 6∈ K−̇e (φ∧
ψ ∧ δ).
Postulate (K−̇e 8e) then gives that K−̇e (φ ∧ ψ ∧ δ) =
K−̇e φ. But K−̇e φ = X and X 6= Z, contradiction.
Hence our original assumption, that X = K−̇e φ is false,
and it follows that condition 2(b) is satisfied.

Last, we observe that for X , Y such that ∃φ such that
Y = K−̇e φ and 6 ∃φ such that X = K−̇e φ we have that
X ≤ Y but not Y ≤ X . It then follows from the definitions
of γ and ≤ that for every φ, K−̇e φ = X where X 6` φ and
for every Y > X we have Y ` φ.


