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Abstract

AGM contraction and revision assume an underlying logic that contains propositional
logic. Consequently, this assumption excludes many useful logics such as the Horn fragment
of propositional logic and most description logics. Our goal in this paper is to generalise
AGM contraction and revision to (near-)arbitrary fragments of classical first-order logic.
To this end, we first define a very general logic that captures these fragments. In so doing,
we make the modest assumptions that a logic contains conjunction and that information
is expressed by closed formulas or sentences. The resulting logic is called first-order con-
junctive logic or FC logic for short. We then take as the point of departure the AGM
approach of constructing contraction functions through epistemic entrenchment, that is
the entrenchment-based contraction. We redefine entrenchment-based contraction in ways
that are applicable to any FC logic, which we call FC contraction. We prove a represen-
tation theorem showing its compliance with all the AGM contraction postulates except
for the controversial recovery postulate. We also give methods for constructing revision
functions through epistemic entrenchment which we call FC revision; this also is applicable
to any FC logic. We show that if the underlying FC logic contains tautologies then FC
revision complies with all the AGM revision postulates. Finally in the context of FC logic,
we provide three methods for generating revision functions via a variant of the Levi Identity
which we call contraction, withdrawal and cut generated revision, and explore the notion
of revision equivalence. We show that withdrawal and cut generated revision coincide with
FC revision and so does contraction generated revision under a finiteness condition.

1. Introduction

The area of belief change studies how an intelligent agent may change its beliefs rationally in
the face of new information. The dominant theory in belief change is the AGM framework
(Alchourrón, Gärdenfors, & Makinson, 1985; Gärdenfors, 1988) which focuses on two kinds
of change, belief contraction, in which an agent retracts some beliefs, and revision, in which
an agent consistently incorporates some information into its set of beliefs. In the AGM
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framework belief change is expressed at the knowledge level ; in particular, an agent’s beliefs
are modelled by a logically closed set of formulas called a belief set.

The AGM framework has a minimal requirement on the underlying logic, that it is at
least as expressive as classical propositional logic. Hence the underlying logic must fully
support all the logical connectives in propositional logic such as negation and disjunction.
This requirement limits the applicability of the framework, since many artificial intelligence
applications are based on logical languages that lack certain logical connectives of propo-
sitional logic. Generally, the intent of such logics is to trade off expressivity in favour of
better computational behaviour, and consequently they are often better suited for practical
applications. To remedy this limitation, significant effort has been made on construct-
ing AGM-style contraction and revision functions for individual logics lack certain logical
connectives of propositional logic.

To date, the focus of such research has been on fragments of propositional logic and
description logics (e.g., Booth et al., 2011; Delgrande & Peppas, 2015; Delgrande & Wasser-
mann, 2013; Creignou et al., 2014; Wang et al., 2015; Zhuang et al., 2016). The guiding
principle of these works is that the proposed contraction or revision functions maintain,
as well as possible, the AGM approach. Various techniques are developed to address the
inexpressiveness of the logic fragment, while attempting to adhere to the AGM approach.
What is common about these works is that they focus on a particular logic and develop
techniques specifically for that logic. Given the vast number of inapplicable logics, it is not
practical to deal with all of them individually. In this paper, we develop techniques that
work for all fragments of propositional logic and most description logics.

Our strategy is to define a logic that is general enough to subsume many of the inapplica-
ble ones, and construct contraction and revision functions for this general logic. Then these
belief change functions will be automatically applicable to any of the subsumed logics. For
this, we will define a general logic called first-order conjunctive logic (FC logic). A logic is
an FC logic if and only if it is a fragment of first-order logic (a first-order fragment for short)
that supports conjunction. Furthermore, we assume that an agent’s beliefs and formulas
for belief change are expressed via closed formulas only.1 Arguably, FC logic subsumes
all first-order fragments that are of practical importance including, but not limited to, all
fragments of propositional logic (propositional fragments for short) and most description
logics.

Of the various (equivalent) construction methods for belief contraction, we focus on
entrenchment-based contraction (Gärdenfors & Makinson, 1988). Intuitively, an agent’s
beliefs will vary in their epistemic importance, and a rational agent will give up a less
important belief over a more important one in a contraction. Thus all formulas are ranked
by their epistemic importance, where higher-ranked formulas are deemed more important.
The outcome of a contraction is then determined by using this ranking on formulas. In
particular, ψ is believed by the agent after the contraction by φ if ψ is originally believed
by the agent and the disjunction φ ∨ ψ is higher in the ranking than φ.

We start by redefining entrenchment-based contraction for FC logic, which we call FC
contraction. To get a grasp of the problem at hand, note that entrenchment-based contrac-
tion refers to disjunctions of formulas, but FC logic in general does not support disjunction.

1. A first-order logic formula is closed if all variables in the formula are quantified.
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The key in our approach is to avoid a reliance on any logical connective within a logic
fragment. We provide two techniques for such avoidance which relies on the new notion of
FC approximations and the existing notion of cut (Williams, 1994) respectively, and which
turn out to have the same effect. We provide a representation theorem for FC contraction
which shows that it possesses all properties of AGM contraction except for the controversial
recovery postulate.

Moving on to revision, again we give a construction method that applies to FC logic
in general, which we call FC revision. It is well-known that, as for contraction functions,
revision functions can also be constructed through a ranking over all formulas (Peppas,
2008). In particular, ψ is believed by an agent after the revision by φ if the disjunction ¬φ∨ψ
is higher in the ranking than ¬φ. FC revision is obtained by redefining this construction
method for revision functions. The problem then is the inability to represent the disjunction
¬φ∨ψ and the negation ¬φ by all FC logics. The same techniques as for FC contraction are
used for avoiding the reliance on such disjunction and negation. FC revision is well-behaved,
as we can show it possesses all properties of AGM revision, assuming that the underlying
FC logic supports tautologies.

Moreover, for revision, we provide three methods for constructing revision functions via
a variant of the Levi identity, namely contraction generated revision, withdrawal generated
revision, and cut generated revision, which apply to FC logic in general. In the AGM
framework, revision functions can be constructed through contraction functions via the
Levi identity. The construction consists of two steps, a contraction step which removes the
negation of the revising formula from the belief set then an expansion step which adds the
revising formula to the belief set that resulted from the contraction step. The catch here is
that FC logic in general does not support negation, thus we have to redefine the contraction
step. Again this is achieved with the notion of FC approximations and that of cut. We can
show that withdrawal and cut generated revision coincide with FC revision. This is also
the case for contraction generated revision under a finiteness condition.

The rest of this paper is organised as follows. We first present FC logic in the next
section, this is followed by an overview of the AGM framework, emphasising entrenchment-
based contraction. Then the details of FC contraction, FC revision, and contraction, with-
drawals and cut generated revision are given in Section 4, 5 and 6 respectively. A case
study on applying FC contraction and revision to a description logic, namely DL-Litecore,
is given in Section 7. Finally, we discuss the related work and conclude the paper. Proofs
of results are given in the appendices.

2. First-Order Conjunctive Logic

We adopt the Tarskian definition of logics, under which a logic is a pair 〈L, Cn〉 where L
is the underlying language and Cn : 2L → 2L is a function that takes each subset of L
to another. The intention is that Cn(X) consists of all logical consequences of X. Under
this setting, propositional and classical first-order logic are denoted 〈LP, CnP〉 and 〈LF, CnF〉
respectively. Throughout this paper, propositional atoms are written as p, q, . . . , formulas
as φ, ψ, . . ., and sets of formulas as S,X, . . .. The letter K is reserved to represent a belief
set (i.e., a set X such that X = Cn(X)) in some understood logic.

3



A logic 〈L′, Cn′〉 is a fragment of a logic 〈L, Cn〉 if and only if L′ ⊆ L and Cn′(X) =
Cn(X) ∩ L′ for all X ⊆ L′. As a simple example, by considering propositional atoms as
nullary predicates, propositional logic can be seen as a fragment of first-order logic. Major
fragments of propositional logic include the (propositional) Horn and Krom fragments. The
Horn fragment, denoted 〈LH, CnH〉, allows only clauses with at most one positive literal, and
conjunctions of these clauses. The Krom fragment, denoted 〈LK, CnK〉, allows only clauses
with at most two literals and conjunctions of these clauses. Although some description
logics have features that are not covered in first-order logic, most description logics are
fragments of first-order logic. For instance, DL-Litecore(Calvanese, De Giacomo, Lembo,
Lenzerini, & Rosati, 2007) is a first-order fragment that allows only formulas of the form

A(a), R(a, b), ∀x[C(x)→ D(x)], and ∀x[C(x)→ ¬D(x)]

where C(x) and D(x) are of the form

A(x), ∃y R(x, y) or ∃y R(y, x)

for A a unary predicate; R a binary predicate; a, b constants; and x, y variables.
The following defines those fragments of first-order logic that we deal with.

Definition 1. A logic 〈L, Cn〉 is a first-order conjunctive logic (FC logic) if

1. L ⊆ LF;

2. Cn(X) = CnF(X) ∩ L for all X ⊆ L; and

3. L is closed under conjunction, that is, φ, ψ ∈ L implies (φ ∧ ψ) ∈ L.

For generality, the class of FC logics is intentionally defined to be vague regarding the
supported logical connectives other than conjunction. That is, an FC logic may or may
not support connectives like disjunction, negation or implication, but it must support con-
junction. Conjunction is required in an FC logic so that we can describe crucial properties
of contraction and revision involving the conjunction of formulas.2 We emphasize that
supporting conjunction is hardly an expressiveness requirement. Since the most natural
interpretation regarding {φ1, . . . , φn} is as having the same truth value as φ1 ∧ · · · ∧ φn, if
a first-order fragment were to not explicitly support conjunction, we could still represent
the conjunction φ1 ∧ · · · ∧ φn in the fragment by the set {φ1, . . . , φn}. So, arguably, any
first-order fragment supports conjunction, at least implicitly.

In fact we can discard conjunction completely by working with multiple contractions
and revisions (Fuhrmann & Hansson, 1994; Peppas, 2008). Multiple contraction can be
interpreted as aiming to remove some or all formulas in a set; thus contraction by φ ∧ ψ
is equivalent to contraction by {φ, ψ}. Multiple revision can be interpreted as aiming to
incorporate all formulas in a set; thus revision by φ∧ψ is equivalent to revision by {φ, ψ}.3
The downside of working with multiple contraction and revision is that we have to change

2. These are the supplementary postulates for contraction and revision in the AGM framework.
3. Note that under the other interpretations of multiple contraction and revision such as those in (Delgrande

& Jin, 2012), contraction and revision by a set of formulas cannot be reduced to contraction and revision
by a conjunction of formulas.
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most of the AGM notations that have become the standard. For the sake of readability, we
decided to go with conjunction.

We add a further requirement, which we henceforth assume, that the formulas in an
agent’s belief set and the formulas involved in belief change are closed, which means they
have no unquantified variables. This is a minimal restriction, given that it is a standard
assumption in logical approaches in Artificial Intelligence.4 By the definition of FC logic
and the above consideration, all propositional fragments and all description logics that are
first-order fragments are FC logics.

For any FC logic 〈LFC, CnFC〉 we write X `FC φ to denote φ ∈ CnFC(X) and `FC φ to
denote φ ∈ CnFC(∅), and we abbreviate CnFC({φ}) as CnFC(φ). We may omit the subscript
for ` if it is clear from the context. A formula or set of formulas under 〈LFC, CnFC〉 is
consistent if and only if it is consistent under the standard definition of consistency for
first-order logic. We denote the (unique) inconsistent belief set, which consists of LFC, as
K⊥.

To some extent, all FC logics, except for first-order logic, are limited in expressivity such
that there are certain first-order formulas they cannot represent. For instance, description
logics do not allow disjunctions of axioms. It is then useful to have the following notion
of FC approximations which captures the approximations of the inexpressible first-order
formulas as formulas in the underlying FC logic.

Definition 2. Let 〈LFC, CnFC〉 be an FC logic and φ a first-order formula. Then the set of
FC approximations of φ with respect to 〈LFC, CnFC〉, denoted FC(φ,LFC), is such that

FC(φ,LFC) = {ψ ∈ LFC |ψ `F φ}.

An FC approximation of a first-order formula φ with respect to an FC logic 〈LFC, CnFC〉 is
a formula in LFC that entails φ under first-order logic. Note that We abbreviate FC(φ,LFC)
as FC(φ) whenever the underlying FC logic is clear from the context. Consider the clause
¬p ∨ q ∨ r. This clause is not part of the Horn fragment as it has more than one positive
literal. It is also not part of the Krom fragment as it has more than two literals. If the
underlying logic is the Horn fragment of propositional logic, then

FC(¬p ∨ q ∨ r,LH) = {⊥,¬p, q, r,¬p ∨ q,¬p ∨ r}.

If instead, the underlying logic is the Krom fragment; then, since disjunctions with two
positive literals are allowed, q ∨ r is also an FC approximation, that is

FC(¬p ∨ q ∨ r,LK) = {⊥,¬p, q, r,¬p ∨ q,¬p ∨ r, q ∨ r}.

Note that, the set of FC approximation can be empty. For instance, let the FC logic
〈LFC, CnFC〉 be a propositional fragment such that LFC = {a, b, a ∧ b,>} Since 〈LFC, CnFC〉
does not support negation nor ⊥, none of the formulas in LFC entails the negation of any
formula in LFC, that is FC(¬a,LFC) = ∅, FC(¬b,LFC) = ∅, and so on. To another extreme,
the set of FC approximation can be infinite.5

4. It can be noted that approaches that appear to employ free variables most often take such variables to be
implicitly universally quantified. Hence the clause Mother(x, y) ∧ Parent(y, z) → Grandmother(x, z)
would in fact stand for ∀x, y, z [Mother(x, y) ∧ Parent(y, z)→ Grandmother(x, z)].

5. We give one such example in Appendix A.
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In many situations, it is useful to work with the logically weakest FC approximations,
which we call the closest FC approximations.

Definition 3. Let 〈LFC, CnFC〉 be an FC logic and φ a first-order formula. Then the set of
Closest FC approximations of φ with respect to 〈LFC, CnFC〉, denoted CFC(φ,LFC), is such
that

CFC(φ,LFC) = {ψ ∈ FC(φ,LFC) |ψ′ ∈ FC(φ,LFC) and ψ′ `FC ψ imply ψ `FC ψ′}.

For the above examples, we have

CFC(¬p ∨ q ∨ r,LH) = {¬p ∨ q,¬p ∨ r}

and
CFC(¬p ∨ q ∨ r,LK) = {¬p ∨ q,¬p ∨ r, q ∨ r}.

Given an FC logic 〈LFC, CnFC〉 and a first-order formula φ, if FC(φ,LFC) is empty, then
CFC(φ,LFC) is obviously so, however CFC(φ,LFC) could be empty, even though FC(φ,LFC)
is not. One such example is given in Appendix A. Informally the problem is that one can
construct scenarios in which there is an infinite set of successively-weakened FC approxima-
tions. We note that for all propositional fragments and some description logics such closest
FC approximations do exist.

The notion of FC approximations is not completely new. A similar concept is given for
the Horn fragment which is called Horn strengthening (Kautz & Selman, 1996). For any
formula φ in LP, its set of Horn strengthenings consists of logically the weakest formulas in
LH that entail φ. Hence for any such φ, its set of Horn strengthenings is exactly the set of
closest FC approximations of φ with respect to 〈LH, CnH〉.

3. The AGM Framework for Belief Change

The area of belief change (Gärdenfors, 1988; Peppas, 2008) studies how an agent may
change its belief state given new information. The best-known, and indeed central, approach
to belief change is the AGM framework (Alchourrón et al., 1985; Gärdenfors, 1988) of
Alchourron, Gärdenfors, and Makinson. In the AGM framework, the goal is to describe
belief change at the knowledge level, that is on an abstract level, independent of how beliefs
are represented and manipulated. The two main belief change functions considered are
belief contraction, in which an agent ceases to believe a formula φ, and belief revision, in
which an agent adopts a new belief given by a formula φ.

In this framework, belief states are modelled by sets of sentences, called belief sets,
closed under the logical consequence operator of a compact logic that includes classical
propositional logic and satisfies the deduction theorem. Throughout this section let the
logic be 〈L, Cn〉. Thus a belief set K satisfies the constraint:

If K logically entails φ then φ ∈ K.

Consequently, if K is a belief set then K = Cn(K), where Cn(K) is the deductive closure
of K. Contraction and revision are modelled as functions from belief sets and formulas to
belief sets. In addition, the operation K + φ is the expansion of K by φ, and is defined as
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Cn(K ∪ {φ}). Expansion captures the simplest form of belief change; it can be reasonably
applied when the new information is consistent with the current set of beliefs.

In belief change, a change operator is typically addressed by two different means. First,
a set of rationality postulates that characterise a belief change function can be defined.
Second, a formal construction can be defined to specify a class of change functions. Ideally,
the set of rationality postulates is then shown to exactly capture the same class of functions
as those determined by the given construction.

Consider first belief contraction. Contraction addresses the situation in which an agent
loses information. Informally, the contraction of a belief set by a formula is another belief
set in which that formula is not believed. Formally, a contraction function

.− is a function
from 2L × L to 2L satisfying the following postulates.

(K
.−1) K

.−φ is a belief set.

(K
.−2) K

.−φ ⊆ K.

(K
.−3) If φ 6∈ K then K

.−φ = K.

(K
.−4) If 6` φ then φ 6∈ K .−φ.

(K
.−5) If φ ∈ K then K ⊆ (K

.−φ) + φ.

(K
.−6) If Cn(φ) = Cn(ψ) then K

.−φ = K
.−ψ.

(K
.−7) K

.−φ ∩K .−ψ ⊆ K .−(φ ∧ ψ).

(K
.−8) If ψ 6∈ K .−(ψ ∧ φ) then K

.−(φ ∧ ψ) ⊆ K .−ψ.

Thus, contraction is meaningful only for believed sentences (K
.−3) and yields a belief

set (K
.−1) in which the sentence for contraction φ is not believed (unless φ is a tautology)

(K
.−4) and no new sentences are believed (K

.−2). The fifth postulate, the so-called recovery
postulate, states that nothing is lost if one contracts and expands by the same sentence. This
postulate is controversial; see (Hansson, 1999) for a discussion. The sixth postulate asserts
that contraction is independent of how a sentence is expressed. The last two postulates
express relations between contracting by a conjunction and the constituent conjuncts. Hence
(K

.−7) says that if a formula is in the result of contracting by each of two formulas then
it is in the result of contracting by their conjunction. (K

.−8) says that if a conjunct is not
in the result of contracting by a conjunction, then contracting by that conjunct is (using
(K

.−7)) the same as contracting by the conjunction.

Note that, in the presence of the other postulates, (K
.−7) is equivalent to the postulate

of conjunctive trisection (Rott, 1992; Hansson, 1993).

(K
.−ct) If φ ∈ K .−(φ ∧ ψ), then φ ∈ K .−(φ ∧ ψ ∧ δ).

(K
.−ct) is well motivated. Informally speaking, it says that if φ is the more preferred of a

pair of formulas {φ, ψ}, it is not the least preferred in the increased set of three formulas
{φ, ψ, δ}. In a contraction, it is rational to discard the less important formulas whenever
possible, thus φ being retained in contracting by φ∧ ψ means φ is more important than ψ.
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Since φ is more important than ψ, it is not the least important formula among φ, ψ, and δ.
Thus, φ should be retained in contracting by φ ∧ ψ ∧ δ.

Several (equivalent) construction methods have been proposed for contraction. Here we
review the classic method called entrenchment-based contraction. As noted, the beliefs held
by an agent are not equal in terms of their epistemic importance. In (Gärdenfors, 1988;
Gärdenfors & Makinson, 1988), more important beliefs are said to be more entrenched,
and the relative entrenchments between formulas is modelled by a relation called epistemic
entrenchment. Given a belief set K, an epistemic entrenchment associated with K is a
binary relation ≤ over the underlying language such that φ ≤ ψ means ψ is at least as
entrenched as φ. The strict relation φ < ψ is defined as φ ≤ ψ and ψ 6≤ φ. Importantly, ≤
satisfies the following conditions:

(EE1) If φ ≤ ψ and ψ ≤ σ, then φ ≤ σ.

(EE2) If φ ` ψ, then φ ≤ ψ.

(EE3) φ ≤ φ ∧ ψ or ψ ≤ φ ∧ ψ.

(EE4) If K is consistent, then φ 6∈ K iff φ ≤ ψ for all ψ.

(EE5) If φ ≤ ψ for every φ, then ` ψ.

Thus an epistemic entrenchment is a transitive relation (EE1) such that logically stronger
formulas are not more entrenched than weaker ones (EE2) (and so logically equivalent
formulas are equally entrenched); a conjunction is as entrenched as its least entrenched
conjunct (EE2)–(EE3); non-beliefs are least entrenched (EE4); and tautologies are most
entrenched (EE5).

Entrenchment-based contraction functions are then defined via the following condition,
where ≤ is an epistemic entrenchment associated with K.

(C
.−) ψ ∈ K .−φ iff ψ ∈ K and either φ < φ ∨ ψ or ` φ.

Thus ψ is believed by the agent after the contraction by φ (i.e., ψ ∈ K .−φ) if and only if it
was originally believed (i.e., ψ ∈ K) and there is “sufficient evidence” for retaining it (i.e.,
φ < φ ∨ ψ), or it is not possible to remove φ (i.e., ` φ).

Given a contraction function
.− : 2L×L 7→ 2L, we can obtain an epistemic entrenchment

≤ through the following condition:

(C≤) φ ≤ ψ iff φ 6∈ K .−φ ∧ ψ or ` φ ∧ ψ.

It is shown that entrenchment-based contraction functions are fully characterised by (K
.−1)–

(K
.−8) (Gärdenfors & Makinson, 1988).

In contrast to belief contraction, belief revision represents the situation in which new
information is to be incorporated into an agent’s beliefs. Since this information may be
inconsistent with the agent’s beliefs, some beliefs may need to be dropped in order to
obtain a consistent belief set. Formally, a revision function * is a function from 2L × L to
2L satisfying the following postulates.

(K ∗ 1) K ∗ φ is a belief set.
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(K ∗ 2) φ ∈ K ∗ φ.

(K ∗ 3) K ∗ φ ⊆ K + φ.

(K ∗ 4) If ¬φ 6∈ K then K + φ ⊆ K ∗ φ.

(K ∗ 5) K ∗ φ = K⊥ iff ` ¬φ.

(K ∗ 6) If Cn(φ) = Cn(ψ) then K ∗ φ = K ∗ ψ.

(K ∗ 7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) + ψ.

(K ∗ 8) If ¬ψ 6∈ K ∗ φ then (K ∗ φ) + ψ ⊆ K ∗ (φ ∧ ψ).

That is: the result of revising K by φ is a belief set (K ∗ 1) in which φ is believed (K ∗ 2);
whenever the result is consistent, revision consists of the expansion of K by φ (K ∗ 3)–
(K ∗ 4); the only time that the inconsistent belief set, K⊥, is obtained is when ¬φ is a
tautology (K ∗ 5); and revision is independent of the syntactic form of φ (K ∗ 6). The last
two postulates deal with the relation between revising with a conjunction and expansion:
when consistent, revision by a conjunction is equivalent to revision by a conjunct followed
by expansion by the other conjunct.

As with contraction, constructions of revision functions have also been defined. The
best known are Grove’s system of spheres (Grove, 1988), which builds on Lewis’ work on
counterfactuals (Lewis, 1973), and the faithful rankings of Katsuno and Mendelzon (Kat-
suno & Mendelzon, 1992). A revision function can also be constructed in a similar way to
entrenchment-based contraction (Peppas, 2008). For convenience, we call it entrenchment-
based revision. Entrenchment-based revision functions are defined via the following condi-
tion, where ≤ is an epistemic entrenchment associated with K.

(R∗) ψ ∈ K ∗ φ iff either ¬φ < ¬φ ∨ ψ or ` ¬φ.

Thus ψ is believed after the revision of K by φ (i.e., ψ ∈ K ∗ φ) if and only if there is
“sufficient evidence” (i.e., ¬φ < ¬φ ∨ ψ) for believing it or the revision fails (i.e., ` ¬φ).
Entrenchment-based revision functions are fully characterised by (K ∗ 1)–(K ∗ 8).

Apart from the classical constructions, revision can be naturally defined in terms of
contraction by means of the Levi Identity :

K ∗ φ = (K
.−¬φ) + φ.

Thus, to revise by φ, make K consistent with φ by contracting K by ¬φ, then expand
the contraction outcome by φ. In fact, conversely, contraction can be defined in terms of
revision by means of Harper Identity (Harper, 1976):

K − φ = (K ∗ ¬φ) ∩K.

4. FC Contraction

Entrenchment-based contraction is not applicable to all FC logics, as the condition (C
.−)

refers to the disjunction φ ∨ ψ that is not supported by all FC logics. In this section, we
provide a version of entrenchment-based contraction that is applicable to all FC logics.
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Unless explicitly stated, we work with an indefinite FC logic, denoted 〈LFC, CnFC〉, in the
remainder of the paper.

We start by fixing the relative entrenchments between formulas of the FC logic 〈LFC, CnFC〉.
The relative entrenchments are represented by a binary relation over LFC that satisfies the
〈LFC, CnFC〉 version of conditions (EE1)–(EE5) which can be obtained for (EE1)–(EE4)
by assuming LFC as the underlying language and CnFC as the consequence operator. As an
FC logic may not be able to represent tautologies, the version for (EE5) which is shown
below states that the condition takes effect only when the logic can represent tautologies.

(EE5) If there is δ ∈ LFC such that `FC δ, then φ ≤ ψ for all φ implies `FC ψ.

We call such a binary relation an FC epistemic entrenchment.

Next we reformulate (C
.−) so that it can be applied in 〈LFC, CnFC〉. The obstacle here

is the disjunction φ ∨ ψ, which is not necessarily in LFC. We provide two methods to get
around the difficulty, firstly by working with the FC approximations of φ ∨ ψ with respect
to 〈LFC, CnFC〉 and secondly by utilising the notion of cut (Williams, 1994).

The first method gives rise to the following reformulated version of (C
.−).

(CFC
.−) ψ ∈ K .−φ iff ψ ∈ K and either there is δ ∈ FC(φ ∨ ψ) such that

φ < δ or `F φ.

According to (CFC
.−), to decide whether ψ is in K

.−φ, we first check if ψ is in K and if
so we compare the relative entrenchment between φ and the FC approximations of φ ∨ ψ.
The existence of an FC approximation being strictly more entrenched than φ is a sufficient
condition for retaining ψ in K

.−φ. Similar to (C
.−), another sufficient condition is that φ

is a tautology.

In fact, it suffices to consider only the closest FC approximations of φ ∨ ψ, whenever
they exist; that is, given that CFC(φ∨ψ) is non-empty, the condition obtained by replacing
FC(φ ∨ ψ) with CFC(φ ∨ ψ) in (CFC

.−) is equivalent to (CFC
.−). This is because if there

is a δ ∈ FC(φ ∨ ψ) such that φ < δ, then there must be a δ′ ∈ CFC(φ ∨ ψ) such that
δ `FC δ′. It then follows from (EE2) that δ ≤ δ′ from which we have by (EE1) that φ < δ′.
Conversely, if there is a δ′ ∈ CFC(φ∨ ψ) such that φ < δ′, then since δ′ ∈ FC(φ∨ ψ), there
is a δ ∈ FC(φ ∨ ψ) such that φ < δ.

The second method is inspired by the notion of cut and its usage in defining the belief
base version of entrenchment-based contraction (Williams, 1994). Although proposed in
the context of propositional logic, the notion can be easily generalised to all FC logics.
Following Williams (1994), the cut for a first-order formula φ with respect to a belief set K
and an associated FC epistemic entrenchment ≤, is the set cut≤(φ) obtained as follows:

ψ ∈ cut≤(φ) iff ψ ∈ K and {δ ∈ K |ψ ≤ δ} 6`F φ.

Note that a cut can be obtained for any first-order formula. It follows immediately from
the definition that cut≤(φ) consists of all formulas that are strictly more entrenched than
φ whenever φ is in LFC, and cut≤(φ) = K whenever K 6`F φ. More importantly, we observe
that, in the AGM setting, φ < φ ∨ ψ if and only if cut≤(φ) `F φ ∨ ψ. This gives rise to the
following reformulated version of (C

.−).

(CcutFC
.−) ψ ∈ K .−φ iff ψ ∈ K and either cut≤(φ) `F φ ∨ ψ or `F φ.

10



Rather than looking for an FC approximation of φ∨ψ that is strictly more entrenched than
φ, with (CcutFC

.−), we check if the cut of φ entails φ ∨ ψ under first-order logic. Actually, we
can show that there exists one such FC approximation if and only if the entailment holds,
which leads to the equivalence of (CFC

.−) and (CcutFC
.−).

Proposition 1. Let ≤ be an FC epistemic entrenchment for K. Then cut≤(φ) `F φ∨ψ iff
there is δ ∈ FC(φ ∨ ψ) such that φ < δ.

Formally, the version of entrenchment-based contraction for 〈LFC, CnFC〉, called FC con-
traction, is defined as follows.

Definition 4. A function
.− : 2LFC × LFC 7→ 2LFC is an FC contraction function if K

.−φ is
determined by an FC epistemic entrenchment associated with K via (CFC

.−).

Obviously, FC contraction functions can be defined alternatively via (CcutFC
.−). While each

of the alternatives is particularly useful in proving certain properties of FC contraction,
a significant advantage of (CcutFC

.−) is the avoidance of computing FC approximations for
the disjunction φ ∨ ψ, which can be infinitely many. Hence it provides a viable option for
implementing FC contraction functions.

Following the AGM tradition, we will make explicit some properties of FC contraction
by proving a representation theorem for it. The proof is more involved than that of the
representation theorem for entrenchment-based contraction, since we no longer have a func-
tionally complete set of logical connectives at our disposal. As a preparatory result, we can
show that the FC epistemic entrenchment generated from an FC contraction function

.− via
(C≤) is exactly the one that determines

.−.

Theorem 1. If
.− is an FC contraction function for which K

.−φ is determined by the FC
epistemic entrenchment ≤ associated with K, then

.− satisfies (C≤).

To prove this theorem and the next two, note that if disjunctions of formulas are allowed,
then the proof can go through as in the AGM setting. The key point is that we can indirectly
refer to disjunctions via the link provided in the definition of FC approximations. That is,
FC approximations of φ ∨ ψ entail φ ∨ ψ under first-order logic.

Next, we present the representation theorem.

Theorem 2. A function
.− : 2LFC ×LFC 7→ 2LFC is an FC contraction function iff

.− satisfies
the following postulates:6

(F .−1) K .−φ = CnFC(K
.−φ)

(F .−2) K .−φ ⊆ K
(F .−3) If φ 6∈ K then K .−φ = K
(F .−4) If 6`FC φ then φ 6∈ K .−φ
(F .−de) If ψ ∈ K \K .−φ then δ 6∈ K .−φ for all δ ∈ FC(φ ∨ ψ)
(F .−6) If CnFC(φ) = CnFC(ψ) then K .−φ = K .−ψ
(F .−re) If ψ ∈ K .−φ then there is δ ∈ FC(φ ∨ ψ) such that δ ∈ K .−φ ∧ σ
(F .−ct) If φ ∈ K .−(φ ∧ ψ) then φ ∈ K .−(φ ∧ ψ ∧ δ)
(F .−8) If φ 6∈ K .−(φ ∧ ψ) then K .−(φ ∧ ψ) ⊆ K .−φ

6. “F” stands for fragment.
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(F
.−1)–(F

.−4), (F
.−6), (F

.−ct), and (F
.−8) are the 〈LFC, CnFC〉 versions of (K

.−1)–(K
.−4),

(K
.−6), (K

.−ct), and (K
.−8). Although not required for its characterisation, FC contraction

also satisfies the 〈LFC, CnFC〉 version of (K
.−7).

Theorem 3. If a function
.− is an FC contraction function, then

.− satisfies the following
postulate:
(F

.−7) K
.−φ ∩K .−ψ ⊆ K .−(φ ∧ ψ)

It follows from Theorems 5 and 6 that FC contraction complies with all the AGM contraction
postulates except recovery. Furthermore, it complies with (F

.−de), (F
.−re), and (F

.−ct)
described below.

We suggest that the absence of recovery is not a weakness of FC contraction. Besides
its controversy, satisfaction of recovery requires the property of AGM-compliance7 (Ribeiro,
Wassermann, Flouris, & Antoniou, 2013) of the underlying logic; and not all FC logics have
this property. Additionally, we have (F

.−de) to play the role of recovery. (F
.−de) originates

from the postulate of disjunctive elimination (Fermé, Krevneris, & Reis, 2008):

(K
.−de) If ψ ∈ K \K .−φ then φ ∨ ψ 6∈ K .−φ

In its contrapositive form

If ψ ∈ K and φ ∨ ψ ∈ K .−φ then ψ ∈ K .−φ

(K
.−de) is “a condition for a sentence ψ ‘to survive’ the contraction process” (Fermé et al.,

2008)(page 745). So essentially (K
.−de) specifies what should be retained after a contrac-

tion and in turn captures some minimal change properties of a contraction. (K
.−de) is

equivalent to recovery under propositional logic but unlike recovery it holds in our minimal
logic 〈LFC, CnFC〉. (K

.−de) refers to the disjunction φ ∨ ψ, which is the single closest FC
approximation for φ∨ψ under propositional logic. In a more general setting where disjunc-
tion is not fully supported, we have to refer to the disjunction by the notation FC(φ ∨ ψ),
as in (F

.−de).
As for (F

.−de), (F
.−re) is neither a generalisation of an AGM contraction postulate

nor a completely new postulate. Actually, it originates from a property of entrenchment-
based contraction. For entrenchment-based contraction, it follows from (C

.−) that if ψ is
in K

.−φ, then φ ∨ ψ is strictly more entrenched than φ. Due to (C≤), this property of
entrenchment-based contraction can be captured as follows:

(K
.−re) If ψ ∈ K .−φ, then φ ∨ ψ ∈ K .−φ ∧ (φ ∨ ψ)

In the AGM setting, the property does not have to be postulated explicitly, as it follows
from (K

.−6) and (K
.−1). Note that since φ∧ (φ∨ψ) is logically equivalent to φ, by (K

.−6)
we have K

.−φ ∧ (φ ∨ ψ) = K
.−φ. Then φ ∨ ψ ∈ K .−φ ∧ (φ ∨ ψ) follows from the fact that

ψ ∈ K .−φ and K
.−φ is logically closed. For FC contraction, it follows from (CFC

.−) that if ψ
is in K

.−φ, then there is an FC approximation of φ∨ψ that is strictly more entrenched than
φ. Due to (C≤), this property is captured exactly by (F

.−re). And this time the postulate

7. A logic 〈L, Cn〉 is AGM-compliant iff for all K,A ⊆ L, where A is finitely representable and Cn(∅) ⊂
Cn(A) ⊂ Cn(K), there is a K′ ⊆ L s.t. Cn(K′) ⊂ Cn(K) and K′ ∪A = K.
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is not deducible from the others.8 Note that (F
.−re) generalises (K

.−re) in the same way
as (F

.−de) generalises (K
.−de).

To further evaluate FC contraction, we apply it to propositional logic and its Horn
fragment, since entrenchment-based contraction was originally defined for propositional
logic and it has so far only been adapted to the Horn fragment (Zhuang & Pagnucco, 2010,
2014). When the underlying logic is propositional logic, since it fully supports disjunction,
the single closest FC approximation of φ ∨ ψ is φ ∨ ψ itself (up to logical equivalence)
which means (C

.−) and (CFC
.−) are equivalent. Therefore, when the underlying logic is

propositional logic, FC contraction coincides with entrenchment-based contraction.

Entrenchment-based contraction is not applicable to all FC logics, as the condition (C
.−)

refers to the disjunction φ ∨ ψ that is not supported by all FC logics. In this section, we
provide a version of entrenchment-based contraction that is applicable to all FC logics.
Unless explicitly stated, we work with an indefinite FC logic, denoted 〈LFC, CnFC〉, in the
remainder of the paper.

We start by fixing the relative entrenchments between formulas of the FC logic 〈LFC, CnFC〉.
The relative entrenchments are represented by a binary relation over LFC that satisfies the
〈LFC, CnFC〉 version of conditions (EE1)–(EE5) which can be obtained for (EE1)–(EE4)
by assuming LFC as the underlying language and CnFC as the consequence operator. As an
FC logic may not be able to represent tautologies, the version for (EE5) which is shown
below states that the condition takes effect only when the logic can represent tautologies.

(EE5) If there is δ ∈ LFC such that `FC δ, then φ ≤ ψ for all φ implies `FC ψ.

We call such a binary relation an FC epistemic entrenchment.

Next we reformulate (C
.−) so that it can be applied in 〈LFC, CnFC〉. The obstacle here

is the disjunction φ ∨ ψ, which is not necessarily in LFC. We provide two methods to get
around the difficulty, firstly by working with the FC approximations of φ ∨ ψ with respect
to 〈LFC, CnFC〉 and secondly by utilising the notion of cut (Williams, 1994).

The first method gives rise to the following reformulated version of (C
.−).

(CFC
.−) ψ ∈ K .−φ iff ψ ∈ K and either there is δ ∈ FC(φ ∨ ψ) such that

φ < δ or `F φ.

According to (CFC
.−), to decide whether ψ is in K

.−φ, we first check if ψ is in K and if
so we compare the relative entrenchment between φ and the FC approximations of φ ∨ ψ.
The existence of an FC approximation being strictly more entrenched than φ is a sufficient
condition for retaining ψ in K

.−φ. Similar to (C
.−), another sufficient condition is that φ

is a tautology.

In fact, it suffices to consider only the closest FC approximations of φ ∨ ψ, whenever
they exist; that is, given that CFC(φ∨ψ) is non-empty, the condition obtained by replacing
FC(φ ∨ ψ) with CFC(φ ∨ ψ) in (CFC

.−) is equivalent to (CFC
.−). This is because if there

is a δ ∈ FC(φ ∨ ψ) such that φ < δ, then there must be a δ′ ∈ CFC(φ ∨ ψ) such that
δ `FC δ′. It then follows from (EE2) that δ ≤ δ′ from which we have by (EE1) that φ < δ′.
Conversely, if there is a δ′ ∈ CFC(φ∨ ψ) such that φ < δ′, then since δ′ ∈ FC(φ∨ ψ), there
is a δ ∈ FC(φ ∨ ψ) such that φ < δ.

8. To show this, an example of a function is given in Appendix A such that it satisfies all characterising
postulates of FC contraction and (F

.−7) but violates (F
.−re).
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The second method is inspired by the notion of cut and its usage in defining the belief
base version of entrenchment-based contraction (Williams, 1994). Although proposed in
the context of propositional logic, the notion can be easily generalised to all FC logics.
Following Williams (1994), the cut for a first-order formula φ with respect to a belief set K
and an associated FC epistemic entrenchment ≤, is the set cut≤(φ) obtained as follows:

ψ ∈ cut≤(φ) iff ψ ∈ K and {δ ∈ K |ψ ≤ δ} 6`F φ.

Note that a cut can be obtained for any first-order formula. It follows immediately from
the definition that cut≤(φ) consists of all formulas that are strictly more entrenched than
φ whenever φ is in LFC, and cut≤(φ) = K whenever K 6`F φ. More importantly, we observe
that, in the AGM setting, φ < φ ∨ ψ if and only if cut≤(φ) `F φ ∨ ψ. This gives rise to the
following reformulated version of (C

.−).

(CcutFC
.−) ψ ∈ K .−φ iff ψ ∈ K and either cut≤(φ) `F φ ∨ ψ or `F φ.

Rather than looking for an FC approximation of φ∨ψ that is strictly more entrenched than
φ, with (CcutFC

.−), we check if the cut of φ entails φ ∨ ψ under first-order logic. Actually, we
can show that there exists one such FC approximation if and only if the entailment holds,
which leads to the equivalence of (CFC

.−) and (CcutFC
.−).

Proposition 2. Let ≤ be an FC epistemic entrenchment for K. Then cut≤(φ) `F φ∨ψ iff
there is δ ∈ FC(φ ∨ ψ) such that φ < δ.

Formally, the version of entrenchment-based contraction for 〈LFC, CnFC〉, called FC con-
traction, is defined as follows.

Definition 5. A function
.− : 2LFC × LFC 7→ 2LFC is an FC contraction function if K

.−φ is
determined by an FC epistemic entrenchment associated with K via (CFC

.−).

Obviously, FC contraction functions can be defined alternatively via (CcutFC
.−). While each

of the alternatives is particularly useful in proving certain properties of FC contraction,
a significant advantage of (CcutFC

.−) is the avoidance of computing FC approximations for
the disjunction φ ∨ ψ, which can be infinitely many. Hence it provides a viable option for
implementing FC contraction functions.

Following the AGM tradition, we will make explicit some properties of FC contraction
by proving a representation theorem for it. The proof is more involved than that of the
representation theorem for entrenchment-based contraction, since we no longer have a func-
tionally complete set of logical connectives at our disposal. As a preparatory result, we can
show that the FC epistemic entrenchment generated from an FC contraction function

.− via
(C≤) is exactly the one that determines

.−.

Theorem 4. If
.− is an FC contraction function for which K

.−φ is determined by the FC
epistemic entrenchment ≤ associated with K, then

.− satisfies (C≤).

To prove this theorem and the next two, note that if disjunctions of formulas are allowed,
then the proof can go through as in the AGM setting. The key point is that we can indirectly
refer to disjunctions via the link provided in the definition of FC approximations. That is,
FC approximations of φ ∨ ψ entail φ ∨ ψ under first-order logic.

Next, we present the representation theorem.
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Theorem 5. A function
.− : 2LFC ×LFC 7→ 2LFC is an FC contraction function iff

.− satisfies
the following postulates:9

(F .−1) K .−φ = CnFC(K
.−φ)

(F .−2) K .−φ ⊆ K
(F .−3) If φ 6∈ K then K .−φ = K
(F .−4) If 6`FC φ then φ 6∈ K .−φ
(F .−de) If ψ ∈ K \K .−φ then δ 6∈ K .−φ for all δ ∈ FC(φ ∨ ψ)
(F .−6) If CnFC(φ) = CnFC(ψ) then K .−φ = K .−ψ
(F .−re) If ψ ∈ K .−φ then there is δ ∈ FC(φ ∨ ψ) such that δ ∈ K .−φ ∧ σ
(F .−ct) If φ ∈ K .−(φ ∧ ψ) then φ ∈ K .−(φ ∧ ψ ∧ δ)
(F .−8) If φ 6∈ K .−(φ ∧ ψ) then K .−(φ ∧ ψ) ⊆ K .−φ

(F
.−1)–(F

.−4), (F
.−6), (F

.−ct), and (F
.−8) are the 〈LFC, CnFC〉 versions of (K

.−1)–(K
.−4),

(K
.−6), (K

.−ct), and (K
.−8). Although not required for its characterisation, FC contraction

also satisfies the 〈LFC, CnFC〉 version of (K
.−7).

Theorem 6. If a function
.− is an FC contraction function, then

.− satisfies the following
postulate:
(F

.−7) K
.−φ ∩K .−ψ ⊆ K .−(φ ∧ ψ)

It follows from Theorems 5 and 6 that FC contraction complies with all the AGM contraction
postulates except recovery. Furthermore, it complies with (F

.−de), (F
.−re), and (F

.−ct)
described below.

We suggest that the absence of recovery is not a weakness of FC contraction. Besides its
controversy, satisfaction of recovery requires the property of AGM-compliance10 (Ribeiro
et al., 2013) of the underlying logic; and not all FC logics have this property. Additionally,
we have (F

.−de) to play the role of recovery. (F
.−de) originates from the postulate of

disjunctive elimination (Fermé et al., 2008):

(K
.−de) If ψ ∈ K \K .−φ then φ ∨ ψ 6∈ K .−φ

In its contrapositive form

If ψ ∈ K and φ ∨ ψ ∈ K .−φ then ψ ∈ K .−φ

(K
.−de) is “a condition for a sentence ψ ‘to survive’ the contraction process” (Fermé et al.,

2008)(page 745). So essentially (K
.−de) specifies what should be retained after a contrac-

tion and in turn captures some minimal change properties of a contraction. (K
.−de) is

equivalent to recovery under propositional logic but unlike recovery it holds in our minimal
logic 〈LFC, CnFC〉. (K

.−de) refers to the disjunction φ ∨ ψ, which is the single closest FC
approximation for φ∨ψ under propositional logic. In a more general setting where disjunc-
tion is not fully supported, we have to refer to the disjunction by the notation FC(φ ∨ ψ),
as in (F

.−de).
As for (F

.−de), (F
.−re) is neither a generalisation of an AGM contraction postulate

nor a completely new postulate. Actually, it originates from a property of entrenchment-
based contraction. For entrenchment-based contraction, it follows from (C

.−) that if ψ is

9. “F” stands for fragment.
10. A logic 〈L, Cn〉 is AGM-compliant iff for all K,A ⊆ L, where A is finitely representable and Cn(∅) ⊂

Cn(A) ⊂ Cn(K), there is a K′ ⊆ L s.t. Cn(K′) ⊂ Cn(K) and K′ ∪A = K.
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in K
.−φ, then φ ∨ ψ is strictly more entrenched than φ. Due to (C≤), this property of

entrenchment-based contraction can be captured as follows:

(K
.−re) If ψ ∈ K .−φ, then φ ∨ ψ ∈ K .−φ ∧ (φ ∨ ψ)

In the AGM setting, the property does not have to be postulated explicitly, as it follows
from (K

.−6) and (K
.−1). Note that since φ∧ (φ∨ψ) is logically equivalent to φ, by (K

.−6)
we have K

.−φ ∧ (φ ∨ ψ) = K
.−φ. Then φ ∨ ψ ∈ K .−φ ∧ (φ ∨ ψ) follows from the fact that

ψ ∈ K .−φ and K
.−φ is logically closed. For FC contraction, it follows from (CFC

.−) that if
ψ is in K

.−φ, then there is an FC approximation of φ ∨ ψ that is strictly more entrenched
than φ. Due to (C≤), this property is captured exactly by (F

.−re). And this time the
postulate is not deducible from the others.11 Note that (F

.−re) generalises (K
.−re) in the

same way as (F
.−de) generalises (K

.−de).
To further evaluate FC contraction, we apply it to propositional logic and its Horn

fragment, since entrenchment-based contraction was originally defined for propositional
logic and it has so far only been adapted to the Horn fragment (Zhuang & Pagnucco, 2010,
2014). When the underlying logic is propositional logic, since it fully supports disjunction,
the single closest FC approximation of φ ∨ ψ is φ ∨ ψ itself (up to logical equivalence)
which means (C

.−) and (CFC
.−) are equivalent. Therefore, when the underlying logic is

propositional logic, FC contraction coincides with entrenchment-based contraction.

Proposition 3. Let the underlying logic be propositional logic. Then a function is an FC
contraction function iff it is an entrenchment-based contraction function.

For the Horn fragment, the adapted version is called entrenchment-based Horn contrac-
tion and is based on the notion of Horn strengthenings. For any φ in LP, its set of Horn
strengthenings, denoted HS(φ), consists of the logically weakest formulas in LH that entail
φ. The contraction outcome is determined by the condition (HC

.−), which reformulates
(C

.−) with the notion of Horn strengthenings.

(HC
.−) ψ ∈ K .−φ iff ψ ∈ K and either there is δ ∈ HS(φ ∨ ψ) such

that φ < δ or `P φ.

In (HC
.−), ≤ is a binary relation over LH that satisfies the 〈LH, CnH〉 version of (EE1)–

(EE5); it is called Horn epistemic entrenchment. Clearly, an FC epistemic entrenchment
is a Horn epistemic entrenchment under 〈LH, CnH〉. To decide whether to retain ψ when
contracting K by φ, (HC

.−) compares φ with the Horn strengthenings of φ ∨ ψ. By the
definition of FC approximation, the set of Horn strengthenings of φ ∨ ψ is exactly the set
of closest FC approximations of φ ∨ ψ, which means (HC

.−) and (CFC
.−) are equivalent.

Therefore, when the underlying logic is the Horn fragment, FC contraction coincides with
entrenchment-based Horn contraction.

Proposition 4. Let the underlying logic be the Horn fragment of propositional logic. A
function is an FC contraction function iff it is an entrenchment-based Horn contraction
function.

11. To show this, an example of a function is given in Appendix A such that it satisfies all characterising
postulates of FC contraction and (F

.−7) but violates (F
.−re).
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In summary, FC contraction complies with a set of postulates that are sufficient to
characterise entrenchment-based contraction and all the characterising postulates for FC
contraction originate from those for entrenchment-based contraction. Also FC contraction
coincides with entrenchment-based contraction under propositional logic. These results
suggest that FC contraction is no different from entrenchment-based contraction, only that
the former is applicable to a much wider class of logics, and thus is a generalisation of the
latter.

5. FC Revision

We have provided a generalisation of entrenchment-based contraction that is applicable to
an arbitrary FC logic 〈LFC, CnFC〉. In this section, we turn our attention to achieving the
same for entrenchment-based revision.

The outcome of an entrenchment-based revision function is determined by an epistemic
entrenchment via condition (R∗) which refers to the disjunction ¬φ ∨ ψ and the negation
¬φ. As neither ¬φ ∨ ψ nor ¬φ are guaranteed to be in LFC, (R∗) in general cannot be
applied in 〈LFC, CnFC〉. As in reformulating condition (C

.−), we give two methods in dealing
with the inexpressible disjunction and negation, by working respectively with their FC
approximations and proper cuts.

The first method gives rise to the following reformulated version of (R∗).

(RFC∗) ψ ∈ K ∗ φ iff either there is δ ∈ FC(¬φ ∨ ψ) such that

σ < δ for all σ ∈ FC(¬φ) or `F ¬φ.

According to (RFC∗), ψ is in K∗φ if and only if either there is an FC approximation of ¬φ∨ψ
that is strictly more entrenched than all FC approximations of ¬φ, or ¬φ is a tautology.
Note that if both ¬φ∨ψ and ¬φ are in LFC, then (RFC∗) is supposed to coincide with (R∗).
For this, we require one (instead of all) FC approximations of ¬φ ∨ ψ to be strictly more
entrenched than all (instead of some) FC approximation of ¬φ. Due to (EE2), we won’t
have the coincidence if it was “all” FC approximation of ¬φ∨ψ or “some” FC approximation
of ¬φ.

Similar to (CFC
.−), it suffices to consider the closest FC approximations of ¬φ ∨ ψ and

¬φ whenever they exist; that is given that CFC(¬φ ∨ ψ) and CFC(¬φ) are non-empty, the
condition obtained by replacing FC(¬φ∨ψ) and FC(¬φ) with CFC(¬φ∨ψ) and CFC(¬φ)
respectively in (RFC∗) is equivalent to (RFC∗).

The second method is based on the proper cuts of ¬φ∨ψ and ¬φ. It is easy to see that,
in the AGM setting, ¬φ < ¬φ ∨ ψ if and only if cut≤(¬φ ∨ ψ) ⊂ cut≤(¬φ). This gives rise
to the following reformulated version of (R∗).

(RcutFC ∗) ψ ∈ K ∗ φ iff either cut≤(¬φ ∨ ψ) ⊂ cut≤(¬φ) or `F ¬φ.

Rather than looking for an FC approximation of ¬φ ∨ ψ that is strictly more entrenched
than all FC approximation of ¬φ, with (RcutFC

.−), we check if the cut of ¬φ ∨ ψ is a proper
subset of that of ¬φ. We can show that there exists one such FC approximation if and only
if the set inclusion holds, which leads to the equivalence of (RFC∗) and (RcutFC ∗).

Proposition 5. Let ≤ be an FC epistemic entrenchment for K. Then cut≤(¬φ ∨ ψ) ⊂
cut≤(¬φ) iff there is δ ∈ FC(¬φ ∨ ψ) such that σ < δ for all σ ∈ FC(¬φ).
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Formally, the generalisation of entrenchment-based revision for 〈LFC, CnFC〉, called FC
revision, is defined as follows.

Definition 6. A function ∗ : 2LFC × LFC 7→ 2LFC is an FC revision function if K ∗ φ is
determined by an FC epistemic entrenchment associated with K via (RFC∗).

Due to the equivalence of (RFC∗) and (RcutFC ∗), FC contraction functions can be defined
alternatively via (RcutFC ∗). Both (RFC∗) and (RcutFC ∗) are particularly useful in proving certain
properties of FC revision, (RcutFC ∗) avoids the computations of possibly infinitely many FC
approximations, thus providing a viable option for implementing FC revision functions.

Next, we present some properties of FC revision. Given that the underlying FC logic
〈LFC, CnFC〉 is capable of representing some tautologies, FC revision complies with all the
AGM revision postulates.

Theorem 7. Let LFC contains some tautologies. If a function ∗ is an FC revision function,
then it satisfies the following postulates:
(F ∗ 1) K ∗ φ = CnFC(K ∗ φ)
(F ∗ 2) K ∗ φ ⊆ K + φ
(F ∗ 3) If K + φ is consistent then K + φ ⊆ K ∗ φ
(F ∗ 4) φ ∈ K ∗ φ
(F ∗ 5) K ∗ φ = K⊥ iff φ is inconsistent
(F ∗ 6) If CnFC(φ) = CnFC(ψ) then K ∗ φ = K ∗ ψ
(F ∗ 7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) + ψ
(F ∗ 8) If (K ∗ φ) + ψ is consistent then (K ∗ φ) + ψ ⊆ K ∗ (φ ∧ ψ)

(F ∗1)–(F ∗8) are the 〈LFC, CnFC〉 versions of (K ∗1)–(K ∗8). The existence of tautologies in
LFC is necessary for FC revision to comply with (F ∗4). This is because, if 〈LFC, CnFC〉 cannot
represent a tautology, then nothing prevents some σ ∈ FC(¬φ) being the most entrenched
formula among LFC and in which case there is no δ ∈ FC(¬φ∨ψ) such that σ < δ, meaning
that φ 6∈ K ∗ φ. FC revision still complies with the rest of the postulates in Theorem 7 if
there is no tautology in LFC.

As for FC contraction, we further evaluate FC revision by applying it to propositional
logic and its Horn fragment. When the underlying logic is propositional, since it fully
supports disjunction and negation, the single closest FC approximation of ¬φ∨ψ is ¬φ∨ψ
itself (up to logical equivalence) and so is that of ¬φ. Hence according to (R∗) and (RFC∗),
when the underlying logic is propositional logic, FC revision coincides with entrenchment-
based revision

Proposition 6. Let the underlying logic be propositional logic. Then a function is an FC
revision function iff it is an entrenchment-based revision function.

Entrenchment-based revision has not been adapted to the Horn fragment nor any other
logic violating the AGM assumptions. But the model-based revision of Katsuno and Mendel-
zon (Katsuno & Mendelzon, 1992) has been adapted to the Horn fragment by Delgrande
and Peppas (2015) which we call model-based Horn revision. It makes sense to compare
model-based Horn revision with the FC revision under the Horn fragment. Model-based
Horn revision can be characterised by all the AGM revision postulates plus the following
schema
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(Acyc) If for 0 ≤ i < n, (K ∗ φi+1) + φi is consistent, and (K ∗ φ0) + φn is consistent, then

(K ∗ φn) + φo is consistent.

(Acyc) is implied by the AGM postulates under propositional logic, but is independent of
the AGM postulates under the Horn fragment (Delgrande & Peppas, 2015). By Theorem 7,
FC revision satisfies all the AGM revision postulates, and we can prove that it also satisfies
(Acyc). Therefore, when the underlying logic is the Horn fragment, any FC revision
function is a model-based revision function.

Proposition 7. Let the underlying logic be the Horn fragment of propositional logic. If a
function is an FC revision function, then it is a model-based Horn revision function.

6. Revision via the Levi Identity

Apart from classical constructions such as entrenchment-based revision, in the AGM set-
ting, revision functions can also be constructed through contraction functions via the Levi
identity. In this section we explore this approach in constructing revision functions that
are applicable to an arbitrary FC logic 〈LFC, CnFC〉. Also, we establish formal connections
between the revision functions thus constructed and FC revision functions.

Following the Levi identity, a revision function ∗ would be constructed through an FC
contraction function

.− as follows

K ∗ φ = (K
.−¬φ) + φ.

The obstacle here is that the negation ¬φ may not be in LFC and the FC contraction
function

.− is not defined for formulas outside LFC. Because of this, we instead consider
the FC approximations of ¬φ. In order to guarantee consistency after the expansion of φ,
all such approximations have to be removed from K. For this, before expanding by φ, we
contract by each FC approximation of ¬φ, and then intersect the contraction outcomes.
Moreover, we have to take care of the limiting case of FC(¬φ) = ∅. In this case, K is
guaranteed to be consistent with φ, hence the contraction step can be avoided. We call the
revision functions constructed in the above manner contraction generated revision functions.

Definition 7. A function ∗ : 2LFC×LFC 7→ 2LFC is a contraction generated revision function
iff

K ∗ φ =


⋂

σ∈FC(¬φ)
(K .−σ) + φ if FC(¬φ) 6= ∅

K + φ otherwise

where
.− is an FC contraction function.

The belief revision community generally understands a revision, defined via the Levi
identity, as a contraction step followed by an expansion step. This, however, is a simpli-
fication of Levi’s original idea (Levi, 1991) as expressed by his Commensurability Thesis
(page 65). This thesis essentially states that one can get from one state of belief to another
through a sequence of expansions and contractions. Therefore, the way we obtain contrac-
tion generated revision by performing multiple contractions followed by an expansion is in
accordance with Levi’s original idea on the nature of the revision operation.
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Given that the underlying FC logic 〈LFC, CnFC〉 is capable of representing some tautolo-
gies, we can show that, under a finiteness condition, contraction generated revision complies
with all the AGM revision postulates.

Theorem 8. Let LFC contains some tautologies and let FC(¬φ) be finite (up to logical
equivalence) for all φ ∈ LFC. If a function ∗ is a contraction generated revision function,
then it satisfies (F ∗ 1)–(F ∗ 8).

As for Theorem 7, the existence of tautologies is necessary for proving the satisfaction of
(F ∗4). For the finiteness condition, it guarantees the existence of a most entrenched formula
in FC(¬φ), which is required in proving the satisfaction of (F ∗ 8). It is also required in
proving the equivalence of FC revision and contraction generated revision.

Theorem 9. Let FC(¬φ) be finite (up to logical equivalence) for all φ ∈ LFC. A function
is an FC revision function iff it is a contraction generated revision function.

Although the compliance with AGM revision postulates and the equivalence with FC revi-
sion are desirable, the fact that both results rely on a finiteness condition makes them less
appealing. In the remainder of this section, we explore the notion of revision equivalence
(Makinson, 1987) which leads to two conceptually and computationally simpler construc-
tions for revision functions. More importantly, the two constructions do not require any
finiteness condition for the equivalence with FC revision and hence the compliance with
AGM revision postulates.

In the AGM setting, a revision function constructed through an AGM contraction func-
tion can also be constructed through a withdrawal function (Makinson, 1987). A with-
drawal function refers to a contraction function that does not necessarily satisfy the re-
covery postulate, and often has a simpler construction than AGM contraction functions.
The withdrawal version of entrenchment-based contraction called entrenchment-based with-
drawal (Rott, 1991; Rott & Pagnucco, 1999) is based on the following condition in the same
way as entrenchment-based revision is based on (R∗).

(W
.−) ψ ∈ K .−φ iff ψ ∈ K and either φ < ψ or ` φ.

According to (W
.−), ψ is in K

.−φ if and only if it is a formula of K and it is strictly more
entrenched than φ or φ is a tautology. In other words, whenever φ is not a tautology, K

.−φ
consists of all formulas that are strictly more entrenched than φ, that is

K
.−φ = cut≤(φ)

where ≤ is an epistemic entrenchment associated with K. Entrenchment-based withdrawal
and entrenchment-based contraction are revision equivalence, that is for each entrenchment-
based contraction function, there is an entrenchment-based withdrawal function such that
the revision function it generates via the Levi identity is identical to the one generated by
the entrenchment-based contraction function and vice versa (Rott, 1991; Rott & Pagnucco,
1999).

Entrenchment-based withdrawal can be easily generalised to FC logics. First, (W
.−)

can be reformulated as follows with 〈LFC, CnFC〉 as the underlying logic.

(WFC
.−) ψ ∈ K .−φ iff ψ ∈ K and either φ < ψ or `F φ.
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Then an FC logic version of entrenchment-based withdrawal which we call FC withdrawal
function can be defined as follows.

Definition 8. A function
.− : 2LFC × LFC 7→ 2LFC is an FC withdrawal function if K

.−φ is
determined by an FC epistemic entrenchment associated with K via (WFC

.−).

The construction of FC withdrawal is computationally simpler than that of FC contrac-
tion since it avoids some of the intricate computations for FC contraction including the
computation of cut≤(φ), and the determination of whether cut≤(φ) `F φ ∨ ψ.

As for the construction of contraction generated revision, we can construct a revision
function through an FC withdrawal function, which we call withdrawal generated revision
function.

Definition 9. A function ∗ : 2LFC×LFC 7→ 2LFC is a withdrawal generated revision function
iff

K ∗ φ =


⋂

σ∈FC(¬φ)
(K .−σ) + φ if FC(¬φ) 6= ∅

K + φ otherwise

where
.− is an FC withdrawal function.

It turns out that, under the same finiteness condition as in Theorem 8 and 9, contrac-
tion generated revision and withdrawal generated revision are equivalent which implies the
revision equivalence of FC contraction and FC withdrawal (under the finiteness condition).

Theorem 10. Let FC(¬φ) be finite (up to logical equivalence) for all φ ∈ LFC. A function is
a contraction generated revision function iff it is a withdrawal generated revision function.

Again the finiteness condition guarantees the existence of a most entrenched formula in
FC(¬φ), which is required in deducing the entrenchment relation (i.e., φ < ψ) in (WFC

.−)
from the corresponding one (i.e., φ < σ for all σ ∈ FC(¬φ)) in (CFC

.−) and hence the proof
of Theorem 10. It follows from Theorem 9 and 10 that withdrawal generated revision and
FC revision are equivalent under this finiteness condition. In fact, we can prove a stronger
result that the equivalence holds even when the finiteness condition does not.

Theorem 11. A function is an FC revision function iff it is a withdrawal generated revision
function.

It is evident that FC withdrawal is a better alternative than FC contraction for con-
structing revision functions via the Levi identity. Actually, we can come up with another
better alternative. Due to the fact that an entrenchment-based withdrawal function

.− is
such that K

.−φ = cut≤(φ) whenever φ is non-tautological, and the revision equivalence of
entrenchment-based withdrawal and contraction, an AGM revision revision function ∗ can
be constructed as

K ∗ φ = cut≤(¬φ) + φ

where ≤ is an epistemic entrenchment associated with K. Since cut≤(¬φ) is well-defined in
any FC logic, we can constructed a revision function in the same manner for 〈LFC, CnFC〉,
which we call cut generated revision function.
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Definition 10. A function ∗ : 2LFC × LFC 7→ 2LFC is a cut generated revision function iff

K ∗ φ = cut≤(¬φ) + φ

where ≤ is an epistemic entrenchment associated with K.

As for withdrawal generated revision, we can show the equivalence of cut generated
revision and FC revision and hence the revision equivalence of withdrawal and cut generated
revision.

Theorem 12. A function is an FC revision function iff it is a cut generated revision
function.

Note that FC(¬φ) could be an infinite set, in which case it requires infinitely many
contraction operations to remove each element in FC(¬φ) individually from a belief set. For
this, both withdrawal and contraction generated revision may involve an infinite number of
contraction operations. Clearly, this is not an issue for cut generated revision and in this
sense, it is superior to both withdrawal and contraction generated revision. Cut generated
revision is also superior to FC revision, as it only needs to obtain the cut of ¬φ for the
revision by φ, whereas FC revision needs to obtain the cut of ¬φ and that of ¬φ ∨ ψ for
every ψ in K.

In summary, for revision under FC logics, we have introduced FC revision which gener-
alises entrenchment-based revision alone with contraction, withdrawal, and cut generated
revision which generalises the construction of revision via the Levi identity. Due to their
equivalence, for a particular application scenario and underlying logic, we are free to use
any of them that is most suitable. Having said that, we argue that cut generated revision
is the better option for most real-world applications because of its simplicity.

7. A Case Study for DL-Lite

In this section, we demonstrate FC contraction and FC revision by applying them to a
popular description logic, namely DL-Litecore (Calvanese et al., 2007), which we denote
〈LD, CnD〉. DL-Litecore is the core language of the DL-Lite family (Calvanese et al., 2007),
which underlies the OWL 2 QL profile of OWL 2 and gains its popularity through tractable
query answering.

DL-Litecore has the following syntax

B → A | ∃R C → B | ¬B R→ P | P−

whereA denotes an atomic concept ; P an atomic role, P− the inverse of the atomic role P ; B
a basic concept which is either an atomic concept or an unqualified existential quantification.
A DL-Litecore knowledge base (KB) or ontology consists of a TBox and an ABox. The TBox
is a finite set of concept inclusions of the form B v C. The ABox is a finite set of concept
assertions of the form A(a) and role assertions of the form P (a, b), where A is an atomic
concept, P an atomic role, and a, b individuals. A concept inclusion is also called a TBox
axiom and a concept or role assertion is also called an ABox axiom. As we pointed out
in Section 2, every DL-Litecore axiom can be transformed into a first-order formula, and
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the semantics of DL-Litecore is essentially first-order. Given that the numbers of atomic
concepts, atomic roles, and individuals are finite, the logical closure of a DL-Litecore KB K
is always finite, that is CnD(K) is a finite set.

Consider a subset of the (slightly modified) NCI ontology (Hartel, de Coronado, Dionne,
Fragoso, & Golbeck, 2005) K concerning heart diseases and their associated anatomic loca-
tions, which consists of concepts

Heart Disease (HD),Cardiovascular System (CS),Respiratory System (RS),Organ System (OS)

as well as a role that relates diseases to their primary locations

Disease Has Primary Anatomic Site (Loc).

The TBox T of K consists of

HD v ∃Loc,∃Loc− v CS,RS v OS,CS v OS,RS v ¬CS;

and the ABox A of K consists of

HD(d), Loc(d, s).

The logical closure of K (i.e., CnD(K)) consists of K, the set of axioms

∃Loc− v OS, ∃Loc− v ¬RS,CS(s),OS(s)

entailed by K, and all their conjunctions.

HD(d)

OS(s)

Loc(d, s) CS(s)

Figure 1: The contraction of CnD(K) by CS(s) and the revision of CnD(K) by RS(s) where
the shaded axioms are removed from K during the contraction and revision.

The hybrid nature of description logic KBs gives rise to a subtle issue for belief contrac-
tion and revision. For many applications, it is useful to perform contraction and revision to
the ABox without modifying the TBox. This is because TBoxes are often carefully designed
by domain experts and thus are considered more stable and reliable, whereas ABoxes are
error-prone, hence subject to frequent changes (e.g., De Giacomo et al., 2009; Kharlamov
et al., 2013).

We will demonstrate that with a simple refinement, FC contraction and FC revision
can be used to modify the ABox of the NCI ontology K while keeping its TBox unchanged.
The refinement is to ensure that in the FC epistemic entrenchment that determines the
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FC contraction and revision functions, all TBox axioms are most entrenched, that is as
entrenched as tautologies, and all ABox axioms are strictly less entrenched than the TBox
axioms. Figure 1 demonstrates one such FC epistemic entrenchment ≤. The rectangles
illustrate axioms in CnD(K) along with their entrenchments. Axioms at the same level of a
rectangle are equally entrenched and axioms at a higher level are strictly more entrenched
than those in a lower level. Note that TBox axioms, tautologies, conjunctions of axioms,
and axioms not in CnD(K) are not shown as their entrenchments are uniquely determined
by those shown.

Let
.− be an FC contraction function such that the associated FC epistemic entrenchment

with CnD(K) is ≤. Consider the contraction of CnD(K) by the ABox axiom CS(s) through
.−. According to (CFC

.−), we need to check for each axiom ψ in CnD(K) whether there is an
axiom δ in FC(ψ ∨ CS(s)) such that CS(s) < δ. For this, we note that DL-Litecore satisfies
a variant of the disjunction property.

Proposition 8. Let γ, φ, ψ ∈ LD. Then γ `F φ ∨ ψ iff γ `D φ or γ `D ψ.

This feature of DL-Litecore assures that, for all φ and ψ in LD, if neither φ entails ψ nor ψ
entails φ, then the closest FC approximations of φ∨ψ are ψ and φ (up to logical equivalence);
if φ entails ψ, then the single closest FC approximation is ψ (up to logical equivalence);
and if ψ entails φ, then the single closest FC approximation is φ (up to logical equivalence).
Then as an axiom cannot be strictly more entrenched than itself, there is δ ∈ FC(φ ∨ ψ)
such that φ < δ if and only if φ < ψ. Coming back to the contraction of CS(s), obviously all
axioms that are strictly more entrenched than CS(s) are retained and those that are equally
or less entrenched than CS(s) are removed from K. The contraction outcome is illustrated
in Figure 1 by shading the axioms that are removed.

Let ∗ be an FC revision function such that the associated FC epistemic entrenchment
with CnD(K) is ≤. Consider the revision of CnD(K) by the ABox axiom RS(s) through ∗.
As we argued in the previous section, while being equivalent to FC revision, cut generated
revision is a better choice for real-world problems due to its simplicity. This is our choice
here, and it follows from Theorem 12 that the FC revision function ∗ can be treated as a
cut generated revision function. Hence, for the revision by RS(s), we first need to obtain
cut≤(¬RS(s)). Recall that cut≤(φ) contains a formula ψ if and only if the set of formulas
equally or more entrenched than ψ does not entail φ. Since the TBox T is consistent
with RS(s), T together with all the tautologies do not entail ¬RS(s) which means they
are in cut≤(¬RS(s)). Also T ∪ {HD(d)} is consistent with RS(s), which means HD(d) is
in cut≤(¬RS(s)). Similarly OS(s) is also in cut≤(¬RS(s)). Finally, as RS v ¬CS together
with RS(s) entail ¬CS(s), T ∪ {HD(d),OS(s), Loc(d, s),CS(s)} is inconsistent with RS(s).
Hence T ∪{HD(d),OS(s), Loc(d, s),CS(s)} entails ¬RS(s) which means Loc(d, s) and CS(s)
are not in cut≤(¬RS(s)). Putting these together, we have that cut≤(¬RS(s)) consists of
all axioms strictly more entrenched than Loc(d, s) and CS(s). Then we can complete the
revision through expanding cut≤(¬RS(s)) by RS(s). Figure 1 illustrates the intermediate
revision outcome before the expansion, where the axioms to be removed from K are shaded.
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8. Related Work

Most works on generalising AGM contraction and revision have targeted the Horn fragment
of propositional logic and description logics. The initial works for the Horn fragment focused
on contraction. We have shown that FC contraction when applied to the Horn fragment
coincides with entrenchment-based Horn contraction. Other than entrenchment-based Horn
contraction, there have been two main approaches in generalising partial meet contraction
(Alchourrón et al., 1985) to the Horn fragment, one by Delgrande and Wassermann (2013)
and one by Booth et al. (2011). The two approaches differ in the techniques used for
adapting the notion of remainder sets to the Horn fragment. Zhuang and Pangucco (2011)
further studied the approach of Delgrande and Wassermann, which resulted in a version
of transitively relational partial meet contraction (Alchourrón et al., 1985) for the Horn
fragment. They have also given an equivalent model-based approach (Zhuang & Pagnucco,
2012).

Apart from contraction, Delgrande and Peppas (2015) studied the operation of revision
for the Horn fragment. This work has more recently been extended to arbitrary logics
(Delgrande et al., 2018) but the fundamental ideas are the same as what follows. By
following Katsuno and Mendelzon (1992), they defined model-based Horn revision such that
the revision outcome is determined by faithful pre-orders of propositional interpretations. In
addition to the AGM revision postulates, the schema (Acyc) is required to characterise their
revision functions. Pre-orders are by definition acyclic; however, under the Horn fragment
some revision functions defined in the manner of Katsuno and Mendelzon (1992) but through
cyclic orderings of interpretations also comply with the AGM revision postulates. (Acyc)
rules out such functions by enforcing transitivity on the determining orderings. We have
shown that under the Horn fragment any FC revision function is a model-based Horn
revision function.

AGM contraction and revision are inter-definable via the Levi and Harper identities.
Zhuang et al. (2013, 2017) investigated the inter-definability of contraction and revision
when the underlying logic is the Horn fragment. Since the Horn fragment does not fully
support negation, in defining revision from contraction they were confronted with a similar
obstacle as we were in defining revision from FC contraction. In fact, our technique of
using FC approximations to get around the obstacle is a generalisation of their technique of
using Horn strengthening. They identified a sufficient condition for a contraction function to
generate a revision function that complies with all the AGM revision postulates, which they
call plausible revision functions. However, they did not give a conclusive answer regarding
whether all entrenchment-based Horn contraction functions generate a plausible revision
function. Our results on contraction generated revision confirm this.

For the Horn fragment, we also note that Wu et al. (2011) studied contraction within
the framework of relevance-based belief change; Langlois et al. (2008) studied revision by
characterising the existence of a complement of a Horn consequence; and Adaricheva et al.
(2012) provided some complexity results on contraction.

Going beyond the Horn fragment, Creignou et al. (2014) studied revision for the Krom,
affine, and the dual Horn fragment of propositional logic. Their aim, however, is different
from ours. They focus on refining classical revision operators to guarantee the revision
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outcome is always expressible in the background propositional fragment and in doing so
preserve as much as possible the original behaviours of the classical revision operators.

In contrast to the works for the Horn fragment, most works targeting description logics
focus on belief base contraction and revision (Hansson, 1999). As well, they do not assume
any explicit preference relation, for example an epistemic entrenchment or a pre-order of
interpretations, in determining the contraction and revision outcome (e.g., Qi et al., 2006;
Qi & Du, 2009; Qi et al., 2008; Ribeiro & Wassermann, 2009; Zhuang et al., 2016). One
exception is the work by Wang et al. (2015) which applied Satoh’s operator (Satoh, 1988)
to DL-Lite (Calvanese et al., 2007). As is intrinsic with Satoh’s operator, the approach does
not comply with all the AGM revision postulates.

Finally, we note that Ribeiro et al. (2013) aims at generalising AGM contraction to both
the propositional fragments and description logics. They identify sufficient conditions on
the background logic for the possibility of defining a contraction function that satisfies the
postulate of recovery and relevance (Hansson, 1991). According to their results, FC logic,
in general, does not allow contraction functions to be defined that complies with recovery.

9. Conclusion and Future Work

In this paper, some core construction methods for AGM contraction and revision functions
are generalised to fragments of first-order logic that support conjunction and allow only
closed formulas. The generalisation is first carried out for entrenchment-based contraction,
with the generalised version called FC contraction. The generality is achieved by basing
FC contraction on the notion of FC approximations or on that of cut, which impose no
requirement on the expressiveness of the underlying logic. Arguably since the characterising
postulates for FC contraction are independent of the specific underlying logic, they are
more suitable than the AGM contraction postulates for capturing the rationale behind a
contraction operation. The generalisation is subsequently carried out for entrenchment-
based revision with the generalised version called FC revision, which in turn comply with
all the AGM revision postulates. Due to the more involved construction steps we have
not been able to give a representation theorem for FC revision. Finally, we generalised
the construction of revision functions via the Levi identity and explored the notion of
revision equivalence. This leads to three methods for generating revision functions, namely
contraction, withdrawal, and cut generated revision. While being equivalent to FC revision,
both withdrawal and cut generated revision have a simpler construction.

There are at least two aspects of this work that merit further exploration. Firstly, we
will look for the set of postulates that are sufficient to characterise FC revision. A shortcut
to approach this is to instead characterise cut generated revision, as cut generated revision
is conceptually simpler that FC revision yet is equivalent to FC revision. Secondly, we will
look into applying FC contraction and revision to instances of description logics other than
DL-Litecore. Since FC contraction and revision are defined for logically closed KBs, the
obstacle here is that, unlike DL-Litecore, some description logic KBs may contain an infinite
number of axioms. Thus the issue to address is to come up with a finite representation
of the KBs while preserving as much as possible the nice features of FC contraction and
revision.
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Appendix A

In this appendix, we give some auxiliary lemmas that are required for proving the main
results. We also give two examples. The first one shows that there are FC logics and
formulas φ such that the set of closest FC approximations of φ is empty and the set of FC
approximations of φ is infinite; and the second one shows that (F

.−re) is not deducible from
the other characterising postulates of FC contraction and (F

.−7). Recall that unless stated
otherwise, we work with the indefinite FC logic denoted as 〈LFC, CnFC〉.

Lemma 1. Let ≤ be an FC epistemic entrenchment. Then ≤ satisfies:

1. φ ≤ ψ or ψ ≤ φ

2. If ψ ∧ σ ≤ φ, then ψ ≤ φ or σ ≤ φ

3. φ < ψ iff φ ∧ ψ < ψ

4. If σ ≤ φ and σ ≤ ψ, then σ ≤ φ ∧ ψ

5. If σ < φ and σ < ψ, then σ < φ ∧ ψ

6. If φ ≤ ψ, then φ ≤ φ ∧ ψ

7. If CnFC(φ) = CnFC(ψ) then φ ≤ ψ and ψ ≤ φ

Proof. Follows immediately from the definition of FC epistemic entrenchments.

Lemma 2. Let ∆ ∪ {φ} ⊆ LFC. Then ∆ ∪ {φ} `F ψ iff there is δ ∈ FC(¬φ ∨ ψ) such that
∆ `FC δ.

Proof. ⇒: Suppose ∆ ∪ {φ} `F ψ. We have by the deduction theorem that ∆ `F φ → ψ.
Then we have by the compactness theorem that there is a finite subset {δ1, . . . , δn} of ∆
such that {δ1, . . . , δn} `F φ→ ψ. Thus ∆ `FC δ1 ∧ · · · ∧ δn and δ1 ∧ · · · ∧ δn `F φ→ ψ. Then
it follows from δ1 ∧ · · · ∧ δn ∈ LFC that δ1 ∧ · · · ∧ δn ∈ FC(φ → ψ). That is δ1 ∧ · · · ∧ δn ∈
FC(¬φ ∨ ψ) as CnF(φ→ ψ) = CnF(¬φ ∨ ψ).
⇐: Suppose there is δ ∈ FC(¬φ ∨ ψ) such that ∆ `FC δ. Then we have δ `F ¬φ ∨ ψ,

which implies ∆ `F ¬φ ∨ ψ. Thus ∆ ∪ {φ} `F ψ.

Example 1. 12 Let LFC consist of all ground formulas that can be constructed from the
unary predicate P , the unary function f , and the constant c. Then ∃xP (x) 6∈ LFC. Let’s
try to work out the closest FC approximations of ∃xP (x). For any σ ∈ LFC such that
σ `F ∃xP (x) we can construct an infinite chain of formulas each of which entails ∃xP (x):

σ1 = σ ∨ P (f(c))

σ2 = σ ∨ P (f(c)) ∨ P (f(f(c)))

σ3 = σ ∨ P (f(c)) ∨ P (f(f(c))) ∨ P (f(f(f(c))))

...

12. This example is a simplification of the one given by an anonymous reviewer for when the paper was
submitted to Artificial Intelligence Journal.
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Since all σi are in LFC and σi+1 is logically weaker than σi, there is no weakest formula in
the chain which implies there exists no closest FC approximation of ∃xP (x) with respect to
〈LFC, CnFC〉, that is CFC(∃xP (x),LFC) = ∅. Also, due to the infinity of the chain and the
fact that all σi entail ∃xP (x), the set FC(∃xP (x),LFC) is infinite.

Example 2. Let the underlying logic be 〈LH, CnH〉 such that the language LH is over the
set of atoms {p, q, r}. We denote an interpretation as a vector of 1s and 0s. For instance
an interpretation 101 indicates p is assigned true, q is assigned false, and r is assigned
true. We denote the set of models of a formula φ and a set of formulas S as |φ| and |S|
respectively.

We consider the model-based Horn contraction function defined in (Zhuang & Pagnucco,
2012). Formally, a function

.− : 2LH×LH 7→ 2LH is a model-based Horn contraction function
iff

K
.−φ = TH(|K| ∪min(|¬φ|,�)).

where � is a total and faithful pre-order over all propositional interpretations; min(|¬φ|,�
) = {µ ∈ |¬φ| : there is no ν ∈ |¬φ| such that ν ≺ µ}; and TH(|K| ∪min(|¬φ|,�)) = {ψ ∈
LH : |K| ∪min(|¬φ|,�) ⊆ |ψ|}.

It is shown that a model-based Horn contraction function satisfies (F
.−1)–(F

.−4), (F
.−de),

(F
.−6)–(F

.−8), and (F
.−ct) (Zhuang & Pagnucco, 2011; Zhuang et al., 2013, 2017). We

are going to show that it violates (F
.−re).

Let K be CnH((¬p ∨ q) ∧ (¬p ∨ r)) and the pre-order � for
.− be

all other interpretations ≺ 101 ≺ 110 ≺ 100

Then we have

|¬p ∨ q| = |K| ∪ {110},
|¬(¬p ∨ r)| = {110, 100},

|¬((¬p ∨ r) ∧ (¬p ∨ q))| = {101, 100, 110},
|K

.
−(¬p ∨ r)| = |K| ∪ {110}, and

|K
.
−(¬p ∨ r) ∧ (¬p ∨ q)| = |K| ∪ {101}.

Thus

¬p ∨ q ∈ K
.
−(¬p ∨ r)and

¬p ∨ q 6∈ K
.
−(¬p ∨ r) ∧ (¬p ∨ q)

Moreover, it follows from (F
.−4) and (F

.−6) that ¬p∨r 6∈ K .−(¬p∨r)∧(¬p∨r) = K
.−(¬p∨r);

¬p 6∈ K .−(¬p ∨ r) ∧ ¬p = K
.−¬p; and r 6∈ K .−(¬p ∨ r) ∧ r = K

.−r. Finally, since q /∈ K, it
follows from (F

.−2) that q 6∈ K .−(¬p ∨ r) ∧ q.
Note that FC((¬p ∨ r) ∨ (¬p ∨ q)) = {⊥,¬p, q, r,¬p ∨ q,¬p ∨ r}. If we let φ be ¬p ∨ r

and ψ be ¬p ∨ q, then it is clear that (F
.−re) is violated.
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Appendix B

In this appendix we show the proofs of the main results in this paper.

Proof of Proposition 2

⇒: Suppose cut≤(φ) `F φ ∨ ψ. Then there is δ ∈ FC(φ ∨ ψ) such that δ ∈ cut≤(φ).
Since φ 6∈ cut≤(φ), it follows from the definition of cut that φ < δ.

⇐: Suppose there is δ ∈ FC(φ ∨ ψ) such that φ < δ. It then follows from (EE2)
that {σ ∈ K | δ ≤ σ} 6`FC φ which implies δ ∈ cut≤(φ). Then since δ `F φ ∨ ψ, we have
cut≤(φ) `F φ ∨ ψ.

Proof of Theorem 4

⇒: Suppose φ ≤ ψ and φ ∈ K .−φ ∧ ψ. We need to show `FC φ ∧ ψ. Since φ ∈ K .−φ ∧ ψ
we have by (CFC

.−) that either `FC φ∧ψ or there is σ ∈ FC(φ∨ (φ∧ψ)) such that φ∧ψ < σ.
If it is the latter case, then we have σ `F φ ∨ (φ ∧ ψ). Since CnF(φ ∨ (φ ∧ ψ)) = CnF(φ), we
have σ `FC φ which implies by (EE2) that σ ≤ φ. Since φ ≤ ψ, we have by Lemma 1 (part
6) that φ ≤ φ ∧ ψ. Then it follows from (EE1) and σ ≤ φ that σ ≤ φ ∧ ψ which implies
φ ∧ ψ 6< σ, a contradiction. Thus the former case must hold.

⇐: If `FC φ ∧ ψ, then both φ and ψ are tautologies. Thus φ ≤ ψ follows from (EE5).
So suppose 6`FC φ ∧ ψ and φ 6∈ K .−φ ∧ ψ. We need to show φ ≤ ψ. Since φ 6∈ K .−φ ∧ ψ,
we have by (CFC

.−) that either φ 6∈ K or φ ∧ ψ 6< σ for all σ ∈ FC(φ ∨ (φ ∧ ψ)). For the
former case, φ 6∈ K gives us φ ≤ ψ as required by (EE4). Since CnF(φ∨ (φ∧ψ)) = CnF(φ),
we have φ ∈ FC(φ ∨ (φ ∧ ψ)). Thus for the latter case, we have φ ∧ ψ 6< φ which means
φ ≤ φ ∧ ψ. Then since (EE2) and φ ∧ ψ `FC ψ give us φ ∧ ψ ≤ ψ, we have by (EE1) that
φ ≤ ψ.

Proof of Theorem 5

⇒: Suppose the function
.− is an FC contraction function and the FC epistemic en-

trenchment associated with K is ≤. We need to show
.− satisfies (F

.−1)–(F
.−4), (F

.−de),
(F

.−6), (F
.−re), (F

.−ct), and (F
.−8). Note that Theorem 4 assures that

.− satisfies (C≤).

(F
.−1): If `FC φ, then it follows from (CFC

.−) that K
.−φ = K. Since K = CnFC(K),

we have K
.−φ = CnFC(K

.−φ). So suppose 6`FC φ and ψ ∈ CnFC(K
.−φ). We need to show

ψ ∈ K
.−φ. By (CFC

.−) it suffices to show ψ ∈ K and there is σ ∈ FC(φ ∨ ψ) such that
φ < σ. We have two cases:

Case 1, 6`FC ψ: Since ψ ∈ CnFC(K
.−φ), by the compactness of 〈LFC, CnFC〉 (follows

from the compactness theorem), there is a finite subset {δ1, . . . , δn} of K
.−φ such that

δ1 ∧ · · · ∧ δn `FC ψ. Since {δ1, . . . , δn} ⊆ K
.−φ, (F

.−2) implies {δ1, . . . , δn} ⊆ K. It follows
from {δ1, . . . , δn} ⊆ K and δ1 ∧ · · · ∧ δn `FC ψ that K `FC ψ. It follows from K `FC ψ and
K = CnFC(K) that ψ ∈ K. Since {δ1, . . . , δn} ⊆ K

.−φ, it follows from (CFC
.−) that there

is σi ∈ FC(φ ∨ δi) such that φ < σi for 1 6 i 6 n. By Definition 2, this means σi ∈ LFC
and σi `F φ ∨ δi for 1 6 i 6 n which implies σ1 ∧ · · · ∧ σn `F φ ∨ (δ1 ∧ · · · ∧ δn). Thus
σ1 ∧ · · · ∧ σn `F φ ∨ ψ. It follows from σ1 ∧ · · · ∧ σn ∈ LFC and σ1 ∧ · · · ∧ σn `F φ ∨ ψ that
σ1 ∧ · · · ∧ σn ∈ FC(φ ∨ ψ). Since φ < σi for 1 ≤ i ≤ n, we have by Lemma 1 (part 5) that
φ < σ1 ∧ · · · ∧ σn.
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Case 2, `FC ψ: Since (F
.−2) gives K

.−φ ⊆ K, it follows from ψ ∈ K .−φ that ψ ∈ K.
Also `FC ψ implies `FC φ∨ψ. Then by Definition 2, ψ ∈ FC(φ∨ψ). Finally, it follows from
6`FC φ and (EE5) that φ < ψ.

(F
.−2): Follows directly from (CFC

.−).

(F
.−3): Suppose φ 6∈ K. K

.−φ ⊆ K is given by (F
.−2). Suppose ψ ∈ K. We are going to

show ψ ∈ K .−φ. It follows from ψ `F φ∨ψ and ψ ∈ LFC that ψ ∈ FC(φ∨ψ). Since φ 6∈ K,
we have by (EE4) that φ < ψ. Then we have by (CFC

.−) that ψ ∈ K .−φ. Consequently,
ψ ∈ K and ψ ∈ K .−φ imply K ⊆ K .−φ.

(F
.−4): By Definition 2, we have for each σ ∈ FC(φ ∨ φ), σ `FC φ. Thus we have by

(EE2) that φ 6< σ. Then it follows from 6`FC φ and (CFC
.−) that φ 6∈ K .−φ.

(F
.−de): Suppose ψ ∈ K \ K .−φ. Then 6`FC φ, for otherwise ψ ∈ K

.−φ follows from
(CFC

.−). It follows from 6`FC φ, ψ ∈ K \K .−φ and (CFC
.−) that φ 6< σ for all σ ∈ FC(φ∨ψ).

For any such σ we have φ∨ σ `F φ∨ ψ which means FC(φ∨ σ) ⊆ FC(φ∨ψ). Thus for any
such σ, we have φ 6< δ for all δ ∈ FC(φ∨σ). Then it follows from (CFC

.−) that, for any such
σ, σ 6∈ K .−φ.

(F
.−6): Suppose CnFC(φ) = CnFC(ψ). Then CnF(φ ∨ δ) = CnF(ψ ∨ δ) for any δ ∈ LFC.

Thus it follows from Definition 2 that FC(φ ∨ δ) = FC(ψ ∨ δ) for any δ ∈ LFC. Then
K

.−φ = K
.−ψ is an immediate consequence of (CFC

.−).

(F
.−re): Suppose ψ ∈ K

.−φ. Then we have by (CFC
.−) that either `FC φ or there

is σ ∈ FC(φ ∨ ψ) such that φ < σ. For the former case, we have by Definition 2 that
φ ∈ FC(φ∨ψ). Then since (F

.−1) gives K
.−φ∧φ = CnFC(K

.−φ∧φ), we have φ ∈ K .−φ∧φ.
For the latter case, since φ < σ we have by (C≤) that σ ∈ K .−φ ∧ σ.

(F
.−ct): Suppose ψ ∈ K .−φ ∧ ψ. Then we have by (C≤) that φ < ψ. Since φ ∧ δ `FC φ,

we have by (EE2) that φ ∧ δ ≤ φ. Then it follows from (EE1) and φ < ψ that φ ∧ δ < ψ
which implies by (C≤) that ψ ∈ K .−φ ∧ ψ ∧ δ.

(F
.−8): Suppose φ 6∈ K .−φ∧ψ. Then 6`FC φ, for otherwise (F

.−1) implies φ ∈ K .−φ∧ψ.
Since φ 6∈ K

.−φ ∧ ψ, we have by (C ≤) that φ ≤ ψ which implies by Lemma 1 (part
6) that φ ≤ φ ∧ ψ. Let δ ∈ K .−φ ∧ ψ. Then we have by (CFC

.−) that δ ∈ K and there is
σ ∈ FC((φ∧ψ)∨δ) such that φ∧ψ < σ. Since σ ∈ FC((φ∧ψ)∨δ), we have σ `F (φ∧ψ)∨δ.
Since (φ∧ψ)∨δ `F φ∨δ, we have σ `F φ∨δ. Then it follows from σ ∈ LFC that σ ∈ FC(φ∨δ).
Since φ ≤ φ∧ψ and φ∧ψ < σ, we have by (EE1) that φ < σ. It follows from σ ∈ FC(φ∨δ),
φ < σ, and (CFC

.−) that δ ∈ K .−φ.

⇐: Suppose
.− is a function that satisfies (F

.−1)–(F
.−4), (F

.−de), (F
.−6), (F

.−re),
(F

.−ct), and (F
.−8). It suffices to show the FC epistemic entrenchment ≤ generated from

.−
via (C≤) satisfies (EE1)–(EE5) and (CFC

.−). By replacing the AGM contraction postulates
with their corresponding 〈LFC, CnFC〉 ones, the proof for satisfaction of (EE1)–(EE5) is the
same as that of Theorem 2.50 in (Hansson, 1999). We therefore only give the proof for
(CFC

.−).

(CFC
.−): ⇒: Suppose ψ ∈ K .−φ. Then we have by (F

.−2) that ψ ∈ K. Suppose 6`FC φ,
it suffices to show there is σ ∈ FC(φ ∨ ψ) such that φ < σ. Since ψ ∈ K .−φ, we have by
(F

.−re) and there is σ ∈ FC(φ ∨ ψ) such that σ ∈ K .−φ ∧ σ. Then it follows from (C≤)
and 6`FC φ ∧ σ that φ < σ.

⇐: Suppose ψ ∈ K. We need to show if `FC φ or there is σ ∈ FC(φ ∨ ψ) such that
φ < σ, then ψ ∈ K .−φ. Suppose `FC φ. Then `FC φ ∨ ψ which implies by Definition 2 that
φ ∈ FC(φ∨ψ). Then we have by (F

.−1) that φ ∈ K .−φ. It then follows from ψ ∈ K and the
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contrapositive of (F
.−de) that ψ ∈ K .−φ. Now suppose 6`FC φ and there is σ ∈ FC(φ ∨ ψ)

such that φ < σ. Then it follows from (C≤) and 6`FC φ ∧ σ that σ ∈ K .−φ ∧ σ. Then we
have by (F

.−4) that φ 6∈ K .−φ ∧ σ which implies by (F
.−8) that K

.−φ ∧ σ ⊆ K
.−φ. Since

σ ∈ K .−φ ∧ σ, we have σ ∈ K .−φ. Finally it follows from ψ ∈ K and the contrapositive of
(F

.−de) that ψ ∈ K .−φ.

Proof of Theorem 6

Suppose
.− is an FC entrenchment-based contraction function and the FC epistemic

entrenchment associated with K is ≤. Let δ ∈ (K
.−φ) ∩ (K

.−ψ). If `FC φ, then it follows
from (F

.−6) that K
.−(φ ∧ ψ) = K

.−ψ. Thus δ ∈ K .−(φ ∧ ψ). We can show the result in a
similar way for when we have `FC ψ. So suppose 6`FC φ and 6`FC ψ. It follows from (EE2)
that φ ∧ ψ ≤ φ and φ ∧ ψ ≤ ψ. Since δ ∈ K

.−φ, we have by (CFC
.−) that δ ∈ K and

there is σ1 ∈ FC(φ ∨ δ) such that φ < σ1. We then conclude from (EE1) and φ ∧ ψ ≤ φ
that φ ∧ ψ < σ1. In a similar way we can show that there is σ2 ∈ FC(ψ ∨ δ) such that
φ ∧ ψ < σ2. By Lemma 1 (part 5), we can deduce from φ ∧ ψ < σ1 and φ ∧ ψ < σ2 that
φ ∧ ψ < σ1 ∧ σ2. Since σ1 ∈ FC(φ ∨ δ) and σ2 ∈ FC(ψ ∨ δ), we have by Definition 2
that σ1 ∧ σ2 `F (φ ∨ δ) ∧ (ψ ∧ δ) which implies σ1 ∧ σ2 `F (φ ∧ ψ) ∨ δ. Then it follows
from σ1 ∧ σ2 ∈ LFC that σ1 ∧ σ2 ∈ FC((φ ∧ ψ) ∨ δ). Finally, it follows from δ ∈ K,
σ1 ∧ σ2 ∈ FC((φ ∧ ψ) ∨ δ), φ ∧ ψ < σ1 ∧ σ2 and (CFC

.−) that δ ∈ K .−(φ ∧ ψ).

Proof of Proposition 5

⇒: Suppose cut≤(¬φ ∨ ψ) ⊂ cut≤(¬φ). Then there is γ ∈ cut≤(¬φ) such that {σ ∈
K | γ ≤ σ} `F ¬φ ∨ ψ. Let

∧
{σ ∈ K | γ ≤ σ} be δ. Then δ `F ¬φ ∨ ψ which means

δ ∈ FC(¬φ∨ψ). Also it follows from (EE3) that δ ≤ γ and γ ≤ δ which means δ ∈ cut≤(¬φ).
Since σ 6∈ cut≤(¬φ) for all σ ∈ FC(¬φ), we have σ < δ for all σ ∈ FC(¬φ).

⇐: Since ¬φ `F ¬φ∨ψ, it follows from the definition of cut that cut≤(¬φ∨ψ) ⊆ cut≤(¬φ).
It remains to show that there is δ ∈ cut≤(¬φ) such that δ 6∈ cut≤(¬φ ∨ ψ). By the
hypothesis, there is δ ∈ FC(¬φ∨ψ) such that σ < δ for all σ ∈ FC(¬φ). Since δ `F ¬φ∨ψ,
δ 6∈ cut≤(¬φ ∨ ψ). Assume {σ ∈ K | δ ≤ σ} `F ¬φ and let

∧
{σ ∈ K | δ ≤ σ} be γ. Then

γ `F ¬φ which means γ ∈ FC(¬φ). But it follows from (EE3) that γ ≤ δ, a contradiction.
Therefore {σ ∈ K | δ ≤ σ} 6`F ¬φ which means δ ∈ cut≤(¬φ).

Proof of Theorem 7

Let LFC contains some tautologies and without loss of generality let one of them be >.
Suppose ∗ is an FC revision function where the FC epistemic entrenchment associated with
K is ≤. We need to show ∗ satisfies (F ∗ 1) – (F ∗ 8).

(F ∗ 1): If `F ¬φ, then it follows from (RFC∗) that K ∗ φ = K⊥. Since K⊥ = CnFC(K⊥),
we have K ∗ φ = CnFC(K ∗ φ). So suppose 6`F ¬φ and K ∗ φ `FC ψ. By the compactness of
FC logic, there is a finite subset {θ1, . . . , θn} of K ∗ φ such that {θ1, . . . , θn} `FC ψ. Then it
follows from (RFC∗) that there is δi ∈ FC(¬φ∨θi) such that σ < δi for all σ ∈ FC(¬φ), where
1 6 i 6 n. Thus we have by Lemma 1 (part 5) that σ < δ1 ∧ · · · ∧ δn for all σ ∈ FC(¬φ).
Since δ1∧· · ·∧δn `F (¬φ∨θ1)∧· · ·∧(¬φ∨θn) and (¬φ∨θ1)∧· · ·∧(¬φ∨θn) `F ¬φ∧ψ, we have
δ1∧· · ·∧δn `F ¬φ∧ψ. Then it follows from δ1∧· · ·∧δn ∈ LFC that δ1∧· · ·∧δn ∈ FC(¬φ∨ψ).
Finally it follows from δ1 ∧ · · · ∧ δn ∈ FC(¬φ∨ψ), σ < δ1 ∧ · · · ∧ δn for all σ ∈ FC(¬φ), and
(RFC∗) that ψ ∈ K ∗ φ.
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(F ∗ 2): If K + φ is inconsistent, then it follows from (F ∗ 1) that K + φ = K⊥ which
implies K ∗ φ ⊆ K + φ. So suppose K + φ is consistent. Then K 6`F ¬φ which implies
K 6`FC σ for all σ ∈ FC(¬φ). Thus σ 6∈ K for all σ ∈ FC(¬φ). Suppose ψ ∈ K ∗φ. Then we
have by (RFC∗) that there is δ ∈ FC(¬φ∨ ψ) such that σ < δ for all σ ∈ FC(¬φ). Since for
all σ ∈ FC(¬φ), σ 6∈ K and σ < δ, we have by (EE4) that δ ∈ K. It follows from δ ∈ K,
δ ∈ FC(¬φ ∨ ψ), and Lemma 2 that K + φ ` ψ which means ψ ∈ K + φ.

(F ∗ 3): Suppose K + φ is consistent. Then as for (F ∗ 2) we have σ 6∈ K for all
σ ∈ FC(¬φ). Suppose ψ ∈ K +φ. Then we have by Lemma 2 that there is δ ∈ FC(¬φ∨ψ)
such that K `FC δ which means δ ∈ K. Then it follow from (EE4) that σ < δ for all
σ ∈ FC(¬φ). Finally, it follows from δ ∈ FC(¬φ∨ψ), σ < δ for all σ ∈ FC(¬φ), and (RFC∗)
that ψ ∈ K ∗ φ.

(F ∗ 4): If φ is inconsistent, then `F ¬φ. Thus it follows from (RFC∗) that K ∗ φ = K⊥
which implies φ ∈ K ∗ φ. So suppose φ is consistent. Then 6`F ¬φ and > ∈ FC(¬φ ∨ φ).
So we have by (EE5) that σ < > for all σ ∈ FC(¬φ). Then it follows from (RFC∗) that
φ ∈ K ∗ φ.

(F ∗ 5): ⇐: Suppose φ is inconsistent. Then it follows from (F ∗ 1) and (F ∗ 4) that
K ∗ φ = K⊥.

⇒: Suppose φ is consistent. Let ψ ∈ K ∗ φ. Then there is δ ∈ FC(¬φ ∨ ψ) such that
σ < δ for all σ ∈ FC(¬φ). Assume there is θ ∈ FC(¬ψ) such that θ ∈ K ∗ φ. Then there is
δ′ ∈ FC(¬φ ∨ θ) such that σ < δ′ for all σ ∈ FC(¬φ). Then it follows from Lemma 1 (part
5) that σ < δ ∧ δ′ for all σ ∈ FC(¬φ) Since (¬φ∨ θ)∧ (¬φ∨ψ) `F ¬φ, we have δ ∧ δ′ `F ¬φ.
Then it follows from δ ∧ δ′ ∈ LFC that δ ∧ δ′ ∈ FC(¬φ) which means δ ∧ δ′ < δ ∧ δ′, a
contradiction. Thus there is no θ ∈ FC(¬ψ) such that θ ∈ K ∗ φ which means K ∗ φ is
consistent.

(F ∗ 6): Follows immediately from (RFC∗).
(F ∗ 7): We let φ and ψ be consistent and non-tautology, for otherwise the proof is

trivial. Let γ ∈ K ∗ φ ∧ ψ. Then there is δ ∈ FC(¬φ ∨ ¬ψ ∨ γ) such that σ < δ for all
σ ∈ FC(¬φ∨ψ). Since ¬φ `F ¬φ∨¬ψ, we have FC(¬φ) ⊆ FC(¬φ∨ψ). Thus σ′ < δ for all
σ′ ∈ FC(¬φ). Since δ `F ¬φ ∨ δ, we have δ ∈ FC(¬φ ∨ δ). It follows from δ ∈ FC(¬φ ∨ δ),
σ′ < δ for all σ′ ∈ FC(¬φ), and (RFC∗) that δ ∈ K ∗ φ. Then since φ ∈ K ∗ φ follows from
(F ∗ 4), we have {δ, φ, ψ} ⊆ (K ∗ φ) + ψ. Finally it follows from {δ, φ, ψ} `FC γ and (F ∗ 1)
that γ ∈ (K ∗ φ) + ψ.

(F ∗ 8): We let φ and ψ be consistent and non-tautology, for otherwise the proof is
trivial. Let γ ∈ K ∗ φ ∧ ψ. Suppose (K ∗ φ) + ψ is consistent. Then K ∗ φ 6`F ¬ψ. Since
φ ∈ K ∗φ follows from (F ∗ 4), we have K ∗φ 6`F ¬φ∨¬ψ, for otherwise K ∗φ `F ¬ψ. Thus
σ 6∈ K∗φ for all σ ∈ FC(¬φ∨¬ψ). Then it follows from (RFC∗) that for all σ ∈ FC(¬φ∨¬ψ),
δ ∈ FC(¬φ ∨ σ) implies there is σ′ ∈ FC(¬φ) such that δ ≤ σ′. Since σ ∈ FC(¬φ ∨ σ)
follows from σ `F ¬φ ∨ σ, we have for all σ ∈ FC(¬φ ∨ ¬ψ) there is σ′ ∈ FC(¬φ) such that
σ ≤ σ′.

Let γ ∈ (K ∗ φ) + ψ. Then it follows from Lemma 2 that there is δ ∈ FC(¬ψ ∨ γ)
such that K ∗ φ `FC δ. So we have by (F ∗ 1) that δ ∈ K ∗ φ which implies there is
δ′ ∈ FC(¬φ∨δ) such that σ′ < δ′ for all σ′ ∈ FC(¬φ). Since ¬φ∨δ `F ¬φ∨¬ψ∨γ, we have
FC(¬φ ∨ δ) ⊆ FC(¬φ ∨ ¬ψ ∨ γ). So there is δ′ ∈ FC(¬φ ∨ ¬ψ ∨ γ) such that σ′ < δ′ for all
σ′ ∈ FC(¬φ). Then since for all σ ∈ FC(¬φ∨¬ψ) there is σ′ ∈ FC(¬φ) such that σ ≤ σ′, we
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have by (EE1) that σ < δ′ for all σ ∈ FC(¬φ∨¬ψ). It follows from δ′ ∈ FC(¬φ∨¬ψ ∨ γ),
σ < δ′ for all σ ∈ FC(¬φ ∨ ¬ψ), and (RFC∗) that γ ∈ K ∗ φ ∧ ψ.

Proof of Proposition 7
Let the underlying logic be 〈LH, CnH〉. Suppose the function ∗ is an FC revision function

where the FC epistemic entrenchment associated with K is ≤. According to Theorem 2
and 3 in (Delgrande & Peppas, 2015), model-based Horn revision is fully characterised by
(F ∗ 1)–(F ∗ 8) and the schema (Acyc). It suffices to show ∗ satisfies (F ∗ 1)–(F ∗ 8) and
(Acyc). Since > ∈ LH, we have by Theorem 6 that ∗ satisfies (F ∗ 1)–(F ∗ 8). Hence it
remains to show ∗ satisfies (Acyc).

Suppose for 0 ≤ i < n, (K ∗ φi+1) + φi is consistent, and (K ∗ φ0) + φn is consistent.
By Theorem 10, we have (K ∗ φi+1) + φi = (cut≤(¬φi+1) + φi+1) + φi, which means (K ∗
φi+1) + φi = cut≤(¬φi+1) + φi+1 ∧ φi. Since (K ∗ φi+1) + φi is consistent, it follows from
Lemma 2 that cut≤(¬φi+1) 6`F ¬φi+1 ∨ ¬φi which means cut≤(¬φi+1) 6`F ¬φi. Let δ ∈
cut≤(¬φi+1). Then it follows from the definition of cut and (EE1) that {σ ∈ K | δ ≤
σ} ⊆ cut≤(¬φi+1) which implies {σ ∈ K | δ ≤ σ} 6`F ¬φi. Hence δ ∈ cut≤(¬φi), which
means cut≤(¬φi+1) ⊆ cut≤(¬φi). Similarly, from (K ∗φ0) +φn is consistent, we can deduce
cut≤(¬φ0) ⊆ cut≤(¬φn). It follows from cut≤(¬φi+1) ⊆ cut≤(¬φi) for 0 ≤ i < n and
cut≤(¬φ0) ⊆ cut≤(¬φn) that cut≤(¬φ1) = · · · = cut≤(¬φn).

By Theorem 10, we have (K ∗φn)+φ0 = (cut≤(¬φn)+φn)+φ0 which means (K ∗φn)+
φ0 = cut≤(¬φn) + φ0 ∧ φn. Since cut≤(¬φn) = cut≤(¬φ0), we have cut≤(¬φ0) + φ0 ∧ φn =
cut≤(¬φn) + φ0 ∧ φn. Then it follows from Theorem 10 that (K ∗ φ0) + φn = (K ∗ φn) + φ0
which implies (K ∗ φn) + φ0 is consistent.

Proof of Theorem 8
Let LFC contains some tautologies and for all φ ∈ LFC FC(¬φ) is finite up to logical

equivalence. Suppose ∗ is a contraction generated revision function and the FC contraction
that generates ∗ is

.− where the FC epistemic entrenchment associated with K is ≤. We
need to show ∗ satisfies (F ∗ 1) – (F ∗ 8). The proofs for (F ∗ 1) – (F ∗ 6) are trivial.

For (F ∗ 7), let FC(¬φ) 6= ∅ for otherwise the proof is trivial. Then it follows from the
definition of contraction generated revision that

K ∗ (φ ∧ ψ) =
⋂

σ∈FC(¬φ∨¬ψ)

(K
.−σ) + φ ∧ ψ

and

(K ∗ φ) + ψ =

 ⋂
σ∈FC(¬φ)

(K
.−σ) + φ

 + ψ =
⋂

σ∈FC(¬φ)

(K
.−σ) + φ ∧ ψ.

Since ¬φ `F ¬φ ∨ ¬ψ, we have FC(¬φ) ⊆ FC(¬φ ∨ ¬ψ) which implies⋂
σ∈FC(¬φ∨¬ψ)

(K
.−σ) ⊆

⋂
σ∈FC(¬φ)

(K
.−σ).

Hence, ⋂
σ∈FC(¬φ∨¬ψ)

(K
.−σ) + φ ∧ ψ ⊆

⋂
σ∈FC(¬φ)

(K
.−σ) + φ ∧ ψ.
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For (F ∗ 8), we let φ and ψ be consistent and non-tautological, and there is σ ∈ FC(¬φ)
such that σ ∈ K, for otherwise the proof is trivial. Suppose (K ∗φ) +ψ is consistent. Then
(K ∗ φ) 6`F ¬ψ. Since K ∗ φ =

⋂
σ∈FC(¬φ)(K

.−σ) + φ, it follows from (K ∗ φ) 6`F ¬ψ and
Lemma 2 that there is no π ∈ FC(¬φ ∨ ¬ψ) such that π ∈

⋂
σ∈FC(¬φ)(K

.−σ). Hence for
every π ∈ FC(¬φ ∨ ¬ψ) there is σ ∈ FC(¬φ) such that π 6∈ K .−σ. As π ∈ FC(σ ∨ π), it
then follows from (CFC

.−) that for every π ∈ FC(¬φ ∨ ¬ψ) there is σ ∈ FC(¬φ) such that
π ≤ σ.

Suppose γ ∈ (K ∗ φ) + ψ. Then since (K ∗ φ) + ψ =
⋂
σ∈FC(¬φ)(K

.−σ) + φ ∧ ψ, we
have by Lemma 2 that there is δ ∈ FC(¬φ ∨ ¬ψ ∨ γ) such that δ ∈

⋂
σ∈FC(¬φ)(K

.−σ).

Thus we have by (CFC
.−) that, for every σ ∈ FC(¬φ), there is δ′ ∈ FC(σ ∨ δ) such that

σ < δ′. Since σ ∨ δ `F ¬φ∨¬ψ ∨ γ, we have FC(σ ∨ δ) ⊆ FC(¬φ∨¬ψ ∨ γ). Thus for every
σ ∈ FC(¬φ), there is δ′ ∈ FC(¬φ ∨ ¬ψ ∨ γ) such that σ < δ′. Since FC(¬φ) is finite up to
logical equivalence, there is a σ ∈ FC(¬φ) such that σ′ ≤ σ for all σ′ ∈ FC(¬φ) and there
is a δ′ ∈ FC(¬φ∨¬ψ ∨ γ) such that σ < δ′. Then for this δ′, we have by (EE1) and (EE4)
that σ < δ′ for all σ ∈ FC(¬φ) and δ′ ∈ K. Also, as for every π ∈ FC(¬φ ∨ ¬ψ), there is
σ ∈ FC(¬φ) such that π ≤ σ, we have π < δ′ for all π ∈ FC(¬φ∨¬ψ). Since δ′ ∈ FC(π∨δ′)
and δ′ ∈ K, it then follows from (CFC

.−), that

δ′ ∈
⋂

π∈FC(¬φ∨¬ψ)

(K
.−π).

Since
K ∗ φ ∧ ψ =

⋂
π∈FC(¬φ∨¬ψ)

(K
.−π) + φ ∧ ψ

it then follows from Lemma 2 that γ ∈ K ∗ φ ∧ ψ.

Proof of Theorem 9
Let LFC contains some tautologies and for all φ ∈ LFC FC(¬φ) is finite up to logical

equivalence. Let ∗ and
.− be an FC revision function and an FC contraction function

respectively, and their determining FC epistemic entrenchments are identical for all K. Let
FC(¬φ) 6= ∅ for otherwise the proof is trivial. Then it suffices to show

K ∗ φ =
⋂

σ∈FC(¬φ)

(K
.−σ) + φ

We let φ be consistent and there is σ ∈ FC(¬φ) such that σ ∈ K, for otherwise the proof
is trivial.
⊆: Let ψ ∈ K ∗ φ. Then there is δ ∈ FC(¬φ ∨ ψ) such that σ < δ for all σ ∈ FC(¬φ).

It then follows from (EE4) that δ ∈ K. Since δ `F σ ∨ δ, we have δ ∈ FC(σ ∨ δ) for
every σ ∈ FC(¬φ). It then follows from (CFC

.−) that δ ∈ K .−σ for every σ ∈ FC(¬φ), which
implies δ ∈

⋂
σ∈FC(¬φ)(K

.−σ). Finally, we have by Lemma 2 that ψ ∈
⋂
σ∈FC(¬φ)(K

.−σ)+φ.
⊇: Let ψ ∈

⋂
σ∈FC(¬φ)(K

.−σ) + φ. Then we have by Lemma 2 that there is δ ∈
FC(¬φ ∨ ψ) such that δ ∈

⋂
σ∈FC(¬φ)(K

.−σ). Thus for every σ ∈ FC(¬φ), it follows

from (CFC
.−) that there is δ′ ∈ FC(δ ∨ σ) such that σ < δ′. For every σ ∈ FC(¬φ),

δ ∨ σ `F ¬φ∨ψ implies FC(δ ∨ σ) ⊆ FC(¬φ∨ψ), therefore we have, for every σ ∈ FC(¬φ),
there is δ′ ∈ FC(¬φ∨ψ) such that σ < δ′. Since FC(¬φ) is finite up to logical equivalence,
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there is a σ ∈ FC(¬φ) such that σ′ ≤ σ for all σ′ ∈ FC(¬φ) and there is a δ′ ∈ FC(¬φ∨ψ)
such that σ < δ′. Then for this δ′, we have by (EE1) and (EE4) that σ < δ′ for all
σ ∈ FC(¬φ) and δ′ ∈ K. Finally, it follows from (RFC∗) that ψ ∈ K ∗ φ.

Proof of Theorem 10
Let

.− and
.−w be an FC contraction function and an FC withdrawal function respectively,

and their determining FC epistemic entrenchments are identical for all K. It suffices to show⋂
σ∈FC(¬φ)

(K
.−σ) + φ =

⋂
σ∈FC(¬φ)

(K
.−wσ) + φ.

⊇: Suppose the FC epistemic entrenchment associated with K is ≤ and ψ ∈ K .−wσ for
all σ ∈ FC(¬φ). Then it follows from (WFC

.−) that ψ ∈ K and σ < ψ for all σ ∈ FC(¬φ).
Since ψ ∈ FC(σ ∨ ψ), it then follows from (CFC

.−) that ψ ∈ K
.−σ for all σ ∈ FC(¬φ).

Therefore
⋂
σ∈FC(¬φ)(K

.−σ) ⊇
⋂
σ∈FC(¬φ)(K

.−wσ), which means
⋂
σ∈FC(¬φ)(K

.−σ) + φ ⊇⋂
σ∈FC(¬φ)(K

.−wσ) + φ.
⊆: Suppose ψ ∈

⋂
σ∈FC(¬φ)(K

.−σ) + φ. Then it follows from Lemma 2 that there is
δ ∈ FC(¬φ ∨ ψ) such that δ ∈

⋂
σ∈FC(¬φ)(K

.−σ). It then follows from (CFC
.−) that, for

every σ ∈ FC(¬φ), there is δ′ ∈ FC(σ∨ δ) such that σ < δ′. Since σ∨ δ `F ¬φ∨ψ, we have,
for every σ ∈ FC(¬φ), FC(σ ∨ δ) ⊆ FC(¬φ ∨ ψ). Therefore, for every σ ∈ FC(¬φ) there is
δ ∈ FC(¬φ ∨ ψ) such that σ < δ. Since FC(¬φ) is finite, there is a σ ∈ FC(¬φ) such that
σ′ ≤ σ for all σ′ ∈ FC(¬φ). For this σ there is δ ∈ FC(¬φ ∨ ψ) such that σ < δ. Hence
for this δ, we have σ < δ for all σ ∈ FC(¬φ). Also as δ ∈ K follows from (EE4), it then
follows from (WFC

.−) that δ ∈
⋂
σ∈FC(¬φ)(K

.−σ) which means ψ ∈
⋂
σ∈FC(¬φ)(K

.−wσ) + φ.

Proof of Theorem 11
Let ∗ and

.− be an FC revision function and an FC withdrawal function respectively,
and their determining FC epistemic entrenchments are identical for all K. Let FC(¬φ) 6= ∅
for otherwise the proof is trivial. Then it suffices to show

K ∗ φ =
⋂

σ∈FC(¬φ)

(K
.−σ) + φ

We let φ be consistent and there is σ ∈ FC(¬φ) such that σ ∈ K, for otherwise the proof
is trivial.
⊆: Let ψ ∈ K ∗ φ. Then there is δ ∈ FC(¬φ ∨ ψ) such that σ < δ for all σ ∈

FC(¬φ). Since δ ∈ K follows from (EE4), we have by (WFC
.−) that δ ∈ K .−σ for every

σ ∈ FC(¬φ), which implies δ ∈
⋂
σ∈FC(¬φ)(K

.−σ). Finally, we have by Lemma 2 that
ψ ∈

⋂
σ∈FC(¬φ)(K

.−σ) + φ.
⊇: Let ψ ∈

⋂
σ∈FC(¬φ)(K

.−σ) + φ. Then we have by Lemma 2 that there is δ ∈
FC(¬φ ∨ ψ) such that δ ∈

⋂
σ∈FC(¬φ)(K

.−σ). Then it follows from (WFC
.−) that σ < δ for

all σ ∈ FC(¬φ). Finally, it follows from (RFC∗) that ψ ∈ K ∗ φ.

Proof of Theorem 12
Suppose ∗ is an FC revision function where the FC epistemic entrenchment associated

with K is ≤. Then it suffices show

K ∗ φ = cut≤(¬φ) + φ.
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⊆: Let ψ ∈ K ∗ φ. Then there is δ ∈ FC(¬φ ∨ ψ) such that σ < δ for all σ ∈ FC(¬φ).
Assume δ 6∈ cut≤(¬φ). Then {σ ∈ K | δ ≤ σ} `F ¬φ. Let

∧
{σ ∈ K | δ ≤ σ} be γ. Then

γ ∈ LFC and γ `F ¬φ which means there is σ ∈ FC(¬φ) such that γ ` σ. Then we have by
(EE2) that γ ≤ σ. Since it follows from (EE3) that δ ≤ γ, we have by (EE1) that δ ≤ σ, a
contradiction. Therefore, δ ∈ cut≤(¬φ) which implies by Lemma 2 that ψ ∈ cut≤(¬φ) + φ.

⊇: Let ψ ∈ cut≤(¬φ) + φ. It then follows from Lemma 2 that there is δ ∈ FC(¬φ ∨ ψ)
such that δ ∈ cut≤(¬φ). Then since σ 6∈ cut≤(¬φ) for all σ ∈ FC(¬φ), we have σ < δ for
all σ ∈ FC(¬φ). Finally, it follows from (RFC∗) that ψ ∈ K ∗ φ.

Proof of Proposition 8

The “if” direction is clear, and we only need to show the “only if” direction. Suppose
φ =

∧m
i=1 φi and ψ =

∧n
j=1 ψj , where each φi and each ψj is a single (TBox or ABox) axiom

in LD. We only need to show that γ `F φi ∨ψj implies γ `D φi or γ `D ψj . For convenience,
we assume m = n = 1, i.e., φ and ψ are single (TBox or ABox) axioms. We show the
contrapositive form of the statement, that is, γ 6`D φ and γ 6`D ψ imply γ 6`F φ ∨ ψ.

If at least one of φ and ψ is a TBox axiom, without loss of generality, we assume that
ψ is a TBox axiom. From the assumption that γ 6`D φ and γ 6`D ψ, there are two models
I and I ′ of γ such that I 6|=D φ and I ′ 6`D ψ. Take J as the disjoint union of I and I ′ such
that J interprets the individuals in the same way as I does. Note that LD does not allow
nominals and thus for any TBox axiom α in LD, J |=D α iff both I |=D α and I ′ |=D α (Lutz
et al., 2011). Since J interprets individuals the same way as I, for any ABox axiom α in
LD, J |=D α iff I |=D α. Hence, I and I ′ being models of γ implies that J is a model of γ.
Also, I 6|=D φ (resp., I ′ 6|=D ψ) implies that J 6|=D φ (resp., J 6|=D ψ). That is, γ 6`F φ ∨ ψ.

Otherwise, both φ and ψ are ABox axioms. Note that LD has the canonical model
property (Calvanese et al., 2007), that is, there exists a model I (i.e., the canonical model)
of γ such that for each ABox axiom α, γ `D α iff I |=D α. From the assumption that γ 6`D φ
and γ 6`D ψ, I |=D ¬φ and I |=D ¬ψ. That is, γ 6`F φ ∨ ψ.
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