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Abstract. We present a framework for expressing different merging operators
for belief sets. This framework is a generalisation of our earlier work concerning
consistency-based belief revision and contraction. Two distinct merging operators
are identified: in the first approach, belief sources are consistently combined so
that the result of merging knowledge basesK1, . . . , Kn is a maximal consistent
(if possible) set of formulas comprising the joint knowledge of the knowledge
bases. This approach then accords to one’s intuitions as to what a “merge” oper-
ator should do. The second approach is more akin to a generalised belief revision
operator: Knowledge basesK1, . . . , Kn are “projected” onto another (in the sim-
plest case the trivially true knowledge base). In both cases, we consider the incor-
poration of entailment-based and consistency-based integrity constraints. Proper-
ties of these operators are investigated, primarily by comparing their properties
with postulates that have been identified previously in the literature. As well, the
interrelationships between these approaches and belief revision is given.

1 Introduction

The problem of merging multiple, potentially conflicting bodies of information arises
in various guises. For example, an intelligent agent may receive reports from differing
sources of knowledge that must be combined. As well, an agent may receive conflicting
information from sensors that needs to be reconciled. Alternately, knowledge bases
or databases comprising collections of data may need to be combined into a coherent
whole. Even in dealing with a single, isolated, agent the problem of merging knowledge
sets may arise: consider an agent whose beliefs are modelled by various independent
“states of mind”, but where it is desirable in some circumstances to combine such states
of mind into a coherent whole, for example, before acting in a crucial situation. In all
these cases, the fundamental problem is that of combining knowledge bases that may
be mutually inconsistent, or conflicting, to get a coherent merged set of beliefs.

Given this diversity of situations in which the problem may arise, it is not surprising
that different approaches have arisen for combining sources of information. The major
subtypes of merging that have been proposed are called (following [11])majority and
arbitration operators. In the former case, the majority opinion counts towards resolving
conflicts; in the latter, informally, the idea is to try to arrive at some consensus. In this
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paper, we develop a specific framework for specifying merge operations. This frame-
work extends our earlier work in belief revision. In both cases, the central intuition is
that for belief change one begins by expressing the various knowledge bases, belief
sources, etc. in distinct languages, and then (according to the belief change operation)
in one way or another re-express the knowledge bases in a common language. Two
approaches are presented. In the first case, the intuition is that for merging knowledge
bases, the common information is in a sense “pooled”. This approach then seems to
conform more naturally to the commonsense notion of merging of knowledge. A key
property of this approach is that knowledge common to the knowledge bases is con-
tained in the merged knowledge base. Thus if one knowledge base containedp ∧ q and
another¬p ∧ ¬q, then(p ∧ q) ∨ (¬p ∧ ¬q) would be in the merged knowledge base.
Hence in this approach to merging, an intuition underlying the merging operation is that
one of the knowledge bases contains correct information, but it is not known which.

In the second approach, knowledge bases are projected onto a separate knowledge
base (which in the simplest case would consist solely of the trivially true knowledge
base). That is, the knowledge bases we wish to merge are used to augment the knowl-
edge of a “target” body of knowledge. This second approach then appears to be a natu-
ral extension of beliefrevision. In this approach, knowledge common to the knowledge
bases may not be contained in the merged knowledge base. Thus if two knowledge
bases containedp ∧ q and¬p ∧ ¬q, respectively, then(p ∧ q) ∨ (¬p ∧ ¬q) may not
be in the merged knowledge base; thus for examplep ∧ ¬q may be consistent with the
merged knowledge base. Hence here, an intuition underlying the merging operation is
that perhaps some “common ground” is found between the merged knowledge bases.

In both approaches, we address the incorporation of entailment-based and consistency-
based integrity constraints with the merge operator. Both approaches have reasonable
properties, compared with postulate sets that have appeared in the literature. As well,
the second type of approach has not, to our knowledge, been investigated previously.
The next section describes related work while Section 3 develops our approaches. We
conclude with a discussion. Proofs are omitted due to space limitations.

2 Background

2.1 Consistency-Based Belief Revision

This subsection summarises our earlier work in [5]. Throughout this paper, we deal
with propositional languages and use the logical symbols>, ⊥, ¬, ∨, ∧, ⊃, and≡
to construct formulas in the standard way. We writeLP to denote a language over an
alphabetP of propositional lettersor atomic propositions. Formulas are denoted by the
Greek lettersα, β, α1, . . . .Knowledge basesare identified with deductively-closed sets
of formulas, orbelief sets, and are denotedK, K1, . . . .3 ThusK = Cn(K), where
Cn(·) is the deductive closure in classical propositional logic of the formula or set of
formulas given as argument. Given an alphabetP, we define a disjoint alphabetP ′ as
P ′ = {p′ | p ∈ P}. For α ∈ LP , α′ is the result of replacing inα each proposition

3 We note that while we deal solely with belief sets in this paper, our definitions work for arbi-
trary sets of formulas, and provide the basis for a finite representation of these operators.



p ∈ P by the corresponding propositionp′ ∈ P ′ (so implicitly there is an isomorphism
betweenP andP ′). This is defined analogously for sets of formulas.

A belief change scenarioin LP is a tripleB = (K, R,C) whereK, R, andC are
sets of formulas inLP . Informally, K is a belief set that is to be modified so that the
formulas inR are contained in the result, and the formulas inC are not. For an approach
to revision we have|R| = 1 andC = ∅, and for an approach to contraction we have
R = ∅ and |C| = 1. An extension determined by a belief change scenario, called a
belief change extension, is defined as follows.

Definition 1. LetB = (K, R,C) be a belief change scenario inLP .
DefineEQ as a maximal set of equivalencesEQ ⊆ {p ≡ p′ | p ∈ P} such that

Cn(K ′ ∪R ∪ EQ) ∩ (C ∪ {⊥}) = ∅.

Then Cn(K ′ ∪R ∪ EQ) ∩ LP is a (consistent) belief change extensionof B.
If there is no such setEQ thenB is inconsistentandLP is defined to be the sole

(inconsistent) belief change extensionof B.

Note that in the definition, “maximal” is with respect to set containment (rather than set
cardinality). The exclusive use of “{⊥}” in the definition is to take care of consistency if
C = ∅. Clearly a consistent belief change extension ofB is a modification ofK which
contains every formula inR, and which contains no formula inC. We say thatEQ
determinesthe respective consistent belief change extension ofB. For a given belief
change scenario there may be more than one consistent belief change extension. We
will make use of the notion of aselection functionc that for any setI 6= ∅ has as value
some element ofI. In defining revision, we will use a selection function to select a
specific consistent belief change extension.4

Definition 1 provides a very general framework for specifying belief change. We
can restrict the definition to obtain specific functions for belief revision and contraction;
here we just deal with revision.

Definition 2 (Revision).LetK be a belief set andα a formula, and let(Ei)i∈I be the
family of all belief change extensions of(K, {α}, ∅). Then, we define

1. K+̇cα = Ei as achoice revisionof K byα with respect to
some selection functionc with c(I) = i.

2. K+̇α =
⋂

i∈I Ei as the(skeptical) revisionof K byα.

With respect to the AGM postulates [7], we obtain that the basic postulates are satisfied,
along with supplementary postulate(K+̇7) for both choice and skeptical revision.

For instance, (skeptically) revisingCn(p ∧ q) by ¬q results inCn(p ∧ ¬q). This
belief change extension is determined by{p ≡ p′} from the renamed belief set{p′ ∧
q′} and the revision formula¬q. As a second example, we get{¬p ≡ q} +̇ ¬q =
Cn(p ∧ ¬q) by {p ≡ p′, q ≡ q′} from ¬p′ ≡ q′ and¬q. For a third example, observe
that both{p ∨ q} +̇ (¬p ∨ ¬q) as well as{p ∧ q} +̇ (¬p ∨ ¬q) result inCn(p ≡ ¬q),
although the former is determined by{p ≡ p′, q ≡ q′}, while the latter relies on two
such sets, viz.{p ≡ p′} and{q ≡ q′}.

4 This use of selection functions is slightly different from that in the AGM approach.



Definition 1 also leads to a natural and general treatment of both consistency-based
and entailment-based integrity constraints; see [5] for details.

2.2 Belief Merging

Konieczny and Pino Peréz [9] consider the problem of merging possibly contradictory
belief bases. To this end, they consider finite multisets of the formΨ = {K1, . . . ,Kn}
and assume that all belief setsKi are consistent, finitely representable, and therefore
representable by a formula.K+n is the multiset consisting ofn copies ofK. Multiset
union is denotedt, wherein for example{φ} t {φ} = {φ, φ}. Following [9], we
use5 ∆µ(Ψ) to denote the result of merging the multi-setΨ of belief bases given the
entailment-based integrity constraint expressed byµ. They provide the following set of
postulates:

Definition 3 ([9]). Let Ψ be a multiset of sets of formulas, andφ, µ formulas (all pos-
sibly subscripted or primed).∆ is an IC merging operatoriff it satisfies the following
postulates.

(IC0) ∆µ(Ψ) ` µ.
(IC1) If µ 6` ⊥ then∆µ(Ψ) 6` ⊥.
(IC2) If

∧
Ψ 6` ¬µ then∆µ(Ψ) ≡

∧
Ψ ∧ µ.

(IC3) If Ψ1 ≡ Ψ2 andµ1 ≡ µ2 then∆µ1(Ψ1) ≡ ∆µ2(Ψ2).
(IC4) If φ ` µ andφ′ ` µ then:∆µ(φ t φ′) ∧ φ 6` ⊥ implies∆µ(φ t φ′) ∧ φ′ 6` ⊥.
(IC5) ∆µ(Ψ1) ∧∆µ(Ψ2) ` ∆µ(Ψ1 t Ψ2).
(IC6) If ∆µ(Ψ1) ∧∆µ(Ψ2) 6` ⊥ then∆µ(Ψ1 t Ψ2) ` ∆µ(Ψ1) ∧∆µ(Ψ2).
(IC7) ∆µ1(Ψ) ∧ µ2 ` ∆µ1∧µ2(Ψ).
(IC8) If ∆µ1(Ψ) ∧ µ2 6` ⊥ then∆µ1∧µ2(Ψ) ` ∆µ1(Ψ) ∧ µ2.

The intent is that∆µ(Ψ) is the belief base closest to the belief multisetΨ . Of the pos-
tulates,(IC2) states that the result of merging is simply the conjunction of the belief
bases and integrity constraints, when consistent.(IC4) is afairnesspostulate, that when
two belief bases disagree, merging doesn’t give preference to one of them.(IC5) states
that a model of two mergings is in the union of their merging. With(IC5) we get
that if two mergings are consistent then their merging is implied by their conjunction.
Note that merging operators are trivially commutative.(IC7) and(IC8) correspond to
the extended AGM postulates(K+̇7) and(K+̇8) for revision, but with respect to the
integrity constraints. Postulates(IC1)–(IC6), with tautologous integrity constraints,
correspond to basic merging, without integrity constraints, in [11].

A majority operator is characterised in addition by the postulate:

(Maj) ∃n∆µ(Ψ1 t Ψ+n
2 ) ` ∆µ(Ψ2)

Thus, given enough repetitions of a belief baseΨ2, this belief base will eventually come
to dominate the merge operation.

An arbitration operator is characterised by the original postulates together with the
following postulate; see [9] for an explanation.

5 [11] write ∆µ(Ψ) where we have∆µ(Ψ).



(Arb) Let µ1 andµ2 be logically independent. If∆µ1(φ1) ≡ ∆µ2(φ2) and
∆µ1≡µ2(φ1 t φ2) ≡ (µ1 ≡ µ2) then∆µ1∨µ2(φ1 t φ2) ≡ ∆µ1(φ1).

[11] characterises these approaches as trying to minimize global dissatisfaction vs. try-
ing to minimize local dissatisfaction respectively. Examples are given of a merging
operator using Dalal’s notion of distance [4].

Liberatore and Schaerf [13] consider merging two belief bases and propose the fol-
lowing postulate set to characterise a merge operator that they call anarbitration opera-
tor and that [9] call acommutative revision operator. Like [9] they restrict their attention
to propositional languages over a finite set of atoms.

(LS1) ` α M β ≡ β M α.
(LS2) ` α ∧ β ⊃ α M β.
(LS3) If α ∧ β is satisfiable theǹ α M β ⊃ α ∧ β.
(LS4) α M β is unsatisfiable iffα is unsatisfiable andβ is unsatisfiable.
(LS5) If ` α1 ≡ α2 and` β1 ≡ β2 then` α1 M β1 ≡ α2 M β2.

(LS6) α M (β1 ∨ β2) =

α M β1 or
α M β2 or
(α M β1) ∨ (α M β2)

(LS7) ` (α M β) ⊃ (α ∨ β).
(LS8) If α is satisfiable thenα ∧ (α M β) is satisfiable.

Earlier work on merging operators includes [1] and [17]. The former proposes var-
ious theory merging operators based on the selection of maximum consistent subsets
in the union of the belief bases; see [10] for a pertinent discussion. The latter proposes
an “arbitration” operator that satisfies a subset of the Liberatore and Schaerf postulates;
see [12] for a discussion. [14] first identified and addressed the majority merge opera-
tor. [8] gives a framework for defining merging operators, where a family of merging
operators is parameterised by a distance between interpretations and aggregating func-
tions. The authors suggest that most, if not all, model-based merging operators can be
captured in their approach, along with a selection of syntax-based operators. More or
less concurrently, [15] proposed a general approach to formulating merging functions,
based on ordinal conditional functions [19]. Roughly, epistemic states are associated
with a mapping from possible worlds onto the set of ordinal numbers. Various merging
operators then can be defined by considering the ways in which the “Cartesian prod-
uct” of two epistemic states can be resolved into an ordinal conditional function. [3]
also considers the problem of an agent merging information from different sources, via
what is calledsocial contraction. In a manner analogous to the Levi Identity for belief
revision, information from the various sources is weakened to the extent that it can be
consistently added to the agent’s belief base. Last, much work has been carried out in
merging possibilistic knowledge bases; see for example [2].

3 Consistency-Based Approaches to Belief Set Merging

In this section we modify the framework given by Definition 1 to deal with belief set
merging, in which multiple sources of information (knowledge bases, etc.) are coa-
lesced into a single belief set. We detail two different approaches to belief set merging,
expressible in the general approach.



In the first case, the intuition is that for merging belief sets, the common information
is in a sense “pooled”. This approach then seems to conform to the commonsense no-
tion of merging of knowledge, in which sets of knowledge are joined to produce a single
knowledge set retaining as much as possible of the contents of the original knowledge
sets. In the second approach, knowledge sources are projected onto a separate knowl-
edge source (which in the simplest case could consist solely of>). That is, the sources
we wish to merge are used to augment the knowledge of another source.

3.1 Multi belief change scenarios

A multi belief change scenarioin LP is a tripleB = (K, R, C) whereK is a family
(Kj)j∈J of sets of formulas inLP , andR andC are sets of formulas inLP . Infor-
mally, K is a collection of belief sets that are to be merged so that the formulas inR
are contained in the result, and the formulas inC are not. So this is the same as a belief
change scenario as defined in Section 2, except that the single set of formulasK is ex-
tended to several of sets of formulas.R andC will be used to express entailment-based
and consistency-based integrity constraints, respectively. That is, the formulas inR will
all be true in the result of a merging, whereas the negations of formulas inC will not
be contained in the result. WhileR is intended to represent a set of entailment-based
integrity constraints [16], it could just as easily be regarded as a set of formulas for
revision. Similarly, whileC is intended to represent a set of (negations of) consistency-
based integrity constraints [18], it could just as easily be regarded as a set of formulas
for contraction. Thus the overall approaches can be considered as a framework in which
merging, revising, and (multiple) contractions may be carried out in parallel while tak-
ing into account integrity constraints.

To begin with, we generalise the notationα′ from Section 2 in the obvious way for
integersi > 0 and sets of integers: for alphabetP, we definePi asPi = {pi | p ∈ P},
and αi etc. analogous to Section 2. Similarly we define for a set or list of positive
integersN thatPN = {pi | p ∈ P, i ∈ N}. ThenαN = {αi | i ∈ N}. The definition
of an extension to a multi belief change scenario will depend on the specific approach
to merging that is being formalised. We consider each approach in turn in the following
two subsections.

3.2 Belief Set Merging

Consider the first approach, in which the contents of belief sets are to be merged.

Definition 4. LetB = (K, R, C) be a multi belief change scenario inLP , whereK =
(Kj)j∈J . DefineEQ as a maximal set of equivalences

EQ ⊆ {pk ≡ pl | p ∈ P andk, l ∈ J}

such that

Cn
(⋃

j∈JKj
j ∪RJ ∪ EQ

)
∩ (CJ ∪ {⊥}) = ∅

Then {
α

∣∣∣ {αj | j ∈ J} ⊆ Cn
(⋃

j∈JKj
j ∪RJ ∪ EQ

)}



is aconsistent symmetric belief change extensionof B.
If there is no such setEQ thenB is inconsistentandLP is defined to be the sole

(inconsistent) symmetric belief change extensionof B.

The setsRJ ensure that the integrity constraints inR are true in each belief set, and so
will be true in the result. Similarly, the formulasCJ ensure that the formulas inC will
not be in the result.

Definition 5 (Merging). Let K be a family of sets of formulas inLP and R and C
be finite sets of formulas inLP , and let(Ei)i∈I be the family of all symmetric belief
change extensions of(K, R, C).

Then, we define

1.∆c
R,C(K) = Ei as thechoice mergingofK with respect to integrity

constraintsR andC, and selection functionc with c(I) = i.

2. ∆R,C(K) =
⋂

i∈I Ei as the(skeptical) mergingofK with respect to integrity
constraintsR andC.

Of particular interest isbinary merging, whereK = {K1,K2}. In this case, we will
write the merge operator∆ as an infix operator. That is,∆R,C({K1,K2}) is written as
K1 MR,C K2. Also, given two formulasα, β along withR = C = ∅, we just write
α M β. For conformity with the notation used in Definition 3 [9], we writeα Mµ β if
R = {µ} andC = ∅.

Example 1.(p ∧ q ∧ r) M (p ∧ ¬q ∧ s) yields (informally) (p1 ∧ q1 ∧ r1) ∧ (p2 ∧
¬q2 ∧ s2) along withEQ = {p1 ≡ p2, r1 ≡ r2, s1 ≡ s2}. The result of merging is
Cn({p ∧ r ∧ s}) .

Example 2.Let

K1 ≡ p ∧ q ∧ r ∧ s and K2 ≡ ¬p ∧ ¬q ∧ ¬r ∧ ¬s.

We obtain thatK1 M K2 yieldsEQ = ∅ and in fact

K1 M K2 = Cn({(p ∧ q ∧ r ∧ s) ∨ (¬p ∧ ¬q ∧ ¬r ∧ ¬s)})

This example is introduced and discussed in [11]; as well it corresponds to the postulate
(LS7). Consider whereK1 andK2 represent two analyst’s forecasts concerning how
four different stocks are going to perform.p represents the fact that the first stock will
rise, etc. The result of merging is a belief set, in which it is believed that either all will
rise, or that all will not rise. That is, essentially, one forecast will be believed to hold
in its entirety, or the other will. As [11] points out, knowing nothing else and assuming
independence of the stock’s movements, this is implausible: it is possible that some
stocks rise while others do not. On the other hand, if we have reason to believe that
one forecast is in fact highly reliable (although we don’t know which) then the result of
Example 2is reasonable. However this example illustrates that there are cases wherein
this formulation is too strong.

We obtain the following with respect to the postulate sets described in Section 2.2.



Theorem 1. Let∆µ and∆c
µ be defined as in Definition 5.

Then∆µ and∆c
µ satisfy the postulates(IC0), (IC2) – (IC5), (IC7) – (IC8), as

well as the weaker version of(IC1):6

(IC1′) If K 6` ¬µ for everyK ∈ Ψ andµ 6` ⊥ then∆µ(Ψ) 6` ⊥.

A counterexample to(IC6) is given byΨ1 = {Cn(p) , Cn(¬p)}, Ψ2 = {Cn(p)}. Note
that(IC6) holds in the binary case, though.

We do not discuss the majority or arbitration postulates here (except to note that
majority is easily handled by a straightforward modification to Definition 5); this is
discussed in the full paper. Note however that the present approach satisfies a non-
majority postulate, viz.:

∆µ(Ψ1 t Ψn
2 ) = ∆µ(Ψ1 t Ψ2).

This postulate is identified in [11], a weaker version of which is used to define their
arbitration operator.

Theorem 2. Let∆ and∆c be defined as in Definition 5.
Then∆ and∆c satisfy the following postulates.

1. (LS1), (LS2), (LS3), (LS5), (LS7)

as well as the following weaker versions of the remaining postulates:

2. (LS4)′ α M β is satisfiable iffα is satisfiable andβ is satisfiable.
(LS6)′ (α M β1) ∧ β2 impliesα M (β1 ∧ β2).
(LS8)′ If α is satisfiable andβ is satisfiable thenα ∧ (α M β) is satisfiable.

3. (LS6c)′ For any selection functionc there is a selection functionc′ such that
αMc β1 impliesαMc′ (β1 ∨ β2) or αMc β2 impliesαMc′ (β1 ∨ β2).

Example 3.A counterexample to(LS6) is given by the following.

α ≡ (p ∧ q ∧ r ∧ s) , β1 ≡ (¬p ∧ ¬q) ∨ ¬r , β2 ≡ ¬q ∨ ¬s .

We get that:

α M (β1 ∨ β2) ≡ (p ∧ q ∧ r) ∨ (p ∧ q ∧ s) ∨ (p ∧ r ∧ s) ,

α M β1 ≡ (p ∧ q ∧ s) ∨ (r ∧ s) ,

α M β2 ≡ (p ∧ q ∧ r) ∨ (p ∧ r ∧ s) .

While the merging operator is commutative by definition, it is not associative; for
example(((p ∨ q) M ¬p) M p) 6= (p ∨ q) M (¬p M p). Lastly, we have the following
result showing that in this approach, merging two belief sets is expressible in terms of
our approach to revision, and vice versa:

Theorem 3. Let +̇ andM be given as in Definitions 2 and 5 (respectively). Then,

1. α M β = α+̇β ∩ β+̇α.
2. α+̇β = α Mβ >.

6 It is straightforward to obtain(IC1) by essentially ignoring inconsistent belief sets. We remain
with the present postulate since it reflects the most natural formulation of merging in our
framework.



3.3 Belief Set Projection

In our second approach, the contents of several belief sets are “projected” onto another.7

Again, the formulation is straightforward within the framework of belief change sce-
narios. For belief setsK1, . . . ,Kn, we express each in a distinct language, but project
these belief sets onto a distinguished belief set in whichR is believed. (In the simplest
case we would haveR ≡ >.)

In the followingR, andC again represent a set of entailment-based and consistency-
based integrity constraints, respectively.

Definition 6. LetB = (K, R, C) be a multi belief change scenario inLP , whereK =
(Kj)j∈J . DefineEQ as a maximal set of equivalences

EQ ⊆ {pj ≡ p | p ∈ P andj ∈ J}

such that

Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
∩ (C ∪ {⊥}) = ∅

Then

Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
∩ LP

is aconsistent projected belief change extensionof B.
If there is no such setEQ thenB is inconsistentandLP is defined to be the sole

(inconsistent) projected belief change extensionof B.

There is an interesting similarity between revision and projection. Revision in some
sense “projects” the belief set onto the formula that we revise with. Similarly, the actual
projection operation “projects” the belief sets onto whatever is contained inR.

Definition 7 (Merging via Projection). LetK be a family of sets of formulas inLP
and R and C be finite sets of formulas inLP , and let (Ei)i∈I be the family of all
projected belief change extensions of(K, R, C).

Then, we define

1.∇R,C
c (K) = Ei as thechoice mergingofK with respect to integrity

constraintsR andC, and selection functionc with c(I) = i.

2.∇R,C(K) =
⋂

i∈I Ei as the(skeptical) mergingofK with respect to integrity
constraintsR andC.

As above, for two formulasα andβ, we just writeαOβ, if R = C = ∅ and we write
αOµβ if R = {µ} andC = ∅.

Example 4.We have that(p ∧ q ∧ r)O(p ∧ ¬q) yields twoEQ sets:

EQ1 = {p1 ≡ p, p2 ≡ p, q1 ≡ q, r1 ≡ r, r2 ≡ r} and

EQ2 = {p1 ≡ p, p2 ≡ p, q2 ≡ q, r1 ≡ r, r2 ≡ r}.

The result of merging isp ∧ r ∧ s.

7 We thank J́erôme Lang for pointing out this alternative to us.



Example 5.Consider the example from [11]:

K1 ≡ p ∧ q ∧ r ∧ s and K2 ≡ ¬p ∧ ¬q ∧ ¬r ∧ ¬s.

In forming a set of equivalences,EQ, we can have precisely one ofp1 ≡ p or p2 ≡ p
in EQ, and similarly for the other atomic sentences. Each such set of equivalences then
represents one way each forecaster’s prediction for a specific stock can be taken into
account. Taken all together then we have24 sets of equivalences, and in the end we
obtain that

K1OK2 = Cn(>) .

We feel that this is a plausible outcome in the interpretation involving the forecasted
movement of independent stocks. Note that if the example were extended so that mul-
tiple possibilities for stock movement were allowed, then we would obtain in the pro-
jection the various compromise positions for the two belief sets. Thus for example if a
stock could either remain the same, or go up or down a little or a lot, and one forecaster
predicted that stocksa andb would go up a lot, and another predicted that they would
both go down a lot, then the projection would have both stocks moving a lot, although
it would be unclear as to whether the movement would be up or down.

We obtain the following.

Theorem 4. Let∇ and∇c be defined as in Definition 7.
Then∇ and∇c satisfy the postulates(IC0), (IC2), (IC3), (IC5), (IC7), (IC8),

as well as versions of(IC1), (IC4):

(IC1′) If
∧

Ψ 6` ¬µ andµ 6` ⊥ then∇µ(Ψ) 6` ⊥.8

(IC4′) If φ1 6` ⊥, φ2 6` ⊥ andφ1 ` µ andφ2 ` µ then:∇µ(φ1 t φ2) ∧ φ1 6` ⊥.

Theorem 5. Let∇ and∇c be defined as in Definition 7.
Then,∇ and∇c satisfy the postulates(LS1)–(LS3), (LS5), along with:

(LS4)′ αOβ is satisfiable iffα is satisfiable andβ is satisfiable.
(LS8)′ If α is satisfiable andβ is satisfiable thenα ∧ (αOβ) is satisfiable.

As well, versions forOc for (LS4)′ and(LS8)′ also hold.

Postulate(LS6) does not hold here; Example 3 provides a counterexample. As well,
the weaker postulate(LS6)′ does not hold. Recall that(LS6)′ is (αOβ1) ∧ β2 implies
αO(β1 ∧ β2). However, consider the counterexample, derived from the stock-moving
example (2):

[(p ∧ q)O(¬p ∧ ¬q)] ∧ (p ∧ ¬q)

does not imply

(p ∧ q) O [(¬p ∧ ¬q) ∧ (p ∧ ¬q)].

8 It is straightforward to obtain(IC1) by essentially ignoring inconsistent belief sets. We re-
main with the present postulate since it reflects the most natural formulation of project in our
framework.



Further, postulate(LS7) does not hold here, as Example 5 illustrates, nor is the projec-
tion operator associative.

Last we have the following results relating projection with merging and revision,
respectively:

Theorem 6. LetK,∆R,C and∇R,C be given as in Definitions 5 and 7 (respectively).

∇R,C(K) ⊆ ∆R,C(K).

That is, in binary terms,αOR,Cβ ⊆ α MR,C β.
As well, we have the following analogue to Theorem 3:

Theorem 7. Let +̇ and∇ be given as in Definitions 2 and 7 (respectively).
Then, α+̇β = αOβ>.

4 Complexity

In [6], we analysed the computational complexity of reasoning from belief change sce-
narios. Specifically, we addressed the following basic reasoning tasks:

Theorem 8 ([6]).

1. Deciding whether a belief change scenarioB has a consistent belief change exten-
sion isNP -complete;

2. Given a belief change scenarioB and formulaφ, deciding whetherφ is contained
in at least one consistent belief change extension ofB is Σ2

P -complete; and
3. Given a belief change scenarioB and formulaφ, deciding whetherφ is contained

in all consistent belief change extensions ofB is Π2
P -complete.

Clearly, the variants of these decision problems for merging and projection fall in the
same complexity class and in fact follow as corollaries of the above result. This then il-
lustrates an advantage of formulating belief change operations within a uniform frame-
work: essentially, properties of the basic framework can be investigated in a general
form; properties of specific operators (or combinations of operators) are then easily
derivable as secondary results.

5 Discussion

We have presented two approaches for merging belief sets, expressed in a general,
consistency-based framework for belief change [5]. In the first approach, the intuition
is that for merging belief sets, common information is in a sense “pooled”. This ap-
proach then seems to conform to the commonsense notion of merging of knowledge,
in which belief sets are joined to produce a single belief set retaining as much as pos-
sible of the contents of the original belief sets. A characteristic of this operation is that
sentences common to the original belief sets are in the merged belief set. In the second
approach, belief sets are projected onto another belief set. That is, the sets we wish to
merge are used to augment the knowledge of another (possibly empty) belief set. This
second approach appears to differ from others that have appeared in the literature. It is



strictly weaker than the first; however this weakness is not a disadvantage, since, among
other things, it avoids the possible difficulty illustrated in Example (2). This second ap-
proach has something of the flavour of both belief revision and update. With respect to
belief revision, projection can be viewed as a process whereby several belief sets are
simultaneously revised with respect to another. With respect to belief update, seman-
tically, individual models of a belief set are independently updated. Hence projection
is like update, but where the “granularity” of the operation at the level of belief sets
rather than models. Thus projection can be regarded as an operator lying intermediate
between belief revision and update.

In the full paper we consider merging and projection with respect to a denumerable
number of belief sets. As well, we show how these operations (in the finite case) can be
equivalently expressed as functions with domain and range effectively being knowledge
bases, that is, arbitrary subsets ofL, while retaining syntax-independence. Last, we
provide abstract algorithms for computing these operators.

AcknowledgementsWe would like to express our great thanks to Jérôme Lang for many
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