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Abstract

In classical, AGM-style belief change, it is assumed that the underlying logic contains
classical propositional logic. This is clearly a limiting assumption, particularly in Artificial
Intelligence. Consequently there has been recent interest in studying belief change in ap-
proaches where the full expressivity of classical propositional logic is not obtained. In this
paper we investigate belief contraction in Horn knowledge bases. We point out that the
obvious extension to the Horn case, involving Horn remainder sets as a starting point, is
problematic. Not only do Horn remainder sets have undesirable properties, but also some
desirable Horn contraction functions are not captured by this approach. For Horn belief set
contraction, we develop an account in terms of a model-theoretic characterisation involving
weak remainder sets. Maxichoice and partial meet Horn contraction is specified, and we
show that the problems arising with earlier work are resolved by these approaches. As
well, constructions of the specific operators and sets of postulates are provided, and repre-
sentation results are obtained. We also examine Horn package contraction, or contraction
by a set of formulas. Again, we give a construction and postulate set, linking them via a
representation result. Last, we investigate the closely-related notion of forgetting in Horn
clauses. This work is arguably interesting since Horn clauses have found widespread use in
AI; as well, the results given here may potentially be extended to other areas which make
use of Horn-like reasoning, such as logic programming, rule-based systems, and description
logics. Finally, since Horn reasoning is weaker than classical reasoning, this work sheds
light on the foundations of belief change.

1. Introduction

The area of belief change in knowledge representation studies how a rational agent may
alter its beliefs in the presence of new information. The best-known approach in this area
is the so-called AGM paradigm (Alchourrón, Gärdenfors, & Makinson, 1985; Gärdenfors,
1988), named after the original developers. This work focused primarily on two belief
change operations, belief contraction, in which an agent may reduce its stock of beliefs, and
belief revision, in which new information is consistently incorporated into the agent’s belief
corpus. A fundamental assumption of this approach is that the underlying logic governing
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the agent’s beliefs subsumes classical propositional logic. However, in artificial intelligence
(AI) a major concern is with efficient, limited, and ideally tractable reasoning. Hence
there has been significant effort in studying limited reasoners, including Horn clause based
approaches, limited epistemic reasoning involving explicit belief (Lakemeyer & Levesque,
2000), and description logics (Baader, Calvanese, McGuiness, Nardi, & Patel-Schneider,
2007). Moreover, since a knowledge base will evolve, it is crucially important that change
in a knowledge base be managed in a principled fashion. However, the AGM approach
cannot be used as a guide to change in any approach, such as those mentioned above, that
does not subsume classical propositional logic.

In this paper we address belief change in the expressively-weak language of Horn clauses,
where a Horn clause can be written as a rule in the form a1 ∧ a2 ∧ · · · ∧ an → a for n ≥ 0,
and where a, ai (1 ≤ i ≤ n) are atoms. (Thus, expressed in conjunctive normal form,
a Horn clause will have at most one positive literal.) In our approach, an agent’s beliefs
are represented by a Horn clause knowledge base, and the input is a conjunction of Horn
clauses. We focus on belief contraction (and, later, operators related to contraction) in
which the agent’s stock of beliefs decreases.

The topic of Horn clause contraction (and the general topic of Horn belief change in
general) is interesting for several reasons. First, Horn clause reasoners constitute an impor-
tant class of AI systems, and Horn clauses have found extensive use in artificial intelligence
and database theory, in areas such as logic programming, truth maintenance systems, and
deductive databases. Horn clause belief change also sheds light on the theoretical underpin-
nings of belief change, in that it weakens the assumption that the underlying logic contains
propositional logic. Hence results obtained here may be relevant to belief change in other
areas of limited reasoning. For example, approaches to explicit belief often derives much of
their inspiration from relevance logic (Anderson & Belnap Jr., 1975); and description logics,
while constituting fragments of classical first-order logic, nonetheless in many cases do not
support full propositional reasoning.1

Creignou, Papini, Pichler, and Woltran (2012) provide further motivation for the study
of belief change in tractable fragments of propositional logic:

In many applications, the language is restricted a priori. For instance, a rule-
based formalization of expert knowledge is much easier to handle for standard
users. In case users want to revise some rules, they indeed expect that the
outcome is still in the easy-to-read format they are used to. Many fragments
of propositional logic allow for efficient reasoning methods. Suppose an agent
who frequently has to answer queries about his beliefs. This should be done
efficiently thus the beliefs are stored as a formula known to be in a tractable
class. In case the beliefs of the agent are undergoing a revision, it is desired that
the result of such an operation yields a formula in the same fragment. Hence,
the agent still can use the dedicated solving method he is equipped with for this
fragment. In case such changes are performed rarely, we do not bother whether
the revision itself can be performed efficiently, but it is more important that the
outcome can still be evaluated efficiently.

1. In fact, as Booth, Meyer, and Varzinczak (2009) point out, results here are also relevant to belief change
in description logics, a topic that has also elicited recent interest.
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Horn clause contraction has become a topic of interest in belief change in recent years
(Delgrande, 2008; Delgrande & Wassermann, 2010, 2011; Booth et al., 2009; Booth, Meyer,
Varzinczak, & Wassermann, 2011; Zhuang & Pagnucco, 2010a, 2011, 2012). As we discuss
in the next section, most of this work centers on the notion of a remainder set, or a maximal
subset of a knowledge base that fails to imply a given formula. We show that remainder
sets in the Horn case are too restricted and cannot give all feasible contraction operators.
As well they yield contraction operators with undesirable properties.

We propose the notion of a weak remainder set that serves as a basis for generating
all Horn maxichoice contraction operators. Contraction is also considered in terms of the
underlying model theory, a viewpoint that proves highly enlightening for studying Horn
belief change. Given a specification for maxichoice contraction based on weak remainders,
we go on to develop a specification for partial meet Horn contractions, and consider package
contraction and forgetting. In all the contraction operators developed, we provide postulate
sets along with constructions, and show representation results. Consequently we present a
comprehensive exploration of the landscape of Horn contraction.

The next section introduces belief change while the following section discusses reason-
ing in Horn clause theories. The main approach is presented in Section 4, while Section 5
discusses considerations pertaining to the supplementary contraction postulates. Section 6
covers the related operators of package contraction and forgetting on Horn theories. The
paper concludes with a discussion and a concluding section. Proofs are given in an ap-
pendix. Some of this material appeared previously in Delgrande (2008); Delgrande and
Wassermann (2010, 2011).

2. Background

In this section, we introduce the main concepts of the area of Belief Change which we will
need throughout the paper.

2.1 Belief Change

As previously mentioned, the AGM approach (Alchourrón et al., 1985; Gärdenfors, 1988)
is the original and best-known approach to belief change.2 The goal in this approach is to
describe belief change at the knowledge level, that is, on an abstract level and independent of
how beliefs are represented and manipulated. Belief states are modelled by sets of sentences,
called belief sets, closed under the logical consequence operator of a logic that includes
classical propositional logic in a language L. Thus a belief set K satisfies the constraint:

If K logically entails φ then φ ∈ K.

The central operators3 addressed are contraction, in which an agent reduces its set of beliefs,
and revision, in which an agent consistently incorporates a new belief. In revision, since the
new belief may be inconsistent with an agent’s beliefs, some beliefs may need to be dropped
in order to maintain a consistent set of beliefs. A third operator, belief expansion was also

2. As well, Peppas (2008) provides an excellent survey.
3. In this paper, we use the terms operator and f unction interchangeably when refering to belief change

operations.
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introduced: For belief set K and formula φ, the expansion of K by φ, denoted K + φ, is
the deductive closure of K ∪{φ}. Expansion captures the simplest form of belief change; it
can be reasonably applied when new information is consistent with a belief set

These operators are characterised by two means. On the one hand, a set of rationality
postulates for a belief change function may be provided; these postulates stipulate con-
straints that should govern any rational belief change function. On the other hand, specific
constructions for a belief change function are given. Representation results are then pro-
vided, showing that a set of rationality postulates exactly captures the operator given by a
particular construction.

We review these notions for belief contraction. Informally, the contraction of a belief set
by a formula is a belief set in which that formula is not believed. Formally, a contraction
function −̇ is a function from 2L × L to 2L satisfying the following postulates.

(K−̇1) K−̇φ is a belief set.

(K−̇2) K−̇φ ⊆ K.

(K−̇3) If φ 6∈ K, then K−̇φ = K.

(K−̇4) If 6` φ, then φ 6∈ K−̇φ.

(K−̇5) If φ ∈ K, then K ⊆ (K−̇φ) + φ.

(K−̇6) If φ ≡ ψ, then K−̇φ = K−̇ψ.

(K−̇7) K−̇φ ∩K−̇ψ ⊆ K−̇(φ ∧ ψ).

(K−̇8) If ψ 6∈ K−̇(φ ∧ ψ) then K−̇(φ ∧ ψ) ⊆ K−̇ψ.

Thus, contraction yields a belief set (K−̇1) in which the sentence for contraction φ is
not believed (unless φ is a tautology) (K−̇4). No new sentences are believed (K−̇2), and
if the formula is not originally believed then contraction has no effect (K−̇3). The fifth
postulate, the so-called recovery postulate, states that nothing is lost if one contracts and
expands by the same sentence. This postulate is controversial, as discussed, for example
by Hansson (1999). The sixth postulate asserts that contraction is independent of how
a sentence is syntactically expressed. The last two postulates express relations between
contracting by conjunctions and contracting by the constituent conjuncts. Hence (K−̇7)
says that if a formula is in the result of contracting by each of two formulas then it is in
the result of contracting by their conjunction. (K−̇8) says that if a conjunct is not in the
result of contracting by a conjunction, then, in the presence of (K−̇7), contracting by that
conjunct is the same as contracting by the conjunction. The first six postulates are referred
to as the basic postulates while the last two are referred to as the supplementary postulates.

Revision represents the situation in which new information may be inconsistent with
the reasoner’s beliefs K, and needs to be incorporated in a consistent manner, the one
exception being when the formula for revision itself is inconsistent. A revision function
∗ is a function from 2L × L to 2L satisfying a set of postulates analogous to those for
contraction. Contraction is usually taken as being the more fundamental operator for belief
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change. Moreover, revision and contraction are interdefinable. Revision can be defined in
terms of contraction by means of the Levi Identity :

K ∗ φ = (K−̇¬φ) + φ. (1)

Thus, to revise by φ, make K consistent with φ then expand by φ. Contraction can be
similarly defined in terms of revision by the Harper identity :

K−̇φ = K ∩ (K ∗ ¬φ).

Since we do not consider revision functions in this paper, we refer the reader to to the work
of Gärdenfors (1988) and Peppas (2008) for details.

Various constructions have been proposed to characterise belief change. The original
construction was in terms of remainder sets, where a φ-remainder of K is a maximal subset
of K that fails to imply φ. Formally:

Definition 1 Let K ⊆ L and let φ ∈ L.
K ↓φ is the set of sets of formulas s.t. K ′ ∈ K ↓φ iff

1. K ′ ⊆ K

2. K ′ 6` φ

3. For any K ′′ s.t. K ′ ⊂ K ′′ ⊆ K, it holds that K ′′ ` φ.

Each K ′ ∈ K ↓φ is a φ-remainder of K.

Thus K ↓ φ is the class of all maximal φ-nonimplying subsets of K. When there is no
ambiguity, we will also refer to K ′ ∈ K ↓φ as simply a remainder of K.

Two classes of contraction functions are relevant for our concerns. In maxichoice con-
traction, contraction is defined to correspond to a single selected remainder. In partial meet
contraction, contraction corresponds to the intersection of some subset of the remainders.
Consequently, any maxichoice contraction is a partial meet contraction but not vice versa.

From a logical point of view, the φ-remainders comprise equally-good candidates for
a contraction of φ from K. Selection functions are introduced to reflect the extra-logical
factors that need to be taken into account, to obtain the “best” or most plausible remainders.
In maxichoice contraction, the selection function determines a single selected remainder as
the contraction. In partial meet contraction, the selection function returns a subset of the
remainders, the intersection of which constitutes the contraction. Thus if the selection
function is denoted by γ(·), then the contraction of K by formula φ can be expressed by

K−̇φ =
⋂
γ(K ↓φ). (2)

For belief set K and function −̇ from 2L × L to 2L, it proves to be the case that −̇ is a
partial meet contraction function iff it satisfies the basic contraction postulates (K−̇1)–
(K−̇6). Last, let � be a transitive relation on 2K , and let the selection function be defined
by:

γ(K ↓φ) = {K ′ ∈ K ↓φ | ∀K ′′ ∈ K ↓φ,K ′′ � K ′}.
γ is a transitively relational selection function, and −̇ defined in terms of such a γ is a
transitively relational partial meet contraction function. Then we have:
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Theorem 1 (Alchourrón et al., 1985) Let K be a belief set and let −̇ be a function from
2L × L to 2L. Then

1. −̇ is a partial meet contraction function iff it satisfies the contraction postulates
(K−̇1)–(K−̇6).

2. −̇ is a transitively relational partial meet contraction function iff it satisfies the con-
traction postulates (K−̇1)–(K−̇8).

The second major construction for contraction functions is called epistemic entrench-
ment. The general idea is that extra-logic factors related to contraction are given by an
ordering on formulas in the agent’s belief set, reflecting how willing the agent would be to
give up a formula. Then a contraction function can be defined in terms of removing less
entrenched formulas from the belief set. Gärdenfors and Makinson (1988) show that for
logics including classical propositional logic, the two types of constructions, selection func-
tions over remainder sets and epistemic entrenchment orderings, capture the same class of
contraction functions.

Two other constructions were also proposed in the literature and shown to be equivalent
to transitively relational partial meet contraction: safe contraction (Alchourron & Makin-
son, 1985; Rott, 1992) and systems of spheres (Grove, 1988). We do not address either
construction in this paper.

2.2 Belief Change and Horn Clause Theories

Earlier work on belief change and Horn theories focussed on specific aspects of the problem,
rather than on a general characterisation of Horn clause belief change. For example, the
complexity of specific approaches to revising knowledge bases has been addressed by Eiter
and Gottlob (1992). This includes the case where the knowledge base and formula for
revision are conjunctions of Horn clauses, although the results of revision may not be Horn.
Not unexpectedly, results are generally better in the Horn case. Liberatore (2000) considers
the problem of a compact representation for revision in the Horn case. Given a knowledge
base K and formula φ, both Horn, the main problem addressed is whether the knowledge
base, revised according to a given operator, can be expressed by a propositional formula
whose size is polynomial with respect to the sizes of K and φ.

Langlois, Sloan, Szörényi, and Turán (2008) approach the study of revising Horn formu-
las by characterising the existence of a complement of a Horn consequence; such a comple-
ment corresponds to the result of a contraction operator. This work may be seen as a specific
instance of a general framework developed by Flouris, Plexousakis and Antoniou (2004).
They study belief change under a broad notion of logic. In particular, they give a criterion
for the existence of a contraction operator satisfying the basic AGM postulates in terms of
decomposability.

The present paper builds on and extends (Delgrande, 2008; Delgrande & Wassermann,
2010, 2011). Delgrande (2008) addresses maxichoice belief contraction in Horn clause the-
ories, where contraction is defined in terms of remainder sets, using Definition 1, but ex-
pressed in terms of derivations among Horn clauses. Booth, Meyer, and Varzinczak (2009)
and then Booth, Meyer, Varzinczak, and Wassermann (2011) further develop this area, by
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considering other versions of contraction, all based on remainder sets: partial meet contrac-
tion, a generalisation of partial meet, and package contraction. Horn contraction based on
remainders was found to be inadequate by Delgrande and Wassermann (2010), and instead
they developed a notion of weak remainder. The work by Zhuang and Pagnucco (2010a,
2012) follows another line, focusing on epistemic entrenchment and model-based construc-
tions. These approaches are discussed and compared in more detail once we have introduced
our overall approach.

Recently, revision operations for Horn theories have also been developed (Delgrande &
Peppas, 2011), and revision in other fragments of propositional logic has also been explored
(Creignou et al., 2012). However the relation of this work with the contraction operations
described in this paper is still unclear.

3. Horn Clause Theories

We will deal with languages based on finite sets of atoms, or propositional letters P =
{a, b, c, . . . }, where P includes the distinguished atom ⊥. L is the language of propositional
logic over P and with the usual connectives ¬, ∧, ∨, and →.4 LHC is the restriction of L
to Horn formulas, where a Horn formula is a finite conjunction of Horn clauses. LHC is the
least set given by:

1. a1 ∧ a2 ∧ · · · ∧ an → a, where n ≥ 0, and a, ai (1 ≤ i ≤ n) are atoms, is a Horn clause.

2. Every Horn clause is a Horn formula.

3. If φ and ψ are Horn formulas then so is φ ∧ ψ.

As well, for convenience, > will be taken as denoting a → a for some specific atom a. For
a Horn clause r as in 1 above, if n = 0 then r is a fact, and → a is also written as a.
For a Horn clause r as in 1 above, head(r) is a, and body(r) is the set {a1, a2, . . . , an}. If
a is a fact, then head(r) is a, and body(r) is empty. If for a Horn clause r we have that
head(r) = ⊥, then r is an integrity constraint. Allowing conjunctions of clauses, as given in
3, adds nothing of interest to the expressibility of the language with respect to reasoning.
However, it adds to the expressibility of contraction, as we are able to contract by more
than a single Horn clause.

Semantics: An interpretation of L is a function from P to {true, false} such that ⊥
is assigned false. Sentences of L are true or false in an interpretation according to the
standard rules of propositional logic. An interpretation M is a model of a sentence φ (or set
of sentences), written M |= φ, just if φ is true in M . Mod(φ) is the set of models of formula
(or set of formulas) φ; thus Mod(>) is the set of interpretations of L. An interpretation is
usually identified with the atoms true in that interpretation. Thus, for the language given by
P = {p, q, r, s}, the interpretation expressed by {p, q} is that in which p and q are true and
r and s are false. For convenience, we also will express interpretations by juxtaposition of
atoms. Thus the set of interpretations {{p, q}, {p}, {}} will usually be written as {pq, p, ∅}.

All of these notions are inherited by the corresponding Horn formula language LHC . A
key point concerning Horn theories is that such theories are characterised semantically by

4. To avoid clutter, and because no ambiguity results, we don’t parameterize L by P.
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the fact that their models are closed under intersections of positive atoms in an interpreta-
tion. That is, a Horn theory H satisfies the constraint:

If M1, M2 ∈Mod(H) then M1 ∩M2 ∈Mod(H).

This leads to the notion of the characteristic models (Khardon, 1995) of a Horn formula or
set of formulas: M is a characteristic model of formula φ just if for every M1,M2 ∈Mod(φ),
M1 ∩ M2 = M implies that M = M1 or M = M2. Thus for example, {p ∧ q → ⊥, r}
has models {pr, qr, r} and characteristic models {pr, qr}. Since pr ∩ qr = r, r isn’t a
characteristic model of φ.

Proof Theory: We assume a suitable inference relation ` for classical propositional logic.
The following axioms and rules give an inference relation for Horn formulas, where for
simplicity, a and b, possibly subscripted, are taken as ranging over atoms.

Axioms: ⊥ → a a→ a

Rules:

1. From a1 ∧ · · · ∧ an → a and b1 ∧ · · · ∧ bn → a1

infer b1 ∧ · · · ∧ bn ∧ a2 ∧ · · · ∧ an → a

2. From a1 ∧ · · · ∧ an → a infer a1 ∧ · · · ∧ an ∧ b→ a

3. For Horn clauses r1, r2, if body(r1) = body(r2) and head(r1) = head(r2) then
from r1 infer r2.

4. (a) From φ ∧ ψ infer φ and ψ

(b) From φ and ψ infer φ ∧ ψ

Rule 1 is an extended version of modus ponens, while Rule 2 is strengthening of the an-
tecedent. Rule 3 states that the order of atoms in the body of a Horn clause is irrelevant,
as are repeated atoms.

A formula ψ can be derived from a set of formulas A, written A `HC ψ, just if ψ can
be obtained from A by a finite number of applications of the above rules and axioms; for
simplicity we drop the subscript and write A ` ψ. If A = {φ} is a singleton set then we
just write φ ` ψ. A set of formulas A ⊆ LHC is inconsistent just if A ` ⊥. We use φ ≡ ψ
to represent logical equivalence, that is φ ` ψ and ψ ` φ.

Notation: We collect here for reference notation that is used in the paper. Lower-case
Greek characters φ, ψ, . . ., possibly subscripted, denote arbitrary formulas of either L or
LHC . Upper case Roman characters A, B, . . . , possibly subscripted, denote arbitrary sets
of formulas. H, H1, H ′, etc. denote Horn belief sets, so that φ ∈ H iff H `HC φ.

Cn(A) is the (classical, propositional) deductive closure of A where A is a formula or
set of formulas of propositional logic. Cnh(A) is the deductive closure of a Horn formula
or set of formulas A under Horn derivability. For set of formulas A, Horn(A) = {φ ∈ A |
φ is a Horn formula}.

We use m (possibly subscripted) to denote a maximal consistent Horn theory; that
is, m 6` ⊥ and for every Horn formula φ, either φ ∈ m or m ∪ {φ} ` ⊥. Hence such a

8



Horn Clause Contraction Functions

m has exactly one model. We often use maximal consistent sets of formulas in place of
interpretations, as it makes the statement and proof of various results easier. |φ| is the set
of maximal, consistent Horn theories that contain φ.

M (M1, M ′, etc.) will denote (classical, propositional) interpretations over some under-
stood language. Mod(A) is the set of models of A. Arbitrary sets of interpretations will
be denotedM (M′ etc.). Cl∩(M) is the intersection closure of a set of interpretationsM;
that is, Cl∩(M) is the least set of interpretations such that

1. M⊆ Cl∩(M) and

2. M1, M2 ∈ Cl∩(M) implies that M1 ∩M2 ∈ Cl∩(M).

Note that M denotes an interpretation expressed as a set of atoms, while m denotes
a maximal consistent set of Horn formulas. Thus the logical content is the same, in that
an interpretation defines a maximal consistent set of Horn formulas, and vice versa. We
retain these two interdefinable notations, since each is useful in the subsequent development.
Similar comments apply to Mod(φ) vs. |φ|; we also make use of the fact that there is a 1-1
correspondence between elements of |φ| and of Mod(φ).

Last, since P is finite, a (Horn or propositional logic) belief set may be finitely repre-
sented, that is, for X a belief set, there is a formula φ such that Cn(φ) = X.

4. Horn Clause Belief Set Contraction

In this section, we examine the possible constructions for the operation of contraction of
Horn belief sets. We begin by operations based on remainde sets and proceed to introducing
the concept of a weak remainder set.

4.1 Horn Clause Contraction and Remainder Sets

The most straightforward way to define a Horn contraction function is by adapting a con-
struction used in classical logic for contraction. To this end, Delgrande (2008) developed a
remainder-set approach to Horn contraction, which was subsequently generalised by Booth,
Meyer and Varzinczak (2009). It proves to be the case that these approaches are not suf-
ficiently expressive for general Horn contraction; as well, contraction based on remainder
sets can be shown to have undesirable properties. We review the pertinent aspects of these
approaches here, and in particular consider why the results of (classical, AGM) contraction
do not readily extend to the Horn case.

The definition of remainder sets for Horn clause belief sets( called e-remainder sets in
Delgrande, 2008) is the same as that for a remainder set (Definition 1) but with respect
to Horn clauses and Horn derivability. For H a Horn belief set and φ ∈ LHC , the set of
e-remainders with respect to H and φ is denoted by H ↓eφ.

Definition 2 Let H ⊆ LHC and let φ ∈ LHC .
H ↓eφ is the set of sets of formulas such that H ′ ∈ H ↓eφ iff

1. H ′ ⊆ H

2. H ′ 6` φ

9
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3. For any H ′′ such that H ′ ⊂ H ′′ ⊆ H it holds that H ′′ ` φ.

Each H ′ ∈ H ↓eφ is an φ-e-remainder with respect to H.

Usually such a H ′ will just be referred to simply as a remainder, since the Horn context
and underlying formula are clear.

Observation 1 If H ↓e φ1 = H ↓e φ2, then for any H ′ ⊆ H, φ1 ∈ Cnh(H ′) iff φ2 ∈
Cnh(H ′).

Observation 2 (Upper bound property) If X ⊆ H and φ 6∈ Cnh(X), then there is some
X ′ such that X ⊆ X ′ ∈ H ↓eφ.

Horn remainders as given in Definition 2 can be regarded as comprising a set of candidate
contractions for H by a formula φ; a single such remainder then could be selected as the
maxichoice contraction of H by φ. Booth, Meyer, and Varzinczak (2009) subsequently argue
that maxichoice contraction is not sufficient for an account of Horn contraction functions.
In classical AGM contraction, the set of partial meet contraction functions is defined by
taking the intersection of some of the remainders. However, Booth, Meyer, and Varzinczak
also argue that the set of Horn partial meet contractions is not sufficient to capture the full
range of possible contraction functions. Instead they define infra remainder sets, as follows:

Definition 3 For belief sets H and X, X ∈ H ⇓eφ5 iff there is some X ′ ∈ H ↓eφ such that(⋂
H ↓eφ

)
⊆ X ⊆ X ′.

The elements of H ⇓eφ are the infra e-remainder sets of H with respect to φ.

Thus an infra e-remainder set is any belief set that contains the intersection of Horn re-
mainders, and is contained in some Horn remainder. All e-remainder sets are clearly infra
e-remainder sets, as is the intersection of any set of e-remainder sets. That is:

Observation 3 Let H ⊆ LHC , φ ∈ LHC , and let X ⊆ H ↓eφ. Then (
⋂
X) ∈ H ⇓eφ.

Example 1 For P = {a, b, c}, let H = Cnh(a ∧ b).
Consider candidates for H−̇(a ∧ b).
It can be verified that there are three remainder sets:

Cnh(a ∧ (c→ b)),

Cnh(b ∧ (c→ a)), and

Cnh((a→ b) ∧ (b→ a) ∧ (c→ a) ∧ (c→ b)).

As well, any remainder set and any infra remainder set must contain the closure of
(c→ a) ∧ (c→ b).

5. Booth, Meyer, and Varzinczak (2009) write X ∈ H ⇓e Φ where Φ is a set of Horn clauses.
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To see the last part of the example, note that both (c→ a) and (c→ b) are in all remainders,
and so in the intersection of the remainders. This however leads to a significant blemish. Call
p inessential in H if for any conjunction of atoms body not containing p, H ` p∧ body → a
implies that either ` p ∧ body → a or H ` body → a. For contraction defined in terms
of remainder sets, or intersections of remainder sets, or infra remainder sets, we have the
result:6

Theorem 2 Let −̇ be a Horn contraction function defined via a selection function as in
(2) and based on (infra) remainder sets.

For φ ∈ H and p inessential in H, we obtain that (H−̇φ) + p ` φ.

The following example (based on an example in Hansson, 1999) illustrates the problem:

1. You believe Cleopatra had a son and a daughter (s ∧ d).

2. You learn that the source of information was unreliable, so you remove this belief; i.e.
you compute the contraction H−̇(s ∧ d).

3. You learn that it is raining outside (r).

4. You conclude that Cleopatra had a son and daughter (s ∧ d)

This behaviour is clearly undesirable. However, consider what this example implies
about Horn contraction to this point: We have that H−̇(s ∧ d) + r entails s ∧ d. Hence,
regardless of how −̇ is defined in terms of (infra) remainders, all models of H−̇(s ∧ d) in
which r is true must have that s and d is also true. What this in turn means is that sdr
cannot be a model of any s ∧ d-remainder. This last point is curious, in that sdr is clearly
a counter-model of s ∧ d, yet it does not take part in any remainder, and so does not take
part in any contraction.

In AGM contraction, we have that each φ-remainder of a belief set K can be charac-
terized by the set of models of K together with a single countermodel of φ, and vice versa
(e.g., see Gärdenfors, 1988, p. 86). What the above example shows is that this equivalence
between the proof-theoretic notion of remainders and the semantic notion of minimally-
extended sets of models breaks down in the Horn case.

So, consider what is going on in the Horn case: Assume that H |= φ and we wish to find a
maximal belief set H ′ such that H ′ ⊂ H and H ′ 6|= φ. That is, H ′ is to be a φ-remainder set
of H. As described, in classical AGM (maxichoice) contraction, from the semantic side one
adds a countermodel of φ to the models of H; this set of models characterises a candidate
theory for maxichoice contraction.

Consider the analogous process for Horn theories. Since a remainder set must be a
Horn theory, and the models of a Horn theory are closed under intersection, we would
need to make sure that this constraint holds here. So, intuitively, to carry out maxichoice
Horn contraction, we would add a countermodel of the formula for contraction, and close
the result under intersection. However, the theories resulting from this approach do not
correspond to those obtained via remainder sets. To see this, consider again Example 1,
and where the pertinent results are summarised in Figure 1.

6. This result would also be obtained in package contraction, discussed in Section 6, if package contraction
were defined in terms of infra remainder sets.

11
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counter- induced resulting KB remainder
model models set?

ac a a

a a ∧ (c→ b)
√

bc b b

b b ∧ (c→ a)
√

c ∅ (a→ b) ∧ (b→ a)

∅ (a→ b) ∧ (b→ a) ∧ (c→ a) ∧ (c→ b)
√

Figure 1: Example: Candidates for Horn contraction

We have that ac (viz. abc) is a countermodel of φ = ab; this is given in the first entry
of the first row of the table. Since H has a model ab, the intersection of these models,
ab ∩ ac = a must also be included; this is the item in the second column. The resulting
belief set is characterised by the interpretations Mod(H) ∪ {ac, a} = {abc, ab, ac, a}, which
is the set of models of formula a, given in the third column. The result isn’t a remainder
set, since Cnh(a∧(c→ b)) is a logically stronger belief set that fails to imply a∧b. This last
belief set, Cnh(a∧ (c→ b)) appears in the second row of the table. It can be observed that
the models of this belief set is made up of the models of H together with the countermodel
a, that is, the “induced model” in the first row.

As previously noted, there are three remainder sets, as indicated in the last column.
As discussed, this result is problematic for the approaches of both Delgrande (2008) and
Booth, Meyer, and Varzinczak (2009). For example, in none of the approaches in these
papers is it possible to obtain H−̇e (a ∧ b) ≡ a, nor is it possible to obtain H−̇e (a ∧ b) ≡
((a→ b) ∧ (b→ a)). But these possibilities would be desirable as potential contractions.

The diagnosis of the problem is now presumably clear. In the example, and for the
countermodel given by abc, it is not possible to have a set of interpretations M satisfying:

1. M is closed under intersections

2. M = Mod(H) ∪ abc

The solution also seems clear: From a semantic point of view, one wants the characteristic
models of maxichoice candidates for H−̇eφ to consist of the characteristic models of H
together with a single interpretation from Mod(>) \Mod(φ). The resulting theories, called
weak remainder sets, would correspond to the theories given in the third column in Figure 1;
we explore this notion in the next subsection.

To conclude we note that it has been shown that (maxichoice) contraction based on
remainder sets alone suffers from a triviality result analogous to that in AGM contraction.

Theorem 3 (Makinson, 2009) Let a ∈ P be an atom, and let H be a Horn belief set with
a → ⊥ ∈ H. Let −̇ be a maxichoice Horn contraction function based on remainder sets.
Then for every atom b, at least one of b and b→ ⊥ is in H−̇(a→ ⊥) + a.

Hence if a is false according to H, then contracting by a→ ⊥ and then expanding by a
yields a belief set in which every atom is believed to be true or believed to be false. This is
clearly far too unrealistic to be useful.

12
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4.2 Horn Clause Contraction and Weak Remainder Sets

The previous section showed that basing Horn contractions solely on remainder sets (or infra
remainder sets) is problematic. We then suggested that an adequate version of contraction
should be based on weak remainder sets where for belief set H and formula φ ∈ H, there is
a 1-1 correspondence between countermodels of φ and weak remainder sets. In this section
we develop Horn contraction based on weak remainder sets. We first give two constructions
for weak remainder sets, in terms of belief sets and in terms of sets of models, and show
that the constructions are equivalent. We then characterise maxichoice Horn contraction in
terms of weak remainder sets, showing via a representation result that the characterisations
are equivalent. Following this we similarly characterise partial meet contraction.

Definition 4 Let H be a Horn belief set, and let φ be a Horn formula.
H↓↓eφ is the set of sets of formulas such that

1. If φ ∈ H then: H ′ ∈ H↓↓eφ iff H ′ = H ∩m for some m ∈ |>| \ |φ|.

2. Otherwise H↓↓eφ = {H}.

H ′ ∈ H↓↓eφ is a weak remainder set of H and φ.

Observation 4 If H ′ ∈ H↓↓eφ, then H ′ is a belief set, i.e., H ′ = Cnh(H ′).

In the above definition, m is a maximal consistent set of formulas, and so corresponds
to the set of formulas true in some interpretation. In this case the underlying interpretation
would belong to Mod(>)\Mod(φ), which is to say that the underlying interpretation would
be a countermodel of φ.

Example 2 For P = {a, b, c}, let H = Cnh(a ∧ b) and φ = a ∧ b.
For m1 = Cnh(a ∧ ¬b ∧ ¬c) ∈ |>| \ |φ|, we have H ∩m1 = Cnh(a ∧ (c→ b)).
For m2 = Cnh(a ∧ ¬b ∧ c) ∈ |>| \ |φ|, we have H ∩m2 = Cnh(a).
Note that (H ∩m2) ⊂ (H ∩m1), and also that full propositional closure gives Cn(H ∩

m2) = Cn(a ∧ (b ∨ c)).

The previous definition specifies weak remainder sets in terms of maximal consistent
sets of formulas. The next definition is similar, but is expressed directly in terms of coun-
termodels of a formula.

Definition 5 Let H be a Horn belief set, and let φ be a Horn formula. Define H ||e φ by:

1. If φ ∈ H then: H ||e φ is the set of sets of formulas such that H ′ ∈ H ||e φ iff there is
M 6∈Mod(φ) such that Mod(H ′) = Cl∩(Mod(H) ∪ {M}).

2. Otherwise H ||e φ = {H}.

In our running example, H ||e φ is given by the closure of the formulas in column 3 in
Figure 1.

Perhaps not surprisingly, these two characterisations prove to be equivalent:
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Theorem 4 For H a Horn belief set and φ a Horn formula:

H↓↓eφ = H ||e φ.

We are now in a position to define a Horn contraction operator. We start by defining a
selection function, basically as is done in the AGM approach. Given a selection function, it
is straightforward to define a maxichoice contraction operator, and following this, a partial
meet contraction operator.

Definition 6 Let H be a Horn belief set. γ is a selection function for H if, for every
φ ∈ LHC ,

1. If H↓↓eφ 6= ∅ then ∅ 6= γ(H↓↓eφ) ⊆ H↓↓eφ.

2. If H↓↓eφ = ∅ then γ(H↓↓eφ) = {H}.

Definition 7 Let γ be a selection function on H such that γ(H↓↓eφ) = {H ′} for some
H ′ ∈ H↓↓eφ.

The maxichoice Horn contraction based on weak remainders is given by:

H−̇w φ = γ(H↓↓eφ)

Hence the result of a maxichoice contraction is characterised by a single weak remainder
set.

We obtain the following representation result, relating the construction to a postulate
set characterising contraction:

Theorem 5 Let H be a Horn belief set. Then −̇w is an operator of maxichoice Horn
contraction based on weak remainders iff −̇w satisfies the following postulates.

(H−̇w 1) H−̇w φ is a Horn belief set. (closure)

(H−̇w 2) If not ` φ, then φ 6∈ H−̇w φ. (success)

(H−̇w 3) H−̇w φ ⊆ H. (inclusion)

(H−̇w 4) If φ 6∈ H, then H−̇w φ = H. (vacuity)

(H−̇w 5) If ` φ then H−̇w φ = H (failure)

(H−̇w 6) If φ ≡ ψ, then H−̇w φ = H−̇wψ. (extensionality)

(H−̇w 7) If H 6= H−̇w φ then ∃β ∈ LHC such that {φ, β} ` ⊥, H−̇w φ ⊆ Cnh(β) and ∀H ′
s.t H−̇w φ ⊂ H ′ ⊆ H we have H ′ 6⊆ Cnh(β). (maximality)

The first four postulates and (H−̇w 6) have obvious counterparts in the AGM contraction
postulates. Notably, we do not obtain the recovery postulate. The following provides a
counterexample.
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Example 3 Let H = Cn(p→ q) and φ = p ∧ r → q.

Then H−̇w φ 6` p→ q, since p→ q ` p ∧ r → q.

Thus H−̇w φ can be at most Cn({p ∧ r ∧ i→ q | i ∈ P \ {p, r}}.)
But H−̇w φ+ φ ⊆ Cn({p ∧ r ∧ i→ q | i ∈ P \ {p, r}) + φ 6` p→ q

and hence H−̇w φ+ φ 6` p→ q.

Postulate (H−̇w 5) is derivable using the AGM postulates, but relies on the recovery pos-
tulate (K−̇5) for its proof. Since we lack the recovery postulate, it is required here as a
postulate, covering a special case, in its own right.

Postulate (H−̇w 7) is more complicated than the others, but it expresses the basic defin-
ing characteristic for maxichoice revision: If contraction is nontrivial (viz. H 6= H−̇w φ),
then some countermodel of φ is a model of H−̇w φ. This is expressed by β, in that β and φ
are mutually inconsistent, H−̇w φ is a subset of the closure of β, and H−̇w φ is a maximal
set of formulas for which this holds. This in turn means that, even though the recovery
postulate does not hold, nonetheless the trivial contraction, in which the entire belief set
is discarded, is excluded as a legal contraction operator. It can be verified that in Exam-
ple 1 (see also Figure 1) that both countermodels abc and abc fulfill the conditions on β in
(H−̇w 7), which is to say, this postulate captures the notion of weak remainder set.

We turn next to partial meet Horn contraction. The definition for partial meet Horn
contraction is analogous to that in AGM contraction, but based on weak remainder sets:

Definition 8 Let γ be a selection function on H such that γ(H↓↓eφ) ⊆ (H↓↓eφ).

The partial meet Horn contraction based on weak remainders is given by:

H−̇pmφ =
⋂
γ(H↓↓eφ)

A representation result involves a modification of the last postulate for maxichoice contrac-
tion:

Theorem 6 Let H be a Horn belief set. Then −̇pm is an operator of partial meet Horn
contraction based on weak remainders iff −̇pm satisfies the postulates (H−̇w 1) – (H−̇w 6)
and:

(H−̇pm 7) If β ∈ H\(H−̇pmφ), then there is some H ′ such that H−̇pmφ ⊆ H ′, φ 6∈ Cnh(H ′)
and φ ∈ Cnh(H ′ ∪ {β}) (weak relevance)

Example 4 For our running example, the partial meet given by the first and last weak
remainder sets in Figure 1 is given by

Cnh((b→ a) ∧ (c→ a)).

In terms of models, it is characterised by the models of a ∧ b, together with the two coun-
termodels given by atoms ac and ∅, and closed under intersections.
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5. Supplementary Postulates

In this section we investigate how the different proposals for Horn contraction operations
behave with respect to the supplementary postulates (K−̇7) and (K−̇8). Throughout this
section, we assume all selection functions to be transitively relational.

First we consider the operation of Horn partial meet e-contraction (Delgrande, 2008).
The following example shows that, considering ↓e as defined by Delgrande (see also Defini-
tion 2), Horn partial meet e-contraction does not satisfy (K−̇7):

Example 5 Let H = Cnh({a→ b, b→ c, a→ d, d→ c}).
We then have

H ↓e (a→ c) = {H1, H2, H3, H4}
H ↓e (b→ c) = {H5}

where:

H1 = Cnh({a→ b, a→ d}),
H2 = Cnh({a→ b, a ∧ c→ d, d→ c}),
H3 = Cnh({b→ c, a ∧ c→ b, a→ d}),
H4 = Cnh({a ∧ c→ b, b→ c, a ∧ c→ d, d→ c, a ∧ d→ b, a ∧ b→ d}), and

H5 = Cnh({a→ b, a→ d, d→ c})

Note that the two first elements of H ↓e (a → c) are subsets of the single element of
H ↓e (b→ c) and hence, cannot belong to H ↓e (a→ c ∧ b→ c).

H ↓e (a→ c ∧ b→ c) = {H3, H4, H5}

If we take a selection function based on a transitive relation between remainder sets that
gives priority in the order in which they appear in this example, i.e., H5 ≺ H4 ≺ H3 ≺
H2 ≺ H1, we have:

H − (a→ c) = H1

H − (b→ c) = H5

H − (a→ c ∧ b→ c) = H3

And we see that

H − (a→ c) ∩H − (b→ c) = H1 6⊆ H3 = H − (a→ c ∧ b→ c)

The same example shows that the operation does not satisfy (K−̇8):

a→ c 6∈ H − (a→ c ∧ b→ c) but H − (a→ c ∧ b→ c) 6⊆ H − (a→ c).

If there are no further restrictions on the selection function, the same example also
shows that contraction based on infra-remainders does not satisfy the supplementary pos-
tulates. Note that each remainder set in the example is also an infra-remainder and that
the selection function always selects a single element. It suffices to assign all the remaining
infra-remainders lower priority.

Now we can show that the operation of partial meet based on weak remainders (PMWR)
has a better behaviour with respect to the supplementary postulates:
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Theorem 7 Partial meet based on weak remainders and a transitive relational selection
function satisfies (K−̇7) and (K−̇8).

More recently, Zhuang and Pagnucco (2010a) have addressed Horn contraction from the
point of view of epistemic entrenchment. They compare AGM contraction via epistemic
entrenchment in classical propositional logic with contraction in Horn logics. A postulate
set is provided and shown to characterise entrenchment-based Horn contraction. The fact
that AGM contraction allows disjunctions of formulas, which in general will not be Horn, is
handled by considering Horn strengthenings in their postulate set, which is to say, logically
weakest Horn formulas that subsume the disjunction. In contrast to earlier work, their
postulate set includes equivalents to the supplemental postulates, and so goes beyond the
set of basic postulates. In more detail, Zhuang and Pagnucco (2010a) have the following:

Definition 9 For a given clause φ, the set of its Horn strengthenings (φ)H is the set such
that ψ ∈ (φ)H if and only if ψ is a Horn clause and there is no Horn clause ψ′ such that
ψ ⊂ ψ′ ⊆ φ.

Of the ten postulates given in Zhuang & Pagnucco, 2010a to characterize epistemic en-
trenchment Horn contraction (EEHC), postulates (H−̇1), (H−̇2), (H−̇4), (H−̇6), (H−̇7)
and (H−̇8) correspond exactly to the AGM postulates with the same numbers. (H−̇1),
(H−̇2), (H−̇3), (H−̇4) and (H−̇6) correspond to postulates (H−̇w 1)-(H−̇w 6) characteriz-
ing partial meet contraction based on weak remainders just defined. The three new postu-
lates are:

(H−̇5) If ψ ∈ H−̇φ ∧ ψ then ψ ∈ H−̇φ ∧ ψ ∧ δ

(H−̇9) If ψ ∈ H \H−̇φ then ∀χ ∈ (φ ∨ ψ)H , χ 6∈ H−̇φ

(H−̇10) If ∀χ ∈ (φ ∨ ψ)H , χ 6∈ H−̇φ ∧ ψ then ψ 6∈ H \H−̇φ

Subsequently, Zhuang and Pagnucco (2010b) have shown that transitively relational
PMWR as defined above is more general than EEHC. This means that any operation
satisfying their set of 10 postulates (which include (K−̇7) and (K−̇8)) is a PMWR. We
have seen that PMWR satisfies (K−̇7) and (K−̇8), hence, in order to compare PMWR and
EEHC, we need to know whether PMWR satisfies (H−̇5), (H−̇9) and (H−̇10).

Theorem 8 PMWR satisfies (H−̇5).

Zhuang (2012) has shown that weak relevance implies (H−̇9), hence, PMWR satisfies
(H−̇9). PMWR in general does not satisfy (H−̇10), as the following example shows:

Example 6 Let H = Cnh({a, b}).
Then we have

H↓↓ea = {H1, H3} and
H↓↓e(a ∧ b) = {H1, H2, H3},

where
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H1 = Cnh({b→ a, a→ b}),
H2 = Cnh({a}) and

H3 = Cnh({b}).
Assuming a selection function based on a transitive relation such that H1 ≺ H2 and

H1 ≺ H3 (and H2 � H3 and H3 � H2), we have

H − a = H3 and H − (a ∧ b) = H2 ∩H3

Since (a∨b)H = {a, b}, we have that for any χ ∈ (a∨b)H , χ 6∈ H−(a∧b), but b ∈ H−a.

6. Other Operators

In this section we consider two contraction-like operators. The first, package contraction, is
like contraction, but it is defined with respect to a set of formulas. The second operator,
forget, can be regarded as a removal of an atom or set of atoms from the language of
discourse.

6.1 Package Contraction

In AGM-style belief change in propositional logic, given a belief set K and a set of formulas
Φ, the package contraction K−̇pΦ is a form of contraction in which no (non-tautological)
member of Φ is in K−̇pΦ. In propositional logic the effect of package contraction may be
nearly, but not quite, obtained by contracting by the disjunction of elements in Φ. To see
the difference, consider where Φ = {φ, ψ}. Clearly, φ ∨ ψ 6∈ K−̇(φ ∨ ψ) whereas it seems
that a “simultaneous contraction” K−̇p {φ, ψ} should allow for the possibility of φ∨ψ being
true in the outcome.

As Booth, Meyer, and Varzinczak (2009) note, package contraction is of interest in Horn
clause theories, given the limited expressivity of such theories. That is, if φ, ψ are Horn
formulas, H−̇(φ ∨ ψ) will be undefined whenever φ ∨ ψ is non-Horn (which, of course, will
be most of the time). On the other hand, expressing a contraction of both φ and ψ by
H−̇p {φ, ψ} seems to be perfectly fine.

Our development of Horn package contraction is analogous to that of maxichoice Horn
contraction based on weak remainders. Essentially, for a package contraction H−̇pΦ, we
ensure that for each φ ∈ Φ a countermodel of φ is among the models of H−̇pΦ.

Definition 10 Let H be a Horn belief set, and let Φ = {φ1, . . . , φn} be a finite7 set of Horn
formulas.

H↓↓pΦ is the set of sets of formulas such that H ′ ∈ H↓↓pΦ iff

For every 1 ≤ i ≤ n, ∃mi such that:

if 6` φi and φi ∈ H then mi ∈ |>| \ |φi|; otherwise mi = LHC ;

and H ′ = H ∩
⋂n
i=1mi.

In the next definition, the notion of a selection function on H (Definition 6) is extended in
the obvious fashion to apply to a set of Horn formulas.

7. Since we assume that the underlying language is finite, any set of formulas will be equivalent to a finite
set of formulas, under logical equivalence of formulas.
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Definition 11 Let γ be a selection function on H such that γ(H↓↓pΦ) = {H ′} for some
H ′ ∈ H↓↓pΦ.

The (maxichoice) package Horn contraction based on weak remainders is given by:

H−̇pΦ = γ(H↓↓pΦ)

if ∅ 6= Φ ∩H 6⊆ Cnh(>); and H otherwise.

The following result relates elements of H↓↓pΦ to weak remainders.

Theorem 9 Let H be a Horn belief set and let Φ = {φ1, . . . , φn} be a set of Horn formulas
where for 1 ≤ i ≤ n we have 6` φi.

Then H ′ ∈ H↓↓pΦ iff for 1 ≤ i ≤ n there are Hi ∈ H↓↓eφi and H ′ =
⋂n
i=1Hi.

It follows immediately from this that any maxichoice Horn contraction defines a package
contraction, and vice versa.

Corollary 1 Let −̇p be an operator of maxichoice Horn package contraction. Then

H−̇φ = H−̇pΦ for Φ = {φ}

is an operator of maxichoice Horn contraction based on weak remainders.

Corollary 2 Let −̇ be an operator of maxichoice Horn contraction based on weak remain-
ders. Then

H−̇pΦ =
⋂
φ∈Φ

H−̇φ

is an operator of maxichoice Horn package contraction.

Example 7 Consider the Horn belief set H = Cnh({a, b}) over P = {a, b, c}. We want to
determine elements of

H↓↓pΦ = Cnh({a, b})↓↓p{a, b}.

There are a total of 14 elements in H↓↓pΦ and so 14 candidate package contractions. These
candidates can be described as follows:

1. There are 4 countermodels of a, given by:

A = {bc, b, c, ∅}.

Thus there are four weak remainders corresponding to these countermodels, and so
four candidates for maxichoice Horn contraction by a.

2. Similarly there are 4 countermodels of b:

B = {ac, a, c, ∅}.
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3. Members of H↓↓pΦ are given by

Cl∩(Mod(H) ∪ {x} ∪ {y})

for x ∈ A and y ∈ B.

For example, for x = bc, y = ∅, we have that Cl∩(Mod(H)∪ {x} ∪ {y}) = {abc, ab, bc, b, ∅},
which is the set of models of (c→ b) ∧ (a→ b).

For x = bc, y = ac, we have that Cl∩(Mod(H) ∪ {x} ∪ {y}) = Cnh(>); this holds for
no other choice of x and y.

What this example indicates informally is that there is a great deal of choice with respect
to candidates for package contraction. To some extent, such a combinatorial explosion of
possibilities is to be expected, given the fact that a formula will in general have a large
number of countermodels, and that this is compounded by the fact that each formula in a
package contraction will be associated with its own countermodel. However, it can also be
noted that some candidate package contractions contain redundancies, in that a selected
countermodel of a may also be a countermodel of b, in which case there seems to be no
reason to allow the possible incorporation of a separate countermodel of b. Consequently,
we also consider versions of package contraction that in some sense yield a maximal belief
set. However, first we provide results regarding package contraction.

We have the following result:

Theorem 10 Let H be a Horn belief set. Then −̇p is an operator of maxichoice Horn
package contraction based on weak remainders iff −̇p satisfies the following postulates:

(H−̇p 1) H−̇pΦ is a belief set. (closure)

(H−̇p 2) For φ ∈ Φ, if not ` φ, then φ 6∈ H−̇pΦ (success)

(H−̇p 3) H−̇pΦ ⊆ H (inclusion)

(H−̇p 4) H−̇pΦ = H−̇p (H ∩ Φ) (vacuity)

(H−̇p 5) H−̇pΦ = H−̇p (Φ \ Cnh(>)) (failure)

(H−̇p 5b) H−̇p ∅ = H (triviality)

(H−̇p 6) If φ ≡ ψ, then

H−̇p (Φ ∪ {φ}) = H−̇p (Φ ∪ {ψ}) (extensionality)

(H−̇p 7) If H 6= H−̇pΦ then for

Φ′ = (Φ \ Cnh(>)) ∩H = {φ1, . . . , φn}

there is ∆ = {β1, . . . , βn} where for 1 ≤ i ≤ n,

{φi, βi} ` ⊥ and H−̇pΦ ⊆ Cnh(βi) and

∀H ′ s.t H−̇pΦ ⊂ H ′ ⊆ H, ∃β ∈ ∆ such that H ′ 6⊆ Cnh(β) (maximality)
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With the exception of the last postulate, these postulates are clear and reasonable: As
usual, the result of package contraction is a belief set (H−̇p 1). Moreover, each non-tautology
in a set Φ is not believed following contraction (H−̇p 2), and no formulas are added (H−̇p 3).
Contracting a formula not originally in H has no effect on the contraction (H−̇p 4), as does
attempting to contract a tautology (H−̇p 5). An empty contraction unsurprisingly has no
effect (H−̇p 5b). As in other knowledge-level accounts, contraction is independent of the
syntactic expression of formulas to be contracted (H−̇p 6). The last postulate (H−̇p 7)
corresponds to the maximality postulate for contraction based on weak remainders. If a
package contraction H−̇pΦ is nontrivial then each of the nontautologies in Φ that appear
in H satisfy the same maximality condition as the formula for contraction does for regular
Horn contraction based on weak remainder sets. That is, package contraction essentially
extends contraction to a set of formulas. This result is to be expected, given Theorem 9
which related elements of H↓↓pΦ to weak remainders.

As discussed, a characteristic of maxichoice package contraction is that there are a large
number of members of H↓↓pΦ, some of which may be logically quite weak. However it proves
to be the case that we can eliminate some candidates via pragmatic concerns. We have that
a package contraction H−̇pΦ is a belief set H ′ ∈ H↓↓pΦ such that, informally, models of H ′

contain a countermodel for each φi ∈ Φ along with models of H. In general, some interpre-
tations will be countermodels of more than one member of Φ, and so pragmatically, one can
select minimal sets of countermodels. Hence in the case that

⋂
i(Mod(>) \Mod(φi)) 6= ∅, a

single countermodel, that is some m ∈
⋂
i(Mod(>) \Mod(φi)), would be sufficient to yield

a package contraction.

Now, it may be that
⋂
i(Mod(>) \Mod(φi)) is empty. A simple example illustrates this

case:

Example 8 Let H = Cnh(a → b, b → a) where P = {a, b}. Then H−̇p {a → b, b → a} =
Cnh(>). That is, the sole countermodel of a → b is {a} while that of b → a is {b}. The
intersection closure of these interpretations with those of H is {ab, a, b, ∅} = Mod(>).

Informally one can get around this by simply selecting a minimal set of models such that
a countermodel of each member of Φ is in the set. These considerations yield the following
definition:

Definition 12 Let H be a Horn belief set, and let Φ = {φ1, . . . , φn} be a set of Horn
formulas.

HS(Φ), the set of (minimal) hitting sets of interpretations with respect to Φ, is defined
by:

S ∈ HS(Φ) iff

1. S ⊆ |>|

2. For every 1 ≤ i ≤ n where 6` φi and φi ∈ H, S ∩ (|>| \ |φi|) 6= ∅

3. For S′ ⊂ S, S′ ∩ (|>| \ |φi|) = ∅ for some 1 ≤ i ≤ n.

Thus we look for sets of sets of interpretations; elements of such a set S are interpreta-
tions represented as maximal consistent sets of formulas (Condition 1). As well, this set S
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contains a countermodel for each member of Φ (Condition 2) and moreover S is a subset-
minimal set that satisfies these conditions (Condition 3). Thus S ∈ HS(Φ) corresponds to
a minimal set of countermodels of members of Φ. As an aside, it can be noted that the
notion of a hitting set is not new in general (Garey & Johnson, 1979) nor in AI (Reiter,
1987).

Definition 13 H↓↓phΦ is the set of sets of formulas such that

H ′ ∈ H↓↓phΦ iff H ′ = H ∩
⋂
m∈S for some S ∈ HS(Φ).

Definition 14 Let γ be a selection function on H such that γ(H↓↓phΦ) = {H ′} for some
H ′ ∈ H↓↓phΦ.

Define:

H−̇phΦ = γ(H↓↓phΦ)

if ∅ 6= Φ ∩H 6⊆ Cnh(>); and H otherwise.

The following result follows straightforwardly.

Theorem 11 H−̇phΦ is an operator of maxichoice Horn package contraction.

Example 9 Consider the case where H = Cnh(a, b), P = {a, b, c}.

1. Let Φ = {a, b}.

It can be verified that the hitting sets are given by:

{ {ac, bc}, {a, bc}, {ac, b}, {a, b}, {c}, {} }

The corresponding elements of H↓↓phΦ are given by:

H↓↓phΦ = { Cnh(>),

Cnh(c→ a),

Cnh(c→ b),

Cnh(c→ a, c→ b),

Cnh(a→ b, b→ a),

Cnh(a→ b, b→ a, c→ a, c→ b) }.

Compare this with Example 7, where we have 14 candidate package contractions.

2. Let Φ = {a, a ∧ b}. We obtain that

H↓↓phΦ = { Cnh(b),

Cnh(b ∧ (c→ a)),

Cnh(a→ b, b→ a),

Cnh(a→ b, b→ a, c→ a, c→ b) }.
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Any set of formulas that satisfies Definition 13 clearly also satisfies Definition 11. One
can further restrict the set of candidate package contractions by replacing S′ ⊂ S by |S′| <
|S| in the third part of Definition 12. In this case, the package contraction in Example 9,
Part 1 would yield just the two candidates Cnh(a→ b, b→ a) and Cnh(a→ b, b→ a, c→
a, c→ b). As well, of course, one could continue in the obvious fashion to define a notion of
partial meet Horn package contraction. Given the limited use of such an operator, we omit
the details.

6.2 Forgetting in Horn Formulas

This section examines another means of removing beliefs from an agent’s belief set, that
of forgetting (Lin & Reiter, 1994; Lang & Marquis, 2002). Forgetting is an operation on
belief sets and atoms of the language; the result of forgetting an atom can be regarded as
decreasing the language by that atom.

In addressing forgetting, it will be easier to work with a set of Horn clauses, rather
than Horn formulas. Since there is no confusion, we will freely switch between sets of Horn
clauses and the corresponding Horn formula comprising the conjunction of clauses in the
set. Thus any time that a set appears as an element in a formula, it can be understood
as standing for the conjunction of members of the set. Thus for sets of clauses S1 and
S2, S1 ∨ S2 will stand for the formula (

∧
φ∈S1

φ) ∨ (
∧
φ∈S2

φ). Of course, all such sets are
guaranteed to be finitely representable, since our language is finite.

We introduce the following notation for this section, where S is a set of Horn clauses,
and > is now taken as a distinguished atom true in all interpretations.

• For t ∈ {⊥,>}, S[p/t] is the result of uniformly substituting t for atom p in every
φ ∈ S.

• S↓p = {φ ∈ S | p does not occur in φ}

Assume without loss of generality that for Horn clause φ ∈ S, that head(φ) 6∈ body(φ).
The following definition adapts the standard definition, attributed to George Boole, to

forgetting in Horn clauses.

Definition 15 For set of Horn clauses S and atom p, define forget(S, p) to be S[p/⊥] ∨
S[p/>].

This is not immediately useful for us, since a disjunction is generally not Horn. However, the
next result shows that this definition nonetheless leads to a Horn-definable forget operator.
Recall that for clauses c1 and c2, expressed as sets of literals where p ∈ c1 and ¬p ∈ c2, that
the resolvent of c1 and c2 is the clause (c1 \ {p})∪ (c2 \ {¬p}). As well, recall that if c1 and
c2 are Horn, then so is their resolvent.

In the following, Res(S, p) is the set of Horn clauses obtained from S by carrying out
all possible resolutions with respect to p.

Definition 16 Let S be a set of Horn clauses and p an atom. Define

Res(S, p) = {φ | ∃φ1, φ2 ∈ S such that

p ∈ body(φ1) and p = head(φ2), and

φ = (body(φ1) \ {p} ∪ body(φ2))→ head(φ1)}
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Theorem 12 forget(S, p) ≡ S↓p ∪Res(S, p).

Corollary 3 Let S be a set of Horn clauses and p an atom. Then forget(S, p) is equivalent
to a set of Horn clauses.

Corollary 4 Let S1 and S2 be sets of Horn clauses and p an atom. Then S1 ≡ S2 implies
that forget(S1, p) ≡ forget(S2, p).

There are several points of interest about these results. The theorem is expressed in
terms of arbitrary sets of Horn clauses, and not just deductively-closed Horn belief sets.
Hence the second corollary states a principle of irrelevance of syntax for the case for forget-
ting for belief bases. As well, the expression S↓p ∪ Res(S, p) is readily computable, and so
the theorem in fact provides a means of computing forget. Further, the approach clearly
iterates for more than one atom. We obtain the additional result:8

Corollary 5
forget(forget(S, p), q) ≡ forget(forget(S, q), p).

Given this, we can define for a set of atoms A that forget(S, ∅) = S and that

forget(S,A) = forget(forget(S, a), A \ {a})

where a ∈ A. On the other hand, forgetting an atom may result in a quadratic blowup of
the knowledge base.

Finally, it might seem that the approach allows for the definition of a revision operator
— and a procedure for computing a revision — by using something akin to the Levi Identity.
Let A(φ) be the set of atoms appearing in (formula or set of formulas) φ. Then:

FRevise(S, φ)
def
= forget(S,A(φ)) + φ.

In fact, this does yield a revision operator, but an operator that in general is far too drastic
to be useful. To see this, consider a taxonomic knowledge base which asserts that whales
are fish, whale→ fish. Of course, whales are mammals, but in using the above definition
to repair the knowledge base, one would first forget all knowledge involving whales, for
example, that whales have fins, breathe air, give live birth, and so on. Such an example
doesn’t prove that there are no reasonable revision operators definable via forget, but it does
show that a näıve approach is problematic. Moreover, these problems are not particular to
Horn formulas, but rather any revision operator defined in terms of forgetting with respect
to any underlying logic would be similarly problematic.

7. Comparison among Constructions for Horn Contraction

This section provides a technical summary of the differences between the various contraction
operations defined on Horn belief sets:

• Every e-remainder is a weak remainder, but the converse is not true.

8. In fact, this is an easy consequence of the definition of forget.
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This is clearly seen in Figure 1. For a Horn theory H and formula φ, the e-remainders are the
maximal subsets of H that do not imply φ. The weak remainders are characterised by the
models of H together with a single countermodel of φ, and then closed under intersection.
In propositional logic these notions would coincide; here they do not. As well, this means
that weak remainders and partial meet are distinct notions, the latter corresponding to
intersections of weak remainders.

Similarly, we obtain the following:

• Every e-remainder is an infra-remainder, but the converse is not true.

This is clear from Definition 3, and illustrated in Example 1.
We also have:

• Not all infra-remainders are weak-remainders.

Looking again at Figure 1, we see that the set Cnh({c → a, c → b, a → b}) is an infra-
remainder but not a weak remainder. It can however be obtained as the intersection of two
remainders.

Consider Booth et al., 2009, Example 3.2, where H = Cnh({p → q, q → r}) and one
wants to contract by p→ r: In this case, the weak remainders coincide with the remainders.
The set {p∧q → r, p∧r → q} is an infra-remainder and cannot be obtained as the intersection
of weak-remainders. The authors claim that this set is a desirable result of the contraction,
but do not give any strong motivation.

Last, we have:

• Not all weak remainders are infra-remainders.

Infra-remainders, by definition, must contain full-meet and be contained in some remainder.
Weak remainders are contained in some remainder (or are a remainder) but do not always
contain full meet, as can be seen in the table in Figure 1. Full-meet in that example would
contain {c→ a, c→ b} and there are two weak remainders (Cnh(a) and Cnh(b)) which do
not contain both formulas.

The last two items show that weak remainders and infra-remainders are independent
concepts and their relation should be studied in more detail. These various relations are
illustrated in Figure 2.

infra remaindersweak remainders e−remainders

Figure 2
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The aforecited example of Booth, Meyer, and Varzinczak (2009) raises another point
that deserves attention: For H = Cnh({p → q, q → r}), we have H ↓e (p → r) = H↓↓e(p →
r) = {Cnh({p → q}), Cnh({q → r, p ∧ r → q})}. There is an asymmetry here – while
it is possible to obtain Cnh({p → q}) as the result of contraction, e-remainders, weak
remainders or infra-remainders do not allow for Cnh({q → r}) as a possible outcome. This
has motivated the study of Horn belief base contraction (Delgrande & Wassermann, 2010),
where one may obtain Cnh({q → r}), and where we think we may find other interesting
alternatives.

Zhuang and Pagnucco have studied several forms of Horn Contraction, such as the
Epistemic Entrenchment Horn Contraction (EEHC) mentioned earlier (2010a), Transitively
Relational Partial-Meet Horn Contraction (TRPMHC) (2011) and Model-based Horn Con-
traction (MHC) (2012). These different operations are compared by Zhuang (2012). Partial
meet based on weak remainders is more general than EEHC and MHC. However, when the
selection function is required to be transitively relational, we obtain TRPMHC, which is
equivalent to MHC.

8. Conclusion

In this paper we have explored belief contraction, and operators related to belief contraction,
with respect to Horn theories. In the AGM approach there are two principal means of
constructing contraction functions, via remainders or maximal subsets of a belief set that fail
to imply a formula, and epistemic entrenchment, which incorporates a preference ordering
on formulas. Here we focus on Horn contraction functions that can be defined by remainder-
like constructions.

It proves to be the case that basing contraction directly on remainder sets, yielding what
we call e-remainders, is problematic, in that the resulting approach is inexpressive and has
undesirable properties. We also show that an alternative that has been proposed, of infra
remainders suffers from the same problems. Based on an examination of model-theoretic
considerations we developed an account of maxichoice Horn contraction in terms of weak
remainder sets. The idea here is that the models of a contraction of a Horn belief set H by
a Horn formula φ are given by the models of H together with a countermodel of φ, closed
under intersection (so as to yield a Horn theory). We then provided representation results
for maxichoice Horn contraction as well as partial meet contraction, and compared them to
other proposals in the literature.

We also study two other kinds of operators for giving up beliefs in Horn theories: package
contraction and forgetting. The former involves contracting by a set of formulas, so that no
formula in the set is believed, Again, we give a construction and postulate set, along with
a corresponding representation result. The second operator, forgetting, can be thought of
as a shrinking of the language of discourse.

This work is interesting since Horn clauses have found widespread use in areas such
as logic programming, rule-based systems, deductive databases, and description logics. As
well, since Horn reasoning is weaker than classical reasoning, this work sheds light on the
foundations of belief change. A natural topic for future work is to consider Horn revision
operators and study their relation to Horn contraction. A second topic for future work is
to consider belief change in other logics which do not contain classical propositional logic.
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Appendix A. Proofs of the Main Results

Theorem 2: Let −̇ be a Horn contraction function defined via a selection function as in
(2) and based on (infra) remainder sets.

For φ ∈ H and p inessential in H, we obtain that (H−̇φ) + p ` φ.

Proof: Let φ = φ1 ∧ · · · ∧ φn where each φi is a Horn clause. For Horn conjunct φi of φ,
we have H−̇eφ |= p→ φi. (To see this, note first that φi is a Horn clause, and so is of the
form body → a for conjunction of atoms body and atom a. Since body → a ∈ H and H is a
Horn belief set, so also p ∧ body → a ∈ H. Since by assumption p is not in body, it follows
that p ∧ body → a is in any remainder set of H with respect to φ. Then, p ∧ body → a is
logically equivalent to p→ (body → a), whence H−̇eφ |= p→ φi.) Thus (H−̇eφ)∪{p} |= φi
or (H−̇eφ) + p |= φi for each conjunct of φ, and so (H−̇eφ) + p |= φ. �

Theorem 3: Let a ∈ P be an atom, and let H be a Horn belief set with a → ⊥ ∈ H.
Let −̇ be a maxichoice Horn contraction function based on remainder sets. Then for every
atom b, at least one of b and b→ ⊥ is in H−̇(a→ ⊥) + a.

Proof: Suppose that for some atom b, neither of b and b → ⊥ is in H−̇(a → ⊥) + a,
where a → ⊥ ∈ H. Since a is an atom, a → ⊥ is not a tautology, and as a → ⊥ ∈ H,
by construction, H−̇(a → ⊥) is an element of H ↓e (a → ⊥). This, together with the
assumption b, b → ⊥ 6∈ H−̇(a → ⊥), gives us (1) (H−̇(a → ⊥)) ∪ {b} ` a → ⊥ and (2)
(H−̇(a → ⊥)) ∪ {b → ⊥} ` a → ⊥. (Results (1) and (2) are a consequence of the fact
that since H−̇(a → ⊥) is a remainder set, it is a maximal set that fails to imply a → ⊥.)
From (1) and (2) together, we have that (H−̇(a→ ⊥)) ` a→ ⊥, contradicting the success
postulate. �

Lemma 1 Let T be a set of propositional formulas. Then

Cl∩(Mod(T )) = Mod(Horn(Cn(T ))).

Proof: We have that Cl∩(Mod(T )) is the least set of models such that Mod(T ) ⊆
Cl∩(Mod(T )) and where Cl∩(Mod(T )) = Mod(H) for some Horn theory H. But this
theory is just the least upper Horn approximation T h of T (Selman & Kautz, 1996), given
by

T h = {α | T ` α where α is a Horn prime implicate of T}.

We have that Cnh(T h) = Horn(Cn(T )) from which the result follows. �

Theorem 4: For H a Horn belief set and φ a Horn formula:
H↓↓eφ = H ||e φ.

Proof:
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1. H↓↓eφ ⊆ H ||e φ:

If φ 6∈ H or ` φ then H↓↓eφ = H ||e φ = {H}.
So assume that φ ∈ H and 6` φ.

Let H ′ ∈ H↓↓eφ; we show that H ′ ∈ H ||e φ.

Since H ′ ∈ H↓↓eφ, by definition H ′ = H∩m for some m ∈ |>|\|φ|, and so Mod(H ′) =
Mod(H ∩m). H and m are Horn theories, thus H ∩m is a Horn theory.

Using the fact that for Horn belief set T , T = Horn(Cn(T )), we have that H ∩m =
Horn(Cn(H ∩m)) and so Mod(H ′) = Mod(Horn(Cn(H ∩m)).

Applying Lemma 1 toH∩m we obtain thatMod(Horn(Cn(H∩m)) = Cl∩(Mod(Cn(H∩
m))). Now, Cl∩(Mod(Cn(H∩m))) = Cl∩(Mod(H∩m)) = Cl∩((Mod(H)∪Mod(m))).

By definition of m as a maximal consistent Horn theory, there is M ∈ Mod(>)
such that Mod(m) = {M}. Putting the above together we get that Mod(H ′) =
Cl∩((Mod(H) ∪M)), that is, H ′ ∈ H ||e φ.

2. H ||e φ ⊆ H↓↓eφ:

This part follows immediately by essentially taking the preceding part in reverse order.
�

Lemma 2 Maximality (H−̇w 7) is equivalent to the following property, which we will call
(H−̇w 7′):

If H 6= H−̇w φ then ∃m ∈ |>| \ |φ| s.t. H−̇w φ ⊆ m and ∀H ′ s.t. H−̇w φ ⊂ H ′ ⊆ H we
have H ′ 6⊆ m.

Proof: It is straightforward to show that the property implies (H−̇w 7): Let β be the
conjunction of literals appearing in m. Our language is finite, so β is a well-defined formula.
So Cnh(β) = m, and thus (H−̇w 7) holds.

For the other direction, assume that (H−̇w 7) holds.

Claim: For given H and φ, if β satisfies the conditions in (H−̇w 7) then for any p ∈ P,
either β ∧ p or β ∧ (p→ ⊥) also satisfies these conditions in (H−̇w 7).

Proof of Claim: Clearly, if {φ, β} is inconsistent then so is {φ, β ∧ l} for l ∈
{p, p→ ⊥}; and if H − φ ⊆ Cnh(β) then H ′ ⊆ Cnh(β ∧ l) for l ∈ {p, p→ ⊥}.
So we just need to show that for Horn theory H ′ where H−φ ⊂ H ′ ⊆ H, either
H ′ 6⊆ Cnh(β ∧ p) or H ′ 6⊆ Cnh(β ∧ (p→ ⊥)).

Towards a contradiction, assume otherwise. Then H ′ ⊆ Cnh(β ∧ p) and H ′ ⊆
Cnh(β ∧ (p→ ⊥)) and so H ′ ⊆ Cnh(β ∧ p)∩Cnh(β ∧ (p→ ⊥)). But Cnh(β) =
Cnh(β∧p)∩Cnh(β∧p→ ⊥), and consequently H ′ ⊆ Cnh(β). This contradicts
that β satisfies (H−̇w 7) for H and φ.

Hence our assumption was incorrect, and so H ′ 6⊆ Cnh(β ∧ p) or H ′ 6⊆ Cnh(β ∧
(p→ ⊥)).
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We have just shown that if β satisfies (H−̇w 7) for given H and φ, then so does one of
β∧p or β∧ (p→ ⊥). An induction over (the finite set) P then establishes that if β satisfies
(H−̇w 7) for given H and φ, then so does some β′ where β′ ` p or β′ ` (p → ⊥) for every
p ∈ P. Hence β′ is such that Cnh(β′) ∈ |>| \ |φ|, and thus taking m = Cnh(β′) satisfies the
property. �

Theorem 5: Let H be a Horn belief set. Then −̇w is an operator of maxichoice Horn
contraction based on weak remainders iff −̇w satisfies the following postulates.

(H−̇w 1) H−̇w φ is a Horn belief set. (closure)

(H−̇w 2) If not ` φ, then φ 6∈ H−̇w φ. (success)

(H−̇w 3) H−̇w φ ⊆ H. (inclusion)

(H−̇w 4) If φ 6∈ H, then H−̇w φ = H. (vacuity)

(H−̇w 5) If ` φ then H−̇w φ = H (failure)

(H−̇w 6) If φ ≡ ψ, then H−̇w φ = H−̇wψ. (extensionality)

(H−̇w 7) If H 6= H−̇w φ then ∃β ∈ LHC such that {φ, β} ` ⊥, H−̇w φ ⊆ Cnh(β) and ∀H ′
s.t H−̇w φ ⊂ H ′ ⊆ H we have H ′ 6⊆ Cnh(β). (maximality)

Proof:

1. Construction to Postulates:

That the construction satisfies the first five postulates follows directly from the defini-
tions of weak remainders and selection functions. To see that it satisfies (H−̇w 6) we
only have to note that φ ≡ ψ implies that H↓↓eφ = H↓↓eψ and since γ is a function,
H−̇w φ = H−̇wψ.

To see that the construction satisfies (H−̇w 7), suppose H 6= H−̇w φ. This means that
H↓↓eφ 6= ∅ and hence, there is m ∈ |>| \ |φ| such that H−̇w φ = H ∩ m. Let β be
the conjunction of all literals appearing in m. Then, since Cnh(β) = m, we have
that {φ, β} is inconsistent, H−̇w φ ⊆ Cnh(β) and ∀H ′ s.t H−̇w φ ⊂ H ′ ⊆ H we have
H ′ 6⊆ Cnh(β).

2. Postulates to Construction:

The proof uses (H−̇w 7′) rather than (H−̇w 7), as they were shown to be equivalent in
Lemma 2.

Let −̇w be an operator that satisfies Cn(H−̇w 1) – (H−̇w 7′).

Let γ be defined by γ(H↓↓eφ) = {H−̇w φ}.

To show that γ is a function:
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Assume that H↓↓eφ = H↓↓eψ; we need to show that γ(H↓↓eφ) = γ(H↓↓eψ).
If φ 6∈ H, then H↓↓eφ = {H} and since H↓↓eφ = H↓↓eψ, we have that
H↓↓eψ = H, and hence ψ 6∈ H or ` ψ. Then, by (H−̇w 4) or (H−̇w 5),
H−̇w φ = H−̇wψ = H and by definition γ(H↓↓eφ) = γ(H↓↓eψ).

Now let us consider the case where φ, ψ ∈ H. Since H↓↓eφ = H↓↓eψ we have
that {H ∩m | m ∈ |>| \ |φ|} = {H ∩m | m ∈ |>| \ |ψ|}.
It follows that |>| \ |φ| = |>| \ |ψ|. To see this, suppose that {H ∩m | m ∈
|>| \ |φ|} = {H ∩m | m ∈ |>| \ |ψ|} and |>| \ |φ| 6= |>| \ |ψ|. Without loss
of generality, suppose there is m′ ∈ |>| \ |φ| such that m′ 6∈ |>| \ |ψ|. Then
m′ is a maximal consistent theory that contains ψ. Since ψ ∈ H, we know
that ψ ∈ H ∩m′. This means that H ∩m′ ∈ {H ∩m | m ∈ |>| \ |φ|}, but
H ∩m′ 6∈ {H ∩m | m ∈ |>| \ |ψ|}, as for any m ∈ |>| \ |ψ| by definition
ψ 6∈ m. This contradicts the initial hypothesis.

Since |>| \ |φ| = |>| \ |ψ| we get that |φ| = |ψ| and so φ ≡ ψ. From (H−̇w 6)
we have H−̇w φ = H−̇wψ, and so γ(H↓↓eφ) = γ(H↓↓eψ).

If φ 6∈ H, then from (H−̇w 4) we have that H−̇w φ = H. Similarly, if ` φ, then from
(H−̇w 5) we again have that H−̇w φ = H.

Consequently assume that φ ∈ H and not ` φ. We need to show that H−̇w φ ∈ H↓↓eφ,
that is, H−̇w φ = H ∩m for some m ∈ |>| \ |φ|.
Since not ` φ, from (H−̇w 2) we have φ 6∈ H−̇w φ; since φ ∈ H we then have that
H 6= H−̇w φ.

Since H 6= H−̇w φ, from (H−̇w 7′) we get that there is m ∈ |>|\|φ| such that H−̇w φ ⊆
m.

As well, (H−̇w 3) givesH−̇w φ ⊆ H, and so this withH−̇w φ ⊆ m implies thatH−̇w φ ⊆
(m ∩H).

We need to show that H−̇w φ = (m ∩ H). Towards a contradiction assume that
H−̇w φ 6= (m ∩H), that is to say, H−̇w φ ⊂ (m ∩H).

Let ψ ∈ (m ∩H) \ (H−̇w φ). Then

H−̇w φ ⊂ Cnh(H−̇w φ ∪ {ψ}) ⊆ m ∩H ⊂ H.

But, substituting Cnh(H−̇w φ ∪ {ψ}) for H ′ in (H−̇w 7′) we get that Cnh(H−̇w φ ∪
{ψ}) 6⊆ m, contradiction.

Hence the assumption that H−̇w φ 6= (m ∩H) is incorrect; hence H−̇w φ = (m ∩H)
where (m ∩H) ∈ H↓↓eφ, which was to be shown. �

Theorem 6: Let H be a Horn belief set. Then −̇pm is an operator of partial meet Horn
contraction based on weak remainders iff −̇pm satisfies the postulates (H−̇w 1) – (H−̇w 6)
and:

(H−̇pm 7) If β ∈ H \(H−̇pmφ), then there is some H ′ such that H−̇pmφ ⊆ H ′, φ 6∈ Cnh(H ′)
and φ ∈ Cnh(H ′ ∪ {β}) (weak relevance)
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Proof:

1. Construction to Postulates:

(H−̇w 1) follows from the fact that the intersection of Horn theories is a Horn the-
ory. Postulates (H−̇w 2) − (H−̇w 6) follow immediately from the definitions of weak
remainder, selection function and partial meet contraction.

To see that the construction satisfies weak relevance, note that if β ∈ H \ H − φ,
then there is some X ∈ γ(H↓↓eφ) such that β 6∈ X. Since β ∈ H, then there is some
m ∈ |>| \ |φ| such that β 6∈ m and X = H ∩m. Take H ′ = m. Then H − φ ⊆ H ′,
φ 6∈ Cnh(H ′) and φ ∈ Cnh(H ′ ∪ {β}) = Cnh(⊥).

2. Postulates to Construction:

Let γ(H↓↓eφ) = {X ∈ H↓↓eφ | H−̇pmφ ⊆ X} if H↓↓eφ 6= ∅ and γ(H↓↓eφ) = {H}
otherwise. We have to show that: (1) γ is a function; (2) γ is a selection function;
and (3)

⋂
γ(H↓↓eφ) = H − φ.

If φ 6∈ H, by (H−̇w 4), H−̇pmφ = H =
⋂
γ(H↓↓eφ). Assume then that φ ∈ H.

(1) Let H↓↓eφ1 = H↓↓eφ2. We must show that γ(H↓↓eφ1) = γ(H↓↓eφ2). As in the
proof for maxichoice contraction, H↓↓eφ1 = H↓↓eφ2 implies that φ1 ≡ φ2 and then, by
Postulate (H−̇w 6), H−φ1 = H−φ2. By the construction of γ, γ(H↓↓eφ1) = γ(H↓↓eφ2).

(2) From the construction of γ, we know that γ(H↓↓eφ) ⊆ H↓↓eφ. So we have to show
that if H↓↓eφ 6= ∅, then γ(H↓↓eφ) 6= ∅, and otherwise γ(H↓↓eφ) = {H}.

(i) If H↓↓eφ 6= ∅, then H 6= ∅ and |>| \ |φ| 6= ∅. By (H−̇w 1) and (H−̇w 2),
φ 6∈ Cn(H − φ). Then there is m ∈ |>| \ |φ| such that H − φ ⊆ m. By (H−̇w 3),
H − φ ⊆ H, hence, H − φ ⊆ H ∩m ∈ γ(H↓↓φ).

(ii) If H↓↓eφ = ∅, then ` φ and by (H−̇w 5), H − φ = H.

(3) We know that H − φ ⊆
⋂
γ(H↓↓eφ). Suppose there is β ∈

⋂
γ(H↓↓eφ) such that

β 6∈ H − φ. Since
⋂
γ(H↓↓eφ) ⊆ H, β ∈ H \ (H − α) and by weak relevance we know

that there is some H ′ such that H − φ ⊆ H ′, φ 6∈ Cnh(H ′) and φ ∈ Cnh(H ′ ∪ {β}).
Then there is m ∈ |>| \ |φ| such that H ′ ⊆ m and β 6∈ m. Take X = H ∩m. Then
X ∈ H↓↓eφ and from (H−̇w 3) we have that H − φ ⊆ X and hence, X ∈ γ(H↓↓eφ).
But β 6∈ X, which leads to a contradiction. �

Theorem 7: Partial meet based on weak remainders and a transitive relational selection
function satisfies (K−̇7) and (K−̇8).

Proof:
Let γ be a selection function based on a transitive relation �.
Since |>| \ |α ∧ β| = (|>| \ |α|) ∪ (|>| \ |β|) and hence, H↓↓eα ∧ β = H↓↓eα ∪H↓↓eβ, in

order to show that PMWR satisfies postulate (K-7), it suffices to show that

(*) γ(H↓↓eα ∧ β) ⊆ γ(H↓↓eα) ∪ γ(H↓↓eβ).9

9. This is called Choice-distributivity in the literature.
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Take X ∈ γ(H↓↓eα ∧ β). We know that X ∈ H↓↓eα or X ∈ H↓↓eβ. Suppose that
X ∈ H↓↓eα, we have to show that X ∈ γ(H↓↓eα). If X 6∈ γ(H↓↓eα), then there is X ′ ∈ H↓↓eα
such that X ≺ X ′. But then X ′ ∈ H↓↓eα ∧ β and X 6∈ γ(H↓↓eα ∧ β). The case where
X ∈ H↓↓eβ is analogous, thus X ∈ γ(H↓↓eα) or X ∈ γ(H↓↓eβ), which proves (*).

In order to show that PMWR satisfies postulate (K-8), let α 6∈ H − α ∧ β. We have to
show that

(**) γ(H↓↓eα) ⊆ γ(H↓↓eα ∧ β)

From α 6∈ H −α∧β we know that γ(H↓↓eα∧β) contains at least one element of H↓↓eα.
Since H↓↓eα ⊆ H↓↓eα ∧ β and γ is based on �, we have that γ(H↓↓eα) ⊆ γ(H↓↓eα ∧ β). �

Theorem 8: PMWR satisfies (H−̇5).

Proof:
To see that PMWR satisfies (H−̇5), first we have to note that H↓↓eϕ∧ψ ⊆ H↓↓eϕ∧ψ∧δ.

From ψ ∈ H − ϕ ∧ ψ, we know that ψ ∈ X for every X ∈ γ(H↓↓eϕ ∧ ψ). We have to show
that ψ ∈ X for every X ∈ γ(H↓↓eϕ ∧ ψ ∧ δ). Let X ∈ γ(H↓↓eϕ ∧ ψ ∧ δ). If X 6∈ H↓↓eϕ ∧ ψ,
then X = H ∩m for m a maximal, consistent Horn theory that does not contain ϕ ∧ ψ ∧ δ
but contains ϕ∧ψ. Hence, ψ ∈ X. Otherwise, i.e., if X ∈ H↓↓eϕ∧ψ, we have to show that
X ∈ γ(H↓↓eϕ∧ψ). Suppose that X 6∈ γ(H↓↓eϕ∧ψ), then there is X ′ ∈ H↓↓eϕ∧ψ such that
X ′ < X. But then X ′ ∈ H↓↓eϕ ∧ ψ ∧ δ and X cannot be an element of γ(H↓↓eϕ ∧ ψ ∧ δ).
Hence, for every X ∈ γ(H↓↓eϕ∧ψ∧δ), we know that ψ ∈ X and therefore, ψ ∈ H−ϕ∧ψ∧δ.

�

Theorem 9: Let H be a Horn belief set and let Φ = {φ1, . . . , φn} be a set of Horn formulas
where for 1 ≤ i ≤ n we have 6` φi.

Then H ′ ∈ H↓↓pΦ iff for 1 ≤ i ≤ n there are Hi ∈ H↓↓eφi and H ′ =
⋂n
i=1Hi.

Proof: Let H be a Horn belief set and Φ = {φ1, . . . , φn} ⊂ LHC .

=⇒ Let H ′ ∈ H↓↓pΦ.

From Definition 10 we have that ∃m1, . . . ,mn such that H ′ =
⋂n
i=1(H ∩mi) where

1. if φi ∈ H and 6` φi then mi ∈ |>| \ |φi|;
2. otherwise mi = LHC .

For each i, 1 ≤ i ≤ n, as above,

1. if φi ∈ H and 6` φi then by Definition 4, Hi = H ∩mi satisfies the conditions for
Hi ∈ H↓↓eφi;

2. otherwise we have mi = LHC and so Hi = H ∩mi = H ∩ LHC = H satisfies the
conditions for Hi ∈ H↓↓eφi, again by Definition 4.

⇐= Consider some φi ∈ Φ and let Hi ∈ H↓↓eφi.
From Definition 4 we have that

1. if φi ∈ H and 6` φi then Hi = H ∩m for some m ∈ |>| \ |φi|;
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2. if φi 6∈ H or ` φi then Hi = H or equivalently Hi = H ∩mi where mi = LHC .

Consequently for each i, 1 ≤ i ≤ n, as above, H ′ =
⋂n
i=1Hi satisfies the conditions

for H ′ ∈ H↓↓pΦ in Definition 10. �

Theorem 10: Let H be a Horn belief set. Then −̇p is an operator of maxichoice Horn
package contraction based on weak remainders iff −̇p satisfies the following postulates:

(H−̇p 1) H−̇pΦ is a belief set. (closure)

(H−̇p 2) For φ ∈ Φ, if not ` φ, then φ 6∈ H−̇pΦ (success)

(H−̇p 3) H−̇pΦ ⊆ H (inclusion)

(H−̇p 4) H−̇pΦ = H−̇p (H ∩ Φ) (vacuity)

(H−̇p 5) H−̇pΦ = H−̇p (Φ \ Cnh(>)) (failure)

(H−̇p 5b) H−̇p ∅ = H (triviality)

(H−̇p 6) If φ ≡ ψ, then

H−̇p (Φ ∪ {φ}) = H−̇p (Φ ∪ {ψ}) (extensionality)

(H−̇p 7) If H 6= H−̇pΦ then for

Φ′ = (Φ \ Cnh(>)) ∩H = {φ1, . . . , φn}

there is ∆ = {β1, . . . , βn} where for 1 ≤ i ≤ n,

{φi, βi} ` ⊥ and H−̇pΦ ⊆ Cnh(βi) and

∀H ′ s.t H−̇pΦ ⊂ H ′ ⊆ H, ∃β ∈ ∆ such that H ′ 6⊆ Cnh(β) (maximality)

Proof:

1. Construction to Postulates:

(H−̇p 1) is obvious.

For (H−̇p 2), if φ ∈ H, then Definition 10 ensures that for any H ′ ∈ H↓↓pΦ that H ′ 6` φ
and so φ 6∈ H ′.
For (H−̇p 3) we have that H ′ ∈ H↓↓pΦ implies that H ′ is of the form H ∩X; conse-
quently H ′ ⊆ H.

(H−̇p 4) and (H−̇p 5) are a direct consequence of the special cases in Definition 10 for
φ ∈ Φ where φ 6∈ H or ` φ respectively.

(H−̇p 5b) is vacuously satisfied by Definition 10, while for (H−̇p 6), the form of any
H ′ ∈ H↓↓pΦ is easily seen to be independent of the syntactic form of members of Φ.

For (H−̇p 7), let X ∈ H↓↓pΦ where Φ = {φ1, . . . , φn}. By appeal to (H−̇p 4) and
(H−̇p 5) we can assume without loss of generality that φ ∈ Φ implies that 6` φ and
φ ∈ H. Let m1, . . . ,mn be as specified in Definition 10. Then m1, . . . ,mn satisfy
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the conditions on β1, . . . , βn in (H−̇p 7): Since mi ∈ |>| \ |φi|, so {φi, βi} ` ⊥. Since
X = H ∩

⋂n
i=1mi, so X ⊆ Cnh(mi) = mi. Last, we need to show that for any belief

set H ′ where X ⊂ H ′ ⊆ H, that for some mi in our list, H ′ 6⊆ Cnh(mi) = mi. But
this is a direct consequence of the fact that X = H ∩

⋂n
i=1mi.

2. Postulates to Construction:

Let −̇p satisfy Postulates (H−̇p 1)–(H−̇p 7), and let H be a Horn belief set and Φ ⊆
LHC . Let ∆ be as specified in (H−̇p 7) and for φ ∈ Φ, define H − φ by:

(a) If ` φ or φ 6∈ H then H − φ = H.

(b) Otherwise for the β ∈ ∆ corresponding to φ, H − φ is the maximum set of
formulas such that H−̇pΦ ⊆ H − φ ⊂ H and H − φ ⊆ Cnh(β).

Using Theorem 5, it is easily shown that − is an operator of maxichoice Horn con-
traction.

This implies that there is a selection function γ such that H−φ = γ(H↓↓eφ) for every
φ ∈ Φ.

Therefore, by Theorem 9 we have that H−̇pΦ =
⋂
φ∈ΦH − φ = H ′ is such that

H ′ ∈ H↓↓pΦ. �

Theorem 12: forget(S, p) ≡ S↓p ∪Res(S, p).

Proof: Let S be a finite set of nontautological Horn clauses. For p ∈ P, define:

Sh = {c ∈ S | p = head(c)}
Sb = {c ∈ S | p ∈ body(c)}

As well, we have already defined: S↓p = {c ∈ S | p does not occur in c}.
We obtain:

forget(S, p) ≡ S[p/⊥] ∨ S[p/>]

≡ (Sh[p/⊥] ∪ Sb[p/⊥] ∪ S↓p[p/⊥]) ∨
(Sh[p/>] ∪ Sb[p/>] ∪ S↓p[p/>])

≡ (Sh[p/⊥] ∪ {>} ∪ S↓p) ∨ ({>} ∪ Sb[p/>] ∪ S↓p)
≡ (Sh[p/⊥] ∪ S↓p) ∨ (Sb[p/>] ∪ S↓p)
≡ S↓p ∪ (Sh[p/⊥] ∨ Sb[p/>])

≡ S↓p ∪ {c1 ∪ c2 | c1 ∈ Sh[p/⊥] and c2 ∈ Sb[p/>]}
≡ S↓p ∪Res(S, p) �
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