
On Computing Belief Change Operations using
Quantified Boolean Formulas∗

James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
jim@cs.sfu.ca

Torsten Schaub†

Institut für Informatik
Universität Potsdam
Postfach 90 03 27

D–14439 Potsdam, Germany
torsten@cs.uni-potsdam.de

Hans Tompits, Stefan Woltran
Institut für Informationssysteme 184/3

Technische Universität Wien
Favoritenstraße 9–11

A–1040 Vienna, Austria
{tompits,stefan}@kr.tuwien.ac.at

Abstract

In this paper, we show how an approach to belief revision and belief contraction can be ax-
iomatised by means of quantified Boolean formulas. Specifically, we consider the approach of
belief change scenarios, a general framework that has been introduced for expressing different
forms of belief change. The essential idea is that for a belief change scenario (K,R,C), the
set of formulas K , representing the knowledge base, is modified so that the sets of formulas
R and C are respectively true in, and consistent with the result. By restricting the form of a
belief change scenario, one obtains specific belief change operators including belief revision,
contraction, update, and merging. For both the general approach and for specific operators, we
give a quantified Boolean formula such that satisfying truth assignments to the free variables
correspond to belief change extensions in the original approach. Hence, we reduce the problem
of determining the results of a belief change operation to that of satisfiability. This approach
has several benefits. First, it furnishes an axiomatic specification of belief change with respect
to belief change scenarios. This then leads to further insight into the belief change framework.
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the Austrian Science Fund Project under grants Z29-N04 and P15068-INF, as well as a Canadian NSERC Research
Grant.
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Second, this axiomatisation allows us to identify strict complexity bounds for the considered
reasoning tasks. Third, we have implemented these different forms of belief change by means
of existing solvers for quantified Boolean formulas. As well, it appears that this approach may
be straightforwardly applied to other specific approaches to belief change.

Keywords: belief change, quantified Boolean formulas

1 Introduction

In previous work, Delgrande and Schaub [12] developed a consistency-based framework for ex-
pressing belief change operators. The basic idea with respect to belief revision is that, given a
knowledge base K and a sentence α for revision, K and α are first expressed in disjoint lan-
guages, then the languages are coerced (via a maximisation process) to agree on truth values of
atoms wherever consistently possible, and finally the result is then expressed back in the original
language. Informally, in the maximisation step, models of K are syntactically forced to correlate
with those of α insofar as consistently possible. The inherent nondeterminism of the maximisation
process gives rise to two notions of revision: In choice revision, one such belief change exten-
sion is selected as the revised state; in general (skeptical) revision, the revised state consists of the
intersection of all such extensions. Belief contraction is defined similarly.

In this paper, we discuss a method to implement this approach to belief change, based on
reductions to quantified Boolean formulas. By a quantified Boolean formula (or QBF for short)
one understands a formula which is constructed like an ordinary propositional formula, except that
quantifiers ranging over propositional variables may also occur. Quantified Boolean formulas thus
belong to the language of second-order logic. As well, they allow a compact representation of a
large class of problems. This latter point is reflected by the fact that the evaluation problem of
QBFs—i.e., the problem of determining the truth of a given QBF—is PSPACE-complete, whilst
the evaluation problem of QBFs having prenex normal form with i − 1 alternating (groups of)
quantifiers is complete for the i-th level of the polynomial hierarchy [50, 59].

The general mechanism of our approach is to translate (in polynomial time) a given reasoning
task into the evaluation problem for QBFs and then use a QBF evaluator to compute the resultant
instances. The existence of efficient QBF solvers, such as the systems developed by Cadoli et
al. [4], Rintanen [46], Feldmann et al. [19], or Giunchiglia et al. [24], makes such a rapid proto-
typing approach practicably applicable. A similar approach for solving various reasoning tasks be-
longing to the area of nonmonotonic reasoning has been realised in the system QUIP [15, 41, 17].
This prototype implementation currently handles the computation of the main reasoning tasks for
logic-based abduction, default logic, several types of modal nonmonotonic logics, and equilibrium
logic, a generalisation of the stable model semantics for logic programs. We have implemented the
translations for belief change problems by incorporating them into the system QUIP.

Reduction methods to QBFs naturally generalise similar approaches for problems in NP; these
latter problems can in turn be solved by translating them (in polynomial time) to SAT, the satisfia-
bility problem of classical propositional logic (an application of this kind in Artificial Intelligence
is described, e.g., by Kautz and Selman [26]). Besides the implementation of different nonmono-
tonic reasoning tasks as realised by the system QUIP, successful applications based on reductions
to QBFs have also been applied to conditional planning [45].
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There are several reasons why we are interested in a reformulation of the belief change ap-
proach of Delgrande and Schaub [12] using QBFs. First, it provides a straightforward implemen-
tation of the general framework by appeal to extant QBF solvers. Second, in the original approach,
several steps were expressed at the metalevel. In particular, there is a metatheoretic step in which
pairs of atoms are asserted to be equivalent wherever consistent. Here in contrast, we obtain an
object-level representation of the approach. In fact, we provide an axiomatisation of the original
belief change method in terms of QBFs by constructing suitable translation schemas such that there
is a one-to-one correspondence between the satisfying assignments to the free propositional atoms
of the QBFs and the belief change extensions obtained in the original framework. This in turn leads
to further insight into the original approach. Finally, the expression of belief change problems in
terms of QBFs gives a direct way to estimate the computational complexity of the considered rea-
soning tasks. More specifically, by using the respective QBF encodings, we show that reasoning
from choice revision is complete for ΣP

2 , and, dually, reasoning from skeptical revision is complete
for ΠP

2 . Additionally, we also discuss the complexity of other decision problems associated with
belief change. In this regard, we generalise and improve on earlier reported results [11].

In the next section, we briefly introduce notions of belief change as well as those aspects of
belief change scenarios that interest us. In Section 3, we similarly introduce quantified Boolean
formulas. Section 4 gives the polynomial-time constructible reductions of the relevant reason-
ing tasks into QBFs. Section 5 discusses complexity issues, while Section 6 briefly sketches our
implementation of the reductions. Section 7 supplies some concluding remarks.

2 Belief Change and Belief Change Scenarios

2.1 Basic Notation

We deal with propositional languages and use the logical symbols >, ⊥, ¬, ∨ , ∧ , → , and ≡ to
construct formulas in the standard way. We write LP to denote a language over an alphabet P of
propositional variables or atoms. Formulas are denoted by lower-case Greek letters (possibly with
subscripts). Disjunctions of form

∨

i∈I ψi are assumed to stand for the logical constant ⊥ whenever
I = ∅, and likewise conjunctions of form

∧

i∈I ψi with I = ∅ stand for >. A literal, L, is either an
atom p (a positive literal) or a negated atom ¬p (a negative literal). The set of all atoms occurring
in a formula φ is denoted by Var(φ). Similarly, for a set S of formulas, Var(S) is the set of all
atoms occurring in elements of S, i.e., Var(S) =

⋃

φ∈S Var(φ).
The (propositional) derivability operator, `, is defined in the usual way, and likewise its

semantic counterpart, |=. The deductive closure of a set S ⊆ LP of formulas is given by
CnP(S) = {φ ∈ LP | S ` φ}. We say that S is deductively closed iff S = CnP(S). Fur-
thermore, S is consistent providing ⊥ /∈ CnP(S). If the language is clear from the context, we
usually drop the index “P” from CnP(·) and simply write Cn(·). Knowledge bases, or, equiva-
lently, belief sets, are initially identified with deductively-closed sets of formulas; later we relax
this restriction. We use K,K1, . . . to denote knowledge bases.

Given an alphabet P , we define a disjoint alphabet P ′ as P ′ = {p′ | p ∈ P}. Then, for α ∈ LP ,
we define α′ as the result of replacing in α each atom p from P by the corresponding atom p′ in P ′

(so implicitly there is an isomorphism between P and P ′). This is defined analogously for sets of
formulas.
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2.2 General Approaches to Belief Change

A common approach in belief revision and other belief change functions is to provide a set of
rationality postulates that constrain the results of any such function. The AGM approach of Al-
chourrón, Gärdenfors, and Makinson [1, 21] provides the best-known set of such postulates. Belief
states are modelled by deductively-closed sets of sentences, called belief sets, where the underly-
ing logic includes classical propositional logic. K + α, the expansion of K by α, is defined to be
Cn(K ∪ {α}). K⊥ is the inconsistent belief set (i.e., K⊥ = LP ).

A revision function, +̇, is a mapping from 2LP ×LP to 2LP satisfying the following postulates:

(K+̇1) K+̇α is a belief set.

(K+̇2) α ∈ K+̇α.

(K+̇3) K+̇α ⊆ K + α.

(K+̇4) If ¬α 6∈ K, then K + α ⊆ K+̇α.

(K+̇5) K+̇α = K⊥ iff |= ¬α.

(K+̇6) If |= α ≡ β, then K+̇α = K+̇β.

(K+̇7) K+̇(α ∧ β) ⊆ (K+̇α) + β.

(K+̇8) If ¬β 6∈ K+̇α, then (K+̇α) + β ⊆ K+̇(α ∧ β).

Informally, these postulates state that the result of revising K by α is a belief set in which α is
believed; whenever the result is consistent, revision consists of the expansion of K by α; the only
time that K⊥ is obtained is when α is inconsistent; and revision is independent of the syntactic
form of K and α. The last two postulates assert that in revising by a conjunction, an expansion
with a conjunct is employed where consistent.

Contraction is the dual notion of revision, in which beliefs are retracted but no new beliefs
are added. Postulates (K−̇1)–(K−̇8) governing a contraction function, denoted −̇, are similarly
given. The intuition underlying revision and contraction is that an agent receives new information
concerning a static world or domain. Katsuno and Mendelzon [25] explore the distinct notions of
belief update and erasure in which an agent changes its beliefs in response to changes in its external
environment. As well, belief set merging, in which the contents of two belief sets are combined, is
addressed for example by Liberatore and Schaerf [33] and Konieczny and Pino Pérez [28].

There has also been work on specific revision operators based on the distance between models
of a knowledge base and a sentence to be incorporated in the knowledge base [3, 53, 7, 48, 56, 20].
For example, in the approach of Dalal [7], the revision operator measures the distance between
interpretations by the number of propositional variables on which the interpretations differ. It is
shown that this operator satisfies the AGM postulates.

Another direction in belief revision is to assume that revision is not carried out on a belief set
itself, but rather on a finite subset of the theory. Belief change operations would take place with
respect to this belief base, while the underlying belief set would correspond to the deductive closure
of this base. The notion of belief base revision is proposed by Makinson [36], and independently,
with respect to database systems, by Fagin, Ullman, and Vardi [18]. These approaches are fully
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explored by Nebel [39]. While conceptually simple, revision in these approaches frequently relies
on arbitrary syntactic distinctions.

There has been some work with respect to implementations. For example, the afore-
cited distance-based approaches admit straightforward implementations, see [9, 5]. Otherwise,
Williams [55] provides an example of a computational model for belief base revision; see also
[52, 2] for other approaches. The belief change approach discussed in the present paper has also
been implemented as a JAVA program [10].

Finally, Liberatore and Schaerf [31, 32] discuss a method which is related to our results. Sim-
ilar to the ideas of Winslett [57], they employ propositional circumscription [37, 34] in order to
express several belief-revision operators, specifically those defined by Borgida [3], Ginsberg [23],
Dalal [7], Satoh [48], and Winslett [58]. The primary point of distinction between the present
approach and the aforecited works is that we begin with a general framework in which a suite
of diverse operators is defined (see following), whereas previous work has for the most part only
addressed belief revision.

2.3 Belief Change via Belief Change Scenarios

In previous work [12], a consistency-based framework for expressing a suite of belief change
operators is developed. The intent was to specify an approach that has good formal properties,
but that particularly lent itself to implementation. The approach is discussed formally in the next
section; here we give an informal introduction to the approach to revision. As a starting point, it
is clear that the syntactic form of a sentence does not give a firm indication as to which sentences
should be included in a revision K+̇α. Alternately, one can consider interpretations, and look at
the models of K and α. Informally, if K ∪ {α} is unsatisfiable, a model of K+̇α should contain
models of α, but in a sense retaining aspects of models of K that do not conflict with those of α.

We accomplish this by first expressing K and α in different languages, in essence replacing
every occurrence of an atomic sentence p in K by a new atomic sentence p′ yielding knowledge
base K ′, and leaving α unchanged. Under this relabelling, the models of K ′ and α are independent
and K ′ ∪ {α} is satisfiable (assuming that both K and α are satisfiable). The models of K ′ and α
are linked by asserting that the languages are (with respect to truth conditions) the same wherever
consistently possible. That is, for every p ∈ P , we assert that p ≡ p′ wherever consistently
possible. We obtain a set of such equivalences, call it EQ, such that K ′ ∪ {α} ∪EQ is consistent.
A model of K ′ ∪ {α} ∪ EQ then will be a model of α where the truth values of atomic sentences
in K ′ and α are linked wherever possible. A candidate “choice” revision of K by α then consists
of K ′ ∪ {α} ∪ EQ re-expressed in the original language. General revision corresponds to the
intersection of all candidate choice revisions.

For example, consider K and α, where

K = Cn({(p ∨ q) ∧ r}) and α = (¬p ∨ ¬q) ∧ ¬r.

Renaming the atoms in K gives K ′ = Cn({(p′ ∨ q′) ∧ r′}). Clearly, K ′ ∪ {α} is consistent,
even though K ∪ {α} is not. In the step to link the interpretations of K ′ and α, we obtain
that Cn(K ′ ∪ {α} ∪ {p′ ≡ p, q′ ≡ q}) is consistent, but Cn(K ′ ∪ {α} ∪ {p′ ≡ p, q′ ≡ q, r′ ≡ r})
is not. Hence, we takeEQ = {p′ ≡ p, q′ ≡ q}. Intersecting Cn(K ′ ∪ {α} ∪ EQ) with the original
language yields Cn({(p ≡ ¬q) ∧ ¬r}) as the revised knowledge base.
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The general framework allows the expression of contraction and integrity constraints, as well
as update, erasure, and merging operations. Significantly, the approach is independent of how the
knowledge base and formula for revision are represented. In particular, the original and revised
knowledge base can be represented by a formula whose deductive closure gives the corresponding
belief set. As well, the scope of a revision (for example) can be restricted to just those propositions
common to the knowledge base and sentence for revision. The approach (essentially) satisfies the
AGM postulates [1], with the exception of the revision postulate (K+̇8) and the contraction pos-
tulate (K−̇8), and the contraction “recovery” postulate (K−̇5). The approach to belief change is
founded on the same intuitions as consistency-based reasoning methodologies in Artificial Intelli-
gence. Examples of such systems include Theorist [43], diagnosis from first principles [44], and
the assumption-based approach to truth maintenance [8].

2.4 Formal Elements of the Belief Change Framework

Following Delgrande and Schaub [12], we define a belief change scenario in language LP as a
tripleB = (K,R,C), whereK,R, andC are sets of formulas in LP . Informally,K is a knowledge
base that will be changed such that the set R will be implied by the result, and the set C will be
consistent with the result. For a base approach to revision we take C = ∅, and for a base approach
to contraction we take R = ∅.

We extend our notation Var(·) to belief change scenarios in the obvious way, i.e., for B =
(K,R,C), we define Var(B) = Var(K ∪ R ∪ C). In the definition below, “maximal” is with
respect to set containment (rather than set cardinality). The following definition is central:1

Definition 2.1 Let B = (K,R,C) be a belief change scenario in LP . Define EQ as a maximal
set of equivalences EQ ⊆ {p ≡ p′ | p ∈ P} such that

K ′ ∪ EQ ∪ R ∪ C 6` ⊥.

Then,
Cn(K ′ ∪ EQ ∪ R) ∩ LP

is a (consistent) belief change extension of B.
If there is no such set EQ, thenB is inconsistent, and LP is defined to be the sole (inconsistent)

belief change extension of B.

So, a (consistent) belief change extension of B is a modification of K in which R is
true, and in which C is consistent. We say that EQ determines the belief change extension
Cn(K ′ ∪ EQ ∪ R) ∩ LP of B. Clearly, for a given belief change scenario, there may be more
than one belief change extension.

Definition 2.1 provides a very general framework for specifying belief change. In what follows,
we give specific definitions for the belief change operations revision and contraction. In these
definitions, we make use of the notion of a selection function, c, that for any set I 6= ∅ has as

1For simplicity, we adopt a slightly simpler formulation of C here than originally given [12]. Here, we require that
members of C are put together in determining a belief change extension; in the original formulation [12], members
of C are taken individually in determining a belief change extension—that is, K ′ ∪ EQ ∪ R ∪ {¬φ} 6` ⊥ for every
φ ∈ C ∪ {⊥}. We discuss in Section 4.1 how this straightforward yet more involved extension can be accomplished.
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Table 1: (Skeptical) revision examples.

K ′ α EQ K+̇α
p′ ∧ q′ ¬q {p ≡ p′} p ∧ ¬q
¬p′ ≡ q′ ¬q { p ≡ p′, q ≡ q′ } p ∧ ¬q
p′ ∨ q′ ¬p ∨ ¬q { p ≡ p′, q ≡ q′ } p ≡ ¬q
p′ ∧ q′ ¬p ∨ ¬q {p ≡ p′}, {q ≡ q′} p ≡ ¬q

value c(I) some element of I . These primitive functions can be regarded as inducing selection
functions c′ on belief change scenarios, such that c′(B) has as value some belief change extension
of B = (K,R,C). This is a slight generalisation of selection functions as found in the AGM
approach [21].

Definition 2.2 (Revision) Let K be a knowledge base and α a formula, and let (Ei)i∈I be the
family of all belief change extensions of (K, {α}, ∅). Then,

1. K+̇cα = Ei is a choice revision of K by α with respect to some selection function c with
c(I) = i; and

2. K+̇α =
⋂

i∈I Ei is the (skeptical) revision of K by α.

Table 1 gives examples of (skeptical) revision. The first column gives the original knowledge
base, but with atoms already renamed. The second column gives the revision formula, while the
third gives the EQ set(s), and the last column gives the results of the revision. For the first and last
column, we give a formula whose deductive closure gives the corresponding belief set.

In detail, for the last example, we wish to determine

{p ∧ q}+̇(¬p ∨ ¬q).

We find maximal sets EQ ⊆ {p ≡ p′, q ≡ q′} such that

{p′ ∧ q′} ∪ EQ ∪ {¬p ∨ ¬q} ∪ ∅ 6` ⊥.

We get two such sets of equivalences, viz. EQ 1 = {p ≡ p′} and EQ2 = {q ≡ q′}. Accordingly,
we obtain

{p ∧ q}+̇(¬p ∨ ¬q) =
⋂

i=1,2Cn({p′ ∧ q′} ∪ EQ i ∪ {¬p ∨ ¬q}) ∩ LP .

In addition to (¬p ∨ ¬q), we get (p ∨ q), jointly implying (p ≡ ¬q).

Contraction is defined similarly to revision.

Definition 2.3 (Contraction) Let K be a knowledge base and α a formula, and let (Ei)i∈I be the
family of all belief change extensions of (K, ∅, {¬α}). Then,

1. K−̇cα = Ei is a choice contraction of K by α with respect to some selection function c with
c(I) = i; and
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Table 2: (Skeptical) contraction examples.

K ′ α EQ K−̇α
p′ ∧ q′ q {p ≡ p′} p

p′ ∧ q′ ∧ r′ p ∨ q {r ≡ r′} r
p′ ∨ q′ p ∧ q { p ≡ p′, q ≡ q′ } p ∨ q
p′ ∧ q′ p ∧ q {p ≡ p′}, {q ≡ q′} p ∨ q

2. K−̇α =
⋂

i∈I Ei is the (skeptical) contraction of K by α.

We note that the previous revision and contraction operations only partially satisfy Harper’s
Identity, given by K−̇α = K ∩ (K+̇¬α), viz. they satisfy the relation K−̇α ⊆ K ∩ (K+̇¬α).
Hence, in the current approach, revision and contraction are distinct operators, and not, as is usually
the case, interdefinable; see [12] for a fuller discussion.

Table 2 gives examples of (skeptical) contraction, using the same format and conventions as
Table 1. In detail, for the first example we wish to determine

{p ∧ q}−̇q.

We compute the belief change extensions of ({p ∧ q}, ∅, {¬q}). We rename the propositions in
{p ∧ q} and look for maximal subsets EQ of {p ≡ p′, q ≡ q′} such that

{p′ ∧ q′} ∪ EQ ∪ ∅ ∪ {¬q} 6` ⊥.

We obtain EQ = {p ≡ p′}, yielding

{p ∧ q}−̇q = Cn({p′ ∧ q′} ∪ {p ≡ p′} ∪ ∅) ∩ LP

= Cn({p}).

3 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalise ordinary propositional formulas by the admission
of quantifications over propositional variables. As in first-order logic, quantifications are either
existential or universal, represented by the existential quantifier ∃ and the universal quantifier ∀,
respectively, and follow the intuitive meaning. For instance, the QBF

∀p ∃q ((p → q) ∧ (q → p))

evaluates to true, since for all truth assignments to p, there exists a truth assignment to q, such that
the propositional formula (p → q) ∧ (q → p) evaluates to true. On the other, hand the QBF

∃p ∀q ((p → q) ∧ (q → p))

evaluates to false.
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In general, QBFs are a conservative extension of classical propositional logic, in the sense that
to each QBF we can assign a logically equivalent propositional formula. However, the advantage
of QBFs is their compactness: to express a QBF as a logically equivalent propositional formula,
one has to face an exponential increase of the formula size, in general. Furthermore, QBFs extend
classical propositional logic in such a way that reasoning over truth assignments within the object
language can be expressed. A different way to view QBFs is to regard them as a subclass of
second-order logic, restricting predicates to be of arity zero, and therefore to consider formulas
without function symbols and object variables.

Historically, among the first logical analyses of systems dealing with quantifiers over proposi-
tional variables are the investigations due to Russell (“theory of implication” [47]) and Łukasiewicz
and Tarski (“erweiterter Aussagenkalkül” [35]), not to mention the monumental Principia Math-
ematica [54]. The particular idea of quantifying propositional variables was extended in
Leśniewski’s system of protothetic logic [29, 49] where variables whose values are truth functions
are allowed and quantification is defined over these variables.2 In the beginning of the seventies
of the last century, propositional quantification came into the spotlight of computer science, in
particular in the new and developing field of complexity theory [22], when evaluation problems
for QBFs were recognised as the prototypical problems for the polynomial hierarchy [50] as well
as for the prominent complexity class PSPACE [38]. Details on the relation between QBFs and
complexity theory are given in Section 5.

Formally, the set of quantified Boolean formulas (QBFs) over alphabet P is inductively defined
as follows:

1. any propositional variable p ∈ P and any logical constant ⊥,> is a QBF;

2. if Φ is a QBF, then (¬Φ) is a QBF;

3. if Φ and Ψ are QBFs, then (Φ ∧ Ψ), (Φ ∨ Ψ), (Φ → Ψ), and (Φ ≡ Ψ) are QBFs;

4. if p ∈ P is a propositional variable and Φ is a QBF, then (∃pΦ) and (∀pΦ) are QBFs;

5. the only QBFs are those given by 1–4.

We tacitly assume the usual conventions concerning the omission of parentheses in formulas
where no ambiguities can arise. Furthermore, we use upper-case Greek letters as meta-variables
for QBFs, whilst lower-case Greek letters stand for propositional formulas (i.e., quantifier-free
QBFs). Our definition of quantified Boolean formulas is rather unrestricted in two ways: First, in
contrast to the formalisation of QBFs in some papers of the relevant literature, we allow quantifiers
to appear anywhere in a formula. Second, we do not stipulate any restriction on the quantification,
i.e., we do not require that a quantified variable p in QpΦ (Q ∈ {∃, ∀}) occurs in the scope Φ of
Qp. For example, (∃p (q ∧ r)) is a QBF, and so is (∃p (∀p (p → q))).

The semantics of QBFs is defined as follows. First, some ancillary notation. An occurrence of a
propositional variable p in a QBF Φ is free iff it does not appear in the scope of a quantification Qp
(Q ∈ {∀, ∃}), otherwise the occurrence of p is bound. If Φ contains no free variable occurrences,

2A more elaborate overview on these early historical aspects of propositional quantification can be found in §28 of
Church’s Introduction to Mathematical Logic [6].
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then Φ is closed, otherwise Φ is open. Furthermore, Φ[p1/φ1, . . . , pn/φn] denotes the result of
uniformly substituting each free occurrence of a variable pi in Φ by a formula φi, for 1 ≤ i ≤ n.

By an interpretation, M , we understand a set of atoms. Informally, an atom p is true under M
iff p ∈M . In general, the truth value, νM(Φ), of a QBF Φ under an interpretation M is recursively
defined as follows:

1. if Φ = >, then νM(Φ) = 1, and if Φ = ⊥, then νM (Φ) = 0;

2. if Φ = p is an atom, then νM(Φ) = 1 if p ∈M , and νM (Φ) = 0 otherwise;

3. if Φ = ¬Ψ, then νM(Φ) = 1 − νM(Ψ);

4. if Φ = (Φ1 ∧ Φ2), then νM(Φ) = min({νM(Φ1), νM(Φ2)});

5. if Φ = (Φ1 ∨ Φ2), then νM(Φ) = max({νM(Φ1), νM(Φ2)});

6. if Φ = (Φ1 → Φ2), then νM (Φ) = 1 if νM(Φ1) ≤ νM (Φ2), and νM(Φ) = 0 otherwise;

7. if Φ = (Φ1 ≡ Φ2), then νM(Φ) = 1 if νM(Φ1) = νM (Φ2), and νM(Φ) = 0 otherwise;

8. if Φ = ∀pΨ, then νM (Φ) = νM(Ψ[p/>] ∧ Ψ[p/⊥]); and

9. if Φ = ∃pΨ, then νM (Φ) = νM(Ψ[p/>] ∨ Ψ[p/⊥]).

We say that Φ is true under M iff νM(Φ) = 1, otherwise Φ is false under M . If νM (Φ) = 1,
then M is a model of Φ. The set of all models of Φ is denoted by Mod(Φ). If Mod(Φ) 6= ∅, then Φ
is said to be satisfiable. If Φ is true under every interpretation, then Φ is valid. As usual, we write
|= Φ to express that Φ is valid.

It is easily seen that the truth value of a closed QBF is either true under every interpretation or
false under every interpretation, i.e., a closed QBF is either valid or unsatisfiable. In general, the
truth value of an arbitrary QBF under an interpretation depends only on its free variables. Hence,
without loss of generality, for determining the truth value of QBFs, we may restrict our attention
to interpretations which contain only atoms occurring free in the given QBF.

If a closed QBF Φ is valid, we say that Φ evaluates to true, and, correspondingly, if Φ is
unsatisfiable, we say that Φ evaluates to false. Two sets of formulas (i.e., ordinary propositional
formulas or QBFs) are logically equivalent iff they possess the same models. Thus, formulas Φ
and Ψ are logically equivalent iff Φ ≡ Ψ is valid.

In the sequel, we use the following abbreviations in the context of QBFs: For an indexed set
V = {p1, . . . , pn} of propositional variables and a quantifier Q ∈ {∀, ∃}, we let QV Φ stand for the
formula Qp1Qp2 · · ·Qpn Φ. An analogous notation applies if V is a string p1 . . . pn of variables.
Moreover, let S = {φ1, . . . , φn} and T = {ψ1, . . . , ψn} be indexed sets of formulas. Then, S ≤ T
is an abbreviation for {φ1 → ψ1, . . . , φn → ψn}, and S ≡ T stands for {φ1 ≡ ψ1, . . . , φn ≡ ψn}.
Obviously, S ≡ T is logically equivalent to (S ≤ T ) ∪ (T ≤ S).

The two set operations ≤ and ≡ can of course also be applied in a composed manner. In
particular, for S and T as above and R = {ϕ1, . . . , ϕn}, we will make use of the expression

R ≤ (S ≡ T ), (1)
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abbreviating the set of formulas
⋃n
i=1{ϕi → (φi ≡ ψi) }.

Whenever an indexed set S of formulas is used as a consecutive part of a QBF, we implicitly
understand S as the formula

∧

φ∈S φ. In this sense, for R, S, T as in (1), the expression R ≤ (S ≡
T ) appearing within a QBF is synonymous to the formula

∧n
i=1(ϕi → (φi ≡ ψi) ).

Generally speaking, the operator ≤ is a fundamental tool for expressing certain tests on sets of
formulas in terms of QBFs. In particular, we use ≤ in conjunction with the following task:

Given finite sets S and T of formulas, determine all subsets R ⊆ S such that T ∪R is
consistent.

This problem can be encoded by a QBF in the following way:

Proposition 3.1 ([51]) Let S = {φ1, . . . , φn} and T be finite sets of formulas, let V be the set of
atoms occurring in S∪T , and letG = {g1, . . . , gn} be a set of new variables not occurring in S or
T . Furthermore, consider any R ⊆ S and any M ⊆ G such that φi ∈ R iff gi ∈M , for 1 ≤ i ≤ n.

Then, T ∪ R is consistent iff M is a model of the QBF

C[T, S] = ∃V (T ∧ (G ≤ S)).

Note that C[T, S] is an open QBF havingG as its set of free variables. These variables facilitate
the selection of those elements of S which determine the sets R such that T ∪ R is consistent.
Moreover, C[T, S] is designed to express all potential subsets R ⊆ S such that T ∪R is consistent.

We illustrate the functioning of this encoding on a simple example. Consider T = {¬p ∨ ¬q}
and S = {p, q}. For all proper subsets R of S, T ∪ R is consistent, but T ∪ S is inconsistent. For
S as given, we choose

G = {g1, g2}

as corresponding set of guessing variables, which occur free in the encoding C[T, S], given by

∃pq ((¬p ∨ ¬q) ∧ (g1 → p) ∧ (g2 → q)). (2)

It can be checked that all interpretations M ⊂ G are models of (2), but the interpretation M = G
is not a model of (2). This coincides with the observation that exactly the proper subsets of S, viz.
R1 = ∅, R2 = {p}, and R3 = {q}, are consistent with W , while R4 = {p, q} is not.

To express, for example, all maximal such subsets, some additional elements are required. The
computation of maximal sets satisfying certain criteria, using QBFs, is discussed in Section 4.

Finally, we note some useful relations concerning the shifting and renaming of quantifiers,
paralleling similar results from standard first-order logic.

Proposition 3.2 Let p and q be atoms, Q ∈ {∀, ∃}, and let Φ and Ψ be QBFs such that Ψ does not
contain free occurrences of p. Then,

1. |= (¬∃pΦ) ≡ ∀p(¬Φ);

2. |= (¬∀pΦ) ≡ ∃p(¬Φ);

3. |= (Ψ ◦ QpΦ) ≡ Qp(Ψ ◦ Φ) for ◦ ∈ {∧ , ∨ , →}; and

4. |= (QqΨ) ≡ (QpΨ[q/p]).

We say that QBF Φ is in prenex form if Φ = Q1p1 . . .Qnpnφ, where Qi ∈ {∀, ∃}, for 1 ≤ i ≤ n,
and φ is some propositional formula. Proposition 3.2 implies that any QBF Ψ can be effectively
transformed into a logical equivalent QBF Ψ∗ in prenex form.
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4 Reductions

In this section, we present efficient (polynomial-time constructible) reductions of the relevant rea-
soning tasks in the context of belief change scenarios into QBFs. More specifically, these reduc-
tions are constructed in such a way that there is a one-to-one correspondence between belief change
extensions and models of the translated QBFs. Based on these reductions, in Section 5, we analyse
the computational complexity of the considered reasoning tasks.

Concerning the specific tasks, we deal with the following decision problems and their corre-
sponding search problems:

EXT: Decide whether a given belief change scenario B has some consistent belief change exten-
sion.

CHOICE: Given a belief change scenario B and some formula φ, decide whether φ is contained in
at least one consistent belief change extension of B.

SKEPTICAL: Given a belief change scenarioB and some formula φ, decide whether φ is contained
in all belief change extensions of B.

Note that EXT and CHOICE are specified with respect to consistent belief change extensions.
Dropping the consistency condition in EXT would result in a trivial decision problem because,
according to Definition 2.1, any belief change scenario always possesses at least one belief change
extension. Concerning CHOICE, although here, as well as for EXT, we are primarily interested in
consistent belief change extensions, later we relax this condition and deal also with the inconsistent
case. For SKEPTICAL , however, the consistency requirement is actually irrelevant, because it holds
that a formula φ is contained in all belief change extensions of a given belief change scenario
B iff it is contained in all consistent belief change extensions of B. In general, EXT is arguably
less interesting than CHOICE or SKEPTICAL , given that it depends only on the consistency of
the constituents of the given belief change scenario—however, the relevance of this task lies in
the corresponding search problem, i.e., in the actual computation of all consistent belief change
extensions.

4.1 Encodings of the Basic Tasks

From now on we assume that, for any belief change scenario B = (K,R,C), its constituents
K, R, and C are finite; thus, these sets are also represented as the conjunction of their elements.
Furthermore, for our subsequent encodings it is convenient to use the following alternative char-
acterisation of belief change extensions, which is a straightforward consequence of results due to
Delgrande and Schaub [12]. Basically, this characterisation shows that sets of equivalences can be
restricted to subsets of {p ≡ p′ | p ∈ Var(B)}.

Proposition 4.1 For any belief change scenario B = (K,R,C) in LP , there is a one-to-one
correspondence between the determining sets EQ ⊆ {p ≡ p′ | p ∈ P} of the belief change
extensions of B and sets EQ ] ⊆ {p ≡ p′ | p ∈ Var(B)} satisfying the following conditions:

(a) K ′ ∪ EQ ] ∪ R ∪ C 6` ⊥; and
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(b) for each p ∈ Var(B) with (p ≡ p′) /∈ EQ ], we have K ′ ∪ EQ ] ∪ {p ≡ p′} ∪R ∪ C ` ⊥.

In particular, for belief change extensionE ofB with determining set EQ ⊆ {p ≡ p′ | p ∈ P},
it holds that E = Cn(K ′ ∪ EQ ] ∪ R) ∩ LP , where EQ ] satisfies Conditions (a) and (b), and
EQ ] = EQ ∩ {p ≡ p′ | p ∈ Var(B)}.

Thus, for a belief change extension E = Cn(K ′ ∪ EQ ∪R) ∩ LP with EQ ⊆ {p ≡ p′ | p ∈
P}, we also refer, with a slight abuse of notation, to a set of form EQ ] ⊆ {p ≡ p′ | p ∈ Var(B)},
satisfying the above Conditions (a) and (b) and corresponding to EQ , as a determining set of E.

We proceed with the following basic QBF module:

Definition 4.1 Let B = (K,R,C) be a belief change scenario over LP , let V = Var(B) be the
set of variables occurring in B, and let Veq = {peq | p ∈ V } be a set of new variables. Then,

M[B] = K ′ ∧ (Veq ≤ (V ≡ V ′)) ∧ R.

The computation of belief change extensions can be expressed in terms of QBFs as follows:

Theorem 4.2 Let B = (K,R,C) be a belief change scenario in LP , let V = Var(B) be the
atoms occurring in B, and let Veq = {peq | p ∈ V } be a set of variables disjoint from V and V ′.
Furthermore, let EQ ⊆ {p ≡ p′ | p ∈ Var(B)} be a set of equivalences and let M ⊆ Veq be
defined such that peq ∈M iff (p ≡ p′) ∈ EQ .

Then, Cn(K ′ ∪ EQ ∪R) ∩ LP is a belief change extension of B iff M is a model of the QBF

Text[B] = ∃V ∃V ′(M[B] ∧ C) ∧
∧

p∈V

(

¬peq → ¬∃V ∃V ′((p ≡ p′) ∧ M[B] ∧ C)
)

.

Note that Veq constitutes the set of free variables of Text[B]. Intuitively, Veq guesses a set
EQ of equivalences determining a belief change extension of B. The first conjunct of Text[B]
checks consistency, and the second conjunct checks whether EQ is maximal with respect to set
containment.

We remark that in order to encode the computation of belief change extensions according to
their original formulation [12], wherein members of C are individually consistent with respect to
a belief change extension, Text[B] is modified in the following way:

∧

ψ∈C∪{⊥}

(∃V ∃V ′(M[B] ∧ ¬ψ))∧

∧

p∈V

[

¬peq → ¬
∧

ψ∈C∪{⊥}

(

∃V ∃V ′((p ≡ p′) ∧ M[B] ∧ ¬ψ)
)]

.

For an illustration of the translation Text[·], consider the belief change scenario B = ({p ∧
q}, {¬p ∨ ¬q}, ∅) from Section 2.4. The free variables of Text[B] are given by {peq , qeq}, so we
get the following four interpretations serving as potential models of Text[B]:

M1 = {}; M3 = {qeq};

M2 = {peq}; M4 = {peq , qeq}.
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Since B has two belief change extensions, generated by EQ1 = {p ≡ p′} and EQ2 = {q ≡ q′}
(cf. Table 1), we expect M2 and M3 to be models of Text[B]. Let us first look at the left conjunct,
∃V ∃V ′(M[B] ∧ C), of Text[B]. For B as above, we obtain

∃V ∃V ′(M[B] ∧ C) =

∃pqp′q′
(

(p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)
)

. (3)

This QBF has three models, viz. M1, M2, and M3. Interpretation M1 is a model because both
conjuncts (peq → (p ≡ p′)) and (qeq → (q ≡ q′)) of (3) evaluate to true (given that peq , qeq /∈
M1), and since the remaining formula (p′ ∧ q′) ∧ (¬p ∨ ¬q) is consistent. For M2, we similarly
get that (qeq → (q ≡ q′)) is true and that (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (¬p ∨ ¬q) is consistent,
since {p, p′, q′} is a model of (p′ ∧ q′) ∧ (p ≡ p′) ∧ (¬p ∨ ¬q). M3 is a model by analogous
arguments. However, M4 is not a model of (3). This is because, under M4, the propositional part
of (3) can be reduced to

(p′ ∧ q′) ∧ (p ≡ p′) ∧ (q ≡ q′) ∧ (¬p ∨ ¬q), (4)

which is not satisfiable.
Hence, only M1, M2, or M3 are possible models of Text[B].
Now we investigate the remaining conjuncts of Text[B], which are given by

Φ1 =
[

¬peq → ¬∃pqp′q′
(

(p ≡ p′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧

∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)
)]

and

Φ2 =
[

¬qeq → ¬∃pqp′q′
(

(q ≡ q′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧

∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)
)]

.

First, consider interpretation M2. Given that peq ∈ M2, conjunct Φ1 evaluates to true, and it
remains to analyse Φ2. The latter formula evaluates to true if

(q ≡ q′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q) (5)

is not satisfiable. However, given M2, (5) reduces to (4), which is indeed unsatisfiable. Hence, M2

is a model of Φ2, and thus also a model of Text[B]. By a similar argument it follows that M3 is
a model of Φ1 ∧ Φ2. It remains to see that M1 is not a model of Φ1 ∧ Φ2. In fact, it holds that
νM1

(Φ1) = νM1
(Φ2) = 0. We show the case of Φ1 (the case of Φ2 follows analogously). Since

M1 = {}, Φ1 is false under M1 iff

∃pqp′q′
(

(p ≡ p′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)
)

is true under M1. Given that both peq and qeq are false under M1, the previous condition holds iff

(p ≡ p′) ∧ (p′ ∧ q′) ∧ (¬p ∨ ¬q) (6)
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is satisfiable. Clearly, this is the case, since {p, p′, q′} is a satisfying truth assignment for (6). Thus,
M1 is not a model of Φ1. This shows that M1 is not a model of Text[B].

Concerning a QBF encoding for EXT, it immediately follows from Theorem 4.2 that a belief
change scenario B = (K,R,C) with V = Var(B) has a consistent belief change extension iff
∃VeqText[B] evaluates to true. However, this encoding is in some sense not optimal because it is
possible to characterise EXT in terms of a simpler QBF, corresponding to an ordinary satisfiability
problem, by observing that B has a consistent belief change extension iff K ′∪R∪C is consistent.
Consequently, we can state the following result:

Theorem 4.3 Let B = (K,R,C) be a belief change scenario in LP and let V = Var(B).
Then, B has a consistent belief change extension iff ∃V ∃V ′(K ′ ∧ R ∧ C) evaluates to true.

Next, we discuss the translations of the reasoning tasks CHOICE and SKEPTICAL . We begin
with the encodings of the corresponding search problems.

Theorem 4.4 Let B = (K,R,C) be a belief change scenario in LP and let φ be a formula.
Furthermore, let V = Var(B), let W = Var(B) ∪ Var(φ), and let Veq = {peq | p ∈ V } be a set
of globally new variables. Finally, consider the QBF

M[B] = K ′ ∧ (Veq ≤ (V ≡ V ′)) ∧ R

from Definition 4.1.
Then, for EQ ⊆ {p ≡ p′ | p ∈ Var(B)} and M ⊆ Veq such that (p ≡ p′) ∈ EQ iff peq ∈ M ,

the following properties hold:

1. Cn(K ′ ∪ EQ ∪ R) ∩ LP is a belief change extension of B containing φ iff M is a model of
the QBF

Tchoice[B, φ] = Text[B] ∧ ∀W
(

(∃V ′M[B]) → φ
)

.

2. Cn(K ′ ∪ EQ ∪ R)∩LP is a belief change extension of B not containing φ iff M is a model
of the QBF

Tskept[B, φ] = Text[B] ∧ ¬∀W
(

(∃V ′M[B]) → φ
)

.

Intuitively, the two encodings Tchoice[B, φ] and Tskept[B, φ] are realised by (i) checking whether
a selected set of equivalences determines a consistent belief change extension E of B, and
(ii) checking whether E contains a given formula φ, or checking whether E does not contain
φ. Task (i) is modeled using the basic encoding Text[B], and Task (ii) is captured by a suitable
QBF expressing derivability (in case of Tchoice[B, φ]) or non-derivability (in case of Tskept[B, φ])
of φ from the selected belief change extension. Observe that the selection process is facilitated in
terms of the members from Veq , which represent the free variables of Tchoice[B, φ] and Tskept[B, φ].

Concerning the decision problems CHOICE and SKEPTICAL , QBF encodings for these tasks are
obtained from Tchoice[B, φ] and Tskept[B, φ] as follows. CHOICE is expressed by the closed QBF
∃VeqTchoice[B, φ], which states that there is some some set M ⊆ Veq corresponding to a set EQ
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of equivalences such that EQ determines a consistent belief change extension E entailing φ, and
SKEPTICAL is realised by the closed QBF ¬∃VeqTskept[B, φ], which expresses that there is no set
M ⊆ Veq corresponding to a set EQ of equivalences such that EQ determines a consistent belief
change extension E not entailing φ. Thus, we obtain the following corollary:

Corollary 4.5 Let B be a belief change scenario and φ a formula. Then,

1. φ is contained in at least one consistent belief change extension of B iff ∃Veq Tchoice[B, φ]
evaluates to true, and

2. φ is contained in all belief change extensions of B iff ¬∃Veq Tskept[B, φ] evaluates to true.

In contrast to task EXT, which can be expressed by a QBF containing only one sort of quantifier,
here we obtain encodings possessing both existential quantifiers as well as universal ones. As we
show in Section 5, this quantifier alternation is in some sense unavoidable and reflects the inherent
complexity of CHOICE and SKEPTICAL .

We remark that discarding the consistency condition of CHOICE can be easily incorporated
into the translation ∃Veq Tchoice[·, ·]. Indeed, it is a simple matter to check that there is a (possibly
inconsistent) belief change extension of B = (K,R,C) containing formula φ iff the QBF

(∃V ∃V ′(K ′ ∧ R ∧ C)) → (∃Veq Tchoice[B, φ])

evaluates to true.
Finally, observe that Theorems 4.2, 4.3, and 4.4, as well as Corollary 4.5, provide encodings of

reasoning tasks for arbitrary belief change scenarios. In particular, they subsume the characteri-
sation of the corresponding reasoning tasks associated with revision and contraction, as illustrated
by the revision example discussed previously. For convenience, we list the tasks for revision:

REXT: Given a knowledge base K and some formula α, decide whether a consistent belief change
extension of B = (K, {α}, ∅) exists.

RCHOICE: Given a knowledge base K and formulas α and φ, decide whether there is some con-
sistent choice revision K+̇cα containing φ.

RSKEPTICAL: Given a knowledge base K and formulas α and φ, decide whether φ is contained
in the skeptical revision K+̇α.

The corresponding tasks for belief contraction, denoted by CEXT, CCHOICE, and CSKEPTICAL ,
are defined accordingly.

4.2 Expressing Changed Knowledge Bases

Another interesting issue in the context of belief change is to determine the actual form of a given
knowledge base after a revision or contraction operation has been applied to it. This task has
already been analysed by Delgrande and Schaub [12], and, as we show in the following, it can
also be described in terms of QBFs. Before going into details, we briefly summarise the relevant
previous results [12], starting with some notation.
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Given a belief change scenario B in language LP along with a set of equivalences EQ i ⊆ {p ≡
p′ | p ∈ P}, define

PEQ i
= {p ∈ P | p ≡ p′ ∈ EQ i}, and

PEQ i
= P \ PEQi

.

Then, for φ ∈ LP , let dφei be the result of replacing in φ each p ∈ PEQ
i

by ¬p. Furthermore, for
a set of functions

Πi = {πki | πki : PEQ i
→ {>,⊥}},

let bφcki be the result of replacing in φ each p ∈ PEQ i
by πki (p).

Then, the result of applying revision or contraction to a given knowledge base is described by
the following formulas:

Proposition 4.6 ([12]) Let K be a finite knowledge base and α some formula. Then,

1. K+̇α is logically equivalent to
∨

i∈IdKei ∧ α, and

2. K−̇α is logically equivalent to
∨

i∈I,πk

i
∈Πi

bKcki ,

for (EQ i)i∈I being the family of sets of equivalences determining the belief change extensions of
(K, {α}, ∅) and (K, ∅, {¬α}), respectively.

We can express the models of revision and contraction by QBFs using the following construc-
tion.

Definition 4.2 Let B be a belief change scenario in LP with V = Var(B), and let Veq = {peq |
p ∈ Var(B)} be a set of new variables. Then,

Tm [B] = ∃Veq(Text[B] ∧ ∃V ′M[B]).

Observe that Tm [B] is an open QBF having V as its set of free variables. We obtain the
following result:

Theorem 4.7 Let K be a finite knowledge base, α some formula, and V = Var(K ∪ {α}). Then,

1. M ⊆ V is a model of K+̇α iff M is a model of Tm [(K, {α}, ∅)], and

2. M ⊆ V is a model of K−̇α iff M is a model of Tm [(K, ∅, {¬α})].

By collecting all the models ofK+̇α orK−̇α into a single formula, we thus obtain a disjunctive
normal form of K after revision or contraction with α.

To formally express this, given a belief change scenario B with V = Var(B), define

F [B] =
∨

M∈Mod(Tm [B])

(

M ∧
∧

p∈(V \M)

¬p
)

.

Then, we get the following characterisation, representing an alternative to Proposition 4.6:
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Corollary 4.8 Let K and α be as in Theorem 4.7. Then,

1. K+̇α is logically equivalent to F [(K, {α}, ∅)], and

2. K−̇α is logically equivalent to F [(K, ∅, {¬α})].

For illustration of transformation Tm [·], consider again the belief change scenario B =
({p ∧ q}, {¬p ∨ ¬q}, ∅). As already discussed in Section 2.4, B possesses the skeptical revi-
sion Cn({p ≡ ¬q}), which can be rewritten as Cn({(p ∧ ¬q) ∨ (¬p ∧ q)}). Thus, in virtue of
Theorem 4.7, we expect {p} and {q} to be the models of

Tm [B] = ∃Veq

(

Text[B] ∧ ∃V ′M[B]
)

.

We first compute the models of the QBF

Text[B] ∧ ∃V ′M[B]. (7)

The free variables of (7) are given by Veq ∪ V = {peq , qeq} ∪ {p, q}. As argued previously, Text[B]
is true under interpretations {peq} and {qeq}. In fact, since Text[B] has no free variables from V , it
holds that {peq} ∪ U and {qeq} ∪ U are also models of Text[B], for any set U ⊆ V . Consider now
the second conjunct of (7), which is given by

∃p′q′
(

(p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)
)

.

This formula is obviously true under the following interpretations:

M1 = {peq , p}, M2 = {qeq , q},

as well as under every interpretation in which both peq and qeq are false. Thus, only M1 and
M2 satisfy both conjuncts of (7). Taking the existential closure of QBF (7) with respect to the
variables peq and qeq , we get that {p} and {q} are the only models of Tm [B]. Accordingly, we get
F [B] = (p ∧ ¬q) ∨ (¬p ∧ q).

5 Complexity Results

In this section, we analyse the computational complexity of the tasks considered so far. Addition-
ally, we also deal with the complexity of checking whether a given set of equivalences determines
some consistent belief change extension of a given belief change scenario.

A particular advantage of our reduction approach is that upper complexity bounds are derived
directly from the respective QBF encodings. This is due to the fact that our QBF translations are
polynomial in the size of a given belief change scenario, and that the complexity of evaluating a
given QBF Φ is determined by the quantifier order of Φ. For each of the upper bounds obtained in
this fashion, we show also that they are strict, i.e., they possess a matching lower bound. The results
presented here strengthen a previous complexity analysis given by Delgrande and Schaub [11].
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In what follows, we assume that the reader is familiar with the basic concepts of complexity
theory (see, e.g., [40]). For convenience, we briefly recapitulate the definitions and some elemen-
tary properties of the complexity classes considered in the following. As usual, for any complexity
classC, by co-C we understand the class of all problems which are complementary to the problems
in C.

Four complexity classes are relevant here, viz. NP, DP , ΣP
2 , and ΠP

2 . The class NP consists
of all decision problems which can be solved with a nondeterministic Turing machine working
in polynomial time; DP is defined as the class of all problems which can be described as the
conjunction of two (independent) problems from NP and co-NP; ΣP

2 is the class of all problems
solvable on a nondeterministic Turing machine in polynomial time having access to an oracle for
problems in NP; finally, ΠP

2 = co-ΣP
2 .

Observe that NP, ΣP
2 , and ΠP

2 are part of the polynomial hierarchy, which is given by the
following sequence of objects: the initial elements are

∆P
0 = ΣP

0 = ΠP
0 = P,

and, for i > 0,

∆P
i = PΣP

i−1 , ΣP
i = NPΣP

i−1 , and ΠP
i = co-NPΣP

i−1 .

Here, P is the class of all problems solvable on a deterministic Turing machine in polynomial time,
and, for complexity classes C and A, by CA we understand the relativised version of C, consisting
of all problems which can be decided by Turing machines of the same sort and time bound as in
C, only that the machines have access to an oracle for problems in A. It holds that ΣP

1 = NP,
ΣP

2 = NPNP, and ΠP
2 = co-NPNP. A problem is said to be at the k-th level of the polynomial

hierarchy iff it is in ∆P
k+1 and either ΣP

k -hard or ΠP
k -hard.

The class DP is part of a family of complexity classes DP
k , k ≥ 1, where DP

1 = DP and each
DP
k consists of all problems expressible as the conjunction of a problem in ΣP

k and a problem in
ΠP
k . Notice that, for all k ≥ 1, ΣP

k ⊆ DP
k ⊆ ΣP

k+1 holds; in fact, both inclusions are widely
conjectured to be strict. Moreover, any problem in DP

k can be solved with two ΣP
k oracle calls, and

is thus intuitively easier than a problem complete for ∆P
k .

In the same way as the satisfiability problem of classical propositional logic is the “proto-
typical” problem of NP, i.e., being an NP-complete problem, the satisfiability problem of QBFs
possessing k− 1 quantifier alternations is the “prototypical” problem of the k-th level of the poly-
nomial hierarchy. More specifically, the following property holds:

Proposition 5.1 ([59]) Given a propositional formula φ whose atoms are partitioned into i ≥ 1
sets V1, . . . , Vi, deciding whether ∃V1∀V2∃V3 . . .QViφ evaluates to true is ΣP

i -complete, where
Q = ∃ if i is odd and Q = ∀ if i is even. Moreover, the problem remains ΣP

i -hard even if φ is in
conjunctive normal form and i is odd, or if φ is in disjunctive normal form and i is even.

From this result it follows that the evaluation problem of QBFs of form ∀V1∃V2∀V3 . . .QViφ is
ΠP
i -complete, where Q = ∀ if i is odd and Q = ∃ if i is even. As well, the problem remains

ΠP
i -hard even if φ is in disjunctive normal form and i is odd, or if φ is in conjunctive normal form

and i is even.
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Given the above characterisations, we can estimate upper complexity bounds for the decision
problems discussed in Section 4 by simply inspecting the quantifier order of the respective QBF
encodings. This can be argued as follows. First of all, by applying the transformation rules de-
scribed in Proposition 3.2, each of the above QBF encodings can be transformed in polynomial
time into a closed QBF in prenex form. Then, by invoking Proposition 5.1 and observing that
completeness of a decision problem D for a complexity class C implies membership of D in C,
the quantifier order of the resultant QBFs determines in which class of the polynomial hierarchy
the corresponding decision problem lies.

Applying this method to the decision problems EXT, CHOICE, and SKEPTICAL , we get the
following results. To begin with, according to Theorem 4.3, we have that EXT lies in NP. Hence,
REXT and CEXT are also in NP because they are just special cases of EXT. Furthermore, the
encoding ∃Veq Tchoice[B, φ] for CHOICE can be transformed into a QBF of prenex form ∃W1∀W2ψ,
and, dually, the encoding ¬∃Veq Tskept[B, φ] for SKEPTICAL can be transformed into a QBF of
prenex form ∀Z1∃Z2ϕ, where both ψ and ϕ are purely propositional. Thus, CHOICE is in ΣP

2 , and
SKEPTICAL is in ΠP

2 . Similar to the case of EXT, ΣP
2 is also an upper bound for RCHOICE and

CCHOICE , and ΠP
2 is an upper bound for RSKEPTICAL and CSKEPTICAL .

Concerning lower complexity bounds, it turns out that all of the above given estimations are
strict, i.e., the considered decision problems are hard for the respective complexity classes. Sum-
marising, we can state the following results:

Theorem 5.2 The decision problems EXT, CHOICE, and SKEPTICAL , as well as its variants for
revision and contraction, enjoy the following completeness properties:

1. EXT, REXT, and CEXT are NP-complete;

2. CHOICE, RCHOICE, and CCHOICE are ΣP
2 -complete; and

3. SKEPTICAL , RSKEPTICAL , and CSKEPTICAL are ΠP
2 -complete.

Thus, the completeness results for CHOICE and SKEPTICAL , as well as for their specialisations
for revision and contraction, imply that, unless the polynomial hierarchy collapses, it is not possible
to efficiently represent these tasks in terms of QBFs having a prenex form with only one sort of
quantifier, i.e., these tasks cannot be polynomially reduced to standard propositional logic. Hence,
under the above proviso, the encodings described in Corollary 4.5 cannot be simplified further to
avoid an inherent quantifier alternation.

Rounding off our complexity analysis, we deal with the problem of checking whether a given
set of equivalences determines some consistent belief change extension of a given belief change
scenario.

Theorem 5.3 Given a belief change scenarioB and a set EQ ⊆ {p ≡ p′ | p ∈ Var(B)}, checking
whether EQ determines some consistent belief change extension of B is DP -complete.

6 Implementation

Our methodology for expressing reasoning tasks associated with belief change scenarios in terms
of quantified Boolean formulas is motivated by the availability of several practicably efficient QBF-
solvers. Among the different tools, there is a propositional theorem-prover, boole, based on
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filter QSAT intQBF   

protocol mapping

Figure 1: Architecture to use different QBF-solvers.

binary decision diagrams,3 a system using a generalised resolution principle [27], several provers
implementing an extended Davis-Putnam procedure [4, 46, 19, 24, 30], as well as a distributed
algorithm running on a PC-cluster [19].

The translations discussed in the previous section have been implemented as a special module
of the reasoning system QUIP [15, 14, 41, 17], a prototype tool for solving various nonmonotonic
reasoning tasks based on reductions to QBFs. Among others, QUIP handles tasks for logic-based
abduction, default logic, several types of modal nonmonotonic logics, and the stable model seman-
tics for logic programs.

The general architecture of QUIP is depicted in Figure 1. QUIP consists of three parts, viz. the
filter program, a QBF-evaluator, and the interpreter int. The input filter translates the given
problem description (in our case, a belief change scenario and a specified reasoning task) into the
corresponding quantified Boolean formula, which is then sent to the QBF-evaluator. The current
version of QUIP provides interfaces to most of the sequential QBF-solvers mentioned above. For
the solvers requiring prenex normal form, the QBFs are translated into structure preserving nor-
mal form [13, 42]. The result of the QBF-evaluator is interpreted by int. Depending on the
capabilities of the employed QBF-evaluator, int provides an explanation in terms of the under-
lying problem instance (e.g., listing all consistent definitional extensions of a given belief change
scenario). This task relies on a protocol mapping of internal variables of the generated QBF into
concepts of the problem description which is provided by filter.

The system QUIP has been implemented in C using standard tools like LEX and YACC (com-
prising a total of 2000 lines of code, excluding the used QBF-solver); it runs currently in a Unix
environment (Sun/Solaris and Linux), but is easily portable to other operating systems as well.

Initial tests on a series of randomly generated benchmarks, using the system boole as un-
derlying reasoning engine, showed that the current approach can handle problems built of up to
300 variables within a couple of seconds, although these results are too preliminary to draw any
firm conclusions. As well, on the considered examples, the system outperforms a dedicated ad-hoc
implementation [10] realized in JAVA.

7 Conclusion

We have shown how belief revision and belief contraction, as defined using belief change scenarios,
can be axiomatised by means of quantified Boolean formulas. The general mechanism of our
approach is to translate (in polynomial time) a reasoning problem, expressed in terms of belief

3The system can be downloaded from the Web at http://www.cs.cmu.edu/˜modelcheck/bdd.html.
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change scenarios, into the evaluation problem for QBFs. Following this, we use a QBF-evaluator
to compute the resultant instances.

The approach has several benefits. First, the given axiomatics provides us with further insight
about how belief revision and contraction work within belief change scenarios. As well, this ax-
iomatisation allows us to furnish upper bounds for precise complexity results. Last but not least we
obtain a straightforward implementation technique of belief change in belief change scenarios by
appeal to the existing system QUIP [15, 14]. Note that the availability of a parallel QBF-evaluation
solver [19] yields also in a direct way a distributed decision procedure for the encoded problems.
This convenient situation obviously avoids designing special-purposed distributed algorithms for
the problems under consideration.

The implemented operators possess good formal properties, in that most AGM postulates ob-
tain. In particular, the postulate of irrelevance of syntax is retained, and so the results of a belief
change operation is independent of the syntactic expression of its arguments. While the interest-
ing decision problems involving reasoning lie at the second level of the polynomial hierarchy, it
remains to be seen whether the implementation may nonetheless prove practical for large-scale
applications.

A Proofs

Proof 4.2 Let us write Text[B] as Φ1 ∧ Φ2, where

Φ1 = ∃V ∃V ′(M[B] ∧ C), and

Φ2 =
∧

p∈V

(

¬peq → ¬∃V ∃V ′((p ≡ p′) ∧ M[B] ∧ C))
)

.

Consider Conditions (a) and (b) of Proposition 4.1. We show that Condition (a) holds iff M is
a model of Φ1, and that (b) holds iff M is a model of Φ2.

To begin with, since, by hypothesis, EQ and M satisfy the condition that (p ≡ p′) ∈ EQ iff
peq ∈ M , we can apply Proposition 3.1 and obtain that K ′ ∪ EQ ∪ R ∪ C is satisfiable iff M is a
model of

∃V ∃V ′
(

K ′ ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))
)

,

which is obviously equivalent to Φ1. It remains to show that Condition (b) holds iff M is a model
of Φ2.

Consider some p ∈ V such that (p ≡ p′) /∈ EQ and K ′ ∪ EQ ∪ {p ≡ p′} ∪ R ∪ C ` ⊥.
Invoking Proposition 3.1 again, it follows that the last condition holds exactly if the QBF

¬∃V ∃V ′
(

K ′ ∧ (p ≡ p′) ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))
)

is true under M . In general, if we perform this test for each p ∈ V with (p ≡ p′) /∈ EQ , we get
that Condition (b) is equivalent to the condition that the QBF

∧

p∈V,(p≡p′)/∈EQ

¬∃V ∃V ′
(

K ′ ∧ (p ≡ p′) ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))
)

(8)
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is true under M . Observing that, for any p ∈ V , (p ≡ p′) ∈ EQ iff peq ∈ M , it follows that M is a
model of (8) iff it is a model of

∧

p∈V

¬peq → ¬∃V ∃V ′
(

K ′ ∧ (p ≡ p′) ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))
)

. (9)

Since (9) is logically equivalent to Φ2, we conclude that Condition (b) holds iffM is a model of Φ2.

Proof 4.4 According to Theorem 4.2, Cn(K ′ ∪ EQ ∪R) ∩ LP is a consistent belief change
extension of B iff M is a model of Text[B]. Thus, for proving Part 1 of the theorem, it suffices to
show that the following condition holds:

(∗) φ ∈ Cn(K ′ ∪ EQ ∪R) iff M is a model of ∀W ((∃V ′M[B]) → φ).

Furthermore, since M is a model of ∀W ((∃V ′M[B]) → φ) precisely if M is not a model of
¬∀W ((∃V ′M[B]) → φ), we get that Condition (∗) implies that φ /∈ Cn(K ′ ∪ EQ ∪R) iff M is
a model of ¬∀W ((∃V ′M[B]) → φ), which in turn proves Part 2 of the theorem. It remains to
show that (∗) holds.

Since φ ∈ Cn(K ′ ∪ EQ ∪ R) iff K ′∪EQ ∪R∪{¬φ} is unsatisfiable, Proposition 3.1 implies
that φ ∈ Cn(K ′ ∪ EQ ∪ R) iff M is a model of

¬∃W∃V ′
(

K ′ ∧ R ∧ ¬φ ∧ (Veq ≤ (V ≡ V ′))
)

. (10)

Given that φ does not contain any primed atoms, we can rewrite (10) by moving ¬φ outside the
scope of the quantification ∃V ′, thus obtaining

¬∃W
(

∃W ′(K ′ ∧ R ∧ (Veq ≤ (V ≡ V ′))) ∧ ¬φ
)

,

which is in turn equivalent to

¬∃W
(

(∃V ′M[B]) ∧ ¬φ
)

. (11)

But (11) is clearly equivalent to

∀W
(

(∃V ′M[B]) → φ
)

, (12)

and therefore we obtain that φ ∈ Cn(K ′ ∪ EQ ∪R) iff M is a model of (12).

Proof 4.7 Let K be a finite knowledge base, α some formula, and V = Var(K ∪ {α}). Recall
that, for any set EQ of equivalences, PEQ = {p ∈ P | p ≡ p′ ∈ EQ} and PEQ = P \ PEQ .

1. Consider B = (K, {α}, ∅) in LP . Suppose that M ⊆ V is a model of K+̇α. By Proposi-
tion 4.6, there is a consistent belief change extension Ei0 = Cn(K ′ ∪ EQi0 ∪ {α}) ∩ LP of
B (for some i0 ∈ I) such that dKei0 ∧ α is true under M . Define M1 = M ∩ PEQ i0

and

M2 = M \M1. By construction of formula dKei0 , it follows that M1 ∪M 2 is a model of K,
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where M 2 = (V ∩ PEQi0

) \M . Hence, a simple renaming yields that M ′
1 ∪M

′

2 is a model

of K ′. It follows that M ∪M ′
1 ∪M

′

2 is a model of

K ′ ∧
∧

p≡p′∈EQ i0

(p ≡ p′) ∧ α.

By setting J = {peq | p ≡ p′ ∈ EQ i0}, we get that M ∪ J ∪M ′
1 ∪M

′

2 is a model of

M[B] = K ′ ∧
∧

p∈V

(

peq → (p ≡ p′)
)

∧ α,

which in turn implies that M ∪ J is a model of ∃V ′M[B]. On the other hand, since Ei0 is
a consistent belief change extension of B, Theorem 4.2 entails that J is a model of Text[B].
Consequently, M ∪ J is a model of Text[B] ∧ ∃V ′M[B], and therefore

Tm [B] = ∃Veq

(

Text[B] ∧ ∃V ′M[B]
)

is true under M .

Conversely, assume that M ⊆ V is a model of Tm [B]. Then, there is an interpretation
J ⊆ Veq such that M ∪ J is a model of

Text[B] ∧ ∃V ′M[B]. (13)

In particular, we have that J is a model of Text[B], since the free variables of Text[B] are from
Veq . Hence, according to Theorem 4.2, we get that Ei0 = Cn(K ′ ∪ EQi0 ∪ {α}) ∩ LP is a
consistent belief change extension of B, for EQ i0 = {p ≡ p′ | peq ∈ J}. Since K+̇α ⊆ Ei0 ,
for showing that M is a model of K+̇α, it suffices to show that M is a model of Ei0 . This
can be seen as follows.

Given that M ∪ J is a model of (13), we have that M ∪ J is a fortiori a model of ∃V ′M[B].
Hence, there is some interpretation N ′ ⊆ V ′ such that M ∪ J ∪ N ′ is a model of M[B].
From this, we obtain that M ∪N ′ is a model of

K ′ ∧
∧

(p≡p′)∈EQ i0

(p ≡ p′) ∧ α,

which in turn implies that M ∪ N ′ is a model of Cn(K ′ ∪ EQi0 ∪ {α}). In particular, M
must be a model of all those elements from Cn(K ′ ∪ EQi0 ∪ {α}) which contain no atoms
from V ′. In other words, M is a model of Ei0 = Cn(K ′ ∪ EQi0 ∪ {α}) ∩ LP .

2. Consider B = (K, ∅, {¬α}) in LP , and assume that M ⊆ V is a model of K−̇α.
From Proposition 4.6, we obtain that there is some consistent belief change extension
Ei0 = Cn(K ′ ∪ EQi0) ∩ LP of B and some πk0i0 ∈ Πi0 such that bKck0i0 is true under
M , for Πi0 = {πki0 | πki0 : PEQi0

→ {>,⊥}}. Analogous to Part 1, define M1 = M ∩ PEQi0

and M2 = M \M1. Since bKck0i0 is true under M , there is some J ⊆ V ∩ PEQ i0

such that

24



K is true under M1 ∪ J , and therefore M ′
1 ∪ J

′ is a model of K ′. Hence, M1 ∪M
′
1 ∪ J

′ is a
model of

K ′ ∧
∧

p≡p′∈EQi0

(p ≡ p′). (14)

Since no atoms from V ∩PEQ i0

occur in (14), M ∪M ′
1∪J

′ is also a model of (14). Applying

similar arguments as in Part 1, it follows that M is a model of Tm [B].

The proof of the converse direction proceeds analogously to Part 1.

Proof 5.2 Since the membership relations are already dealt with in the main body of the paper,
it remains to show that the problems EXT, CHOICE, and SKEPTICAL , as well as its variants for
revision and contraction, are hard for the respective classes.

1. REXT is NP-hard because a formula φ is satisfiable iff the belief change scenario BR =
({φ}, {>}, ∅) has a consistent belief change extension. Similarly, CEXT is NP-hard because
φ is satisfiable iff BC = ({φ}, ∅, {¬⊥}) possesses a consistent belief change extension.
Either of these properties implies that EXT is NP-hard as well.

2. We show that RCHOICE and CCHOICE are ΣP
2 -hard; similar to the above, ΣP

2 -hardness of
CHOICE is then an immediate consequence.

We first deal with CCHOICE . According to Proposition 5.1, checking whether a closed QBF
Φ of form ∃P∀Qφ, where φ is a propositional formula in disjunctive normal form and P ∪
Q is a partition of Var(φ), is ΣP

2 -hard. In order to show ΣP
2 -hardness of CCHOICE , we

construct a polynomial-time transformation mapping each closed QBF Φ of the above form
into a pair (BC , φ

∗), where BC = (K, ∅, {¬α}) is a belief change scenario and φ∗ is a
formula, such that Φ is valid iff there is a consistent choice contraction K−̇cα containing φ∗.

The construction of K, α, and φ∗ is as follows. For P = {p1, . . . , pn}, let R = {r1, . . . , rn}
be a set of new atoms not occurring in Var(φ). Define

K = {pi ∧ ri | i = 1, . . . , n}, and

α =
n

∨

i=1

(pi ∧ ri),

and let φ∗ be the result of replacing in φ each literal ¬pj , for pj ∈ P , by rj ∈ R (1 ≤
j ≤ n). We show that Φ = ∃P∀Qφ is valid iff there is a consistent belief change extension
Cn(K ′ ∪ EQ i0) ∩ LP of BC = (K, ∅, {¬α}) containing φ∗.

To begin with, observe that, for any consistent belief change extension Cn(K ′ ∪ EQ) ∩ LP

of BC , it holds that

(∗) either pj ≡ p′j ∈ EQ or rj ≡ r′j ∈ EQ , but not both, for each 1 ≤ j ≤ n.
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Assume that ∃P∀Qφ is valid. Then, there is an interpretation S0 ⊆ P such that for each
U ⊆ Q, S0 ∪U is a model of φ. By construction of φ∗, it follows that S0 ∪T0 ∪U is a model
of φ∗, for T0 = {rj ∈ R | pj ∈ P \ S0} and each U ⊆ Q. Now define

EQ i0 = {pj ≡ p′j | pj ∈ S0} ∪ {rj ≡ r′j | pj ∈ P \ S0}.

Clearly, Cn(K ′ ∪ EQ i0) ∩ LP is a consistent belief change extension of BC . We claim that
φ∗ ∈ Cn(K ′ ∪ EQ i0) ∩ LP .

Since φ∗ ∈ LP , it suffices to show thatK ′∪EQ i0 ` φ
∗. LetM ′∪N be a model ofK ′∪EQ i0 ,

where M ′ ⊆ P ′ ∪ R′ and N ⊆ P ∪ Q ∪ R. Define N1 = N ∩ (P ∪ R) and N2 = N ∩ Q.
Hence, N = N1 ∪ N2. Now, by definition of K and EQ i0 , it must hold that N1 = S0 ∪ T0.
But S0 ∪ T0 ∪U is a model of φ∗, for any U ⊆ Q; in particular, since N2 ⊆ Q, S0 ∪ T0 ∪N2

is a model of φ∗. Therefore, N = N1 ∪ N2 is a model of φ∗. Since φ∗ contains no primed
atoms, it follows that M ′∪N is also a model of φ∗. This proves the relationK ′∪EQ i0 ` φ

∗.
Hence, we showed that ∃P∀Qφ is valid only if there is consistent belief change extension of
BC containing φ∗.

Conversely, assume that φ∗ ∈ Cn(K ′ ∪ EQ i0) ∩ LP for some consistent belief change ex-
tension Cn(K ′ ∪ EQ i0) ∩ LP of BC = (K, ∅, {¬α}). We show that ∃P∀Qφ is valid.

Observe that, according to Condition (∗), we have either pj ≡ p′j ∈ EQ i0 or rj ≡ r′j ∈ EQ i0 ,
but not both. Define

S0 = {pj ∈ P | pj ≡ p′j ∈ EQ i0}, and

T0 = {rj ∈ R | rj ≡ r′j ∈ EQ i0},

and let W0 = S0 ∪ T0. Clearly, pj ∈ S0 iff rj /∈ T0, for each 1 ≤ j ≤ n. Furthermore,
W0 ∪W

′
0 is a model of EQ i0 . But, since Var(EQ i0) = W0 ∪W

′
0, and W ′

0 ⊆ P ′ ∪ R′, we
have that W0 ∪ P ′ ∪ R′ is a model of EQ i0 , as well. Moreover, W0 ∪ P ′ ∪ R′ is a model
of K ′ ∪ EQ i0 . In fact, for any U ⊆ Q, W0 ∪ P

′ ∪ R′ ∪ U is a model of K ′ ∪ EQ i0 . Since,
by hypothesis, K ′ ∪ EQ i0 ` φ∗, it follows that W0 ∪ P

′ ∪ R′ ∪ U is a model of φ∗, for any
U ⊆ Q. But φ∗ does not contain any primed atoms, so W0 ∪ U = S0 ∪ T0 ∪ U must also be
a model of φ∗, for any U ⊆ Q. Hence, by definition of φ∗, and since pj ∈ S0 iff rj /∈ T0, we
obtain that S0 ∪ U is a model φ, for each U ⊆ Q. We just proved that there is some S0 ⊆ P
such that for each U ⊆ Q, φ is true under S0 ∪ U . This means that ∃P∀Qφ is valid.

Now we deal with the case of RCHOICE . Consider Φ, K, α, and φ∗ as above. We claim that
Φ = ∃P∀Qφ is valid iff there is a consistent choice revision K+̇c(¬α) containing φ∗. From
this, ΣP

2 -hardness of RCHOICE is an immediate consequence.

To prove the claim, we must show that Φ is valid iff there is a consistent belief change
extension Cn(K ′ ∪ EQ i0 ∪ {¬α}) ∩ LP of BR = (K, {¬α}, ∅) containing φ∗. Recall
that we demonstrated above that Φ is valid iff there is a consistent belief change exten-
sion Cn(K ′ ∪ EQ i0) ∩ LP of BC = (K, ∅, {¬α}) containing φ∗. Furthermore, for any
EQ ⊆ {v ≡ v′ | v ∈ P ∪ R}, it holds that Cn(K ′ ∪ EQ) ∩ LP is a consistent belief
change extension of BC = (K, ∅, {¬α}) iff Cn(K ′ ∪ EQ ∪ {¬α}) ∩ LP is a consistent
belief change extension of BR = (K, {¬α}, ∅) (cf. also Theorem 4.1 of [12]). Hence, it
suffices to show that the following condition holds:
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(∗∗) φ∗ ∈ Cn(K ′ ∪ EQ) ∩ LP iff φ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α}) ∩ LP , for any consistent
belief change extension Cn(K ′ ∪ EQ) ∩ LP of BC .

Consider some consistent belief change extension Cn(K ′ ∪ EQ) ∩ LP of BC . If φ∗ ∈
Cn(K ′ ∪ EQ)∩LP , then φ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α})∩LP , by monotonicity of Cn(·). So
suppose φ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α}) ∩ LP . We must show that K ′ ∪ EQ ` φ∗ holds.

Let M ′ ∪N be some model of K ′ ∪ EQ , where M ′ ⊆ P ′ ∪ R′ and N ⊆ P ∪ R ∪Q. Since
Cn(K ′ ∪ EQ)∩LP is a consistent belief change extension ofBC , EQ satisfies Condition (∗),
i.e., for P = {p1, . . . , pn} and R = {r1, . . . , rn}, we have that pj ≡ p′j ∈ EQ or rj ≡ r′j ∈
EQ , but not both, for each 1 ≤ j ≤ n. Define

N̂ = N \ ({pj | rj ≡ r′j ∈ EQ} ∪ {rj | pj ≡ p′j ∈ EQ}).

Obviously, M ′ ∪ N̂ is a model of

K ′ ∪ EQ ∪ {¬α} = {p′i ∧ r′i | i = 1, . . . , n} ∪ EQ ∪
n

∧

i=1

(¬pi ∨ ¬ri).

Hence, since φ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α}), M ′ ∪ N̂ is a model of φ∗. Moreover, since φ∗

is a formula in disjunctive normal form, and no atom from P or R occurs negated in φ∗, it
follows that, for any S ⊆ P and any T ⊆ R, M ′ ∪ N̂ ∪ S ∪ T is also a model of φ∗. In
particular, M ′ ∪N is a model of φ∗. This proves K ′ ∪ EQ ` φ∗.

3. Again, we only show ΠP
2 -hardness of RSKEPTICAL and CSKEPTICAL . To this end, we

exploit some results by Eiter and Gottlob [16] as well as by Delgrande and Schaub [11, 12].

Let P = {p1, . . . , pn} and Q = {q1, . . . , qm} be two distinct sets of variables, and consider
a closed QBF Φ of form ∀P∃Qφ, where φ is a propositional formula such that P ∪ Q =
Var(φ). Furthermore, let R = {r1, . . . , rn} be a set of variables distinct from Var(φ), and
let v be a further variable not occurring in Var(φ) or R. For K and α as defined in the proof
of CCHOICE above, define the following knowledge base KS and formulas β and γ:

KS = K ∪Q ∪ {v},

β = ¬α ∧ (v → φ) ∧ ((q1 ∨ . . . ∨ qm) → v), and

γ =
n

∧

i=1

(pi ∨ ri).

As shown by Eiter and Gottlob [16], Φ is valid iff v ∈ KS+̇s(β ∧ γ), where +̇s is the Satoh
revision operator. Furthermore, Delgrande and Schaub [11, 12] showed that KS+̇s(β ∧ γ)
is equivalent to KS+̇(β ∧ γ). Hence, we get that

Φ is valid iff v ∈ KS+̇(β ∧ γ). (15)

Consequently, RSKEPTICAL is ΠP
2 -hard.

As for CSKEPTICAL , one can show that v ∈ KS+̇(β ∧ γ) iff v ∈ KS−̇(¬β ∨ ¬γ). Hence,
in view of (15), ΠP

2 -hardness of CSKEPTICAL is an immediate consequence.
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Proof 5.3 DP -membership can be seen as follows. According to Proposition 4.1, given a belief
change scenario B = (K,R,C) and some set EQ ⊆ {p ≡ p′ | p ∈ Var(B)} of equivalences,
deciding whether EQ determines a consistent belief change extension of B is equivalent to

(i) deciding whether K ′ ∪ EQ ∪ R ∪ C is consistent, and

(ii) deciding whether K ′ ∪ EQ ∪ (p ≡ p′) ∪ R ∪ C is inconsistent, for each p ∈ Var(B) such
that (p ≡ p′) /∈ EQ .

Clearly, Task (i) is in NP and Task (ii) is in co-NP. Hence, the combined problem is in DP .
For showing DP -hardness, we consider the following well-known DP -complete problem [40]:

SAT-UNSAT: Given two propositional formulas φ and ψ, decide whether φ is satisfiable and ψ is
unsatisfiable.

We construct a polynomial transformation mapping each pair (φ, ψ) of propositional formulas
into a belief change scenario B and some set EQ ⊆ {p ≡ p′ | p ∈ Var(B)} of equivalences such
that

(∗) if φ is satisfiable and ψ is unsatisfiable, then EQ determines a consistent belief change
scenario of B, and vice versa.

The construction of B and EQ is as follows. Let φ and ψ be propositional formulas. Without
loss of generality, we can assume that Var(φ) and Var(ψ) are disjoint. Furthermore, let p and q
be distinct atoms not occurring in Var(φ) ∪ Var(ψ). Then, define

B = ({p → φ, q → ψ}, {p, q}, ∅), and

EQ = {p ≡ p′} ∪ {v ≡ v′ | v ∈ Var(φ) ∪ Var(ψ)}.

It is easy to see that this construction obeys Condition (∗).
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