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Abstract

We consider the iterated belief change that occurs following an alternating sequence
of actions and observations. At each instant, an agent has beliefs about the actions that
have occurred as well as beliefs about the resulting state of the world. We represent such
problems by a sequence of ranking functions, so an agent assigns a quantitative plausibility
value to every action and every state at each point in time. The resulting formalism is able
to represent fallible belief, erroneous perception, exogenous actions, and failed actions.
We illustrate that our framework is a generalization of several existing approaches to belief
change, and it appropriately captures the non-elementary interaction between belief update
and belief revision.

1. Introduction

Many formal approaches have been introduced for reasoning about belief change in the con-
text of actions and observations (Jin & Thielscher, 2004; Shapiro, Pagnucco, Lesperance,
& Levesque, 2011; Delgrande & Levesque, 2012). In general, the underlying assumption
is that agents perform belief update following actions and belief revision following obser-
vations. Existing formalisms, for the most part, have treated actions and observations
independently, with little explicit discussion about the interaction between the two. In this
paper, we consider the belief change that occurs due to an alternating sequence of actions
and observations. We are interested in action domains where an agent may have erroneous
beliefs, both about the state of the world as well as the action history.

Let K denote the beliefs of an agent, given by a set of possible worlds. For 1 ≤ i ≤ n,
let Ai denote an action and let Oi denote an observation. Informally, we are interested in
sequences of the form

K �A1 ∗O1 � · · · �An ∗On (1)

where � is an update operator and ∗ is a revision operator. Our interpretation of this
expression is flexible in that the actions may be understood to represent actions executed
by a particular agent, or they may be exogenous. Note that such sequences may contain
conflicting information. For example, the observation On may not be possible following the
actions A1, . . . , An. In this case, there are two options.

1. Reject On.

2. Accept On, and modify A1, . . . , An.
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In order to determine which option is preferable for a specific problem, an agent needs to
be able to compare the plausibility of On with the plausibility of each Ai.

Expressions of the form (1) have previously been addressed, under the assumption that
ontic action histories are infallible and recent observations take precedence over older ob-
servations (Hunter & Delgrande, 2011). Clearly, there are action domains in which these
assumptions are not reasonable. In this paper, we propose a more flexible approach in
which actions and observations are both represented by Spohn-style ranking functions. We
take this approach because it gives a uniform treatment of the plausibility of beliefs, ob-
servations, and actions. When presented with conflicting information, an agent can simply
compare the relative plausibility of each action and observation; a uniform representation
of all events makes it straightforward to determine the most plausible sequence. More-
over, with quantitative plausibility values, we can encode a variety of distinct scenarios by
manipulating the magnitudes of the plausibility values for alternative events.

This paper makes several contributions to existing work on epistemic action effects.
The main contribution is a formal mechanism for reasoning about incorrect or weakly held
beliefs related to action histories. Existing formalisms are generally unable to compare
the plausibility of an action occurrence with the plausibility of a state of the world. This
is a problem because, in practical reasoning problems, agents are often put in a position
where they can either believe a certain fact holds or they can believe that some action has
occurred. By using the same formal tool to represent beliefs about actions and states, we
explicitly address the manner in which prior action occurrences are postulated or retracted
in response to new observations.

A second contribution of this work is a flexible treatment of weak or unreliable observa-
tions. While some revision operators incorporate each new observation, it is obvious that
this is not a desirable feature in many reasoning domains. In many cases, it is preferable to
discard an unreliable observation if it conflicts with current, strongly held beliefs. However,
our approach does not simply allow an unreliable observation to be discarded. Since we
use ranking functions to represent observations, each observation also includes plausible
alternatives. As such, each observation can actually provide evidence of several different
states, and to differing degrees. We will see that this is useful in representing observations
of states with similar appearance. Similarly, ranking functions can give a natural repre-
sentation of addititive evidence, in the form of observations that must occur several times
before changing an agent’s beliefs.

We formulate all of our results in a simple transition system framework that makes
our treatment of action effects explicit and easy to compare with more elaborate action
formalisms. However, our fundamental approach to dealing with uncertainty does not
actually require transition systems to be used for action effects. We do not intend for
the methodology described here to compete with alternative formalisms for representing
epistemic action effects; rather, we provide a high-level approach to dealing with uncertain
action histories that focuses specifically on the interaction between actions and observations.
The significant feature of this work is that it demonstrates how a single representation of
plausibility can be used to model iterated beliefs about actions and states simultaneously;
the basic approach could be employed in other action formalisms. At a practical level, we
demonstrate the utility of our work by giving a series of examples involving belief change
in which the relative weight given to actions and observations varies. We suggest that our
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work advances existing work on reasoning about epistemic action effects in that we provide
a flexible, elaboration tolerant approach for capturing several different kinds of belief change
that can occur when there is uncertainty about action occurrences. Note that this paper is
an extended version of the work presented by Hunter and Delgrande (2006).

We proceed as follows. In Section 2, we introduce the formal preliminaries. We then
define a general class of plausibility functions in Section 3, and we show how a sequence
of plausibility functions can be used to represent an uncertain sequence of actions and
observations. We refer to such a sequence as a graded world view, and we demonstrate
how an agent’s beliefs about event histories can captured by graded world views through
taking aggregates of the constituent plausibility functions. In Section 4, we demonstrate
that graded world views can be seen as epistemic states, and we use our basic framework
to define belief change in domains involving uncertainty about the actions and observations
that have occurred. We compare our approach with related work in Section 5, and we
discuss limitations and advantages in Section 6. In Section 7, we offer some concluding
remarks.

2. Preliminaries

In this section, we introduce some standard formal machinery for modelling belief change,
and for reasoning about action effects. We also introduce a simple motivating example to
illustrate the sort of problem we would like to address.

2.1 Belief Revision

Belief revision refers to the process in which an agent incorporates new information along
with some pre-existing beliefs. The most influential approach to belief revision is the AGM
approach (Alchourrón, Gärdenfors, & Makinson, 1985). Let F denote a finite set of fluent
symbols, which represent binary properties of the world that may change over time. For
example, there may be a fluent symbol Raining ∈ F that is true just in case it is raining.
A state is a propositional interpretation of F, indicating which fluents are true and which
are false. In the AGM approach to belief revision, the beliefs of an agent are represented
by a belief set, which is a deductively closed set of formulas over F. Since F is finite, we
can equivalently define the beliefs of an agent to be represented by a single formula.

Informally, a belief revision operator is a function that takes a belief set φ and a for-
mula for revision γ as input and returns a new formula that represents a new belief set
incorporating γ. An AGM revision operator is a binary function ∗ that satisfies the AGM
postulates. The following reformulation of the AGM postulates is due to Katsuno and
Mendelzon (1991). In the postulates, ≡ denotes logical equivalence.

[R1] φ ∗ γ implies γ.
[R2] If φ ∧ γ is satisfiable, then φ ∗ γ ≡ φ ∧ γ.
[R3] If γ is satisfiable, then φ ∗ γ is satisfiable.
[R4] If φ1 ≡ φ2 and γ1 ≡ γ2, then φ1 ∗ γ1 ≡ φ2 ∗ γ2.
[R5] (φ ∗ γ) ∧ β implies φ ∗ (γ ∧ β).
[R6] If (φ ∗ γ) ∧ β is satisfiable, then φ ∗ (γ ∧ β) implies (φ ∗ γ) ∧ β.
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The class of AGM revision operators can be captured semantically by introducing a
formal notion of plausibility. For a particular agent, we say that a state of the world s
is more plausible than another state s′ if that agent is more likely to abandon belief in
s′ when presented with new information. It turns out that every AGM revision operator
can be characterized by a class of plausibility orderings over the set of states. This has
been proved for several different representations of plausibility, including total pre-orders
over states (Katsuno & Mendelzon, 1991), systems of spheres (Grove, 1988), and ordinal
conditional functions (Spohn, 1988).

A belief state is a set of states, informally the set of states that an agent considers
possible. An observation α is also a set of states, which informally represents some peice of
information that an agent receives that provides evidence that the actual state is in α. In
this paper, we are primarily interested in belief change as a process on states rather than
formulas; it is clear that the AGM approach can equivalently be defined on belief states.

While we have restricted the set of fluents and the set of actions to be finite, this is
really just for convenience when discussing examples. Our formal model will be based
on transition systems and ranking functions over sets. It would certainly be possible to
define transition relations and ranking functions over infinite sets. Since our definition of
an aggregate is very general, this would introduce no formal complications. However, from
this point on, we will maintain the restriction to finite domains in order to simplify the
discussion.

2.2 Transition Systems

We are interested in action domains that can be described by supplementing the set F of
fluent symbols with a finite set A of action symbols and a transition system describing the
effects of actions (Gelfond & Lifschitz, 1998). A pair (F,A) is called an action signature.
While we have defined a state to be an interpretation over F, it is often convenient to
identify a state s with the set of fluent symbols true in s. We use this convention in the
following definition, and throughout the rest of the paper.

Definition 1 A transition system is a pair 〈S,R〉 where S ⊆ 2F, R ⊆ S ×A× S.

We restrict attention to deterministic transition systems, i.e. we assume that 〈s,A, s′〉 ∈ R
and 〈s,A, s′′〉 ∈ R implies s′ = s′′. We also assume that A always contains a distinguished
null action symbol denoted by λ.

Belief update is the belief change that occurs when an agent becomes aware of a change
in the state of the world. Note that this is a distinct process from belief revision, which
is typically understood to capture the belief change that occurs when an agent has ob-
tained new information about an unchanged world. One highly influential approach to
belief update is the Katsuno-Mendelzon approach (Katsuno & Mendelzon, 1992), which
is superficially similar to AGM revision in that the new information to be incorporated
is encoded as a propositional formula. By contrast, in this paper, we define update with
respect to an action with effects given by an underlying transition system. In other words,
we define belief update operators that take a belief state and an action as input, and return
a new belief state that represents an agent’s new beliefs after the action has been executed.
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Definition 2 Let T = 〈S,R〉 be a transition system. The update function � : 2S ×A→ 2S

is given by α �A = {s | 〈s′, A, s〉 ∈ R for some s′ ∈ α}.

We remark that this notion of belief change can also be called belief progression or action
progression. Note that it is possible in the general case for the result of this update to be
empty, in the case where the transition system does not include any outgoing edge labelled A
from a state in α. In order to avoid this problem, it is often convenient to restrict attention
to transition systems where every action has an outcome in every state. In practice, this
can be achieved by assuming a self-loop for the action A at any state where no outcome
state is given.

2.3 Belief Evolution

In previous work, we introduced so-called belief evolution operators to reason about alter-
nating sequences of updates and revisions (Hunter & Delgrande, 2011). A belief evolution
operator is defined with respect to a fixed AGM revision operator ∗ and a fixed update
operator �. For any action A and observation α, let α−1(A) denote the set of all s such that
{s} � A ⊆ α. Note that this set may be empty. The belief evolution operator ◦ is defined
such that, for any belief state κ,

κ ◦ 〈A,α〉 = (κ ∗ α−1(A)) �A.

The complete definition of ◦ actually defines the belief change for a sequence of actions and
observations; but the details of this definition are not required at present. The important
point is that the way each observation is incorporated depends on the preceding actions.

The intuition behind belief evolution is that the final state must be a possible effect of
the most recently executed action A. This intuition is satisfied in the original definition by
revising the initial belief set prior to computing the effects of A. As a result, belief evolution
operators have a non-Markovian character; an observation can not be incorporated just by
considering the current state of the world. Instead, an agent incorporates a new observation
by looking back at the original state together with the complete history of actions. However,
this operation can also be understood in a Markovian manner if we allow the current belief
state to include some representation of the states that can be “ruled out” based on the
actions that have previously occurred. In this manner, we can define a Markovian form of
belief revision that is equivalent to belief evolution (Hunter, 2014).

Belief evolution provides a reasonable model for problems like Moore’s litmus paper
problem (Moore, 1985). In this problem, an agent dips a piece of litmus paper in a beaker
to determine if the beaker contains an acid or a base. Hence, the agent is performing an
action first and then observing the results. It seems, however, that the observed results
should affect the agent’s initial belief state. That is, after the litmus paper turns red, the
agent is likely to conclude that the beaker contained an acid even before dipping.

Belief evolution operators satisfy the following properties. In these properties, A ∈ A,
Ā denotes a sequence of action symbols of indeterminate length, and 2F denotes the set
of all states over F. The symbols κ and α both range over 2F , though we think of κ as
a belief state and we think of α as an observation. Following the standard convention for
such postulates, we implicitly quantify universally over all variables.
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1. If (2F � Ā) ∩ α 6= ∅, then (κ � Ā) ∗ α ⊆ α

2. If (2F � Ā) ∩ α = ∅, then (κ � Ā) ∗ α = κ � Ā

3. (κ � Ā) ∩ α ⊆ (κ � Ā) ∗ α

4. If (κ � Ā) ∩ α 6= ∅, then (κ � Ā) ∗ α ⊆ (κ � Ā) ∩ α

5. (κ � Ā) ∗ α ⊆ 2F � Ā

Informally, these properties assert that an agent should respect the history of actions exe-
cuted when incorporating a new observation. Note that we are assuming that ∗ is an AGM
revision operator, which would appear to make properties (1) and (3) trivial. However,
they are included as properties of belief evolution to emphasize the fact that the actions
preceding the obervation need to be considered in all cases where revision occurs (Hunter
& Delgrande, 2011).

One of the main limitations of belief evolution is that it is not possible to represent
erroneous action histories; it is assumed that the action history is always correct. This is a
reasonable assumption in action domains where there is a single agent executing actions that
can not fail. However, if exogenous or failed actions are permitted, then this assumption is
difficult to support. In general, an agent may have incorrect beliefs about the actions that
have occurred in the past. One of our aims in this paper is to generalize our previous work
to allow erroneous action histories.

2.4 Motivating Example

We introduce a common-sense example in which an agent needs to compare the plausibility
of certain actions with the plausibility of observations. We will return to this example
periodically as we introduce our formal machinery.

Consider a simple action domain involving four agents: Bob, Alice, Eve, and Trent. Bob
places a chocolate chip cookie on his desk and then leaves the room; he believes that no one
is likely to eat his cookie while he is gone. At Time 1, Bob knows that Alice is at his desk.
At Time 2, Bob knows that Eve is at his desk. After Eve leaves his desk, Trent comes and
tells Bob that a bite has been taken from the cookie.

Given the preceding information, Bob can draw three reasonable conclusions: Alice
bit the cookie, Eve bit the cookie, or Trent gave him poor information. If Bob has no
additional information about the world, then each conclusion is equally plausible. However,
we suppose that Bob does have some additional information. In particular, suppose that
Alice is a close friend of Bob and they have shared cookies in the past. Moreover, suppose
that Bob believes that Trent is always honest. Bob’s additional information about Alice
and Trent provides a sufficient basis for determining which of the three possible conclusions
is the most plausible.

Informally, prior to Trent’s report, Bob believes that his cookie was unbitten at all
earlier points in time. After Trent tells him the cookie is bitten, he must determine the most
plausible world history consistent with this information. In this case, the most plausible
solution is to conclude that Alice bit the cookie. Note that this conclusion requires Bob
to alter his subjective view of the action history. There is a non-monotonic character to
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belief change in this context, because Bob may be forced to postulate and retract actions
over time in response to new observations. The consequences of changing the action history
are determined by the underlying transition system. In order to represent this kind of
reasoning, we need to be able to compare the plausibility of action occurrences at different
points in time.

This example illustrates the kind of action scenario that we would like to capture,
because it requires an agent to determine the most plausible history given some a priori
notion of plausibility for actions and observations. For instance, it is intuitively clear that
this problem can not be resolved without comparing the plausibility of Trent’s report being
accurate versus the plausibility of Alice biting the cookie. By addressing this issue in a
straightforward manner, we demonstrate how existing actions formalisms can be extended
and employed to handle similar situations.

There is possibly one contentious issue in our discussion of this example. The informa-
tion provided by Trent is not really an “observation” in the usual sense of the word; instead,
it is a report of information from an external source. However, in the sections that follow,
we will treat reports and observations in the same manner. Specifically, we will capture
both by a ranking function over states that indicates which states are supported by the
observation/report and to what degree. Of course, in reality, observations and reports are
quite different in that the manner in which a report is incorporated depends on trust in
the reporting agent. The relationship between trust and belief change is a topic of current
interest, which is generally handled by introducing some extra formal machinery to encode
the trust held in another agent (Lorini, Jiang, & Perrussel, 2014; Hunter & Booth, 2015).
It would certainly be possible to follow this approach in the present paper, using distinct
formal tools to capture trust as a phenomenon that is distinct from the perceived accuracy
of sensing. However, mathematically, we would like to end up with a single ranking over
states nevertheless. As such, for the present paper, it is more convenient to represent re-
ported information through a single “combined” ranking that captures the final plausibility
attached to each state based on all considerations an agent might make.

3. Ranking Functions over Actions and States

The approach presented in this paper is based on a simple notion: when an agent is uncertain
about some action or observation, resolving this uncertainty generally involves comparing
the relative likelihood of possible alternatives. Our work is distinguished by the fact that we
use sequences of ranking functions to represent uncertainty over both actions and states. We
will see that sequences of ranking functions can capture many natural reasoning problems.
By developing high-level representations of these problems, we can see that some notion of
magnitude of likelihood is useful for reasoning about belief change with uncertain action
histories. This allows us to compare our work with existing formalisms for reasoning about
epistemic action effects, particularly those in which the representation of uncertainty is
limited to orderings over states. Our fundamental goal is to demonstrate that, in some
cases, sequences of quantitative plausibility orderings have a expressive advantage that
is significant from the perspective of knowledge representation. The aim is to develop
our approach at a high-level, in a manner that can easily be translated into other action
formalisms.
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3.1 Plausibility Functions

We are interested in action domains where an agent’s beliefs about an action history may
be incorrect. In this context, the action that is believed to be executed at any given point
in time can be represented by a total pre-order over possible actions. The minimal elements
of such a pre-order represent the actions that were most likely executed, and moving higher
in the ordering gives increasingly implausible possibilities. Representing actions in this
manner allows an agent to determine plausible alternative actions in the face of conflicting
evidence. Similarly, an agent needs a mechanism for ordering states in order to represent
fallible observations and fallible beliefs. Moreover, we would like to be able to compare
orderings over actions with orderings over states. One natural way to create mutually
comparable orderings is by assigning quantitative plausibility values to every action and
state at every point in time. Towards this end, we define plausibility functions.

Definition 3 Let X be a non-empty set. A plausibility function over X is a function
r : X → N.

If r is a plausibility function and r(x) ≤ r(y), then we say that x is at least as plausible as
y. We will only be interested in plausibility functions over finite sets, where there is always
a non-empty set of minimally ranked elements.

Plausibility functions are inspired by Spohn’s ordinal conditional functions (Spohn,
1988), but there are some important differences. First, we allow plausibility functions
over an arbitrary set X, rather than restricting attention to propositional interpretations.
This allows us to treat actions in the same manner that we treat observations. Another
important difference is that ordinal conditional functions must always assign rank 0 to a
non-empty subset of elements of the domain. Plausibility functions are not restricted in this
manner; the minimal rank for a given plausibility function may be greater than 0. We have
defined plausibility functions in this manner because we will be interested in taking sums
over plausibility functions, and we need to ensure that such sums also define plausibility
functions.

We remark that Darwiche and Pearl also consider ranking functions that do not neces-
sarily assign rank 0 to any states (Darwiche & Pearl, 1997). However, Darwiche and Pearl
define the belief state associated with r to be the set of states that are assigned rank 0.
Under this convention, ranking functions that never assign rank 0 are associated with the
empty belief state. By contrast, we associate a non-empty belief state with every plausibility
function.

We introduce some useful terminology and notation. Let r be a plausibility function
over X. The minimum and maximum values obtained by r are denoted by minr and maxr,
respectively. We define Bel(r) to be the set {s | r(s) = minr}. This notation is intended to
suggest that Bel(r) is the set of actions or states that are believed. To be clear, when we
say that a state s is believed, we mean that as far as the agent is concerned, the actual world
could be described by s. On the other hand, when we say that an action A is believed, we
mean that the agent views A to be the action that was executed. Note that minr is always
defined, because any non-empty set of natural numbers has a minimum element. On the
other hand, maxr is only guaranteed to be defined when X is finite. However, we will be
only concerned with plausibility functions over states and actions; these are both finite sets
according to our original definitions.
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For α ⊆ X, we define r(α) to be the minimum value obtained by r for some s ∈ α. The
degree of strength of a plausibility function r is the least n such that minr +n = r(s) for
some s 6∈ Bel(r). Hence, the degree of strength of r is the span between the plausibility
of the minimally ranked elements and the non-minimally ranked elements. If r has degree
of strength n, this means that every s 6∈ Bel(r) has a plausibility value that is at least n
higher than r(Bel(r)). There are two natural interpretations of the degree of strength of a
plausibility function r over a set of states. If we think of r as an initial epistemic state, then
the degree of strength is an indication of how strongly it is believed that the actual state
is in Bel(r). If we think of r as an observation, then the degree of strength is a measure
of the subjective reliability of r. In the case where X is a set of states, we use the terms
“degree of strength” and “degree of belief” interchangeably.

The notion of degree of strength is of crucial importance in our approach. If we use
a total pre-order to represent plausibility, then there is really no corresponding notion of
strength to distinguish a situation where the most plausible belief is very strongly held
versus one where it is weakly held. But this kind of distinction is essential when we have
to sort out a sequence of events; we need some notion of strength of belief to decide which
state or action is the hardest to give up. It is possible to represent this kind of information
in an ordering with “empty levels,” of course. However, our focus will be on aggregating
sequences of belief states and actions. In order to make this as simple as possible, we suggest
that it is better to use the compact representation given by a quantitative ranking function
that lends itself naturally to arithmetical combinations.

Note that Spohn (1988) defines the degree of strength of a subset of X, rather than the
degree of strength of a ranking function. Our definition coincides with Spohn’s definition
if we identify the degree of strength of r with Spohn’s degree of strength of the set Bel(r).
Hence, we use the same conception of degree of strength, but we are only interested in the
strength of belief in the minimally ranked elements.

In order to illustrate the application of plausibility functions over different domains, we
continue our simple example.

Example (cont’d) Let F = {BiteTaken} and let A = {BiteAlice,BiteEve}. Both
actions have the same effect, namely they both make the fluent BiteTaken become true.
We represent the problem with 3 plausibility functions: a1, a2, and o2.

1. a1 is a plausibility function over actions at Time 1

2. a2 is a plausibility function over actions at Time 2

3. o2 is a plausibility function over states at Time 2

Informally, each function should obtain a minimum value at the event that Bob considers
the most plausible at the given point in time. Since Bob initially believes that no one will
eat his cookie, both a1 and a2 should obtain a minimum value at the null action λ. Trent’s
report that the cookie has been bitten at Time 2 is represented as a plausibility function
over states, by defining o2 with a minimum at the set of worlds where the cookie has a bite
out of it. Note that we will generally treat reported information in this manner; the degree
of strength of a report is an indication of trust in the agent providing the report. The
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additional soft constraints about Bob’s relationships are used to determine the magnitude
of the values for each event. Define a1 and a2 by the values in the following table.

λ BiteAlice BiteEve

a1 0 1 10

a2 0 10 3

The columns of the table give the plausibilities of each action at each time. In particular,
a1 encodes that the plausibility λ occurs is 0, whereas the plausibility of BiteAlice and
BiteEve are 1 and 10, respectively. The degree of strength of a1 is 1, whereas the degree
of strength of a2 is 3. The fact that Alice is more likely to bite the cookie is represented by
assigning a low plausibility value to BiteAlice at Time 1.

We define o2 as follows, so give the plausibility values for all states at time 2.

∅ {BiteTaken}
o2 9 0

Hence, the observation {BiteTaken} is assigned the minimum plausibility value, and
the only alternative observation is assigned a very high plausibility value. The degree of
strength of o2 is 9. This reflects the fact that Trent’s report is understood to be stronger
than the assumption that Alice and Eve do not bite the cookie.

Note that the degree of strength of a1 is less than the degree of strength of a2 and o2.
This gives an indication that Bob has comparatively less confidence in his beliefs about the
action at Time 1.

Note that, in this example, we have explicitly referred to points in time. We do not,
however, include any formal representation of time in the our framework; any reference
to time should be interpreted as an informal explanatory device. We are concerned with
reasoning about scenarios that involve sequences of actions where each action is instantane-
nous, and all actions are executed consecutively. Nevertheless, since we allow observations
following null actions, we can imagine that actions are being executed in accordance with
a bounded global clock that allows one action per tick.

3.2 Graded World Views

We define a graded world view to be an alternating sequence of plausibility functions over
2F and plausibility functions over A. Hence, at each time i, we use a plausibility function
over 2F to represent an agent’s beliefs about the state of the world and we use a plausibility
function over A to represent an agent’s beliefs about the action that occurs. Informally,
a graded world view represents an agent’s subjective view of the evolution of the world in
the context of imperfectly known action histories. The rationale behind using a sequence of
ranking functions is to eventually make it possible to compare the likelihood of actions and
observations at different points in the sequence, to arrive at the most plausible sequence of
events. We have the following formal definition.

Definition 4 A graded world view of length n is a (2n+ 1)-tuple

〈OBS0, ACT1, OBS1, . . . , ACTn, OBSn〉
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where each OBSi is a plausibility function over 2F and each ACTi is a plausibility function
over A.

At time i, the most plausible actions are the minimally ranked actions of ACTi and the
most plausible states are the minimally ranked states of OBSi. We take OBS0 to repre-
sent the initial belief state, and each subsequent OBSi to represent a new observation. If
ACT = 〈ACT1, . . . , ACTn〉 and OBS = 〈OBS0, . . . , OBSn〉, then we write 〈ACT,OBS〉
as a shorthand for the graded world view 〈OBS0, ACT1, OBS1, . . . , ACTn, OBSn〉. Infor-
mally, a graded world view represents an agent’s subjective view of the history of actions
and observations.

We remark briefly on the intuition behind graded world views. We are interested in
action domains involving actions that are both partially observable and fallible. However,
for the moment we do not consider failed actions; we address this issue briefly in §4.6. The
plausibility of an action A represents an agent’s confidence that A was successfully executed
at a given instant. Hence, the lowest plausibility values will be assigned to actions that an
agent has executed, or actions that an agent has observed directly. Higher plausibility
values will be assigned to exogenous actions that are assumed to be unlikely, or action
occurrences that are only believed based on external reports. In §3.4, we provide some
additional motivation for plausibility values by illustrating a correspondence with subjective
probability functions.

Note that graded world views essentially represent the initial belief state as an observa-
tion at time 0. The underlying assumption in a graded world view is that the initial belief
state is no different than any subsequent observation; there is no reason to automatically
prefer the initial beliefs over new information, nor is there any reason to automatically
disregard the initial beliefs given new information. In the definition of a graded world view,
we have used indices in a manner that is not symmetric in order to emphasize the unique
stature of OBS0. In particular, note that there is no ACT0 in the definition. This simple
notational convention is intended to highlight the fact that OBS0 has a slightly different
stature at an informal level.

3.3 Aggregate Plausibility Functions

Given a graded world view 〈ACT,OBS〉, we would like to be able to determine the most
plausible history of the world. We formally define the notion of a history over a transition
system.

Definition 5 Let T = 〈S,R〉 be a transition system. A history of length n is a tuple
〈s0, A1, . . . , An, sn〉 where for each i:

1. si ∈ S,

2. Ai ∈ A, and

3. 〈si, Ai+1, si+1〉 ∈ R.

Let HISTn denote the set of histories of length n.

Note that HISTn ⊆ S × (A × S)n. Ideally, we would like to use graded world views
to assign plausibility values to histories. However, a graded world view does not provide
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sufficient information to define a unique plausibility function over histories. For example, a
graded world view does not indicate the relative weight of recent information versus initial
information. In order to determine the most plausible history, we need some mechanism for
combining a sequence of plausibility functions.

Although a graded world view does not define a unique plausibility function over histo-
ries, we can define a general notion of consistency between graded world views and plau-
sibility functions on histories. Let r0, . . . , rn be plausibility functions over X0, . . . , Xn,
respectively. Let r be a plausibility function over X0×· · ·×Xn. We say that r is consistent
with 〈r0, . . . , rn〉 if, for every i and every xi, x

′
i ∈ Xi

ri(xi) < ri(x
′
i)

⇐⇒
r(〈x0, . . . , xi, . . . , xn〉) < r(〈x0, . . . , x

′
i, . . . , xn〉)

So r is consistent with 〈ACT,OBS〉 just in case r increases monotonically with respect
to each component of 〈ACT,OBS〉. Any plausibility function r that is consistent with
〈ACT,OBS〉 provides a potential candidate ranking over histories.

Define an aggregate plausibility function to be a function that maps every graded world
view of length n to a plausibility function over HISTn. We are interested in aggregate
plausibility functions in which the output is always consistent with the input. Hence, we
say that an aggregate plausibility function agg is admissible if, for every 〈ACT,OBS〉, the
function agg(〈ACT,OBS〉) is consistent with 〈ACT,OBS〉.

We provide some examples. Note that aggregate plausibility functions return a function
as a value; we can specify the behaviour of an aggregate by specifying a plausibility value
for each pair consisting of a graded world view and a history. Let h = 〈s0, A1, . . . , An, sn〉.
One admissible aggregate is obtained by taking the sum of plausibility values.

sum(〈ACT,OBS〉)(h) =
n∑
i=1

ACTi(Ai) +
n∑
i=0

OBSi(si)

A weighted sum can be used to reflect the relative importance of different time points. For
each i, let bi be a positive integer.

sums(〈ACT,OBS〉)(h) =
n∑
i=1

ACTi(Ai) +
n∑
i=0

bi ·OBSi(si).

By setting bi = 2i, the aggregate function sums can be used to represent a strict preference
for recent observations. This is a standard assumption in many approaches to belief revision.
We could add a similar weight to the action histories as well, which would give another
distinct aggregate. The functions sum and sums are just two simple examples; many more
examples can be defined by specifying aggregate functions that increase monotonically with
each component.

We return to the cookie example to illustrate how the reasoning involved can be captured
with graded world views and aggregate plausibility functions.

Example (cont’d) We have already defined plausibility functions a1, a2 and o2. In order
to give a complete graded world view, we need to define two more plausibility functions over
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states. In particular, we need to give a plausibility function o0 representing Bob’s initial
beliefs and we need to give a plausibility function o1 representing the null observation that
Bob makes at Time 1.

First, we reiterate the description of a1 and a2 in the following table.

λ BiteAlice BiteEve

a1 0 1 10

a2 0 10 3

The fact that Alice is more likely to bite the cookie is represented by assigning a lower
plausibility value to BiteAlice at Time 1.

The plausibility function o0 should assign a minimum value to the state where the cookie
is unbitten. The plausibility function o1 should assign the same value to every state. The
plausibility function o2 (given previously) represents Trent’s report that the cookie has been
bitten. As noted previously, we treat reported information as an observation, and we use
the degree of strength of the reported information as an indication of the reliability of the
source. In this case, the degree of strength of o2 is an indication of trust in Trent. We define
o0, o1, o2 in the next table.

∅ {BiteTaken}
o0 0 9

o1 0 0

o2 9 0

Note that the degree of strength of o2 is higher than the degree of strength of a1 or a2.
This reflects the fact that Trent’s report is understood to supersede the assumption that
Alice and Eve do not bite the cookie. Graded world views have been defined precisely for
this kind of comparison between action plausibilities and state plausibilities.

If we use the aggregate function sum, then we are interested in finding the minimal sum
of plausibilities over 〈o0, a1, o1, a2, o2〉. By inspection, we find that the minimum plausibility
is obtained by the following history:

h = 〈∅,BiteAlice,BiteTaken, λ,BiteTaken〉.

This history represents the sequence of events in which Alice bites the cookie at time 1.
Intuitively, this is the correct solution: given the choice between Alice and Eve, Bob believes
that Alice is the more plausible culprit.

We remark that graded world views bear a resemblance to the generalized belief change
framework proposed by Liberatore and Schaerf (2000). However, the Liberatore-Schaerf
approach associates a “penalty” with state change, which is minimized when determining
plausible models. As such, it is difficult to represent problems where non-null actions are
strictly more plausible than null actions. By contrast, graded world views have no implicit
preference for null actions. Moreover, our approach differs in that we allow actions with
conditional effects given by a transition system.
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3.4 Subjective Probabilities

One issue that arises from our definition of a graded world view is the fact that it is not clear
how plausibility values should be assigned in practical problems. We address this problem
by illustrating a correspondence between plausibility functions and probability functions.
We simplify the discussion by restricting attention to rational-valued probability functions
as follows.

Definition 6 Let X be a non-empty set. A probability function over X is a function
Pr : X → Q such that

• for all x ∈ X, 0 ≤ Pr(x) ≤ 1

•
∑

x∈X Pr(x) = 1.

We do not need any other axioms of probability theory for our present purposes. At a
common-sense level, it is clear what it means to say that “action A occurred at time t with
probability p.” By contrast, the problem with plausibility values is that there is no obvious
sense of scale; it is difficult to assign numerical plausibility values, because the numbers have
no clear meaning. We illustrate how probability functions can be translated uniformly into
plausibility functions, thereby giving a sense of scale and meaning to plausibility values.

Let Pr be a probability function over a finite set X. Let Q denote the least common
denominator of all rational numbers p

q such that Pr(x) = p
q for some x ∈ X. Define the

plausibility function r as follows.

1. If Pr(x) is minimal, set r(x) = Q.

2. Otherwise, if Pr(x) = p
Q , then set r(x) = Q− p.

Hence, every probability function can be translated into a plausibility function.

Example (cont’d) Consider the following probability functions for the cookie example.

λ BiteAlice BiteEve

Pra1 .5 .45 .05

Pra2 .5 .15 .35

∅ {BiteTaken}
Pro0 .9 .1

Pro1 .5 .5

Pro2 .1 .9

The corresponding plausibility functions are given in the following tables.

λ BiteAlice BiteEve

a′1 10 11 20

a′2 10 20 13

∅ {BiteTaken}
o′0 1 10

o′1 2 2

o′2 10 1

It is easy to see that these plausibility functions are obtained from the plausibility
functions given earlier by adding a constant to each value. In §4.2, we illustrate that adding
a constant in this manner does not affect the class of minimally ranked histories.

Connecting plausibility functions with subjective probabilities provides some justifica-
tion for the use of the aggregate function sum. In particular, if we assume that the subjective
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probability functions are independent, then the probability of a given sequence of events is
determined by taking a product. In the cookie example, we can compare the probability of
Alice biting the cookie versus Eve biting the cookie:

1. Pr(〈∅,BiteAlice,BiteTaken, λ,BiteTaken〉)
= .9× .45× .5× .5× .9 = .091125

2. Pr(〈∅, λ, ∅,BiteEve,BiteTaken〉)
= .9× .5× .5× .35× .9 = .070875

It is easy to check that the history where Alice bites the cookie is actually the most prob-
able history. So, in this example, the minimally ranked history according to the aggregate
function sum is also the most probable history according to the sequence of probability
functions. This is a general property of our translation: maximizing probability over inde-
pendent probability functions corresponds to minimizing the sum over plausibility values.
This follows simply from the fact that the more probable events have been assigned mini-
mal plausibility values, and the fact that summation over natural numbers is an increasing
function, whereas multiplication on fractions less than 1 is decreasing.

The correspondence descibed in this section relies on the assumption that sequences of
actions are independent. It is worth noting, however, that this very often is not the case
in practice. Instead, it is often the case that actions occur in sequences with some clear
dependence between the individual actions. However, this is not our concern at present. The
only reason for considering probability functions is to provide some intuition or motivation
for the way that plausibility values can be assigned.

3.5 The Summation Convention

In order to ground the discussion, it is useful to choose a fixed aggregate function for as-
signing plausibility values to histories. As such, unless otherwise indicated, we will assume
that plausibility values are assigned to histories by the aggregate function sum. Although
this is not the only approach to combining plausibility functions, it provides a simple ad-
missible aggregate function that is appropriate in many cases. In particular, we saw in the
previous section that sum is appropriate for domains where the plausibility functions have
been obtained from independent subjective probabilities.

We introduce some notation that will simplify the results in the next few sections.
Recall that sum(〈ACT,OBS〉) is a plausibility function on histories. When the underlying
graded world view is clear from the context, we will write plaus(h) as a shorthand for
sum(〈ACT,OBS〉)(h).

It is useful to introduce an operator that maps a graded world view to the most plausible
histories.

Definition 7 Let WVn denote the set of graded world views of length n for a fixed action
signature. Define Φ : WVn → 2HISTn as follows:

Φ(〈ACT,OBS〉) = {h | plaus(h) ≤ plaus(g) for all g ∈ HISTn}.

We have the following obvious equivalence

Φ(〈ACT,OBS〉) = Bel(sum(〈ACT,OBS〉)).
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It is also useful to use plaus to define a plausibility function over states.

Definition 8 Let 〈ACT,OBS〉 be a graded world view. For any state s, define

plaus state(〈ACT,OBS〉)(s)

to be the least n such that plaus(〈ACT,OBS〉)(h) = n for some history h with final state
s.

So the plausibility of the state s is the rank of the most plausible history ending with s.
When the underlying graded world view is clear from context, we simply write plaus state(s)
for the plausibility of the state s. We extend the operator Bel(·) to graded world views
by defining Bel(〈ACT,OBS〉) to be Bel(plaus state(〈ACT,OBS〉)). Hence, Bel takes a
graded world view as an argument and returns the most plausible set of terminal states.

3.6 A Uniform Representation

Before considering applications and formal results, we briefly discuss the most novel and
significant features of our approach. The notion of plausibility and the relation with theory
change has been explored extensively in the literature. Work on nonmonotonic consequence
operators, for example, has been informed by notions of preferred models (Kraus, Lehmann,
& Magidor, 1990) and conditional knowledge (Lehmann & Magidor, 1992). There has also
been a great deal of research on different representations of plausibility, ranging from order-
ings (Baltag & Smets, 2006, 2008; Britz & Varzinczak, 2013), to quantitative approaches
to possibility (Benferhat, Dubois, & Prade, 1999), to variations on probabilistic models
(Friedman & Halpern, 2001). We take a moment to position our work in this context.

As we have stated several times, what sets our work apart is that we apply the same
notion of plausibility uniformly to both states and actions. This contrasts with most existing
work, where a model of plausibility is used for representing initial beliefs, but then actions
are handled with different formal machinery. In many cases, actions are atomic; belief
change due to action is concerned with how a complicated plausibility structure changes in
response to a distinct action occurence.

In our model, an action occurrence is just another plausibility function. This has several
advantages, which we show in the next sections. First, it allows us to easily compare
strength of belief in a state with strength of belief in an action occurence. For example, if
I believe the lamp is on but I also believe that I toggled the switch: what should I believe?
Situations of this form are common, and they require a comparison between two different
forms of likelihood. In general, there is no natural logical aparatus that can help resolve this
problem; we need some extra-logical information about which belief is stronger, the belief
in the state or the belief in the action. There is a natural intuition that we actually need
to be given some rankings to make this determination; that is exactly what we do here.

The second advantage of using a uniform representation of plausibility for actions is
that it allows us to consider alternative actions. Looking at the literature on belief change
and preferential models, it is clear that we actually need orderings over states in order to
perform many kinds of reasoning. The reason we need such orderings is because we need
to be able to specify the “best” alternatives to the things we believed to be true. We argue
that the same is true for actions. When we find out that an action did not occur, we need to
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have some mechanism for determining the next “best” alternative. We will see in the next
section that there are many practical examples where this is important, and these examples
can all be captured in a straightforward way by plausibility functions.

While it is tempting to look at our model and try to position it in the context of
alternative models of plausibility, we argue that this is not the best way to look at this
work. In fact, we could propose an approach very similar to the one in this paper based
on sequences of probability functions with suitable aggregates. The fact that we are using
Spohn-style ranking functions in particular is not the most important point. What is
important is that we are using a measure of plausibility uniformly for observations and
actions, and the plausibility measure has the feature that differences in plausibility have
a magnitude. This allows us to determine which alternatives to our current beliefs about
states and actions should be abandoned, because we can appeal to our single notion of
magnitude to determine some notion of minimal change.

4. Using Graded World Views

In this section, we consider the most basic approach that one can use to try to find a
minimally ranked history.

4.1 Pointwise Minima

Let W = 〈ACT,OBS〉 be a graded world view where

ACT = 〈ACT1, . . . , ACTn〉

and
OBS = 〈OBS0, . . . , OBSn〉.

The easiest way to determine a minimally ranked history is to simply take the most plausible
actions and the most plausible worlds at each point in time. The following definition makes
this notion more precise.

Definition 9 Given a history h = 〈s0, A1, . . . , An, sn〉, we say h is a pointwise minimum
for 〈ACT,OBS〉 if, for all i,

1. for all A ∈ A, ACTi(Ai) ≤ ACTi(A), and

2. for all s ∈ 2F, OBSi(si) ≤ OBSi(s).

The following proposition states that, if a graded world view has any pointwise minima,
then those will be the most plausible histories.

Proposition 1 Let W = 〈ACT,OBS〉 be a graded world view and let M be the set of
pointwise minima for W . If M 6= ∅, then Φ(W ) = M .

Proof It is sufficient to note that, for h ∈M , plaus(h) ≤ plaus(g) for all histories g. �
Note, however, that histories are restricted in that each world must be the outcome of the
preceding action. As such, it is possible that a graded world view will have no pointwise
minimum. This is why the preceding proposition starts with the assumption that the set
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of pointwise minima is non-empty. In cases where the there are no pointwise minima, there
will still be minimally plausible histories.

Finding pointwise minima is not easy in the general case.

Proposition 2 Determining if a graded world view has a pointwise minimum is NP -
complete.

Proof Given a history, it is clear that checking if it is a pointwise minimum can be
done in linear time; so the problem lies in NP . Assume a fixed set F of fluent symbols.
Let W = 〈ACT,OBS〉 where OBS has length 2|F|, and assume that each OBSi obtains a
minimum at a distinct interpretation of F. Then a pointwise minimum forW will correspond
to a Hamiltonian path for the underlying transition system. The result follows since finding
a Hamiltonian path is NP-complete. �
The fact that it is already intractable to find a pointwise minimum suggests that finding
minimal histories over a complicated aggregate function is likely to be computationally
difficult. This is not a major concern for our present purposes however, as we view graded
world views as a high-level tool to capture a variety of belief change scenarios. If one is
interested in modelling concrete action domains, then it is important to choose aggregate
functions that are well understood and computationally easy to minimize.

4.2 Equivalence

Clearly it is possible for two distinct graded world views to have the same set of minimally
ranked world histories. In fact, it is possible for two distinct graded world views to induce
the same preference ordering over histories. In this section, we define a natural equivalence
relation over graded world views with an eye towards categorical representations. We start
by defining a relation on plausibility functions.

Definition 10 Let r1 and r2 be plausibility functions over a set X. We say that r1
∼= r2

if, for every x, y ∈ X,
r1(x)− r1(y) = r2(x)− r2(y).

It is easy to verify the following: ∼= is an equivalence relation, r1 and r2 have the same degree
of strength, and r1

∼= r2 implies that Bel(r1) = Bel(r2). Essentially, the only difference
between equivalent plausibility functions is the minimum value; we make this idea more
precise by defining a notion of normalization for plausibility functions.

Let r be a plausibility function. For any integer z ≥ −minr, the translation of r by
z is the plausibility function x 7→ r(x) + z. It is easy to prove that r ∼= r′ if and only if
r′ is a translation of r. We define the normalization of r to be the translation by −minr.
The normalization of r is the unique plausibility function equivalent to r that obtains a
minimum of 0.

We can extend the notion of equivalence to graded world views.

Definition 11 Let W1 and W2 be graded world views over histories for a fixed action sig-
nature with a given underlying transition system. We say that W1

∼= W2 if, for every pair
of histories g and h,

sum(W1)(g)− sum(W1)(h) = sum(W2)(g)− sum(W2)(h).

18



Belief Change with Uncertain Action Histories

Unlike plausibility functions, it is possible to construct equivalent pairs of graded world
views that are not obtained by translations.

The following proposition illustrates that every graded world view is equivalent to a
graded world view consisting of normalized plausibility functions.

Proposition 3 Let 〈ACT,OBS〉 be a graded world view. If 〈ACT ′, OBS′〉 is obtained by
normalizing each component of ACT and OBS, then

〈ACT,OBS〉 ∼= 〈ACT ′, OBS′〉.

Proof Let g, h be histories. For ease of readability, let plaus1 and plaus2 denote
sum(〈ACT,OBS〉) and sum(〈ACT ′, OBS′〉), respectively. Hence, plaus1 and plaus2 are
functions over histories, obtained by minimization of the total sum. As such, each of plaus1

and plaus2 must have a minimum value, corresponding to the lowest possible sum over
terms. Then the following equalities are immediate:

plaus2(g)− plaus2(h) = plaus1(g)− min
plaus1

−plaus1(h) + min
plaus1

= plaus1(g)− plaus1(h).

�
Hence, although we allow plausibility functions with minimum values larger than 0 in a
graded world view, we can always pass to an equivalent graded world view consisting of
normalized plausibility functions. We remark, however, that a graded world view defined
by a sequence of normalized plausibility functions need not obtain a minimum of 0. In this
case, the minimum will be 0 if and only if the graded world view has a pointwise minimum.
It is also important to note that Proposition 3 only holds under the aggregate plausibility
function sum.

4.3 Representing Belief States

Plausibility functions can be defined that simply pick out a distinguished set of elements of
the domain. If α ⊆ X and c is an integer, let α↑c denote the function from X to the set of
integers that is defined as follows:

α↑c (s) =

{
0 if s ∈ α
c otherwise

If c is a positive integer, then α↑c denotes a plausibility function in which the elements of α
are the most plausible, and everything else is equally implausible. Plausibility functions of
the form α↑c will be called simple. If X is a set of states, then simple plausibility functions
correspond to belief states; if X is a set of actions, then simple plausibility functions pick out
the actions that are believed to have occurred. Using the terminology introduced earlier,
we say that α is held with degree of belief c.

If c > 0, then α↑−c does not actually define a plausibility function. However, allowing
negative values leads to a simple symmetry in our notation. In the following proposition, α̃
denotes the complement of α under set difference. So if α is a set of states, then α̃ = 2F −α.
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Proposition 4 For any set α and positive integer c

α↑c ∼= α̃↑−c.

Proof Let s, t be states. By definition, we have

α↑c (s)− α↑c (t) =


c if s ∈ α, t 6∈ α
−c if s 6∈ α, t ∈ α
0 otherwise.

and

α̃↑−c (s)− α̃↑−c (t) =


−(−c) if s 6∈ α̃, t ∈ α̃
−c if s ∈ α̃, t 6∈ α̃
0 otherwise.

Clearly, the right hand sides of each equality are the same. �

Suppose that
ACT = 〈ACT1, . . . , ACTn〉

and
OBS = 〈OBS0, . . . , OBSn〉

where each ACTi and OBSi is simple, with the same maximum plausibility c. This means
that each ACTi and OBSi assigns either the value 1 or the value c to every element in
their respective domains. In this case, we essentially have belief states with no plausibility
ordering. In this case, it is easy to show that

〈s0, A1, . . . , An, sn〉 ∈ Φ(〈ACT,OBS〉)

if and only if the cardinality of

{Ai | Ai ∈ ACTi} ∪ {si | si ∈ OBSi}

is maximal among all histories. In other words, the most plausible histories are those
that agree with 〈ACT,OBS〉 at the highest number of components. This is a reasonable
approach to take in the trivial case where we have no prior ranking over states or actions.
We emphasize that this is just a special case when the plausibility functions are simple
and they share the same degree of strength. In the next section, we define belief change
operations in terms of a general concatenation on plausibility functions. If we do not restrict
the plausiblity functions as we have here, then we get a much wider range of possible belief
change operations.

4.4 Graded World Views as Epistemic States

An epistemic state is a representation of an agent’s belief state that defines a total pre-order
� over all states (Darwiche & Pearl, 1997). If s � t, then the underlying agent believes
that it is more likely that the actual state of the world is s than t. The current belief
state is given by the set of �-minimal states. Recall also that a graded world view defines
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a plausibility function plaus state over states. So a graded world view clearly defines an
ordering over states, and we can think of a graded world view as defining an epistemic
state. The worlds that receive minimal rank in a graded world view are the worlds that
are supported by the most reliable observations and actions. Using this ranking to define
a plausibility ordering is tantamount to assuming that the plausibility of s is completely
determined by the reliability of the source reporting that s occurs.

By viewing graded world views as epistemic states, we can define belief change operations
in a more familiar manner. In particular, we can define belief change through a simple
concatenation operator • on graded world views. Given a sequence of plausibility functions
r̄ = 〈r1, . . . , rn〉 and a plausibility function r, we let r̄ · r denote the sequence 〈r1, . . . , rn, r〉.
Let 〈ACT,OBS〉 be a graded world view, let rA be a plausibility function over actions and
let rS be a plausibility function over states. Define • as follows:

〈ACT,OBS〉 • 〈rA, rS〉 = 〈ACT · rA, OBS · rS〉.

In this context the initial epistemic state is given by 〈ACT,OBS〉, which represents an
agent’s a priori beliefs about the history of observed actions and states. New actions and
observations are incorporated by simply concatenating the new plausibility functions on
to the initial graded world view. The new graded world view can be used to define a new
ordering on histories through some aggregate function. For example, if are using sum as the
default aggregate, then the new ordering is immediate. Note that the new graded world view
obtained in this manner also includes all historical information required for future belief
change. As a special case of this simple concatenation operation, we get a new approach
to update. For any set X, let 0 denote the plausibility function that uniformly assigns 0
to every element of X. We can identify the update 〈ACT,OBS〉 � rA with the following
operation:

〈ACT,OBS〉 • 〈rA, 0〉.

We can also define a natural approach to revision in this manner. Let null denote a
plausibility function that assigns plausibility 0 to the null action λ, and assigns everything
else a plausibility larger than the maximum value obtained by sum(〈ACT,OBS〉). We
identify the revision 〈ACT,OBS〉 ∗ rS with the following operation:

〈ACT,OBS〉 • 〈null, rS〉.

Using plausibility functions to represent observations allows us to represent some natural
problem domains that can not be easily represented if we restrict observations to sets
of possible worlds. In particular, consider an action domain in which observations have
varying degrees of reliability. In such domains, when an agent makes an observation that is
inconsistent with the current belief state, there are two factors that should be considered:
the strength of belief in the current belief state and the reliability of the observation. There
is an obvious conflict that arises if we attempt to address both factors simultaneously. For
example, suppose that the underlying agent strongly believes that s is a possible state of
the world. Now suppose that the agent makes two observations.

1. One observation suggests that s is possible, but comes from an unreliable source.
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2. Another observation suggests that s is not possible, and it comes from a very reliable
source.

It can be difficult to determine the appropriate belief change in this scenario, particularly
if strength of belief and observational reliability are treated independently. By quantifying
the reliability of every observation, graded world views make it easy to resolve this kind of
issue. We remark that problems of this form have also been addressed through the use of
prioritized merging operators (Delgrande, Dubois, & Lang, 2006).

Note that there is an asymmetry in our definition of revision and update through the
• operator. In the case of update, we assume that the final observation assigns the same
plausibility to every state. The symmetric definition for a single observation would be
defined as follows:

〈ACT,OBS〉 • 〈0, rS〉.

However, this definition allows an arbitrary action to occur immediately before the observa-
tion. If we want to assume that the graded world view 〈ACT,OBS〉 gives a complete picture
of the world at the time of the observation, then we need to assume that any intermediary
action is null. Hence, the asymmetry is not due to any significant difference between actions
and observations; the asymmetry is simply due to the fact that graded world views involve
alternating sequences of actions and observations, with actions occurring first by default.

In this section we have illustrated that a graded world view defines an epistemic state.
If we take an epistemic state to be a total pre-order on states, then the converse is clearly
false: an ordering on states does not provide enough information to define numerical ranking
functions over states. The move from epistemic states to graded world views is motivated
by the same kind of concern that motivates the move from belief states to epistemic states.
In particular, belief states in AGM revision can be understood to represent the minimal
elements in some ordering of states. Hence, a belief state can provide a partial description
of an ordering, and an ordering can in turn provide a partial description of a graded world
view. A belief state is sufficient for single-shot revision, provided that an ordering is implicit
in the revision operator. However, a belief state is not sufficient if we need to explicitly
reason about the way plausibility orderings are modified. Similarly, orderings on states are
sufficient for reasoning about preferences over states, but they are not sufficient if we need
to explicitly reason about action histories. In the next section, we clarify this point through
practical examples.

4.5 Representing Natural Action Domains

We illustrate how some interesting phenomena can be represented by graded world views.
The simplest examples involve graded world views of length 1. In particular, we initially
focus on graded world views of the form

〈INIT 〉 • 〈rA, rS〉.

In this context, INIT represents the initial belief state of an agent, rA represents an agent’s
beliefs about the action that has been executed, and rS represents the observed state of
the world. Previously we have used OBS0 for the initial plausibility function over states;
the change in notation is just to emphasize that INIT is some a priori initial ordering
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over states. To be clear, INIT , rA, and rS are all plausibility functions. As such, we can
define the degree of strength of each. To facilitate the exposition, we denote the degrees
of strength by deg(INIT ), deg(rA), and deg(rS) respectively. Varying the magnitudes of
these values allows us to capture several different underlying assumptions.

1. Fallible initial beliefs: deg(INIT ) < deg(rA) and deg(INIT ) < deg(rS).

2. Erroneous perception: deg(rS) < deg(INIT ) and deg(rS) < deg(rA).

3. Fallible action history: deg(rA) < deg(INIT ) and deg(rA) < deg(rS).

As a simple example, suppose that an agent believes a certain lamp is initially on, then
the power switch is toggled, and then the agent observes that the lamp is actually still
on. Clearly this sequence of events can not consistently be believed by a rational agent.
Manipulating the degrees of strength of INIT , rA and rS gives an agent some mechanism
for resolving such conflicts. In case (1), the agent is not completely certain that the lamp
was initially on. As such, the easiest way to incorporate the new information is to change
the initial belief state. By contrast, in case (2), the agent is not completely certain that
the lamp is still on after toggling the switch. In this case, since the agent is confident the
lamp was initially on and the switch was toggled, it is natural to reject the observation
and believe that the lamp is now off. The distinction between these two cases cannot be
captured without some notion of reliability. In case (3), the agent would resolve the conflict
by believing that the attempt to toggle the power switch had failed.

The special case in which the degree of strength is 0 also captures some important
phenomena. Note that a plausibility function r has degree of strength 0 just in case there
is some constant c such that r(x) = c for all x. As such, a degree of 0 indicates that every
element of the domain receives minimal rank. We consider the informal interpretation of a
degree 0 for each plausibility function in our schematic example.

1. If deg(INIT ) = 0, then every initial state is equally plausible. The agent has no
contingent a priori beliefs about the state of the world.

2. If deg(rO) = 0, then rO represents a null observation. The observation OBS does not
provide evidence for any particular state.

3. If deg(rA) = 0, then every action is equally likely. So the agent is completely ignorant
about the action that has occurred, and we can think of rA as an exogenous action
beyond the agent’s control.

These are relatively crude distinctions, but they still capture important classes of problems.
Roughly speaking, the problems that we have addressed thus far can be captured by a
plausibility ordering over sequences of the form

κ �A1 ∗ α1 � · · · �An ∗ αn

where κ is a belief state, each Ai is an action symbol, and each αi is an observation.

For the purpose of comparison, we remark that belief evolution operators defined in
Section 2.3 are only useful for problems in which the underlying plausibility ordering is
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given as follows, for some permutation p1, . . . , pn of 1, . . . , n.

A1
...
An

 ≺ αp1 ≺ αp2 ≺ · · · ≺ αpn
By contrast, graded world views are suitable for any total pre-order over A1, α1, . . . , An, αn.
But this is not the entire class of problems representable by graded world views. By using a
ranking function for each event, we are able to draw two additional distinctions that can not
be represented by a simple ordering. First, we are able to represent changes in plausibility
that do not affect the ordering of states. This is useful for representing action domains
where an agent must observe a single piece of evidence multiple times before believing it is
correct. Second, we are able to represent graded evidence; we use the term graded evidence
to describe situations were an observation actually supports several different conclusions
with different degrees of confidence. We conclude this section with two examples illustrating
action domains that are difficult to represent if we only have an ordering over the plausibility
of events.

Example (Additive Evidence) Bob believes that he turned the lamp off in his office, but
he is not completely certain. As he is leaving the building, he talks first to Alice and then
to Eve. If only Alice tells him his lamp is still on, then he will believe that she is mistaken.
Similarly, if only Eve tells him his lamp is still on, then he will believe that she is mistaken.
However, if both Alice and Eve tell Bob that his lamp is still on, then he will believe that
it is in fact still on.

This example can easily be represented by a graded world view as follows. We assume
that the underlying action signature contains, among others, a fluent symbol LampOn and
an action symbol TurnLampOff . The underlying transition system defines the effects of
turning the lamp off in the obvious manner. Let ON denote the set of states in which
LampOn is true. The following plausibility functions define a graded world view that
represents this action domain.

1. OBS0 = ON ↑10

2. ACT1 = {TurnLampOff}↑3

3. OBS1 = ON ↑2

4. ACT2 = λ↑10

5. OBS2 = ON ↑2

Note that Φ(〈OBS0, ACT1, OBS1〉) consists of all histories where the lamp is turned off at
time 1. However, Φ(〈OBS0, ACT1, OBS1, ACT2, OBS2〉) consists of all histories where the
lamp is not turned off at time 1. Two observations of ON are required to make Bob believe
that he did not turn the lamp off.

Example (Graded Evidence) Bob receives a gift that he estimates to be worth approxi-
mately $7. He is curious about the price, so he tries to glance quickly at the receipt without

24



Belief Change with Uncertain Action Histories

anyone noticing. He believes that the receipt says the price is $3. This is far too low to be
believable, so Bob concludes that he must have mis-read the receipt. Since a “3” looks very
similar to an “8”, he concludes that the price on the receipt must actually have been $8.

To represent this example, we first define ACT1 = λ↑10 because Bob believes that no on-
tic actions have occurred. We assume that there are fluent symbols Cost1, Cost2, . . . , Cost9
interpreted to represent the cost of the gift. We define a plausibility function OBS0 repre-
senting Bob’s initial beliefs.

OBS0(s) =


0 if s = {Cost7}
1 if s = {Cost6} or s = {Cost8}
3 otherwise

Note that Bob initially believes that the cost is $7, but it is comparatively plausible that this
cost is one dollar more or less. Finally, we define a plausibility function OBS1 representing
the observation of the receipt.

OBS1(s) =


0 if s = {Cost3}
1 if s = {Cost8}
3 otherwise

Bob believes that the observed digit was most likely a “3”, with the most plausible alter-
native being the visually similar digit “8”.

Given these plausibility functions, the most plausible state of the world is the state in
which the price is $8. In order to draw this conclusion, Bob needs observations that provide
graded evidence about states of the world and he needs to be able to weight this information
against his initial beliefs.

The preceding examples illustrate that there are natural common-sense reasoning prob-
lems in which an agent needs to consider aggregate plausibilities over a sequence of actions
and observations. Graded world views are well-suited for reasoning about such problems.

4.6 Non-deterministic and Failed Actions

In this section, we consider actions with non-deterministic effects. We remark, in particular,
that fallible actions can be understood as actions with non-deterministic effects; fallible
actions are just actions where some possible outcomes are considered to be failures. In the
simplest case, for example, a failed action might be one which leaves the state of the world
unchanged. Hence, by addressing non-deterministic effects, we are also handling actions
that might fail. Our basic approach is the following. We introduce some new machinery
for the representation of non-deterministic actions, and then we demonstrate that the new
machinery is unnecessary when we use summation to determine the plausibility of histories.
As such, we can reasonably restrict attention to deterministic actions when proving formal
expressibility results for graded world views.

Given a non-deterministic transition system T = 〈S,R〉 and a graded world view W ,
it is not clear how we should choose the effects of each action in the most plausible world
histories. This problem can be solved by attaching a plausibility value to the possible effects
of each action (Boutilier, 1995). For each action A and state s, let EFF (A, s) denote the
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set of states s′ such that (s,A, s′) ∈ R. Hence EFF (A, s) is the set of states that may
result, given that action A is executed in state s.

Definition 12 An effect ranking function is a function δ that maps every action-state pair
(A, s) to a plausibility function over EFF (A, s).

Informally, an effect ranking function gives the plausibility of each possible effect for each
action. For instance, if we want to model a coin flipping action, then the corresponding effect
ranking function would be constant: both outcomes of the coin flip would be considered
equally plausible.

A non-deterministic graded world view is a pair 〈W, δ〉 where W is a graded world view
and δ is an effect ranking function. We illustrate with an example.

Example Consider an action domain involving a single fluent symbol LampOn indicating
whether or not a certain lamp is turned on. There are two action symbols Press and
ThrowPaper respectively representing the acts of pressing on the light switch, or throwing
a ball of paper at the light switch. Informally, throwing a ball of paper at the light switch
is not likely to turn on the lamp. But suppose that an agent has reason to believe that a
piece of paper was thrown at the lamp and, moreover, the lamp has been turned on. We
illustrate how non-deterministic graded world views can provide a representation of this
problem.

Both actions have non-deterministic effects in that both may cause LampOn to become
true, but both may also fail to do so. We define a graded world view 〈ACT,OBS〉 of length
1. First, we define ACT so that ThrowPaper is the most likely action at time 1.

λ Press ThrowPaper

ACT1 10 2 1

Next we define OBS so that initially the light is off, and then the light is on.

∅ LampOn

OBS0 10 0

OBS1 0 10

Finally, we define an effect ranking function δ that represents the fact that pressing is more
likely to turn the light on.

∅ {LampOn}
δ(Press, {LampOn}) 0 10

δ(Press, ∅) 10 0

δ(ThrowPaper, {LampOn}) 9 0

δ(ThrowPaper, ∅) 0 9

Lines 1 and 2 in the table indicate that pressing the switch is very likely to change the
state of the lamp. Lines 3 and 4 indicate that throwing paper at the switch is most likely
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to have no effect, but a change caused by the paper ball is seen as more plausible than a
failed effect when the button is pressed.

In the preceding example, there are two possible solutions: either a plausible event occurs
with an unlikely outcome, or a less plausible event occurs with an expected outcome. There
is no a priori preference given to occurrence plausibilities or to effect plausibilities; the
framework is flexible enough to represent either possibility.

Introducing effect ranking functions makes the distinction between action occurrences
and action effects explicit, which in turn gives a straightforward treatment of failed ac-
tions. However, we need to introduce some extra machinery in order to determine the
most plausible action history. The most general approach is to extend the definition of an
aggregate plausibility function: a non-deterministic aggregate plausibility function takes a
non-deterministic graded world view as an argument, and it returns a plausibility function
over histories. An admissible non-deterministic aggregate plausibility function is one that
increases monotonically with respect to the given graded world view, as well as the given
effect ranking function.

We have been using the function sum as our standard aggregate plausibility function.
The natural extension of sum to non-deterministic graded world views is the following. For
any history h = s0, A1, . . . , An, sn, define

sum(〈ACT,OBS〉, δ)(h) =
∑
i

OBSi(si) +ACTi(Ai) + δ(Ai, si−1)(si).

It is easy to see that this is an admissible non-deterministic aggregate function. Returning
to the lamp example, there are two minimally ranked histories under this function: one in
which the lamp was turned on by pressing on the switch and one in which the lamp was
turned on by throwing a piece of paper at the switch.

In the remainder of this section, we will assume that sum is the default aggregate
function for non-deterministic world views. Under this assumption, we demonstrate that
non-deterministic graded world views can be translated into graded world views in an
extended action signature.

Let T = 〈S,R〉 be a non-deterministic transition system over the action signature 〈A,F〉.
Let 〈〈ACT,OBS〉, δ〉 be a non-deterministic graded world view. We extend the action
signature to a new action signature A′ where every edge in T corresponds to a unique
action symbol. In particular, let A′ = {A(s,A,t) | (s,A, t) ∈ R}. Let T ′ = 〈S,R′〉 where R′

is the closure of the set {〈s,A(s,A,t), t〉 | s, t ∈ S}. Suppose that ACT = ACT1, . . . , ACTn.
Define ACT ′ = ACT ′1, . . . , ACT

′
n where, for each i, ACT ′i (A(s,A,t)) = ACTi(A) + δ(A, s)(t).

Proposition 5 For any non-deterministic transition system T , a history

h = s0, A1, . . . , An, sn

obtains the same rank in 〈〈ACT,OBS〉, δ〉 as

h′ = s0, A(s0,A1,s2), . . . , A(sn−1,An,sn), sn

obtains in 〈ACT ′, OBS〉.

27



Hunter & Delgrande

Proof The plausibility of h is obtained by taking the sum∑
i

OBSi(si) +ACTi(Ai) + δ(Ai, si−1)(si),

which is clearly the same sum taken to determine the plausibility of h′. �
Hence non-deterministic actions and failed actions can be represented in a graded world
view, simply by setting up the plausibility functions carefully.

We remark that there is a conceptually interesting distinction that is lost in this trans-
lation. Informally, there is a distinction between an action that fails to occur and an action
that occurs, but fails to produce an expected effect. This distinction is clear if we consider
the difference between failing to drop a glass on the ground, and dropping a glass that fails
to break when it hits the ground. In the first case, the agent executes the drop action
but it fails to occur; perhaps the glass sticks to the agent’s hand. In the second case, the
glass is successfully dropped without breaking. In our framework, both of these events are
represented by a dropping action with the null effect. We suggest that this is an acceptable
treatment, because in both cases the sequence of actions and states is identical. As such, we
cannot distinguish between these scenarios based on our definition of a history. However,
we may be able to distinguish indirectly based on the values of other fluents. For instance,
the location of the glass is only going to change in the case where it is successfully dropped.

5. Comparison with Related Formalisms

Belief change due to actions and observations has been addressed previously in the literature.
In this section, we consider how our approach is related to existing work in the area.

5.1 Representing Single-Shot Belief Change

While our focus thus far has been on the use of graded world views for the representation
of iterated belief change due to actions and observations, the simplest scenario involves
just a single ontic or epistemic action. It is important, therefore, to verify that the single-
shot belief change operators induced by a graded world view are reasonable with respect
to existing work in the area. Recall that we defined ∗ and � on graded world views as
shorthand notation for the associated concatenation operations. Based on the results in
this section, it will be clear that this shorthand is natural and appropriate.

We first consider the case of a single ontic action.

Proposition 6 Let 〈ACT,OBS〉 be a graded world view. For any plausibility function r
over A,

Bel(〈ACT,OBS〉 • 〈r, 0〉) = Bel(〈ACT,OBS〉) �Bel(r).

Proof Since every action is always executable, s ∈ Bel(〈ACT,OBS〉 • 〈r, 0〉) if and only
if there is some s′ ∈ Bel(〈ACT,OBS〉) such that s′ � A = s for some A ∈ Bel(r). Hence
s ∈ Bel(〈ACT,OBS〉 • 〈r, 0〉) if and only if s ∈ Bel(〈ACT,OBS〉) �Bel(r). �
Proposition 6 is important if we are primarily interested in belief states and ontic actions.
Basically, in this case, graded world views are unnecessary. The most plausible final belief
state can be determined by simply looking at the belief state associated with the initial
graded world view.
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We now consider the case of a single observation. At present, we are primarily interested
in comparing the expressive power of graded world views with AGM revision operators.
There is one sense in which graded world views are clearly more expressive than AGM
operators. In particular, a new observation need not be incorporated into an agent’s beliefs
if the observation does not come from a reliable source. We will demonstrate that, in the
context of a single observation, this is essentially the only difference between a graded world
view and an AGM revision operator. More specifically, we will see that the belief change
defined by concatenating a single observation onto a graded world view can be captured by
an AGM operator, provided that the observation has degree of strength higher than some
fixed threshold.

We start by proving that every plausibility function defines a system of spheres, as
defined by Grove (1988). We first review the definition of a system of spheres. Let ML
denote a set of consistent, complete theories over L. A set of subsets S of ML is a system
of spheres centered on X where X ⊆ML, if it satisfies the conditions:

S1. S is totally ordered by ⊆

S2. X is the minimum of S under ⊆

S3. ML ∈ S

S4. For any formula φ with |φ| 6= ∅, there is a least sphere c(φ) such that c(φ) ∩ |φ| 6= ∅
and U ∩ |φ| 6= ∅ implies that c(φ) ⊆ U for every U ∈ S

We picture a system of spheres as a series of concentric circles, with innermost circle X.

Let r be a plausibility function over X with minimum value minr. For any n, let r[n]
denote the set of complete, consistent theories that are satisfied by some interpretation I
with r(I) ≤ n.

Proposition 7 Let r be a plausibility function over a finite action signature. The collection
R = {r[n] | n ≥ minr} is a system of spheres centered on r[minr].

Proof Clearly, for each n, r(n) ⊆ r(n+ 1). Hence R is totally ordered by ⊆.

If T ∈ r[minr], then T is satisfied by some I with r(I) ≤ minr. But then, for any n, T
is satisfied by some I with r(I) ≤ n. Hence r[minr] ⊆ r[n] for all r[n].

Since the action signature is finite, there are only finitely many states. Hence there is
a state that is assigned a maximum plausibility, say maxr. Therefore, r[maxr] is the set of
complete, consistent theories.

Let φ be a consistent formula. Since there are only finitely many states, there must be
a state s ∈ κ such that r(s) ≤ r(t) for all t ∈ κ. Let n = r(s). Clearly r(n) ∩ κ 6= ∅. Now
suppose that U ∈ S and U ∩ κ 6= ∅. Suppose that U = r(m), so U is the set of complete,
consistent theories satisfied by some I with r(I) ≤ m. Since some elements of U are also in
κ, it follows m ≥ n. Therefore r[n] ⊆ U , and r[n] is the least sphere intersecting κ. �

Using this result, we can show that single-shot revision under graded world views can be
captured by AGM revision operators. We make this claim precise in the next proposition.
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Proposition 8 Let 〈ACT,OBS〉 be a graded world view. There is an AGM revision func-
tion ∗ and a natural number n such that, for any plausibility function r over states with
degree of strength larger than n,

Bel(〈ACT,OBS〉 • 〈λ↑n, r〉) = Bel(〈ACT,OBS〉) ∗Bel(r).

Proof Recall that plaus is a plausibility function over histories that is defined by mini-
mizing sums over 〈ACT,OBS〉, and plaus state is the corresponding plausibility function
over final states.

Let n be a natural number such that n > plaus(h) for every history h. Let r be a
plausibility function with rank n. It follows that s ∈ Bel(〈ACT,OBS〉〈λ↑n, r〉) if and only
if the following conditions hold:

1. s ∈ Bel(r)

2. plaus state(s) is minimal among all states satisfying 1.

By Proposition 7, plaus state defines a system of spheres centered on Bel(plaus state).
It follows from Grove’s representation result (Grove, 1988) that there is an AGM revision
function ∗ such that, for any observation α, s ∈ Bel(plaus state) ∗ α if and only if the
following conditions hold:

1. s ∈ α

2. plaus state(s) is minimal among all states satisfying 1.

Setting α = Bel(r) gives the desired result. �

Proposition 8 illustrates that, for a single observation, the most plausible worlds can be
determined without considering the history of actions and observations. We can determine
the most plausible worlds following an observation by simply abstracting a belief state from
a graded world view, then performing AGM revision. It is easy to show that the converse is
also true: every AGM revision operator can be represented by a graded world view. More
precisely, we have the following result.

Proposition 9 Let ∗ be an AGM revision operator and let κ be a belief state. There is a
graded world view 〈ACT,OBS〉 with Bel(〈ACT,OBS〉) = κ and a natural number n such
that, for every non-empty observation α,

κ ∗ α = Bel(〈ACT,OBS〉 • 〈λ↑n, r〉)

where r is any plausibility function over states where the minimal ranked elements α have
degree larger than n.

Proof By Grove’s representation result, ∗ can be captured by a system of spheres S.
Define the graded world view 〈ACT,OBS〉 such that S is the system of spheres given by
Proposition 7. Set n such that n > plaus(h) for every history h. The result is immediate.
�
Taken together, Propositions 8 and 9 illustrate that graded world views are equivalent to
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AGM revision if we restrict attention to a single observation with a sufficiently high degree
of reliability. Hence, for single-shot belief change, the full expressive power of graded world
views is unnecessary. For both ontic actions and observations, we can define the same
belief change operations if we start with just a belief state. There is also a correspondence
here with Nayak’s work on iterated revision (Nayak, 1994); if an observation is sufficiently
plausible, then every state in that observation ends up being strictly more plausible than
every other state.

5.2 Representing Conditionalization

Spohn uses ranking functions to define a different form of single-shot belief change called
conditionalization (Spohn, 1988). The idea is that new evidence is presented as a pair
(α,m), where α is a set of states and m ≥ 0; the value of m is an indication of the strength
of the observation α. Informally, the conditionalization of r is a new function where the
minimally ranked α-worlds receive rank 0 and the non-α worlds are all “shifted up” by m.
In this section, we illustrate how conditionalization can be defined in terms of graded world
views.

First, we define conditionalization formally. Let r be a plausibility function with minr =
0 and let α be a subset of the domain of r. Let min(α) denote the minimum value r(s) for
s ∈ α. Spohn defines the the plausibility function r(·|α) over α as follows:

r(s|α) = r(s)−min(α).

We call r(s|α) the α-part of r. The conditionalization of r, written r(α,m), is the following
plausibility function.

r(α,m) (s) =

{
r(s|α) if s ∈ α
m+ r(s|α̃) if s 6∈ α

So the conditionalization of r is the α-part of R together with the α̃-part shifted appropri-
ately.

We show that conditionalization can easily be represented by taking minimal sums over
plausibility functions.

Definition 13 Let r be a plausibility function over 2F, let α be a non-empty subset of 2F,
and let m be a natural number. Define rC(α,m) as follows:

rC(α,m) (s) =

{
0 if s ∈ α
m+ min(α) if s 6∈ α

We refer to rC(α,m) as the conditionalizer of r with respect to α and m. The following
proposition illustrates how we can define the conditionalization of a plausibility function by
taking an appropriate sum.

Proposition 10 Let r be a plausibility function with minr = 0. For any α,m, the normal-
ization of r + rC(α,m) is the conditionalization r(α,m).

Proof If s ∈ α, then

r(s) + rC(α,m)(s) = r(s) + 0 = r(s).
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If s 6∈ α, then
r(s) + rC(α,m)(s) = r(s) +m+ min(α).

Since r(s) ≥ 0 and m ≥ 0, it follows that the minimum value obtained by r + rC(α,m) is
min(α). Hence, the normalization of r + rC(α,m) is the plausibility function r′ defined as
follows.

r′(s) = r(s) + rC(α,m)(s)−min(α)

This is equal to r(α,m), which is what we wanted to show. �

Proposition 10 illustrates that the conditionalization of r by (α,m) can be defined
by taking a minimal sum over two plausibility functions. We have restricted attention to
plausibility functions with minimum 0 because this class coincides more closely with Spohn’s
ranking functions. However, we can define the conditionalizer in the same manner for
plausibility functions with non-zero minimums. We can also define the conditionalization
of a graded world view. Informally, we simply conditionalize the associated plausibility
function on states. Hence, we identify the conditionalization with respect to 〈α,m〉 with
the following operation:

〈ACT,OBS〉 • 〈λ, plaus stateC(α,m)〉.

It is straightforward to show that this gives the desired result.

5.3 Representing Belief Evolution Operators

As noted previously, we have previously defined so-called belief evolution operators to cap-
ture iterated belief change due to actions and observations (Hunter & Delgrande, 2011). In
this section, we show that graded world views actually extend this approach, by verifying
that every belief evolution operator can be captured by a graded world view.

There are two underlying assumptions in the definition of belief evolution:

1. The plausibility of an observation is determined by some ordering, recency by default.

2. The action history is assumed to be correct.

Both of these assumptions can be represented in a graded world view by setting up the
plausibility functions appropriately.

Belief evolution operators can be defined with respect to metric transition systems. A
metric transition system to be a transition system, along with a metric d that gives a distance
between states. The metric d defines a belief revision operator as follows (Delgrande, 2004):

κ ∗ α = {w ∈ α | ∃v1 ∈ κ such that for all v2 ∈ α, v3 ∈ K
we have d(w, v1) ≤ d(v2, v3)}.

Assume that we have a fixed initial belief state κI , along with a metric transition system
defining a revision operator ∗ and an update operator �. Let ◦ be the belief evolution
operator obtained from ∗ and �. Let

Ā = 〈A1, . . . , An〉
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be an action trajectory, and let

ᾱ = 〈α1, . . . , αn〉

be an observation trajectory. We want to construct a graded world view Wev that assigns
minimal plausibility value to all histories corresponding to κI ◦ 〈Ā, ᾱ〉.

We define Wev = 〈ACT,OBS〉 presently. By combining κI with the metric d given by
the metric transition system, we can define a plausibility function BASE that represents
the initial ordering of states implicit in ∗. In particular, for any s, set

BASE(s) = min({d(s, k) | k ∈ κI}).

Using this plausibility function, we can define the observation trajectory OBS. Let max
denote the maximum value obtained by BASE.

OBSi =

{
BASE if i = 0
αi ↑(2i + max) otherwise

By incrementing the plausibility of false observations exponentially, we can assure that
recent observations will be given greater credence.

Informally, each action symbol Ai is translated into a plausibility function that obtains
the minimum value on the set {Ai}. Formally, we have the following, for 1 ≤ i ≤ n:

ACTi = Ai ↑(2n+1 + max).

Proposition 11 If κI ◦ 〈Ā, ᾱ〉 = 〈κ0, . . . , κn〉, then

h ∈ Φ(Wev)

⇐⇒
h = 〈s0, A1, . . . , An, sn〉 where si ∈ κi for each i.

Proof Assume for the moment that 〈Ā, ᾱ〉 is consistent. Let h = 〈v0, B1, . . . , Bn, vn〉. By
definition h ∈ Φ(Wev) if and only if the sum

n∑
i=1

ACTi(Bi) +

n∑
i=0

OBSi(vi) (2)

is minimal. Since 〈Ā, ᾱ〉 is consistent, there exist histories 〈s0, A1, . . . , An, sn〉 where each
si ∈ αi. For such histories, the sum (2) becomes

n∑
i=1

ACTi(Ai) +

n∑
i=0

OBSi(si) = 0 +OBS0(s0)

We remark that this sum is less than any sum that can be obtained by a history where
there is some i such that either Bi ∈ Ai or si 6∈ αi. Therefore h ∈ Φ(Wev) if and only if the
following three conditions hold:

1. Bi = Ai for each i > 0
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2. vi ∈ αi for each i > 0

3. OBS0(v0) is minimal among states satisfying 1 and 2.

In order to satisfy condition 2, it must be the case that v0 is in the set

V =
⋂
i

α−1
i (Āi).

In order to simultaneously satisfy condition 3, it must also be the case that v0 is minimally
distant from κI according to the metric d. In other words, v0 ∈ κI ∗ V . Therefore, h ∈
Φ(Wev) if and only if each Bi = Ai and the following conditions hold:

1. v0 ∈ κI ∗
⋂
i α
−1
i (Āi), and

2. vi = v0 � Āi.

This is the definition of κI ◦ 〈Ā, ᾱ〉, so this completes the proof.
The case where 〈Ā, ᾱ〉 is inconsistent is similar. The only difference is that we need

to notice that the degree of strength of each observation increases by a power of 2. We
use the fact that, for any natural number p, 2p is larger than every sum of terms 2i with
i < p. As such, in order to minimize the sum (2), we need to work backwards through the
observations, keeping each observation if it is consistent with the observations that followed.
This is just an equivalent specification of τ(Wev) – increasing powers exponentially forces
a strict preference for recent observations. �

Proposition 11 demonstrates that graded world views can represent any belief evolution
operator defined with respect to a distance function. From the perspective of graded world
views, the assumption that action histories are infallible is essentially just a restriction on
the admissible plausibility functions.

We conclude this section with some brief remarks about the use of orderings to resolve
inconsistency in iterated belief change. The well-known Darwiche-Pearl postulates for it-
erated belief change (Darwiche & Pearl, 1997) are only satisfied when we assume that the
most recent observation takes precedence over previous observations. By contrast, Papini
illustrates an alternative approach to iterated revision in which earlier observations take
precedence over later observations (Papini, 2001). More generally, we defined belief evolu-
tion operators with respect to an arbitrary total ordering over the observations. The most
natural extension of belief evolution would extend the ordering to include all observations
and actions. Using the techniques in this section, it is easy to see that this extended con-
ception of belief evolution corresponds to the class of graded world views with an arbitrary
initial observation followed by plausibility functions of the form α↑2i, where each i is dis-
tinct. Hence, even the most general extension of belief evolution can be represented by a
relatively restricted class of graded world views.

5.4 Relation with the Situation Calculus

The Situation Calculus (SitCalc) is a well-establishing framework for reasoning about the
effects of actions. Action descriptions in the SitCalc are formulated in many-sorted first-
order logic along with a single second-order induction axiom. Briefly, variables can range
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over situations, entities, and actions. Situations are understood to represent the current
state of the world, including a complete history of all actions that have occurred. There is
a distinguished constant symbol S0 that denotes the initial situation and a distinguished
function symbol do that maps an action A and a situation s to the situation that results
from executing A in situation s. Predicate symbols that take a situation argument are
called fluents. For a detailed introduction, we refer the reader to the foundational summary
presented by Levesque, Pirri and Reiter (1998).

The epistemic extension of the SitCalc introduces sensing actions, alternative initial
situations, an accessibility relation, and a plausibility ordering over situations (Shapiro
et al., 2011). The situations that an agent believes possible are the minimal accessible
situations, and the effect of a sensing action changes the set of accessible states. This
results in a form of belief revision that satisfies most of the AGM postulates. We have
previously proved that belief revision in the SitCalc can be captured by a belief evolution
operator under a natural translation (Hunter & Delgrande, 2011); it therefore follows from
Proposition 11 that the belief change operators defined in the standard SitCalc approach
can be captured by graded world views.

A similar conclusion can be drawn regarding our representation of uncertain actions.
Bacchus et. al. (1999) extend the SitCalc to include “noisy” sensors and non-deterministic
actions. Roughly, the idea is to define complex actions in terms of a set of primitive
actions. In this manner, a non-deterministic action is represented by a probability function
over the set of primitive actions. We have a similar result in Proposition 5, which proves
that we can capture non-deterministic actions by introducing ranking functions over action
effects. If we think of each action effect as a primitive action, then we essentially have the
same representation as Bacchus et. al. except that we use ranking functions rather than
probabilities. Moreover, in section 3.4 we demonstrated that a translation from probabilities
to plausibilities is straightforward.

While our approach appears to be sufficiently general to capture belief change and
uncertainty over actions as defined in the given epistemic extensions of the SitCalc, it is
important to note that there are respects in which our approach is actually more expressive.
In particular, we allow revision by arbitrary rankings over formulas; we do not require
a fixed set of sensing actions. Our approach also allows for a flexible representation of
the interaction between uncertainty over actions and observations, and it is elaboration
tolerant in the sense that we need only modify aggregates over plausibility functions to
capture different phenomena. On the other hand, the SitCalc provides a more rigorous and
precise treatment of actions effects and ontic change. For example, the SitCalc treatment
of property persistence (Kelly & Pearce, 2010) captures a natural feature of certain world
properties that can only be captured by a graded world view with an ad hoc restriction on
plausibility functions. Overall, we see our approach as a high-level model of belief change
that can capture the dynamics of belief in the SitCalc, but it does so while losing some of
the advantages of the SitCalc model of action effects.

5.5 Relation with Dynamic Epistemic Logic

The notion of belief change due to reported information has been addressed in Dynamic
Epistemic Logic (DEL) (van Ditmarsch, van der Hoek, & Kooi, 2007). In this context, belief
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change is captured through plausibility models. A plausibility model is a Kripke structure,
where we associate a well-ordering over possible states with each state; this ordering indi-
cates which states are seen as the most plausible at each state in the structure. Belief update
can be captured in this setting through state-changing actions that allow different agents to
have different awareness of the action that has been executed (Baltag & Smets, 2008); belief
revision can be captured by a mapping on plausibility models that is syntactically defined
through suitable modal operators (Baltag & Smets, 2006; Van Benthem, 2007). Although
it is common to use an ordering to represent plausibility in DEL, there are also variants
in which plausibility is captured with quantitative values. For example, Laverny and Lang
(2005) define a logic that incorporates actions and uses ranking functions over N∪ {∞} to
model strength of belief for formulas without nested modalities.

There are two main distinctions between our work and related work in the DEL tradi-
tion. The first distinction is superficial, and it is related to our high-level perspective on new
information. In DEL, there is an external perspective on new information, in which struc-
tures explicitly model the way that each agent in the system views the new information.
This is why DEL is so expressive with respect to nested multi-agent beliefs: we are able to
be explicit about the perspective of each agent. As presented in this paper, we can think of
graded world views as taking an internal perspective for a single agent. When we provide a
ranking function that represents an observation, we have no external knowledge about the
“actual” state of the world. The advantage of this approach is that every observation (resp.
action) is always possible. By contrast, with the external perspective of DEL, there may be
situations where certain information simply cannot be provided as an information update.
For example, if the underlying Kripke structure only contains states where φ is true, then
there is no information update that can be provided to make an agent believe φ is false.

The second distinction between our work and existing work in DEL is related to our
uniform representation of observations and actions. In DEL, a distinction is often drawn
between so-called hard updates and soft updates (Van Benthem, 2007). A hard update
occurs when the information is definite in some sense, and it is incorporated by modifying
the accessible states. This might occur, for example, when it is common knowledge that a
certain state-changing action has occurred. A soft update corresponds to a belief revision,
where the information is incorporated by modifying the plausbility ordering. However, in a
practical setting, it is often the case that one can not distinguish which kind of change should
actually occur. This kind of ambiguity does not occur in the case of graded world views,
where all belief change operations are handled in a uniform manner by taking aggregates over
plausibility functions. Morever, in both hard update and soft update, the update is typically
by a “single” piece of information with a single level of plausibility. Hence, observations and
actions are not represented in a graded manner. This is one of the distinguishing features of
the present work: we allow observations (and actions) to provide different levels of evidence
for several different states simultaneously.

Despite the differences, it is important to emphasize that we actually do not see graded
world views as an alternative to DEL. Instead, we see the approach presented here as a tool
that could be used as the basis for belief change in a suitably defined DEL with quantitative
plausibility rankings. This is analogous to the way that formal belief change operators have
been incorporated in modal logics. Iterated revision operators such as lexicographic revision
(Nayak, 1994) and natural revision (Boutilier, 1996) were originally defined in a general
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setting of orderings, before they were used as motivating examples for information update
in DEL. Similarly, we suggest that a modal logic could be defined in which the semantics
of iterated propositional updates was based on aggregates over plausibility functions. Such
a logic would be able to model all of the practical domains discussed in this paper, and it
would also be able to capture complex multi-agent situations involving nested belief.

5.6 Representations of Plausibility

Following Spohn (1988), we have taken quantitative ranking functions as our representation
of plausibility. However, the literature on belief change and defeasible reasoning contains
a great deal of work on different representations of plausibility. It this section, we briefly
consider alternative approaches from the literature, and we argue that our approach is more
suitable for the kind of reasoning we intend to capture.

The most basic representation of plausibility in the literature is a total pre-order on
states, as we often see in AGM-inspired work. We normally think of such an ordering in
terms of a series of “levels” of plausibility. The obvious limitation of this approach is that
there can be no notion of magnitude with respect to differences in plausibility, although
this is can be introduced by allowing empty levels. In any event, it is clear that ranking
functions are more expressive than total pre-orders with respect to modelling plausibility.
A more interesting distinction occurs between our notion of plausibility, and the orderings
used in the DEL tradition. As noted above, plausibility in this context is typically captured
by a well-ordering (Van Benthem, 2007). This is necessary because, in this setting, we
do not want all states to be comparable; we want certain states to be innaccessible from
others. One might ask if our ranking functions are limited in any sense with respect to the
well-orderings used in plausibility models. Our choice of ranking functions is motivated by
the internal-external distinction discussed in the previous section. An individual agent need
not consider “impossible” states in order to modify their beliefs appropriately, they need
only consider highly unlikely states.

Note that our approach is superficially similar to related work on defeasible reasoning
featuring some form of preferential ordering on states. It is possible, for example, to reason
about typicality by supplementing a Kripke structure with a single ordering over states
(Britz & Varzinczak, 2013). An alternative model in the setting of description logics has also
been proposed, in which a function is introduced to map each concept to a set of elements
that are deemed to be most typical (Giordano, Olivetti, Gliozzi, & Pozzato, 2013). However,
despite the superficial similarities, it is important to be clear that our initial plausibility
function is not intended to be a representation of “typicality” or “normality” in an absolute
sense. Our model of plausibility corresponds more closely to a pointed plausibility model
that includes a distinguished actual state.

Alternative quantitative models of plausibility have also been explored in the literature.
One of the most influential such approaches is based on possibility measures, which are
functions that map states to [0, 1] (Benferhat et al., 1999). The main difference between a
possibility measure and a plausibility function is really that the possibility measure 0 actu-
ally corresponds to impossibility, and there is no corresponding plausibility value. However,
we have already shown that plausibility functions can be used to capture rational-valued
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functions over [0,1]; it would be straightforward to modify our proof to deal with real number
values.

One of the most general measures of plausibility in the literature is a plausibility space,
which is analogous to a probability space except that the range of plausibility values can
be any set (Friedman & Halpern, 2001). Plausibility spaces are intended to be a very
general model that subsumes a great deal of existing work on reasoning about plausibility.
Indeed, plausibility functions are clearly just a special case of a plausibility space; so our
representation of belief can be seen as a special case of this more general approach.

In this section, we have been restricting the discussion to alternative representations of
plausibility on states. As noted previously, our approach to the representation of plausibility
over states is actually not new and it is therefore easy to position our work in this context.
The novel feature of our approach is that we use the same notion of plausibiility over actions,
in order to develop a novel approach to reasoning about iterated belief change due to actions
and observations

6. Limitations and Advantages

Our focus in previous sections has been on establishing the expressive power of graded
world views, as compared with existing frameworks for reasoning about belief change. As
a result, we have focused on problems involving an a priori graded world view, along with
some “new” information. However, the restriction to new information is artificial. In the
general case, there is no reason to restrict attention to problems in which an agent only
receives information about actions and observations occurring at the most recent point in
time. An agent could certainly receive new information about earlier events and actions.
Hence, a more general problem involves an agent with an underlying graded world view,
together with a set of constraints on the most plausible histories. In this section, we consider
the representation of problems that have this more general form.

6.1 Constrained World Views

Suppose that 〈ACT,OBS〉 is a graded world view of length n. An action constraint is
a pair (A, i) where A is an action symbol and i ≤ n. Define Φ(〈ACT,OBS〉) � (A, i)
to be the set of histories with minimal plausibility, subject to the restriction that the ith

action executed is A. We define observation constraints in the analogous manner, and we
let Φ(〈ACT,OBS〉) � (α, i) be the set of minimally ranked histories where the ith state
is in α. If Ω is a set of constraints, then we define Φ(〈ACT,OBS〉) � Ω to be the set of
minimally ranked histories satisfying every constraint in Ω. We will refer to such histories
as constrained histories and we will refer to a graded world view together with a set of
constraints as a constrained world view.

We have presented constrained world views to illustrate that graded world views are
useful for many problems beyond those that are normally considered to be in the realm of
a standard “belief change operator.” For example, suppose that Bob sends an encrypted
email message to Alice, inviting her to a party at his house. Bob is aware that Eve is
the system administrator, and that she could potentially manipulate the message before
delivering it. When Alice does not show up, Bob concludes that Eve did not deliver the
message. Bob is concerned that Eve read the message and had hurt feelings that she was
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not invited. However, looking at every possible action Eve could take, Bob concludes that
Eve could not have decrypted the message.

In the preceding example, Bob needs to consider all possible actions that Eve could have
executed. The conclusion that Bob draws is that Eve’s knowledge of the party is invariant
with respect to her actions. We can formally define invariance as follows.

Definition 14 Let 〈ACT,OBS〉 be a graded world view. We say that a set of states α is an
i-invariant of 〈ACT,OBS〉 if and only if, for every A ∈ A, Bel(〈ACT,OBS〉 � (A, i)) ⊆ α.

The intuition behind i-invariance is that, regardless of the action at time i, the underlying
agent will always believe that the actual world is in α. Reasoning about invariant properties
is essential if an agent is trying to ensure some property must hold in an action domain
involving exogenous actions. This is required, for example, in reasoning about cryptographic
protocols.

Reasoning about invariance is just one new kind of problem that can be addressed by
constrained world views. We suggest that constraints can also be used to provide natural
representations of hypothetical reasoning and abductive reasoning.

6.2 Belief Extrapolation

Constrained world views are similar to belief extrapolation operators (Dupin de Saint-Cyr
& Lang, 2011). Briefly, a belief extrapolation operator l takes a sequence of formulas,
called a scenario as input, and it outputs another scenario. The intuition is that the output
gives the most general sequence of formulas that can possibly be true, given the input and
the assumption that fluents tend to be inertial. We give a brief description of the basic
construction.

A trajectory is a sequence τ of interpretations over some fixed signature. Let τ(i) denote
the ith interpretation in the trajectory τ . Given a scenario Σ, let Traj (Σ) denote the set of
trajectories that satisfy each formula in Σ on a point-by-point basis. Every ordering � on
the class of trajectories defines an extrapolation operator l as follows:

|(Σ l (t))| = {τ(t) | τ ∈ Min(�,Traj (Σ))}

Hence, Σ l picks out the minimal trajectories satisfying Σ.
For our present purposes, the most important feature of a belief extrapolation operator

is that it is defined with respect to an ordering over histories. Given an ordering over
histories together with a sequence of formulas, a belief extrapolation operator returns the
most plausible sequences of states. In the case of constrained world views, we essentially
do the same thing. The given graded world view defines an ordering over states, and the
constraints give a sequence of conditions that need to be satisfied. It is easy to show
that, using the summation aggregate, every graded world view can be captured by a belief
extrapolation operator. In this section, we consider the converse problem: Can every belief
extrapolation operator be represented by a suitable graded world view?

The key observation here is that the mapping from graded world views to orderings
on histories is not surjective; there are orderings on histories that can not be described
by a graded world view. For example, a graded world view can not explicitly capture
plausibilities of the form “if A1 occurs at time i, then A2 is likely to occur at time i + 1.”
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This is easy to see, because a graded world view ranks histories by combining a sequence of
rankings at each instant. Of course, it might be possible to devise a sequence of rankings
along with an aggregate function that happened to support a conditional plausibility for a
fixed action signature. But this would be a domain-specific property, because the temporal
relation between actions can not be expressed with two independent plausibility functions.
Informally, a graded world view can only represent domains where the ordering on histories
is built up in a pointwise manner by the plausibilities at each point in time. In this section,
we use this limitation to establish a difference in expressive power between constrained
world views and belief extrapolation operators.

First, we need to formalize the problem that we would like to address more precisely.
Given a belief extrapolation operator, we would like to be able to find a graded world view
that captures the same information.

Definition 15 Let l be a belief extrapolation operator. We say that l is representable if
there is a graded world view 〈ACT,OBS〉 such that, for every scenario Σ of length n,

Traj (Σ l) = Φ(〈ACT,OBS〉) � Σ.

If l is representable, then the behaviour of l can be simulated with a graded world view.
We remark that we have abused notation in the definition in that Traj (Σ l) is a collection
of sequences of states, whereas Φ(〈ACT,OBS〉) � Σ is a collection of histories. We interpret
the equality to mean that the two collections are equal if we ignore the action symbols in
the latter.

The following proposition indicates that belief extrapolation operators have an expres-
sive advantage.

Proposition 12 There is a belief extrapolation operator l that is not representable.

Proof Let � be an ordering in which the following trajectories are minimal.

1. 〈{a, b}, {a, b}, {¬a, b}〉

2. 〈{a, b}, {a, b}, {a, b}〉

3. 〈{a,¬b}, {a, b}, {¬a, b}〉

Let l be the associated belief extrapolation operator. We will show that l is not repre-
sentable.

Let Σ = 〈a, a∧b, b〉. Note that Σ is satisfied by all three minimal trajectories. Therefore
Traj(Σ l) is precisely the set of minimal trajectories.

Now suppose that 〈ACT,OBS〉 is a graded world view such that

〈ACT,OBS〉 � Σ

assigns minimal plausibility to 1, 2, and 3. Hence, there exist actions A1, A2, A3, B1, B2, B3

such that the following sums all obtain the minimum possible rank:

1. OBS0({a, b}) +ACT1(A1) +OBS1({a, b}) +ACT2(B1) +OBS2({¬a, b})

2. OBS0({a, b}) +ACT1(A2) +OBS1({a, b}) +ACT2(B2) +OBS2({a, b})
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3. OBS0({a,¬b}) +ACT1(A3) +OBS1({a, b}) +ACT2(B3) +OBS2({¬a, b})

It must be the case that ACT1(A1) = ACT1(A2), because otherwise either 1 or 2 could
be reduced by changing the first action. Similarly, it must be the case that ACT2(B1) =
ACT2(B3), because otherwise either 1 or 3 would not be minimal. So, we can rewrite the
sums as follows:

1. OBS0({a, b}) +ACT1(A1) +OBS1({a, b}) +ACT2(B1) +OBS2({¬a, b})

2. OBS0({a, b}) +ACT1(A1) +OBS1({a, b}) +ACT2(B2) +OBS2({a, b})

3. OBS0({a,¬b}) +ACT1(A3) +OBS1({a, b}) +ACT2(B1) +OBS2({¬a, b})

From 1 and 2, it follows from basic algebra that

ACT2(B1) +OBS2({¬a, b}) = ACT2(B2) +OBS2({a, b}).

Substituting this in 3 gives another minimal sum:

OBS0({a,¬b}) +ACT1(A3) +OBS1({a, b}) +ACT2(B2) +OBS2({a, b}).

This corresponds to the trajectory

〈{a,¬b}, {a, b}, {a, b}〉.

Hence, any graded world view assigning minimum plausibility to 1-3, must also assign
minimum plausibility to this fourth trajectory. Informally, if 1-3 are preferred trajectories
according to a graded world view, then we are forced to accept another preferred trajectory.
But we already saw that Traj(Σ l) consists only of 1-3. Therefore l is not representable.
�
Note that the proof of Proposition 12 is constructive and it demonstrates that there is a
simple, concrete, extrapolation operator that is not representable.

Informally, Proposition 12 follows from the fact that some orderings on histories can not
be defined by a graded world view. This is particularly important in applications where
an agent has preferences over the order in which events occur. In such applications, it can
be useful to assign plausibilities to certain sequences of actions. We suggest, however, that
the class of orderings definable by graded world views is a natural class of orderings. In
particular, there are many action domains where an agent has no preconceived assumptions
about the order that exogenous actions will occur. Graded world views provide a reason-
able tool for the representation of such action domains. Graded world views also have an
expressive advantage in that they can explicitly represent fallible actions as well as other
forms of uncertainty over action effects.

We have seen that we can not represent every belief extrapolation operator, but it
would be a mistake to conclude that graded world views are strictly less expressive. Belief
extrapolation really says nothing explicit about actions, which leads to several differences
from our approach. Given an ordering over histories of length n, it is not clear how to use
belief extrapoloation to incorporate a new action followed by a new observation; there is
no fixed method for extending orderings over n-tuples to orderings over n + 1 tuples. In
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the case of a graded world view, however, it is clear how the new ordering is defined when
more actions are performed. As such, graded world views are more appropriate for the
representation of epistemic action domains where we expect new observations and actions
to occur. Of course, in our approach, we do have a fixed length for the initial graded world
view. Since we can have null actions, however, the value n is really a maximum length for the
sequence of actions that occurred. As such, graded world views are most sensible in domains
where we can imagine the maximum number of actions that have previously occurred is
bounded. Again, we suggest that the class of domains that satisfies this constraint is both
large and natural.

6.3 Beliefs about Action Effects

Despite our flexible representation of observations and actions, there is one aspect of our
representation that is quite rigid. Specifically, we have a single underlying transition system
that gives the effects of actions; there is no mechanism for changing this transition system
in response to new information. This has been addressed by Varzinczak (2010) in a modal
setting, by introducing a formal mechanism that allows the effects of actions to change in
response to new information. Combining this idea with the notion of plausibility in a graded
world view would give an even more complete picture of the way that agents reason about
the effects of actions with uncertain effects. We leave a treatment of this idea for future
work.

A related problem is the fact that the underlying transition system in our framework
is essentially known to the agent. In other words, given perfect information about the
current state of the world and the action that has been executed, then the agent knows
the resulting state. An alternative approach due to Eiter et al. (2010) is to start with
an action description that specifies some actions effects. We can then introduce suitable
information update mechanisms based only on this (partial) description of effects, rather
than by assuming a definite underlying transition system. This is, however, only a superficial
distinction. By using effect ranking functions, we can essentially give a partial description of
action effects that corresponds to an action description. In this manner, it is straightforward
to define so-called Action Description Update problems with graded world views.

7. Conclusion

We have introduced a formalism for reasoning about sequences of actions and observations.
The formalism uses Spohn-style ranking functions at each instant to determine the most
plausible action or observation, and determines the most plausible histories by an aggregate
function over all instants. We have proved that the formalism subsumes belief revision,
belief evolution, and conditionalization. Moreover, it is suitable for the representation of
fallible beliefs, erroneous perception, exogenous actions, and failed actions. We have used
transition systems for the representation of actions in order to facilitate comparison with a
wide range of action formalisms. In future work, we will be interested in axiomatizing the
belief change that is permitted by the class of admissible aggregate functions.

The main advantage of graded world views over related formalisms is that graded world
views provide a uniform mechanism for dealing with imperfect information about actions
and observations. As such, graded world views allow observations that need not be incor-
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porated because the agent is convinced a certain action occurred previously. On the other
hand, graded world views also allow an agent to retract the belief that an action occurred if
they have a strong belief in some observation. Graded world views provide a tool for repre-
senting these opposing conclusions, simply by considering the magnitudes of plausibilities,
as well as some underlying aggregate.

In existing work, belief change caused by actions is often represented by starting with
an action formalism and then adding revision operators. One problem with this approach
is that it does not allow beliefs about action occurrences. In a sense, graded world views
take the opposite approach. We start with ranking functions, which were originally defined
for reasoning about belief change in a static environment, and then we plug in actions. An
agent’s beliefs about the actions that occur are independent of the formal representation
of action effects. As such, although we have presented graded world views in terms of
transition systems, it would certainly be possible to use a different action formalism. The
key point is that, by using ranking functions to represent uncertainty about states and
actions, we can define a framework for reasoning about epistemic action effects in which
primary importance is placed on the evolution of an agent’s beliefs.

We conclude with a brief remark about the overall approach taken in our framework. A
distinction is commonly drawn between update and revision in the belief change literature,
despite the fact that it can be difficult in practice to determine which is the appropriate
operation given a particular piece of information. In many cases, it simply is not clear if
conflicting information is the result of some unseen action or if it is the result of erroneous
beliefs. One solution to this problem is to define a single, general belief change operation
that subsumes both (Kern-Isberner, 2008). By contrasat, we maintain an explicit distinction
between the way beliefs change due to actions and observations, but we use a uniform model
of uncertainty at the agent level that focuses on finding the most plausible sequence of events
to explain all available evidence. This seems like a natural approach in many applications,
where an agent’s perception of past events is likely to be influenced by their conviction with
respect to their senses and beliefs.
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