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Abstract

Reiter's default logic is one of the best known and most sidif the approaches to
nonmonotonic reasoning. Several variants of default lbgie subsequently been proposed
to give systems with properties differing from the origindh this paper, we examine the
relationship between default logic and its major variandge accomplish this by translat-
ing a default theory under a variant interpretation into eosd default theory, under the
original Reiter semantics, wherein the variant intergietais respected. That is, in each
case we show that, given an extension of a translated theoeymay extract an extension
of the original variant default logic theory. We show how stained, rational, justified,
and cumulative default logic can be expressed in Reitefaullelogic. As well, we show
how Reiter’s default logic can be expressed in rationalwlefagic. From this, we suggest
that any such variant can be similarly treated. Consequemd provide a unification of de-
fault logics, showing how the original formulation of deflalogic may express its variants.
Moreover, the translations clearly express the relatigsshetween alternative approaches
to default logic. The translations themselves are showreterally have good properties.
Thus, in at least a theoretical sense, we show that thesantmmre in a sense superfluous,
in that for any of these variants of default logic, we can dyamimic the behaviour of a
variant in standard default logic. As well, the translasidend insight into means of classi-
fying the expressive power of default logic variants; sfieally we suggest that the property
of semi-monotonicity represents a division with respeaxpressibility, whereas regularity
and cumulativity do not.

* Affiliated with the School of Computing Science at Simon Erdsniversity, Burnaby, Canada.
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1 Introduction

Default logic[Reiter, 1980 is one of the best known approaches to nonmonotonic reagonin
In default logic, classical logic is augmented tgfault rulesof the form M Such a
rule is informally interpreted as “ifv is true, ands,, .. ., 3, are consistent with what is known,
then concludey by default”. An example of a default, representing the dsserbirds fly”,

is %&ff“w) Thus: “if something can be inferred to be a bird, and if thdhg can be
consistently assumed to fly, then infer that it does fly”. Theaming of a rule then rests on
notions of provability and consistency with respect to aegiset of beliefs. A set of beliefs
sanctioned by a set of default rules, with respect to arairsgt of facts, is called a@xtensiorof

this set of facts.

The formal definition of an extension is quite subtle (sedi8e@). However, this definition
has proven to be remarkably general and enduring. Constyguenich of subsequent work
has concentrated on applying the formalism ($eerrault, 1987; Baader and Hollunder, 1992;
Cadoliet al, 1994 for representative examples) rather than further devetpjti For an ex-
ception sed¢Etherington, 1987k which gives a model-theoretic characterization of extars
The generality of the approach has also led to its being useddraeans of formalising other
approaches, such as inheritance netwBtherington and Reiter, 198and diagnosi$Reiter,
1987. In [Delgrande and Schaub, 240@e suggested that default logic is an appropriate elabo-
ration of classical logic for modelling a wide range of “cominsense” representation and reason-
ing problems. Full-scale implementations of default Idgibolewinskiet al., 19964 have had to
contend with the high complexity of reasoning in the systelowever, more recently a restric-
tion of default logicextended logic program$Gelfond and Lifschitz, 19940 has received a great
deal of attention, due to the availability of efficient impientationgNiemela and Simons, 1997;
Eiteret al, 1997. Finally, default logic remains a “base” general formalismvhich other for-
malisms (such aPoole, 1988; Giunchigliat al., 2009) have been expressed and consequently
can be compared.

The very generality of default logic means that it lacks saMenportant properties, including
existence of extensiofReiter, 1989 andcumulativity[Makinson, 1988 In addition, differing
intuitions concerning the role of default rules have led iftedng opinions concerning other
properties, includingemi-monotonicityReiter, 1980 andcommitment to assumptiofiBoole,
1989. As a result, a number of modifications to the definition of fadk extension have been
proposed, resulting in a number of variants of default loditost notably these variants in-
cludeconstrained default logitSchaub, 1992; Delgrand al., 1995, cumulative default logic
[Brewka, 199}, justified default logidt. ukaszewicz, 1988 andrational default logid Mikitiuk
and Truszczyhski, 1995 In each of these variants, the definition of an extension idifieal,
and a system with properties differing from the original liaoned.

In this paper we examine the relationships between defagikt ind its variants. To accom-

1Extended logic programs essentially correspond to deffaediries in which formulas are restricted to conjunc-
tions of literals.

2To be sure, there are other variants of default logic, as tee thscuss. The variants covered here are arguably
the best-known and studidéntoniou, 1999. As well, we suggest that the techniques developed heraaxte
straightforwardly to other variants.



plish this, we make use of translations mapping a defauttrihender a “‘variant” interpretation
onto a second theory under the interpretation of the origlReiter) approach, such that the re-
spectively resulting extensions are in a one-to-one cpomdence. We show how constrained,
rational, justified, and cumulative default logic can beresged in Reiter’s default logic. In the
case of the first three variant default logics, which use #mgliage of classical logic, we add
labelled formulas to the language. In the case ddssertional default logicsuch as cumulative
default logic, the situation is more complex since cumutadefault logic makes use of “asser-
tions,” which extend the language of classical logic. Heeergify formulas; this allows us to
encode the properties of assertions in classical logic.atih&ase we discuss properties of the
underlying translation.

There has been much previous work relating default logiaheroapproaches to nonmono-
tonic reasoning, for examplé&therington, 1987a; Imielinski, 1987; Konolige, 1988; i,
1995; Janhunen, 1998; Denecletral, 2003. Approaches such as default logic, circumscrip-
tion, and autoepistemic logic were founded on varying trdaos; the aforecited references show
that despite these apparently disparate intuitions, thexeleep links between the approaches.
The present paper does the same within the family of defagits: variant default logics are
founded on divergent intuitions from the original; here e\s that these seemingly divergent
formalisms are nonetheless expressible by the original.

Hence we provide a unification of default logics, in that wewlthat the original formu-
lation of default logic is expressive enough to subsumeatsants. Thus we show that these
variants are in a sense superfluous, in at least a theorséoak, since we can exactly mimic
the behaviour of any of these variants in standard defagltloThus, for example, once one
has an implementation of default logic (el[Gholewinskiet al, 1994), it is straightforward to
obtain an implementation of a variant by implementing tia@station. The reverse relation does
not hold for constrained, justified, or cumulative defaadit, in that one cannot express default
logic in terms of these variants. However, rational defaadic can be embedded in Reiter de-
fault logic, and vice versa. The translations that we prewsbow, in a precise sense, how each
variant relates to standard default logic.

As well, our approach lends some insight into charactessif standard default theories. For
example, our translations implicitly provide specific daerisations of default theories that are
guaranteed to have extensions or are guaranteed to be smrotanic. That is, since we map
variant default logics into default logic, the theoriestie tmage of the mapping are guaranteed to
retain properties of the original variant. Further, it hag previously suggested that properties
such as semi-monotonicity, regularity, and cumulativitgynibe used to classify default logics
with respect to their expressiveness. Our results indicatgever that only semi-monotonicity
provides a true indication of a logic’s overall expressesn

In the next section we introduce default logic and its vagarSince our aim is to show
correspondence results, we do not discuss the properttbesd# default logics nor do we moti-
vate their formulations; rather, the interested readeefisrred to the cited literature. Section 3
discusses desirable properties of translations. In Sedtiave show in detail how constrained,
rational, and justified default logic can be expressed indRsidefault logic, and in Section 5 we
show how cumulative default logic may be so expressed. @&ect and 7 provide a discussion
and conclusion, respectively. Proofs of theorems are gwedan an appendix.
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2 Default Logic and its Variants

2.1 Default Logic

the constituent elements are formulas of classical prdipasi or first-order logic. Defaults with
unbound variables are taken to stand for all correspondistgmnces. For simplicity, we deal just
with singular defaults for whichn = 1.2 A singular rule isnormalif 3 is equivalent toy; it is
semi-normalf 3 implies~. As regards standard default logidanhunen, 199%hows that any
default rule can be transformed into a set of semi-normalues. Moreover the great majority of
applications use only semi-normal defaults, so the aboseenagtion is a reasonable restriction.
We denote th@rerequisitea of a defaulty = % by Prereqd), its justifications by Justif(J)
and itsconsequent by Conse(o). Conversely, to ease notation, in Section 4 we rely on a func-
tion ¢ to obtain the default rule in which a given prerequisitetifieation, or consequent occurs,
respectively. That is, for instancé(Prereqd)) = J. Moreover, for simplifying the technical
results, we presuppose without loss of generality thatutiefales have unique components. We
use the (unqualified) termefault logicto refer to Reiter’s original formulation; sometimes for
emphasis we will redundantly refer standard or Reiterdefault logic. Variants will be referred
to asconstrained(cumulative justified etc.) default logic Similar considerations apply to the
notions ofdefault extension

As regards classical logic, the derivability operatgrjs defined in the usual way. Accord-
ingly, thedeductive closuref a setS of formulas is given byfh(S) = {¢ | S - ¢}.

A set of default rulesD and a set of formulasl’” form adefault theory(D, W) that may
induce zero, one, or multipkxtensiong the following way.

Definition 2.1 (Reiter, 198() Let (D, W) be a default theory. For any sét of formulas, let
I'(S) be the smallest set of formulas such that

1. W CI(9),

2. T(S) = Th(T(9)),

3. forany®2 € D, if « € T(S) and S U {3} i# L theny € T(S).
A set of formulag’ is an extension ofD, W) iff I'(E) = E.

That is, viewingl' as an operatorF is a fixed point ofl’. Any such extension represents a
possible set of beliefs about the world at hand. For illugira consider the default theories

(D) = ({Z.55°}.0) ; (1)
(D, W) = ({#,55°}1.0) - 2)

In the literaturg D;, W) is often used to illustrate what is sometimes referred twoasmitment
to assumptioPoole, 1989 or regularity [Froidevaux and Mengin, 1994 A default logic is

3Note that, with the exception ¢fukaszewicz, 1988 the variants that we deal with also employ only singular
defaults.



weakly regularif each justification of an applied rule must be individualbnsistent with an ex-
tension; it isstrongly regularif the justifications of applied rules must be jointly cornerg with
an extension. In (Reiter) default logi€),, W;) admits one extensioifh({C, D}). Roughly
speakingB is consistent with this (purported) extension, and so theﬁgﬁ is applicable, yield-
ing C. Similarly, =B is also consistent with this (purported) extension, anchsortile :BB is
applicable, yieldingD. The application of these two rules yields the exten§ibt{C, D}).

The default theory(D,, W5) is used to illustratesemi-monotonicityReiter, 1980. A de-
fault logic, or class of default theories, $@mi-monotonigust if the addition of default rules
never eliminates, but rather extends or adds, new extenisiGonsider first the default theory
(D), W) = ({2}, 0) . This theory has one extensidfj = Th(D). However, the only exten-
sion of (Dq, W) is Ey = Th({C'}). E} fails to be an extension @D, W5) sinceB is consistent
with E; hence% is applicable, eliminating’’, as a possible extension. Since we héXeC D,
but E, Z E,, default logic fails to be semi-monotonic. Thus defaultitog weakly regular and
is not semi-monotonic; normal default theories on the oliagrd are semi-monotonic.

In the rest of this section we introduce variants of defaodfi¢, some of which will be
strongly regular and some of which will be semi-monotonic.

2.2 Constrained Default Logic

In [Delgrandeet al, 1995 constrained default logiés defined. The central idea is that the
justifications and consequents of a default rule jointlyjme a context or assumption set for
default rule application. A primary motivation for constred default logic was to obtain a
default logic that committed to its assumptidf®ole, 1988 The definition of aconstrained
extensions as follows.

Definition 2.2 (Delgrandeet al., 1993) Let (D, W) be a default theory. For any set of formu-
las T, letI'(T") be the pair of smallest sets of formulgs, 7”) such that

1. WCscr,
2. 8" =Th(S")andT" = Th(T"),
3. forany2Z € D,if « € S’andT U {B} U {7} i/ L theny € S"andf Ay € T".
A pair of sets of formulagE, C) is a constrained extension @b, W) iff I'(C) = (E, C).

The formulas inC' provide a global “context”, comprising a deductively cldsiperset of the
actual extension. Defaults must be consistent with thibaloontext in order to be applied. In
our example(D;, W) has two constrained extensions, one contairfingnd another includ-
ing D, namely,(Th({C}),Th({B,C})) and(Th({D}),Th({—-B, D})). Roughly speaking, in
constructing an extension, one could consider the firsmdtef%?. On the assumption that this
default is applicable, for any other default to be applieatilis default must have its justification
not only consistent with the consequént but also with the justification of the first defaukt
Intuitively, B can be regarded as an “assumption” that must remain comisisiéh respect to

other applicable defaults. If we consider the other pogsiipiplicable default: BB, we see that
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this default is in fact not applicable, given the presence.Bfin the justification. Hence we
obtain the extensioh({C}),Th({B,C})). Similar reasoning beginning with the second de-
fault yields the second extension. Accordingly, the@by, 17,) has two constrained extensions,
(Th({C}), Th({B, C})) and(Th({D}) , Th({~C. D})).

In constrained default logic, for a default to be applicalilenust be consistent with the
justifications of applied defaulken togetherlf instead, for a default to be applicable, it must be
consistent with the justifications of applied defaaken individuallyone obtains Lukaszewicz’s
approach, discussed below.

2.3 Rational Default Logic

The definition of rational default is quite close to that ohstrained default logic. The following
is an alternative characterisation m@tional extensionsoriginally proposed irfMikitiuk and
Truszczynski, 1998 given in[Linke and Schaub, 1997

Definition 2.3 ((Mikitiuk and Truszczy hski, 1993) Let (D, W) be a default theory. For any
set of formulas T lef' (") be the pair of smallest sets of formules, 7”) such that

1. WCs cr,
2. 8" =Th(S")andT" = Th(T"),
3. forany®Z € D,if o € §'andT U {B} I/ L theny € S"andf Ay € T".
A pair of sets of formulagE, C') is a rational extension of D, W) iff I'(C') = (E, C).

This definition is the same as that of constrained default|axcept for the consistency check.
As with constrained default logi¢,D;, 1V;) has two rational extensions, one contain@@ignd
one includingD, namely, (Th({C}),Th({B,C?})) and (Th({D}),Th({—B, D})). Howeuver,
theory(D,, W5) has only one rational extensi¢ith({C'}) , Th({ B, C})).

2.4 Justified Default Logic

Historically, justified default logic was the earliest oéthariants of default logic to be proposed.
A central motivation behind justified default logic was tot@ibh a default logic that is semi-
monotonic and thus guarantees the existence of extendimkaszewicAdt ukaszewicz, 1988
modifies default logic by attaching constraints to extemsio order to strengthen the applicabil-
ity condition of default rules. Austified extensiofcalled amodified extensioim [Lukaszewicz,
1989) is defined as follows.

Definition 2.4 (Lukaszewicz, 1988) Let (D, W) be a default theory. For any pair of sets of
formulas(S, T') letI'(S, T') be the pair of smallest sets of formul&ls 7" such that

1. Wcs,
2. Th(S") = &',



3. for any% € D,ifae S"andS U {~v} U{n} I/ L for everyn € T U {3} theny € &
andg e T".

A set of formulad’ is a justified extension @D, V) for a set of formulad iff I'(E, J) = (E, J).

So a default rulé“jy—ﬁ applies if all justifications of other applying default ralare consistent with
the considered extensidnand the consequent and if additionallyy and3 are consistent with
E. Unlike the contextual information in constrained defdodfic and rational default logic, the
set of justifications/ need not be deductively closed nor consistent.

In our examples(D;, W;) has one justified extensiot/h({C, D}),{B,—~B}). However,
theory (D,, W5) has two justified extensions, one withand one containing, or more pre-
cisely,(Th({C}),{B}) and(Th({D}),{~C}).

We summarise our running examples in Table 1. For simplieigydescribe each extension
by the consequents of its generating default rules.

| default logic| (Dy, W;) | (D2, W5) |

standard C,D C
constrained C | D | C \ D
rational| C | D C

justiied| C.D |C | D

Table 1: Summary of results obtained from default thedries ;) and(D,, Ws).

2.5 Cumulative Default Logic

Brewka[Brewka, 1991 describes a variant of default logic where the applicabiiondition
for default rules is strengthened, and the justificationafdopting a default conclusion is made
explicit. The intent behind cumulative default logic wasotatain a default logic that satisfied
the principle of cumulativity and strong regularity, whex@mulativity is the property wherein
the addition of a derived conclusion to a set of facts doeshahge the set of conclusions. In
order to keep track of implicit assumptions, Brewka introglsassertionsor formulas labeled
with the set of justifications and consequents of the defaldts which were used for deriving
them. Intuitively, assertions represent formulas alontip Wie reasons for believing them.

Definition 2.5 (Brewka, 1991)) Leta, i, ..., ., be formulas. An assertianis any expression
of the form{a, {71, ...,7m}), Wherea = Form(§) is called the asserted formula and the set
V1, .., Ym} = Supp(€) is called the support of.*

We let.A denote the set of assertions over a given language.
To correctly propagate the supports, the classical interealation is extended as follows.

4The two projections extend to sets of assertions in the aisweay. We sometimes misuSeippfor denoting
the support of an asserted formula, €@. Supp(a)).



Definition 2.6 (Brewka, 1991) LetS be a set of assertions. Th&h(S), the set of assertional
consequences &, is the smallest set of assertions such that

1. 8 CTh(S),
2. 0if&,... & € ﬁ(S) andForm(&L. .., Form(&,) F ~ then
(v, Supp(§1) U - - - U Supp(&n)) € Th(S).

An assertional default theorig a pair(D, W), whereD is a set of default rules and’ is a set
of assertions. Amassertional extensiois defined as follows.

Definition 2.7 (Brewka, 1991) Let (D, W) be an assertional default theory. For any set of
assertionsS letI'(S) be the smallest set of assertia$fssuch that

1. WC &,
2. Th(S") =&/,
3. forany®2 e D, if (a, Supp(e)) € S and Form(S) U Supp(S) U{B} U {} ## L then
(v, Supp(a) U{B} U{7}) € §".
A set of assertion§ is an assertional extension @b, W) iff T'(€) = &.

For illustration, consider the assertional default thofyen used for illustrating the failure
of cumulativitylMakinson, 1989in default logic)

(D5, Ws) = ({7 #521.0). (3)

This theory has one assertional extension, includiig{ A}) as well as(A v B, {A}). Adding
the latter assertion to the set of assertional facts yidldsssertional default theory

(Do, W) = ({4, 222} {{Av B, {4})}) (4)

which has the same assertional extension. Note that wittheusupport{ A} for AV B, one
obtains a second assertional extension WitH, { = A}). This is what happens in the previously-
described default logics.

It is well-known that cumulative and constrained extensiare equivalent (with respect to
asserted consequences of default rules), whenever theyinddacts contain no support. Sim-
ilar relationships are given among original and Q-defaadid [Giordano and Martinelli, 1994
justified and affirmativéLinke and Schaub, 1997rational and CA-default logitGiordano and
Martinelli, 1994, respectively (cf[Linke and Schaub, 199y




3 A Note on Translations between Default Theories

Translation functions provide a means of comparing forsmadi. Previously such functions have
been used to compare the expressive power of different appes, in that it may be possible to
show that a translation involving one approach suitablyiur@s a second. Here we translate a
default theory under one interpretation into a second digttaeory under another interpretation.
Since many variant approaches to default logic share the sgmtax as regular default logic,
when we refer to a default theory below, we will implicitly are a (syntactic) default theory
along with an understood semantics. Thus stating thail") is a default theory will come
with the understanding thaD, 1) is a default theory under a specific interpretation, whether
constrained, justified, or whatever.

The success of our endeavour will be measured in part by grepef our translation func-
tions. To this end, there are various desiderata that capdmfied for a translation function. In
this paper, we adopt (with modifications) three criteriagm®ed by Tomi Janhunddanhunen,
1999, who has investigated translations among specific sulsdasfsReiter’s default logic; as
well we use a version of monotonicity that is adapted for diéfeories. These desiderata are
given as follows. We understanid,, W;) C (D, W5) to meanD; C Dy, andWW; C Wh.

Definition 3.1 Let (D, W) be a default theory wher#/ is a set of formulas (or, in Section 5,
assertions) in some languadge and D is a set of default rules. A functidh : DL; — D Ls,
whereD L, and D L, are classes of default theories, is:

1. faithful iff for all (D, W) € DL, the consistent extensions(@?, W) and7 ((D,WW)) are
in a one-to-one correspondence and coincide up to the propoal language ofil/;

2. polynomialiff for (D, W) € DL, the time required to computg((D, W)) is polynomial
in the size oD and IV;

3. modulariff for all (D,W) € DL;, we haveZ ((D,W)) = (D',W' U T (0, W)) where
T((D,0)) = (D", W");

4. monotonidff: if D; C Dy andW; C Wy thenZ ((Dy, Wh)) C T ((Do, W5)).

In a faithful translation( D, /) is a theory under one particular interpretation &rdD, 1))
is a theory under another; faithfulness specifies that iserene-to-one correspondence between
extensions of these theories, each under its own intetgmetd his criterion extends the notion
of faithfulness in[Janhunen, 19930 different systems of default logic. Polynomiality refiec
a certain, coarse notion of efficiency in the translatioris ithe same as ifdanhunen, 1999
The intent of modularity is to specify that the rules/incan be translated independentlylof;
thus the translation ob does not need to be recomputed wh&his modified. We draw the
reader’s attention to the fact that we generalise the natfamodularity in[Janhunen, 1999
which would require thaf (((,W)) = W. If a translation is monotonic, then a default theory
can be translated incrementally.

Of these criteria, faithfulness is essential (otherwisehaee not captured one default logic
in another), while polynomiality (and low-order polynoriaat that) would be required for any
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practical implementation. Modularity and monotonicitytoge translation would be similarly
desirable in a practical application; as well they reflecedain “tightness” in the relationship
between two systems.

Other translation schemes can be foundhtarek and Truszczynski, 1993where among
others the notion of semi-representability is introducBldis concept deals with the representa-
tion of default theories within restricted subclasses déddktheories over an extended language.
Although semi-representability adheres to a fixed integi@n of default logic, one can view our
results as semi-representation results among differégrpretations of default theories.

4 Correspondence with Constrained, Rational, and Justified
Default Logic

This section presents encodings for representing majoantaglefault logics in Reiter’'s default
logic. For a default theoryA, we produce a translated thedfyA, such that there is a one-to-
one correspondence between the extensions of z-default logic and (standard) extensions
of 7,A. We begin with constrained and rational default logic, wheacoding is less involved,
then consider that of justified default logic. Section 5 addes cumulative default logic, which
requires a translation of a differing form.

4.1 Correspondence with Constrained Default Logic

For a languag& over alphabeP, let £’ be the language ové?’ = {p’ | p € P} (so implicitly
there is an isomorphism betwegnand £’). For a formulaa, let o/ be the formula obtained by
replacing any symba) € P by p’; in addition define for a sét” of formulas,IW’ = {o/ | a €
W}

Definition 4.1 For default theory D, W), defineZ.((D, W)) = (D., W,) where

YNB'NY)

W.=WuWw’'  and Dc:{aiﬁ'“f’

a:fp
TeD} .

Informally, we retain the justification of an applied defauile in an extension, but as a primed
formula; this set of primed formulas then corresponds tosét€” in Definition 2.2. Thus we
essentially encode Definition 2.2 in a standard defaultrthe@ther variants of default logic are
similarly encoded, although sometimes in a somewhat margtax formulation.
For our examples in (1) and (2), we obtain:
TA(D1, W) = ({&5ne om0

,];((DQ,WQ)) _ ( : B'AC! : =C'A\D’ }7(9) )

CAB'AC"? DA-C'AD'

T.((Dy,W7)) yields two extensions in standard default logié,({C A B’ A C'}) as well as
Th({D N —B’ A D'}). Analogously, we obtain two extensions frafx{(Ds, Ws)), viz.Th({C AN B’ A C'})
and7h({D A —=C" A D'}).

We have the following results relating constrained entamsand the translatich..
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Theorem 4.1 For a default theory D, 17), we have that
1. if (E, C) isaconstrained extension @D, W) thenTh(E U C") is an extension of.((D, W));

2. if F'is an extension of.((D,W)) then(F N L,{¢ | ¢' € FFn L'}) is a constrained
extension of D, W).

Theorem 4.2 The constrained extensions of a default the@py /) and the extensions of the
translationZ.((D, W)) are in a one-to-one correspondence.

The theorem asserts that the translatipris faithful. As well, it can be observed thdf is
polynomial (in fact linear), modular, and monotonic.

4.2 Correspondence with Rational Default Logic

As expected, the mapping of rational default logic into dead default logic is close to that of
constrained default logic:

Definition 4.2 For default theory(D, W), defineZ,.((D, W)) = (D,,, W,.) where

YA(B'AY)

W, =WUuUW'  and DT:{ a:f

o:f
weD}.

As before, the consequent of rulesiin encodes the formulas in a rational extension (Defini-
tion 2.3). For our examples in (1) and (2), we obtain:

7.((D1,W1)) = ({CAJB%CHDA;TB?AD'}’@)
T.((D2, W3)) = ( C/\;E}Bj/\C’7 D/\?CC'Y/\D’}’@) :

As with 7.((D,, Wh)), theoryZ,.((Dy, W1)) yields two extensions, one containiog\ B’ A C'
and the other containin@ A =B’ A D'. In contrast tdZ..(( D2, W>)), however, we obtain a single
extension frontZ, (( D4, W5)), containingC' A B’ A C.

We have the following result.

Theorem 4.3 For a default theory( D, W), we have that
1. if (E, C) is arational extension ofD, W) thenTh(FE U C") is an extension df,.((D, W));

2. if Fisan extension of,.((D,W)) then(FN L, {y | ¢’ € FNL'}) is arational extension
of (D, W).

As with Theorem 4.2, one can show that the extensions of autiéfeeory (D, W) and the
translationZ,.((D,W)) are in a one-to-one correspondence. SimilaZtowe have thatZ, is
faithful, polynomial, modular, and monotonic.
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4.3 Correspondence with Justified Default Logic

Define for a languag€ over alphabe® and some sef, the family (£*),.s of languages over
Ps={p°|peP}forse S. Fora € Lands € S, leta® be the formula obtained by replacing
every symbop € P in a by p*; in addition define for a sét” of formulas,W* = {a° | « € W}.

In what follows, we let the set of default rulésinduce copies of the original language.

Definition 4.3 For default theory( D, W), defineZ;((D,W)) = (D;, W;) where

a: (B°A)ANAcep 1) o
Wy = WU Ugep W6 and D, = { Siiominictig | 6= 2 e D} .
For simplicity, we writes = Justif(d) whenevedustif(s) = (3° A 7°) A (A¢ep1°)-
Abbreviating the two default rules in both examples, (1) &)¢dbyd1, §2 andd1, 44, respec-
tively, we get (after removing duplicates):

_ :BSIACIAC? B2 ADI2ADOY
,];((Dlawl)) - ({CAB51A051A052’ DA=B2ADADOL 7®

_ :BOIACOINCHY S COADIAADO!
Z((D%WQ)) - <{C/\B51/\C‘51/\C‘54’ DA—CYANDSEADOT 7(2)

In standard default logicZ; ((D, W;)) results in one extension containing D, B!, C°*, D!,
along with—B%2,C%% D2, Unlike this, Z;((D,, W5)) gives two extensions, one witH, B!,
C°!, C** and another includind, -C%*, D%, D°!,

We have the following general result.

Theorem 4.4 For a default theory D, 17), we have that
1. if (E, J) is ajustified extension @D, W) then

FzTh(E u [ JE U U{55<5>}>

¢eD BeJ
is an extension of; ((D, W));

2. if F'is an extension of;((D, W)) then(F'NL, J) is a justified extension ¢D, IV), where
J ={p 1|8 =Jdustif(0) andé € GD(Z;((D,W)), F)}.

GD(7T;((D,W)), F) gives the set of default rules generatifgsee Definition A.1 for a formal
definition.

In analogy to Theorem 4.2, one can show that the extensioasdeffault theory(D, W)
and the translatioff; ((D, 1V)) are in a one-to-one correspondence. The transl&fjas faith-
ful, polynomial, and modular. However, we note that whildypomial, the translation results
in a quadratic increase in the size of a theory; this would adubt insignificant overhead in
the computation of a translated (standard) theory as cadgarthe original (justified default
logic) theory. As well the translation is not monotonic; sifieally, in general we obtain that
T,(D,W)) £ T,(DU D', W)).

12



4.4 Correspondence with (Standard) Default Logic

We can show that there is a self-embedding for standard liédgic to standard default logic,
using the encoding of the previous subsection:

Definition 4.4 For default theory D, W), defineZ;((D, W)) = (Dg, W,;) where

Wd:WcheDWCandDd:{ o: 7 6:#6D} .

YABAY )M Acep 7°)

One can show that this mapping results in extensions thah @ ene-to-one correspondence to
those of the original theory. That is, one obtains a resutilar to that in Theorem 4.4. The
translationZ; then is faithful and well as being polynomial and modular. wdwger it is not
monotonic, since elements Bf,; depend in part om.

Contrasting this embedding with the one in Definition 4.®alsistrates in a different fashion
how default logic and justified default logic relate. As wétiis translation allows for embedding
standard default logic into rational default logic, as mprkrise next.

Theorem 4.5 For a default theory( D, W), we have that
1. if £ is an extension ofD, W) then(F, F') is a rational extension of;((D, W)),
wherel' = Th(E U UCGD ECU U(SGGD((D’W),E){Justif(5)5}>;
2. if (F, F) is arational extension of;((D, W)) thenF N L is an extension ofD, V).

As before, one can show that the extensions of a default yhgori1’) and the translation
7,((D,W)) are in a one-to-one correspondence.
For our examples in (1) and (2), we get:

: Bd1 : = B%2
%((Dth)) = ({C/\B51/\C‘51/\C‘52’ D/\—|B52/\D52/\D61}’(Z)>

: B91 : (%%
%((D% WZ)) = ({ CABOIACOIACY ) DASCIEADIEADOT } 7®> .

In contrast to the two rational extensions obtained fr@in, 1), theory 7;((Dy, W1)) re-
sults in one rational extension containiag D, B, C°', D%, and—B%, (%%, D2, As well,
74((Do, W5)) gives one rational extension containiag B°t, C°t, %,

Note that a corresponding mapping into justified or consé@idefault logic is impossible;
this is not a matter of the specific translation but rathercgral impossibility.

Theorem 4.6 There is no mapping@ such that for any default theofyD, /), we have that the
extensions of D, /) are in a one-to-one correspondence with the constrainetifijed exten-
sions of 7 ((D, W)).

To see this, consider theofy -2 } , ), havingno extension. On the other hand, it is well known
that every default theory has at leasejustified and constrained extensidnukaszewicz, 1988;
Delgrandeet al., 1995.
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5 Correspondence with Cumulative Default Logic

This section presents encodings for representing cunaalaefault logic and cumulative ex-
tensions in default logic. The approach here is signifigatifferent from that of the previous
section, in large part because cumulative default logitsde#h assertionswhich encode those
formulas that an asserted consequent depends upon. Wedivedgpa translation that directly
encodes assertions and assertional default theoriesnidiesthdefault logic, using reified formu-
las. Second we provide another translation that makes ulseosin correspondences between
constrained default logic and cumulative default logic.

In order to be able to talk about an assertien{s,...,3,}) € A within a (classical,
logical) theory, an assertion teifiec® [McCarthy, 1979 as an atomic formuld:, -)™, where
each argument is a reified formula that does not contain aarios of(-, -)™. Thus the assertion
(a,{B1,...,B.}) is represented in the object language as the reified fortula A --- A 3,)7.8
Let £ be the set of reified assertions. So that translated assetigve appropriate properties,
we employ a set of formuladz,. axiomatising the reified formulas:

Definition 5.1 Ax,. is the least set containing instances of the following satam
1. IfF athen(a, )™ € Az,..
2. (b1 =) D ({0, B1)"™ = (a, 52)").
3. (@, )™ A{a D B,)™ DB Y AY)™.
We have the following analogue of Definition 2.6:
Theorem 5.1 If (ay, 81)™, (an, 2)™ € R and{ay, s} FythenRU Ax,.. b (v, 51 A 52)".

From this we establish a correspondence between extersficnsulative default logic and
default logic. We first define correspondences betweentasseand formulas of classical logic.

Definition 5.2
For R C A, define

Re(R) = {(a,8)" [ (a,B) € R}
Re™(R) = Re(R)U Form(R)U Supp(R) U Az,e.

Definition 5.3
For R a set of formulas, define

Re™'(R) = {{a, B) | (o, B)" € R}.

5In Artificial Intelligence, a common use of reification is tesart that a particular fact or formudais true
at some state, given perhaps byfolds(a, s). « is then a term in the (classical, first-order) theory, maybstb
thought of as a string denoting the underlying formula. Tlursa formulaHolds(p A g, s), A here would be an
infix function. Appropriate “behaviour” of this function ¢ém needs to be given as an axiom for the theory; for
exampleHolds(p A q,s) D Holds(p, s). Consequently we require Definition 5.1 so that reified @&ses have the
right properties.

5We understand empty components, such as the suppirt i, to be interpreted as.
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Definition 5.4 For assertional default theoryD, W), defineZ,((D,W)) = (D,, W,) where

W, = Ret(W)  and D:{m% asd ¢ p, weﬁ}.

In an assertional default theory, the set of defaults isatittally no different than defaults in a
Reiter default theory; however, the world knowledgfeand resulting extensions are composed of
sets of assertions. In a translated theory, reified asasréippear as components of (translated)
defaults, in the prerequisites and consequents. Note ththa the consistency check, in the
justification, remains unaffected. In fact, the treatmentia\ v in Definition 5.4 is identical
to that of 3 A +/ in Definition 4.1. This translation then nicely shows thatyothe support
of (reified) assertions is needed for keeping track of ulydeglassumptions when applying a
default rule.

Consider our examples in (3) and (4):

o T)e: A AVB))™ : - A
%((DE}) Wg)) - ({ <AA<’1/)/\A>A>’I‘C/\A7 <_<‘A\:Z)/\_|A re A— A ) w 6 £} )
. T A AVB,)™ : - A
7:1<<D47 W4)) - ({ <A(,’Lﬁ/\x>4>m/\A7 <ﬁ<A\;}/\ﬁA reA—A ‘ ¢ < L}
{(Av B, {A})"}U{AV B} U{A})

Both theoriesZ, ((Ds, W3)) andZ,((D,, W,)) yield one extension in standard default logic, con-
taining (A, { A})™.
We have the following general result.

Theorem 5.2 For an assertional default theoryD, W), we have that
1. if € is an assertional extension @b, W), thenTh(Re* (£)) is an extension df, ((D, W));
2. if Fis an extension of, ((D, W)), thenRe™*(E) is an assertional extension 6D, ).

Similar to the previous results, we also have a one-to-orrespondence between the extensions
of a default theory and the extensions of the translationct§t speaking the translation is not
faithful, since the original theory is expressed in termagssertions, whereas the image under the
translation is expressed in terms of reified formulas. Hawé¢his technical difficulty is easily
skirted if we agree that assertions in cumulative defagida@re in fact represented as reified
formulas, in which case an extension of the translated yhesm be projected onto the language
of the original theory.

However the translatiof, is clearly not polynomial. As given, Definition 5.4 yields ieufi-
nite number of defaults (due to the presence ah the formula schemata). We can nonetheless
work with a finite theory in the propositional case, by theedignt of noting that over the lan-
guage of a (finite) assertional default theory there will i@ide alphabet of mentioned symbols,
and a finite set of sets of formulas that are equivalent. (ihdhe set of formulas on a finite
alphabet can be partitioned into sets of equivalent forgjdad there will be a finite number of
these sets.) We then replace a formula in a set of logicallivatent formulas by some canonical
representative. Consequently the translated theory wilbXponentially larger in size than the
original.
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The translationis modular and monotonic, desirable properties that nonetkedre over-
shadowed by the non-polynomiality of the translation. Adlweis not at all clear how a direct
translation from cumulative default logic to default logian avoid this exponential blowup.
However, there are known correspondences between corestrdefault logic and cumulative
default logic, and so we describe next a second transldtetmtakes use of this correspondence
and avoids the exponential blowup in the translation.

In [Delgrandeet al., 1993 it was shown that there is a one-to-one correspondence éetwe
extensions of a constrained default the@dy, 17) and the cumulative default theof, {(«, 0) |
a € W}). [Schaub, 1998extends this to a one-to-one correspondence betyemonstrained
default theorieSand arbitrary assertional default theories; as well it mahthat preconstrained
theories can be expressed by standard constrained theBaigsd on these results we define the
following.

Definition 5.5 Let (D, W) be an assertional default theory. Defiig((D,W)) = (Dee, Wee)
wheren is a new propositional symbbhot occurring inD, W, and

W,. = Form(W)U{n = (ASupp(W))}  and D, = {m

~

2l e phu{}.
The following is a corollary to Theorems 2.1 and 3.48€haub, 1998
Theorem 5.3 Let (D, W) be an assertional default theory af..., W..) = 7..((D,W)).

1. If (E,C) is a constrained extension @b, W..), then there is an assertional extensi®n
of (D, W) such thatt' = Form(E) andC = Th(Form(&) U Supp(E)) .

2. If £ is an assertional extension @b, V) then
(Th(Form(&) U {n = (ASupp(W))}), Th(Form(E) U Supp(E) U {n}))
is a constrained extension oD, ).

We thus get a one-to-one correspondence between assketitgr@sions and constrained exten-
sions (modulo the introduced propositional symbolor corresponding theories. The composed
translationZ,. = 7.. o 7. then gives us a second translation from cumulative defagltlinto
default logic, mediated by a translation to constrainecualéiogic. We observe th&,.. is not
faithful, since we lose the association of supports of a fdenin an extension under the trans-
lation; consequently neither i§,. faithful. However, the asserted formulas (i.e. disregaydi
supports) are the same in the corresponding extensiofi3,0f) and7Z..((D,)). Hence we
obtain a limited faithfulness result here, with respecth® asserted formulas. Boffy. and7Z.
are polynomial (again, linear), modular, and monotonig)deZ,.. is also linear, modular, and
monotonic.

A preconstrained default theory is a constrained defaelbyy but where a set afonstraintsis given in the
specification of a theory. A preconstrained theory is of therf (D, W, Cp) where D, W are as before, and
Definition 2.2 is modified so thaf' containsC'p.

8The use of: is to simply restrict the increase in theory size to a congtator.
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6 Discussion

We have obtained, for the most part, satisfactory trammsiatof variants of default logic into de-
fault logic, as well as a translation of default logic intéioaal default logic. Results concerning

properties of our translations are summarised in Table 2.

Embedding Translation Property
From | To Faithful | Polynomial| Modular | Monotonic
constrained standard 1. vV linear vV v
rational | standard 7, vV linear vV v
justified | standard 7; Vv quadratic Vv
standard | rational T4 Vv quadratic Vv
cumulative| standard 7, Vv exponential Vv V
cumulative| standard Tae y/ (wrt formulas) linear vV v

Table 2: Summary of translations.

Translating cumulative default logic into standard defégic is clearly the most problem-
atic of the translations we consider. This is primarily do¢hte use ofissertionswhich record
the support of an asserted formula. Hence a direct encoufimgigmented by out,,) appears to
require an exponential increase in size of a translatedyhtmallow for all possible supports.
We also obtain an indirect translatiaf., making use of a known correspondence with con-
strained default logic to obtain a translation with goodpandies, except that faithfulness with
respect to the supports of a formula is lost. Thus each t#aoslhas its pros and cons. Of the
other non-linear translations, it may be possible to impron the provided quadratic bound, but
it is not clear to us how such an improvement could be obtained

It should be noted that the various translations are notrarlgj but rather deal with two
issues. The first concerns how consistency is handled inauliédgic, while the second deals
with the nature of what is asserted (whether a formula or aaréien). The general form of the
translation schemes dealing with these aspects can bealied as follows:

1 a:f oo c(B)
' g v A e(B)
5 a: ala) :

v ~ a(y)

The first form, which encodes an alternative consistencyitimm, underlies all the translations
in Section 4. The translatiof, in Section 5 uses the second general translation in addiion
the first in order to manage assertions.

The mappingZ, of Section 5 extends straightforwardly to the variants giire[Giordano
and Martinelli, 1994; Linke and Schaub, 199Which present cumulative variants of standard,
rational, and justified default logic. Thus the mappings eftidn 4 can be combined with that
of Section 5 in order to obtain cumulative counterparts ef vhriants given in Section 2. In
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all, this allows us to map a whole spectrum of these variahtietault logic onto the original
approach. In view of the results of Section 4.2, we also aldaalogous results for mapping all
variants into rational default logic (including self-mapgs). In this way, both Reiter’s original
default logic as well as rational default logic may serve ger@eral host system, or target system,
for mappings. Note however, that based on our experienedrdhslations into default logic (as
opposed to rational default logic) would be more straightrd. As well, while we can simulate
rational default logic in default logic via a linear trartsa, we have been unable to do better
than a quadratic translation for simulating default logicational default logic.

The general approach of mapping one default logic into aradlso raises the question of
how default logics should be classified. To date, this hasiipéeen done by appeal to formal
properties, primarily:

e semi-monotonicity
e regularity and
e cumulativity.

Recall that a default logic, or class of default theoriesemi-monotonigust if the addition of
default rules never eliminates, but rather extends or auls,extensions. In particular, semi-
monotonicity guarantees the existence of extensions. Asasemi-monotonic logic has com-
putational advantages over a non-semi-monotonic logithab semi-monotonicity allows for
the incremental construction of an extension. Regulasitgommitment to assumptions, is con-
cerned with how the consistency of justifications is detaeadiwith respect to an extension. A
default logic isweakly regularif each justification of an applied rule must be individuatyn-
sistent with an extension; it &rongly regularf the justifications must be jointly consistent with
an extensionCumulativityis the property wherein the addition of a derived conclusoa set
of facts does not change the set of conclusions.

Intuitively, it would seem that each of these propertieshhlzge used to classify default log-
ics with respect to their expressiveness. However our tesudicate that only the first property,
semi-monotonicity, provides a truly distinguishing fe&tunarking a borderline of expressive-
ness. Reca[Delgrandeet al,, 1995; Mikitiuk and Truszczyhski, 199hat justified, constrained,
and cumulative default logic enjoy semi-monotonicity, wdes Reiter default logic and rational
default logic do not. In parallel, our results show that tbarfer logics can be translated into
(or: simulated by the latter two logics, but the converse is not possib@n the other hand,
justified and Reiter’s default logic enjoy weak regulantile constrained, cumulative, and ra-
tional default logic are strongly regular (which is to sagmomit to assumptions). Our results
show that one can mutually simulate the formation of extamsin weakly and strongly regular
default logics. Nonetheless, we have seen that our encedihgeakly regular default logics
are quadratic, while strongly regular systems can be entliakarly. As a matter of fact, this is
due to the multiplicity of “consistency contexts” undergiextensions in weakly regular default
logics. For mimicing this in a strongly regular logic, ouanislations provide as many language

9At least, it is impossible as regards a bijection among ttesfeextensions.
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copies as there are possible “consistency contexts”, gghlby mutually inconsistent justifica-
tions. Hence, although regularity represents no real degitian with respect to expressiveness,
it nonetheless indicates a possible representationahtalya. Also, this can be seen as a rep-
resentational advantage of Reiter’'s default logic ovapnall default logic. The same applies
analogously for cumulative default logics. Cumulativealdf logic is cumulative, while the
other considered default logics are not. Thus only semigtanicity provides a clear division
between more and less expressive variants of default logics

7 Concluding remarks

We have shown how variants of default logic can be expressdreiter’s original approach.
Similarly, we have shown that rational default logic andadéflogic may be encoded, one into
the other. However the encoding from rational default ldgidefault logic seems more straight-
forward than vice versa, since the latter translation igheeilinear nor monotonic. For the most
part the provided transformations have good propertieagh@ith exceptions discussed in the
previous section) faithful, polynomial, modular, and mtmyac. This work then complements
previous work in nonmonotonic reasoning which has showkslimetween (seeming) disparate
approaches. Here we show links between (seemingly) dispaeaiants of default logic. As
well, the translations clearly illustrate the relationmhbetween alternative approaches to default
logic.

As argued in Section 6, there is a division between defagitland rational default logic
on the one hand, and the remaining variants on the otherfasting itself through the property
of semi-monotonicity. Although it has often been informpadrgued that the computational ad-
vantages of semi-monotonicity are offset by a loss of repriegional power, this claim has up
to now not been formally sustained. The results reportddamhunen, 199%rovide another
indication of the relation between semi-monotonicity argdressiveness: normal default logic
is a semi-monotonic fragment of Reiter’s default logic amdtrictly less expressive than default
logic.

Our approach can also be seen as a refinement of the investigat complexity and/or
expressiveness conducted[i@ottlob, 1992; Stillman, 1991; Marek and Truszczynski93:9
Gottlob and Mingyi, 1994; Gogiet al,, 1995; Janhunen, 1989From the perspective of com-
plexity, there were of course hints that mappings such asarerpossible. First, it is well-known
that the reasoning problems of all considered variantstahe@econd level of the polynomial hi-
erarchy[Gottlob, 1992; Stillman, 1991° The same level of complexity applies to the “existence
of extensions” problem in default logic and rational defdagic, while it is trivial in justified
and constrained default logic (and analogously for theaetige assertional counterparts). In
view of the same complexity of reasoning tasks, observeataimpossibility claim expressed
in Theorem 4.6 is about the non-existence of correspondig«f extensions. This does not
exclude the possibility of an encoding of incoherent Reatarational default theories in a semi-
monotonic variant that, for instance, indicates incoheeetinrough a special-purpose symbol.

10To be more precise, the problem of deciding whether a préipasi formula is in some or all extensions,
respectively, iS:2— andII2—complete.
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However, there would be no one-to-one mapping here, sincanfpjustified or constrained ex-
tension containing this special-purpose symbol, thereldvbe no corresponding standard or
rational extension.

The most closely related work to our own is that of Tomi Jam[danhunen, 1999who
has investigated translations among specific subclasseeitdr’'s default logic. For instance,
he gives a translation mapping arbitrary default theonee semi-normal theories, showing
that semi-normal default theories are as expressive asagjemees. Other translation schemes
can be found ifMarek and Truszczynski, 1993where among others the notion of semi-
representability is introduced. This concept deals with tpresentation of default theories
within restricted subclasses of default theories over aengled language. Although semi-
representability adheres to a fixed interpretation of defagic, one can view our results as
semi-representation results among different interpgmetatof default theories. As regards future
research, it would be interesting to see whether the regrdsented here lead to new relation-
ships in the hierarchy of non-monotonic logics establisime@anhunen, 1999 Also, a more
detailed analysis of time and space complexity is an issutifare research.

The present work may also lend insight into computationaratteristics of default logic.
For example, our mappings provide specific syntactic charaations of default theories that are
guaranteed to have extensions. That is, for example, @nstr default theories are guaranteed
to have extensions; hence default theories appearing imtge of our mapping (Definition 4.1)
are guaranteed to have extensions.

Apart from the theoretical insights, an advantage of magpsuch as we have given, is that
it suffices to have one general implementation of defauliclégy capturing a whole variety of
different approaches. In this respect, our results allotousandle all sorts of default logics by
standard default logic implementations, such as DefR&®lewinskiet al.,, 1994.

A Auxiliary definitions and results

First, we define the set of generating default rules:

Definition A.1 Let(D, W) be a default theory and Idf be a set of formulas. Define
GD((D, W), E) = {% c D)a c E,ﬁﬁ&/E} .

For the proofs, we need the following (“pseudo-iterativa@ternative characterisation for an
extension. Alternative characterisations of extensiangte various default logic variants are
found preceding the respective proofs.

Theorem A.1 Let(D, W) be a default theory and Idt be a set of formulas.
DefineEy = Th(W) and for: > 0

GD, = {# eD)aeEmﬁng}
Ei+1 = %(EZ U {Conse(Qé) ‘ 0 € GDZ})
ThenE is an extension fofD, W) iff E = | J;2, E;.
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This characterisation is easily derived from the one ingivg Reiter| Reiter, 198(:

Theorem A.2 (Reiter, 1984) Let (D, W) be a default theory and Ief be a set of formulas.
DefineEy, = W and fori > 0

E;.1 = Th(E;) UConseqGD;)
ThenE is an extension fofD, W) iff E = J.;2, E:.

B Proofs

B.1 Correspondence with Constrained Default Logic

We have the following alternative characterisation of astained default logic extension.

Theorem B.1 (Delgrandeet al., 1995) Let (D, W) be a default theory and Iet, C be sets of
formulas.
DefineEy = Cy = Th(W) and fori > 0

GDe = {aTzﬁ eD)aeEm(ﬁm) §ZC}
Ei+1 = Th(E;U{Conseq) | § € GD;})
Civ1 = Th(C; U{Conseqd) A Justif(d) | 6 € GD;})

Then(E, C) is a constrained extension 6D, W) iff (E,C) = (U2, Ei, U= Ci)-

Theorem B.2 Let (D, W) be a default theory ovef.

Let £ andC be (deductively closed) sets of formulas oleand letF' be the set of formulas
over £ U L' such thatF = Th(E U C").

For i > 0, defineE; andC; as in Theorem B.1 relative td, W), E, andC.

For i > 0, defineF; asE; in Theorem A.1 relative t@.((D, W)) and F.

Then, we have far> O that £; = F; N L andC! = F; N L' and F; = Th(E; U C).

Proof B.2 Observe thatl = F'n £ andC’ = F N L. We prove our claim by induction.
Base. We haveEy, = Th(W) =Th(WUW') N L = FyN L.

Analogously, we ge€j = Th(W') = Th(W UW')NL = FyN L.
Lastly, £y = Th(W U W') = Th(Th(W) U Th(W')) = Th(Ey U C}).
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Step. Suppose we have tha = F; N L, C! = F; N £ along withF; = Th(E; U CY).
We interpolate the following lemma.

Lemma B.3 Given the induction hypothesis, we have

a: /Ny a:fNY | a:p (A /
St € {555 |2 eDac BB AY) £ F)
if @l ¢ O‘ViED‘aEEi,ﬁ(ﬂ/\y)ng}

Proof B.3 Giventhaty € £, we havex € F; iff o € E; becausds; = F; N L.
It remains to be shown that(3’ A ') & F iff =(8 A ~) & C'is true. To see this, we proceed
as follows. We have:(GAv) € C'iff =(8'AY') & C"iff =(5'AY) & FNL iff =(5'AY) & F.

|
Lemma B.3 implies thaﬁ(g% € GD; (asin Theorem A.1) iﬂ”““,;—ﬁ € GD; (asin Theorem B.1).

Hence,y A (5’ A+') € {Conseq)) | § € GD,} iff v € {Conseqd) | 6 € GD;} andi A~ €
{Conseqd) A Justif(d) | 6 € GDs}.

Given the induction hypothesis, this implies that., = F;,, N L andCj,, = F;, N L
along withFy; = Th(E;41 U Cl ). n
Proof 4.1

1. Let (E,C) be a constrained extension @b, W). According to Theorem B.1, we then
have that £, C) = (U;2, Ei, U, C:), whereE; andC; are defined as in Theorem B.1.
DefineF' = Th(E U C’) andF; asE; in Theorem A.1 but relative t@.((D, V)) and F.

F = Th(EUC)
- Th(Uioio LU U(z')io Ci)
= Th{UZo(E: U CY)
(U2, Th(E; U C)
Th(U;=, F) (according to Theorens.2)
= U F (sinceFy C Fi,1 andFy = Th(F}) for k > 0)

HenceF is an extension of.((D, W)).

2. Let F be an extension of.((D,W)). According to Theorem A.1, we then have that
F =2, F;, whereF; is defined ag; in Theorem A.1 but relative t@.((D, W)) andF.
DefineE = FnLandC = {p | ¢ € FN L'} andE; andC; as in Theorem B.1.

E = FnCL ¢ = Fnt
= (Uogio E)nL = (Uogio E)nt
= Uo(FinL) = UL (Fin L)
= U, Ei = U, C! (according to Theorens.2)

Hence(E, C) = (U2, Ei, U=, Ci), thatis,(E, C) is a constrained extension @, V).
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Proof 4.2 To see that we have a one-to-one correspondence, consievdltases of Theo-
rem4.1:

1. 1If (El, Cl) §£ (EQ, Cg) then Clearlyjh(El U Ci) % %(EQ U Cé)

2. Conversely, iff; # F», then there is somé& € D, such that € GD(7.((D,W)), F1) \
GD(T.((D,W)), F5). Suppose thatFi N L, {p | ¢’ €e FiNL'}) = (RN L {p | ¢ €
F, n L'}). This impliesPrereqd) € F», N £ andJustif() € {¢ | ¢ € Fo N L'}
Consequentlyy € GD(7.((D,W)), F), a contradiction.

B.2 Correspondence with Rational Default Logic

We have the following alternative characterisation of &ratl default logic extension.

Theorem B.4 (Mikitiuk and Truszczy hski, 1993) Let(D, W) be a defaulttheory and Iét, C
be sets of formulas.
DefineEy = Cy = Th(W) and fori > 0

GD! = {a—;ﬁ eD}aeEmﬁgzc}
Ei+1 = Th(E;U{Conseq) | 6 € GD;})
Civ1 = Th(C; U {Conseqd) A Justif(d) | 6 € GD;})

Then(E, C) is a rational extension ofD, W) iff (E, C) = (U=, Ei, Us—, Ci)-

Given the proximity of Definition 2.3 to Definition 2.2, theqmf of Theorem 4.3 is basically
the same as that given in Section B.1. We thus concentradevtwel the part specific to rational
default logic, playing the role of Theorem B.2:

Theorem B.5 Let (D, W) be a default theory ovef.

Let £ andC' be (deductively closed) sets of formulas odegind let /' be a set of formulas
overL U L' such thatt’ = Th(E U C").

Fori > 0, defineE; andC; as in Theorem B.4 relative {d, W), E, andC'.

For i > 0, defineF; as E; in Theorem A.1 relative t@,((D,W)) and F.

Then, we have for> O thatE; = F,NLandC! = F; N L and F; = Th(E; U CY).

Proof B.5 Observe that sinc€ = Th(E U C’), we haveE = Fn LandC' = F N L.
We prove our claim by induction.

Base. We haveEy =Th(W) =Th(WUW')NL=FyNL,C,=Th(W') =Th(WUW)nN
L =Fyn/L, andFy = Th(W UW') = Th(Th(W) UTh(W")) = Th(Ey U CY).
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Step. Supposé; = Th(E; UC!) and soE; = F;N LandC! = F; N L'.
First of all, this implies thafh(E;) = Th(F;) N L andTh(C?) = Th(F;) N L'.
Next, we have the following lemma.

Lemma B.6 Given the induction hypothesis, we have

a:p a:p a:f3 3
wEn € \wmEan | Ty © D,aeF,~f¢ F}
if @l ¢ %ﬁeD‘aeEﬁﬁﬁgc}

Proof B.6 Our claim holds if:=3" ¢ F' iff =3 ¢ C'is true. To see this, we proceed as follows.
We have-g ¢ C'iff =3 ¢ C"iff =5’ ¢ FN L iff -3 & F. n
Continuing the proof of the theorem, Lemma B.6 implies tig62% € GD; (as in Theo-
rem A.1) iff % € GD; (as in Theorem B.4). Hence,A (' A+') € {Conseq)) | 6 € GD;}
iff v € {Conseq) | 6 € GD}} and A~ € {Conseqd) A Justif(d) | 6 € GD;}.

In all, this implies thatt; .1 = Fi.1 N L, Clyy = Fipn NL andFyy = Th(Eixp UC,). m

B.3 Correspondence with Justified Default Logic
We have the following alternative characterisation of difiesl default logic extension.

Theorem B.7 (Lukaszewicz, 1989 Let (D, W) be a default theory and leb, J be sets of
formulas.
DefineE, = Th(W), Jo = () and fori > 0

D! = {# e D)a € E,¥ne JU{BY.~(n A7) g_zE}
Eiy1 = Th(E; U {Conseqs) | § € GD!})
Jiv1 = J;U{dustif(0) | 6 € GD!}
Then(E, J) is ajustified extension ¢D, W) iff (E, J) = (U2, Ei, Uiy Ji)-
Recall from Section 4 that without loss of generality we deith default rules have unique

components. This greatly facilitates this proof since ifjgation uniquely determines the de-
fault rule in which it occurs. Thus, we have for istard¢8ustif(é)) = J for everys € D.

Theorem B.8 Let (D, W) be a default theory ovef and let.J C Justif(D).

Let £ be a deductively closed set of formulas oyeand let /' be a set of formulas over
LU Jcep £¢ such thatF = Th(E UUcep ECU UBEJ{ﬁ(S(B)}> andE =FnCLandJ = {7 |
B = Jdustifi(d) andd € GD(Z;((D,W)), F)}.

For i > 0, defineE; and J; as in Theorem B.7 relative td, W), £, and J.

Fori > 0, defineF; as E; in Theorem A.1 relative t@;((D, 1)) and F.

Then, we have far> 0 that F; = Th(E,— UUcep B U UﬁeJi{ﬁ‘g(ﬁ)}) andE; = F;N L and
J; = {ﬁ | ﬁ = JUStifo(é) and) € GDi_l}.

Proof B.8 We prove our claim by induction.
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Base. We haveE, = Th(W) = Th(W U U&DW@‘) NL=F,NLand

Fy = (W UUep W)
= (W) UUep Th(WS))
= Th(EoUUepES)

By definition, we havel, = 0 = {5 | 5 = Justif(0) ando € 0}.

Step. Suppose we have th#t = Th(EZ UUcep E5 U UneJi{n‘s(m}) andE; = F; N £ and
J; = {n | n=Justif(d) ando € GD,_,}.
We introduce the following lemma in order to complete thegbro

Lemma B.9 Given the induction hypothesis, we havefot % that

o (,35/\76)/\(/\(6D o
YABAY )N Acep 7©

)
)
iff o

a: (B A MANeep7©) o 5 \ R
vA(ﬁAM )A(/\Ez»% ’)\ € D,a € Fi,~(B* AN A Neep ) ¢ F}

€
e {ab eD’aeEZ,Vne Ju{ﬁ}.ﬁ(n/\y) ¢E}

Proof B.9 Giventhaty € £, we havex € F; iff o € E; becauses; = F; N L.

It remains to be shown that{ 3° A v° A Neep ) & Fiff ¥y € JU{B}.~(nAy) ¢ Elistrue.
To see this, we proceed as follows. We hayec J U {f}.-(nA~v) &€ Eiff =(FA~v) & E and
—(n A~) & E for everyn € J. SinceFE is deductively closeeh(5 A v) ¢ E is equivalent to the
(redundant) conditiom(SAv) ¢ E and—y ¢ E. We thus have thatn € JU{8}.~(nAv) € E
holds iff

1. =(BAY) ¢ E,
2. v ¢ E,and
3. °(nN~) ¢ E foreveryn € J.
Due to the isomorphism betweghand £¢ for every( € D, this is equivalent to
1 =(8° nY°) & B,
2. =) ¢ pi) for everyn € Justif(D) \ J, and
3. =(n°M A A9y & [ for everyn € J.
We now proceed itemwise:
1L =(3°AY°) ¢ B

(a) Suppose ¢ J.
Then, by definition oft", =(3° A %) & E° is equivalent to~(3° A %) & F N LY.
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(b) Supposes € J.
Given thatE? is deductively closed (by virtue df being deductively closed);(3° A
7°) ¢ E° is equivalent tor° = —3° v —°, which is equivalent taz° U {3°} £
—3° vV . Thatis,~(8° A+v°) ¢ Th(E°U{B°}). By definition of , this is
equivalentto~(8° A+°) ¢ F N LC.

In both cases, we obtain that3° A v°) ¢ E? is equivalent to~(3° A %) & F N LO.

2. =° ¢ B for everyn € Justif(D) \ J.
By definition of F', this is equivalent tey®™ ¢ F 0 £,

3. =(n%m A A9 & B for everyn € J. Considemn € J.

Given thatE’™ is deductively closed (by virtue df being deductively closed;(°™ A
) ¢ E°M is equivalent to-° ¢ Th(E°™ U {n°™}). By definition of ', this is
equivalent to-°" ¢ F 0 L0,

This case analysis shows thag € J U {3}.-(n Av) € E holds iff (8% A7) & F N L
and—°" ¢ F N LM is true for everyn € Justif(D) (joining the result of 2. and 3.). By
definition of F, the latter is furthermore equivalent ta/3° A 7°) ¢ F and—°" ¢ F for
everyn € Justif(D). Given the strict separation &f via the sublanguages and the fact that
deductively closed the latter is equivalenttQ3’ A v° A A..p7°) & F. ]

o o o (B M)A A cep 7 : : :
Lemma B.9 implies fos — <2 thatwgﬁéﬁzéiﬁ&zeg% € GD; (as in Theorem A.1) if§ € GD?
(as in Theorem B.7). Hence; A (B2 A2 A (/\ceDVC) € {Conseqs) | § € GD,} iff v €
{Conseqo) | § € GD!} andg € {Justif(d) | 6 € GD!}.

Given the induction hypothesis, this implies that, = F;, ;N LandJ,, = {8 | f =
Justifi(d) andd € GD;} andF, | = Th(EiH UUcen EfH U Unejiﬂ{n‘s(")}). n
Proof 4.4

1. Let (£, J) be a justified extension @D, W). According to Theorem B.7, we then have
that (E,J) = (U, Ei, U, /i), whereE; and J; are defined as in Theorem B.7. De-

fine /' = Th(E UlUcep B4 U UﬁeJ{ﬁ‘W)}) andF; asE; in Theorem A.1 but relative to
T;,((D,W)) andF.
Fo= Th{EUUep E‘U UﬁeJ{ﬂé(ﬁ)}>
= Th(UZo £ UUcep Uy Ef U Useuz, Ji{ﬁ6(ﬁ)})
= Th(UZ B UUZ Ucep Ef UUZ, Uges 55(6)})

= Th(UZo(B: UlUgep Ef U U, 18°7))
Th(U;=, F) (according to Theoren®.8)
= U F (sinceFy C Fi,1 andFy = Th(Fy) for k > 0)

Hencef’ is an extension of; ((D, W)).
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2. Let ' be an extension of;((D,W)). According to Theorem A.1, we then have that
F =J:2, F;, whereF; is defined ag; in Theorem A.1 but relative t@; ((D, W)) andF'.
DefineE = FNLandJ = {§ | § = Justif(d) andd € GD(7Z;((D,W)), F')} andE; and
J; as in Theorem B.7.

E = FnL J = {B|B=Jdustif(s),d € GD(T;((D,W)), F)}
= (U F)nL = {8 8= Justif(s),s € U2, GD;}
= Uo(Fin L) = U=, {8 8 =Justif(s),s € GD;}
= U Ei = U=, J (according to Theoren.3)
= Uzo Ji

Hence(E, J) = (Ui~ Ei, Uiey /i), thatis,(E, J) is ajustified extension ofD, W).

B.4 Correspondence with (Standard) Default Logic

Given the proximity of Definition 4.4 to Definition 4.3, theqmf of Theorem 4.5 is basically the
same as that given in Section B.3. We thus concentrate beldhegpart specific to the encoding
of Reiter's and rational default logic:

First of all, observe that for default theories of the fofp{(D, W)), we haveE; = C; in
Theorem B.4.

Theorem B.10 Let (D, W) be a default theory ovef.
Let £ be a deductively closed set of formulas oyeand let /' be a set of formulas over
LUUcep £ such thatF = Th(E UlUcep ECU U(;EGD((DW)’E){Justif(5)5}) andE = FNL.

For i > 0, defineE; as in Theorem A.1 relative td>, W) and E.
For i > 0, defineF; as E;(= C;) in Theorem B.4 relative t@,((D, W)) and F.

Then, we have for > 0 that F; = Th(EZ UUcep Ef U U5€GDi71{Justif(5)5}> and F; =
F;n L, whereGD; is defined as in Theorem A.1.

Proof B.10 We prove our claim by induction.
Base. Identical to the Base step in Proof B.8.

Step. The induction step is analogous to the one in Proof B.8, exttest it relies on the
following following lemma.

Lemma B.11 Given the induction hypothesis, we havedct % that

a: B a:pr _ a:f 3
YNBAY )N A¢ep 1) < SN CSIINV VR ‘ A= v © D,a€ Fi,m3" ¢ F}
iff 5 e Q,Y;ﬁeD‘aeEi,—'ﬁgE}
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Proof B.11 Giventhatn € £, we haver € F; iff « € E; becausd&y; = F; N L.
It remains to be shown that3’ ¢ F iff -3 ¢ E. The latter is equivalent te3 ¢ E°. We
distinguish the following two cases.

1. 6 € GD((D,W), E). Then, by definition of", =3° ¢ E° is equivalentto~3° & F' N L°.

2.5 € GD((D, W), E).

Given thatE? is deductively closed (by virtue of being deductively closed);3’ ¢ E°
is equivalent to-3° ¢ Th(E° U {3°}). By definition of I, this is equivalent to-3° ¢

Fnce.
This case analysis shows that ¢ E holds iff =3° ¢ F N £°. By definition of F, this is
equivalentto-3° ¢ F. n
|

B.5 Correspondence with Cumulative Default Logic

We have the following alternative characterisation of a clative default logic extension.

Theorem B.12 (Brewka, 1991) Let(D, W) be an assertional default theory and &be a set
of assertions.
Define&, = W and fori > 0

GD? = {%ﬁ € D | (a, Supp(a)) € &, Form(E) U Supp(€) U {B} U {7} ¥/ J_}

Eir1 = Th(&) U { CumConse@®) | 6 € GD{}
(&

= Th(E) U { (v Supp(a) U{B} U {1}) | 6= %2 € D, 6 € GD}}.

Then¢ is an assertional extension @b, W) iff £ = .2, &:.

We define the closure operator restricted to reified asssrtis follows:

Definition B.1 Let R be a set of reified assertions.
DefineTh™(R) = {3 | RU Az, - fand§ € L.}

Proof 5.1 {ay, s} F + by assumption, sb a; D (ay D 7), and thusa; D (ag D 7),0)™ €
Ax,. by Definition 5.1.1.

As well, since{ay, 31)™ € R we have(as, £1)™ A (a1 D (ag D 7),0)™ D (ag D v, 51)™ €
Az, by Definition 5.1.3. ThuRR U Az, F (ay D v, 51)™ by modus ponens.

Since(as, £2)™ € R by assumption, an@h,, 52)™A{ag D 7, 51)"™ D (7, B1 A B2)™ € Az,
we obtainR U Ax,. - (v, 51 A B2)™ by modus ponens. ]

Lemma B.13 LetR be a set of assertions. Then
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1. Re (ﬁ(n)) — Th™*(Re (R))

2. Re* (Th(R)) = Th(Re* (R))

3. R=Re *(Re (R)).
Proof B.13 Immediate from Definition 2.6 and Theorem 5.1. ]
LemmaB.14 Let R be a sgt\of reified assertions.

ThenRe ' (Th"¢(R)) = Th(Re ' (R)).

Proof B.14 Immediate from Definition 2.6 and Theorem 5.1. ]

Lemma B.15 Let E be an extension &, ((D, W)). Then
Eta iff  Supp(Re '(E)) U Form(Re '(E)) F o
wherea mentions no reified formula.

Proof B.15

1. Assume thaty I «.

Then from the compactness of classical logic, theresare < i < n for somen, such that
{¢1,...,0,} € Eand{oy,...,¢0,} - a As well, everyp, mentions no reified formula.
Moreover, without loss of generality, we can assume thatyesigcho; is either a member
of W, or is the consequent of a generating default from

But by the specification ofV, and D,, we have that for every such there is a reified
formula (v, 15)™ such that), = ¢; or ¥y - ¢;.

Thus by classical monotonicity we obtain ttfatpp (Re ™' (E)) U Form(Re ' (E)) F a.

2. Conversely, assume théitpp (Re ™' (E)) U Form(Re ' (E)) + «
We show that

Supp(Re™'(E)) U Form(Re™'(E)) C E, (5)

from which our result follows from the monotonicity of clasal logic.
Equation (5) follows if we can show that, B (¢, ¢5)™ thenE = ¢, andE + ¢s.

So assume thdf - (¢, ¢2)™; then there is a minimur) according to Theorem A.2, such
that<¢1, ¢2>7’e € k.

Base. If i = 0then{p, ¢2)™ € W,.

Thisimpliesthat ¢, ¢o) € W. Hencep,, ¢ € Form(W)USupp(W), and saForm (W)U
Supp(W) F ¢1 A ¢o, from which we obtaifilV, - ¢; A ¢, and soV, = ¢; andW, F ¢s.

29



Step. For the induction hypothesis, assume that the result holds+ £.
Fori = k + 1 we have by assumption that;, ¢2)™ € Fj.;.
Using Theorem A.2, there are two cases to consider.

(@) (1, 02)™ € Th(Ey).
Thus E;. = (¢1,¢2)™, and by the induction hypothesis we have that+ ¢; and
Ey = ¢.
(b) Inaccordance with Definition 5.4, there is a default fulédth consequenty, v A 5 A v)™A
B A~ applied at ste + 1, and wher€oy, ¢2)™ = (v, A B A y)™.
Trivially, since¢; = v we havep; € Ey,. As well, we have3 € Ej ;.

Last, from the applicability conditions fay, we obtain thate, - («,)™. By the
induction hypothesis we get that, - ¢, from which, together with the preceding
we obtain thatF, ., H ¢ A B A v, thatisE,1 F ¢o. This completes the induction
and the proof of the lemma.

Proof 5.2

1. Let £ be an assertional extension of default the@By, W). If £ is inconsistent then
Form/(&E)U Supp(€) + L. Hence, fron{Brewka, 1991, Lemma 2}7we haveForm(W) U
Supp(W) F L. SinceForm(W) U Supp(W) C W,, we havelW, - L, from which we
obtain that D,, W,) has a single (inconsistent) extension.

So let€ be a consistent assertional extension of default thébryV). We show that
Re™(€) and Ret(&;), i > 0, are equivalent to conditions satisfying an extension of
(D,,W,) as given in Theorem A.2.

We use induction for the sefs, i > 0.

Base:
Re™ (&) = Re (&)U Form(&) U Supp(&)

= Re (W)U Form(W) U Supp(W)
= W,.
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Step:

Re*(&iy1) = Re(E1) U Form(Ei1) U Supp(Eivy) by defn of Re ™ ()
= Re (7/\%(&-) U { CumConse@®) | § € GD;’}) U
Form (?h(g,.) U { CumConseff) | § € GDg}) U
Supp (Z/f\h(&-) U { CumConsej) | § € GD?}) by Theorem B.12
- [Re (ﬁ(gi)) U Form (ﬁ(@)) U Supp (?h(@)ﬂ U
[Re ({ CumConse®) | § € GD{}) U
Form({ CumConse@) | 6 € GD{}) U

Supp({ CumConse@) | 6 € GD{})]
rearranging terms

= Re" (Cf\h(&)) U Re*({ CumConse@) | 6 € GD{})
= Th"*(Re*(&)) U Re™({ CumConse@) | 6 € GD}}) by LemmaB.13

Expanding the rightmost term above we get:

Re*({ CumConse@) | § € GD{})
= Re*({ (v, Supp(a) U{B} U {r}) | 22 € D,
(v, Supp(ar)) € &, Form(E) U Supp(E) U{B} U {v} / L}).
= ({{(7, Supp(a) ABAY)™, v, Supp(a) N\BAY |
©8 € D, (a, Supp(a)) € &, Form(€) U Supp(€) U{B} U {7y} ¥/ L})

We thus have:
{7, Supp(a) A B AY)™, v, Supp(a) NBAv} C Re*({ CumConsef) | 6 € GD{})
iff
(a) There exists:2 e D where
(b) (o, Supp(«)) € &;, and
(€) Form(&) U Supp(E) U{B} U {7} ¥ L.

Proceeding itemwise we have:

@ <Lep iff AeSdl=IM_cp,  from Definition 5.4.

(b) (o, Supp()) € & iff  (a, Supp(a))™ € Ret(&;) by the induction hypothesis.
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(c) We obtain that

Form(€) U Supp(E) U{BTU{y} I/ L iff  Re™(E)U{BtU{y} VL
as follows:

E+ Liff Form(€)U Supp(E) + L from [Brewka, 1991

EF Liff Re(€)F L from Lemma B.13.

Thus,Re (€) + Liff Form(E) U Supp(E) F L.

Clearly Re (£) U Form(&) U Supp(E) F L iff Form(E) U Supp(€E) F L.
ThusRe™ (&) F Liff Form (&)U Supp(€) - L,

and soRe™ (E)U{BIU{r} + L iff  Form(E)USupp(E)U{BIU{~} F L
which was to be shown.

Substituting this in, and continuing with the proof of theuctive step, we have:

Ret(Eip1) = Th°(Re™ (&) | {(v, Supp(a) ABAY)™, 7, Supp(a) ABAY |

(v, Supp(a))™ : BAY
(v,Supp(a) ABAY) e ABAY € Do,

(o, Supp(@))™ € Re™ (&), Re™ (€) U{B} U {7} ¥ L}
= Th(Re™ (&) | J{(v, Supp(a) AB AN, BAY]

(v, Supp(a))™ : BAY
(v, Supp(a) ABAY) e ABAY € Do,

(o, Supp(a))™ € Re™ (&), Re™(E) U{B} U {1} I/ L}
sinceSupp(a) € Th(Re™(&;)) by the induction hypothesis
= Th*(Re*(&;)) U { Conseq) | 6 € GD(T,((D,W)), Re*(£))}.

Finally,
UJRet (&) = | (Re (&)U Form(€;) U Supp(E;)) by Definition 5.2
; =0
= Th™ U(Re (&)U Form(&;) U Supp(&)))
=0

— TR U Re (&)U U Form(&;) U U Supp(&')>

=0 i=0

= Th™| Re (D &) U Form (D &) U Supp (G &))
i=0 =0 =0

= Th"(Re (£) U Form(&) U Supp(E))
= Th"*(Re™(£))
= Re"(£).
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SoRe™(€), Ret (&), 0 < i satisfies the conditions of an extension, given in Theore A.

. Define€ = Re™'(E) and&; = Re™*(E;) for everyi > 0. We need to show that and&;,
1 > 0, so defined satisfy the conditions for an assertional exdargven in Theorem B.12.

If £ LthenRe '(E) = &£ = A, and€ is the sole (inconsistent) assertional extension of
(D, W). Consequently, assume thats consistent.

We use induction for the sefs, ¢ > 0.

Base:
E = Re ' (Ey) = Re ' (W,) = Re™*(Re (W)) = W.

(The final step follows from Lemma B.13.)

Step:

Ei1 = Re Y(Ei) by the definition of; 4
= R (Th(E) | {n e ABANTABAY
Q)™ SN e o Ve € By EU{B AN J.})

(Y PABAY)TENBAY

by Theorem A.2.

Let RS be the expression following the mainin the preceding. So:

Ein = Re‘l(Th”e(Ei) U RS)
= Re '(IW°(E;)) |J Re '(RS)
= Th(Re™'(E)) |J Re'(RS)  bylemmaB.14

—~

= Th(&) U Re '(RS) by the induction hypothesis

Further:

Re™'(RS) = Re ' ({{(y, o ABANTABAY|
RS € D (00 0)" € By BU{BAS}Y L}
= Re ' ({(v, v ABAYEABAY
@ e P, {a,4)" € B, EU{B A7) VL})

We have thatte ™ ({(y, ¥ A BAY)™ A BAYY) = {(v, ¥ A B AN}
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As well, by the induction hypothesis we have thaty)™ € E; iff («, ) € &;.
Substituting in the preceding, we continue:

Re ! (RS) = {wmmn 2L eD, (ag) €&, EU{BAYIY L)
= {(nvnsan [2LeD, (ay)es,
Supp(Re " (E)) U Form(Re " (E)) U{B A~} L} bylLemmaB.15
= {(rnenBA | 2L e D, (a,y) € &, Sup(€) U Form(€) U{BA} 7 L}
Thus

Eiy1 = Th(gz) U
{(rongnm | =L eD, (a,9) €&, Swp(€)V Form(€)U{F A7}y L}
= Th(&) U {(, Supp(@) A B A7) | 2L e Dt |

This completes the induction.
Lastly,

£=Re '(E)=Re™ (G E) U Re™\(E Ue

Thus¢ satisfies the conditions of an assertional extension as givé€heorem B.12.
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