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In Artificial Intelligence, a key question concerns how an agent may rationally revise its beliefs in light of new

information. The standard (AGM) approach to belief revision assumes that the underlying logic contains

classical propositional logic. This is a significant limitation, since many representation schemes in AI don’t
subsume propositional logic. In this paper we consider the question of what the minimal requirements are

on a logic, such that the AGM approach to revision may be formulated. We show that AGM-style revision
can be obtained even when extremely little is assumed of the underlying language and its semantics; in fact,

one requires little more than a language with sentences that are satisfied at models, or possible worlds. The

classical AGM postulates are expressed in this framework and a representation result is established between
the postulate set and certain preorders on possible worlds. To obtain the representation result, we add a

new postulate to the AGM postulates, and we add a constraint to preorders on worlds. Crucially, both of

these additions are redundant in the original AGM framework, and so we extend, rather than modify, the
AGM approach. As well, iterated revision is addressed and the Darwiche/Pearl postulates are shown to be

compatible with our approach. Various examples are given to illustrate the approach, including Horn clause

revision, revision in extended logic programs, and belief revision in a very basic logic called literal revision.
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1. INTRODUCTION
In all but the simplest of circumstances and environments, an agent will have to alter
its beliefs to take into account new information. Such new information may fill in
gaps in the agent’s beliefs, or it may correct an agent’s incorrectly-held belief. So, very
broadly, in this process of belief revision an agent will receive information about the
domain; this information may or may not conflict with the agent’s beliefs; but one way
or another this new information is to be incorporated into the agent’s beliefs.

However, this process of incorporating new beliefs into an agent’s belief corpus is
not arbitrary, but rather is bound by various commonsense principles. For example
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assume that the new information is given by a formula φ. Then if the goal of revision
is to incorporate this information, following the process of revision, φ should appear
among the agent’s beliefs. One possibility would be to simply add φ to the agent’s
beliefs; in such a case φ would indeed be in the resulting belief set. However, φ might
conflict with the agent’s prior beliefs, and if this was the case, the agent would fall
into inconsistency. So another reasonable principle is that an agent’s beliefs should
be consistent after revision by a formula φ (unless φ itself is inconsistent). This in
turn requires that an agent may also have to remove some beliefs in a revision. One
possibility in this case would be to remove all of the agent’s prior beliefs. However this
is clearly far too drastic, and so one would want to stipulate that in some fashion the
agent retains as many of its old beliefs as consistently possible.

The upshot is that belief revision (and more broadly, belief change as a whole) is an
area with difficult and subtle problems. Research in this area can be regarded as be-
ginning with the seminal work of Alchourrón, Gärdenfors, and Makinson [Alchourrón
et al. 1985] (see also [Gärdenfors 1988]), resulting in what has come to be known as
the AGM approach. In this framework, the focus was on the belief change operators
of revision, in which an agent alters its beliefs to incorporate a new formula, and con-
traction, in which an agent reduces its stock of beliefs so that a given formula is not
believed. In this approach, as we review in the next section, postulates are provided,
which express principles that arguably should govern any rational change operator, as
well as formal constructions that express how one may build a specific change operator.
These two notions are tied together by providing representation results that prove that
the class of change functions captured by a set of postulates is exactly that given in
the corresponding construction. The resulting framework has, since its inception, been
the central pillar and focus of research in belief change [Peppas 2008].

A key assumption of the AGM approach, and the point that will concern us here, is
that the logic underlying the agent’s knowledge base at least contains classical propo-
sitional logic. On the one hand this seems to be a quite reasonable assumption; after
all, classical propositional logic is often seen as being very basic and lacking in ex-
pressivity. However, on the other hand, this apparent simplicity is deceptive. The best
propositional reasoners take exponential time in the worst case, and general consen-
sus is that this won’t change (given that the satisfiability problem of propositional
logic is NP complete). As well, full classical negation and disjunction are sometimes
seen as being undesirable, particularly when moving toward a first-order formalism.
Yet other approaches employ nonclassical notions of, for example, negation, and resist
an easy comparison with classical propositional logic. What this means is that in Ar-
tificial Intelligence in general, and Knowledge Representation in particular, there has
been extensive work on representation formalisms that don’t subsume classical propo-
sitional logic, including work in Horn clause reasoners, description logics, extended
logic programs, and others. And so what this also means is that the AGM framework
for belief change is inapplicable in these approaches.

This has led to the study of AGM-style belief change with respect to systems that
do not subsume propositional logic. The focus of much of this work has been on belief
change in Horn theories, including belief contraction and belief revision. In particular,
[Delgrande and Peppas 2015] reconstructs full AGM-style belief revision in the context
of propositional Horn theories. As a result, while the AGM approach assumes that the
underlying logic subsumes classical propositional logic, it is clear that this is not a
necessary condition.

In the present paper, we consider the question of just what are the minimal restric-
tions that need to be placed on a logic in order to be able to define AGM-style revision
in that logic. It proves to be the case that very little needs to be assumed in order to
provide a sufficient setting for defining revision. Essentially we assume that we have
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a language (although we assume nothing about the structure of the language), and
that we have a set of models, and a function that specifies, for each formula, the set of
models that satisfy the formula.

While we work within a very general setting, we show that nonetheless a funda-
mental semantic characterisation of belief revision based on the notion of a faithful
ranking [Katsuno and Mendelzon 1991] can be suitably defined in our approach. How-
ever, in the general case, an additional constraint that we call regularity is imposed
on faithful rankings. Notably this condition is redundant when the underlying logic
subsumes classical propositional logic. As well, we provide a set of postulates that cor-
responds to the standard AGM revision postulates. Similar to faithful rankings, an
additional postulate, that we call (Acyc), is required. Again, this postulate is redun-
dant in the case of propositional logic. These two characterisations are proven to be
equivalent via a representation result that shows that the class of general revision
functions conforming to the augmented postulate set is the same as those expressible
by regular faithful rankings. We also consider iterated belief revision, showing that the
Darwiche-Pearl postulates [Darwiche and Pearl 1997] are consistent with the general
approach to revision.

Subsequently, various specific instances of the approach are discussed. Classical
propositional logic and Horn clause logic are first viewed, briefly, as instances of this
approach. Following this we review belief revision in various classes of extended logic
programs. Last, we develop an approach called literal revision where the underlying
formal system is perhaps the simplest approach that could reasonably be called a logic.
In this last system, an agent’s belief set is equivalent to a set of propositional literals,
and the task is to consistently revise by a formula expressed as a conjunction of lit-
erals. Since the defined system satisfies our set of assumptions, it follows that a full
revision function can be defined, even in such an impoverished system.

These results are interesting for several reasons:

— Foremost, the AGM framework is extended to include any system that might
reasonably be called a logic.1 As described above, systems that do not subsume classical
propositional logic are playing an increasing role in knowledge representation. Notable
areas of interest include, among others, description logics [Baader et al. 2007] and the
answer set approach to logic programming [Gelfond and Lifschitz 1988; Brewka et al.
2011]. The present approach then implicitly defines AGM-style belief revision within
such approaches.

— Consequently, our results provide a guide to the formulation of specific revi-
sion operators in non-classical logics, including description logics, modal logics, many-
valued logics, etc.

— In addition, our results provide a significant short cut in developing representa-
tion results: For any logic, once the language, model theory, and a notion of regularity
are suitably defined, our representation result applies to that logic.

— Last, the approach sheds light on the foundations of belief change. On the one
hand, it demonstrates that the AGM framework, as least as regards revision, is much
more widely applicable than previously believed. On the other hand, our results indi-
cate that when the underlying logic is weaker than classical propositional logic, revi-
sion and contraction become distinct, independent change operations.

The next section provides background and motivation: the AGM approach is briefly
reviewed and, following this, issues that may arise in inferentially-weak systems are
discussed. Section 3 covers previous work concerning belief change in such systems.

1Or at least any logic defined in terms of a model theory and satisfaction relation. We return to this point in
Section 7 once the approach has been presented.
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Section 4 defines the formal framework, expresses the AGM approach in this frame-
work, and provides a representation result. Section 5 addresses iterated revision; while
the next section describes various instantiations of the approach. Section 7 discusses
issues raised by the approach, and the final section gives a brief conclusion.

2. BELIEF CHANGE
2.1. The AGM Approach
The AGM approach to belief change [Alchourrón et al. 1985; Gärdenfors 1988; Peppas
2008] studies change operators at the knowledge level, independent of syntactic issues
such as how information is to be represented in a knowledge base. It is assumed that
the underlying logic contains classical propositional logic. An agent’s beliefs are mod-
elled by a deductively closed set of formulas, called a theory or a belief set. Thus a belief
set is a set of formulas K such that K = Cn(K), where Cn(K) denotes the closure of
K under a consequence operator that subsumes classical logical consequence. Belief
revision is modelled as a function from a belief set K and a formula φ to a belief set
K ′ such that φ is believed in K ′, that is, φ ∈ K ′. If φ is consistent with K (that is to
say, ¬φ 6∈ K), then it is simply added to K and the revision is given by Cn(K ∪ {φ}).
This “adding” of a formula to a belief set is usefully considered as a distinct operation,
called expansion; it is defined by:

K + φ = Cn(K ∪ {φ}).

The interesting case in revising by a formula φ is when φ is inconsistent with the
agent’s belief set K. Since φ is to be believed in the revised knowledge base, this means
that (assuming that φ is consistent), some formulas must be dropped from K before φ
can be consistently added. In general, there will be many ways in which K can be
reduced so that φ can be consistently added — for example, one alternative is to drop
all formulas in K.

Clearly such a revision function would in general be too drastic. This leads to the con-
sideration that a revision function isn’t arbitrary, but rather is assumed to be guided
by various rationality criteria. A key assumption is that of informational economy, that
when revising beliefs, we want to retain as much as possible of our prior beliefs. As a
consequence, a rational belief revision operator is one in which (among other things) a
belief set K undergoes minimal change in order to incorporate a formula for revision.
Of course, a notion such as minimal change, at least as an English phrase, is informal,
and so part of the task of specifying a revision function, only partly addressed by the
AGM approach, is to formally specify what is meant by such change.

The AGM framework does not determine a unique revision function, but rather it
specifies constraints that a rational change function should satisfy; beyond these con-
straints the approach offers no advice as to how a specific operator should be con-
structed. The overall methodology for studying belief change is to approach a change
operator from two directions: On the one hand, a set of postulates can be given to char-
acterise those properties that any rational change operator should satisfy. On the other
hand, a construction can be given to formally characterise the class of instances of that
operator. Then, ideally, the two approaches are shown to coı̈ncide via a representation
result, showing that the approaches capture the same class of operators.

The AGM postulates for revision can be expressed as follows. Below, ≡PC and +PC

stand for logical equivalence and expansion, respectively, in classical propositional
logic.

(K*1) K ∗ φ = Cn(K ∗ φ)
(K*2) φ ∈ K ∗ φ
(K*3) K ∗ φ ⊆ K +PC φ
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(K*4) If ¬φ /∈ K then K +PC φ ⊆ K ∗ φ
(K*5) K ∗ φ is inconsistent only if φ is inconsistent
(K*6) If φ ≡PC ψ then K ∗ φ = K ∗ ψ
(K*7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) +PC ψ
(K*8) If ¬ψ /∈ K ∗ φ then (K ∗ φ) +PC ψ ⊆ K ∗ (φ ∧ ψ)

The first six postulates are called the basic postulates, while the last two are called
the extended postulates. The first two postulates assert that the result of revising K
by φ yields a belief set (K*1) in which φ is believed (K*2). (K*3) and (K*4) assert that
if a formula for revision is consistent with a belief set K, then revision consists of the
expansion of K by φ. (K*5) says that unless φ is inconsistent, K ∗ φ is consistent. (If
φ is inconsistent, then (K*2) requires the result to be inconsistent.) (K*6) asserts that
revision is independent of the syntactic form of the formula for revision. The last two
postulates deal with the relation between revising by a conjunction and expansion:
whenever consistent, revision by a conjunction corresponds to revision by one conjunct
and expansion by the other. Postulates (K*3) and (K*4), and (K*7) and (K*8), can be
seen as expressing that in a revision as little information is removed from K as is con-
sistently possible. Further motivation for these postulates can be found in [Gärdenfors
1988; Peppas 2008]. We shall call any function ∗ that satisfies (K*1) – (K*8) an AGM
revision function.

Adam Grove [Grove 1988] provided a possible worlds characterisation of revision
functions, based in turn on David Lewis’s system of spheres [Lewis 1973]. We shall
deviate slightly from Grove’s terminology and instead of systems of spheres we shall
be working with total preorders over propositional interpretations, or possible worlds.2

First, recall that a preorder � (here, over possible worlds) is a reflexive, transitive,
binary relation on the set of possible worldsM. The relation � is called total iff for all
w1, w2 ∈M, either w1 � w2 or w2 � w1.

For a subset S of M, we say that a world w is minimal in S with respect to � iff
w ∈ S and for all w′ ∈ S, w′ � w entails w � w′. We denote the set of minimal elements
of S with respect to � by min(S,�):

min(S,�) = {w ∈ S | for all w′ ∈ S, if w′ � w then w � w′}.

We say that a preorder � overM is faithful with respect to a theory K iff 3

(F1) � is total
(F2) if [K] 6= ∅, then min(M,�) = [K].

Intuitively, w1 � w2 if w1 is at least as plausible as w2. Grove also provides an
additional condition, corresponding to the limit assumption of [Lewis 1973]:

(S4) for any consistent sentence φ, min([φ],�) 6= ∅.
This condition is only needed in the infinite case; since we will assume that the set of
possible worlds is finite, we will not require such a condition. Grove then provides the
following representation result (modulo the different terminology), where t(S) is the
set of formulas of classical logic true in the set of possible worlds S:

THEOREM 2.1 ([GROVE 1988]). Let K be a theory and * a revision function. Then
∗ satisfies postulates (K*1) – (K*8) at K iff there exists a preorder � over M that is

2The two constructs are equivalent for the purpose of constructing a revision function. This was already
noted by Katsuno and Mendelzon [Katsuno and Mendelzon 1991], who also first suggested expressing a
possible worlds characterisation in terms of a total preorder rather than a Lewis-style system of spheres.
3We use [·] to represent the set of possible worlds associated to a theoryK or a formula φ; a formal definition
is given in Section 4. For the time being, [·] can be thought of as a set of classical models.
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faithful to K and satisfies (S4), and such that

K ∗ φ = t(min([φ],�)). (1)

Thus the revision of K by φ is characterised by the set of those models of φ that are
most plausible according to the agent.

Another form of belief change in the AGM approach is called belief contraction. As-
sume that φ ∈ K and that φ is not a tautology. In contracting the formula φ from the
belief set K, denoted K − φ, the agent no longer believes φ (while not necessarily be-
lieving ¬φ). That is, if φ is not a tautology, then one requires that φ 6∈ K−φ. Informally,
contraction is thought of as being a more basic (or fundamental) operation than revi-
sion, since in contraction an agent’s beliefs can only decrease, while in revision in the
interesting case an agent’s beliefs change.

However, it proves to be the case that in the standard AGM approach, revision and
contraction functions are interdefinable. Given a contraction function−, one can define
a revision function by the so-called Levi identity:

K ∗ φ = (K − ¬φ) +PC φ. (2)

Analogously, given a revision function ∗, one can define a contraction function via the
Harper identity:

K − φ = K ∩K ∗ ¬φ. (3)

See [Gärdenfors 1988; Peppas 2008] for further details.
So, to conclude, our interests lie with AGM-style belief revision, which we have in-

troduced here, and with the goal of extending it to arbitrary logics. It is worth briefly
discussing some notions that we will not be considering. First, although we will al-
lude to belief contraction, it is not our focus, and we do not consider the interesting
question of AGM-style belief contraction. Second, an intuition underlying belief re-
vision is that the agent is receiving information about some domain, but where the
domain itself is unchanging. An alternative intuition is that an agent receives infor-
mation about a change in the domain; this leads to a different class of operators, called
belief update [Katsuno and Mendelzon 1992]. It seems likely that the techniques de-
veloped here could be applied without difficulty to belief update, although we do not
do so in this paper. Last, we mentioned that the AGM framework is described at the
knowledge level wherein presumably-irrelevant syntactic concerns are ignored, and
wherein an agent’s beliefs are given by a belief set. An alternative is to take syntax
into account. In this case, distinct but logically-equivalent knowledge bases may be-
have differently under revision by the same formula. This leads to the notion of belief
base revision [Hansson 1999], which again we do not consider here.

2.2. AGM Revision and Classical Propositional Logic
In this subsection, we consider the question of why AGM-style revision requires that
the underlying logic subsumes classical propositional logic. We do this by informally
surveying problems that arise in attempting to define an AGM-style belief change op-
erator in an inferentially-weak system, where by “inferentially weak” we mean not
having the expressivity of classical propositional logic. (So this term includes both frag-
ments of classical propositional logic, as well as those nonclassical logics that do not
subsume classical propositional logic.) In surveying problems that may arise, we focus
on Horn clause theories,4 and refer to other approaches as appropriate. While we refer

4Some of this material is drawn from [Delgrande 2008; Delgrande and Wassermann 2013; Delgrande and
Peppas 2015].
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to Horn clause theories to illustrate the problems that may arise, it should be clear
that such problems may be expected to occur in other weak systems.

We begin with a review of some basic terminology. In classical logic, a clause is a
disjunction of literals. A Horn clause is a clause with at most one positive literal. A
definite clause is a clause with exactly one positive literal. A Horn clause ¬a1 ∨ ¬a2 ∨
· · · ∨ ¬an ∨ a can be perspicuously written as an implication involving atoms only:
a1∧a2∧· · ·∧an ⇒ a. A clause with no positive literal can be written a1∧a2∧· · ·∧an ⇒ ⊥.
A Horn formula is just a conjunction of Horn clauses, while a Horn theory is a set
of Horn formulas closed under a suitable notion of Horn derivability [Delgrande and
Peppas 2015]. An example of a formula that is not expressible in a Horn theory is p∨q.

Models of Horn formulas are distinguished by the fact that they are closed under
intersection of positive atoms in an interpretation. That is, if w1 and w2 are models of
φ expressed as a set of atoms then w1 ∩ w2 is also a model of φ. The converse is also
true; that is, if a set of models W is closed under intersection of positive atoms in an
interpretation, then there is a Horn formula φ such that the models of φ are W ; and
if a set of models W is not closed under intersection then it is not representable in a
Horn theory. For example consider the formula p ≡ ¬q over the alphabet {p, q}. The
models of p ≡ ¬q are {p} and {q}, and p ≡ ¬q is not expressible using Horn clauses. If,
along with {p} and {q}, we include the model ∅ (= {p} ∩ {q}), then the resulting set of
models {{p}, {q}, ∅} corresponds to the Horn clause ¬p ∨ ¬q.

Consider now the issue of defining AGM-style revision with respect to Horn clause
knowledge bases. To begin, it can be observed that the simpler case, of definite clauses,
is trivial. First, any set of definite clauses is consistent (for example, just assign the
value true to every atom). Hence, to revise a definite clause knowledge base by a def-
inite clause, one just adds the formula for revision to the knowledge base and takes
the deductive closure (suitably defined for definite clauses). However, a set of Horn
clauses may be inconsistent (for example, p and p ⇒ ⊥ are together inconsistent) and
so revision is nontrivial in the Horn case. These observations suggest that, for revision
to be meaningful, a logic must have some notion of inconsistency. These observations
also suggest that care must be taken when non-classical negation is encountered, as
may be found for example in an extended logic program; we will encounter an example
in the next section.

So with Horn clauses it would seem that we have a system, weaker than classical
propositional logic, that might nonetheless have revision defined according to the stan-
dard AGM definitions. And indeed one can easily define faithful rankings and a set of
AGM-like postulates in terms of Horn clauses: Interpretations of Horn formulas are,
after all, just the interpretations of classical propositional logic. And a set of AGM-like
postulates, rephrased in terms of a Horn-logic consequence relation, is straightfor-
wardly specifiable. However, if one does this, it proves to be the case that the standard
representation results fail. Thus, it is possible to define an operator that satisfies all
the revision postulates (restricted to Horn formulas) but for which there is no corre-
sponding faithful preorder.5 Similarly, one can specify a faithful ranking for which the
operator defined by (1) does not satisfy the (Horn AGM) revision postulates; see [Del-
grande and Peppas 2015] for a counterexample. Essentially these problems arise from
the relative inexpressiveness of Horn theories: full disjunction is missing, as is full
negation.6

5Very informally the problem is the following [Delgrande and Peppas 2015]: In the case of propositional
logic, given a revision operator ∗, one determines that the least ψ worlds should be ranked “no lower than”
the least φ worlds exactly when K ∗ (φ ∨ ψ) ⊆ K ∗ φ. But in the Horn case, if φ and ψ are Horn formulas,
φ ∨ ψ may nonetheless not be a Horn formula, and so this construction technique is inapplicable.
6That is, for a Horn formula φ, the negation ¬φ may not be Horn-definable.
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Similar issues may be expected to arise in other inferentially-weak systems. For
example, many description logics [Baader et al. 2007] lack full disjunction or negation.
In perhaps the simplest description logic EL, there is no notion of inconsistency and so
revision is trivial in this case. However, all description logics have a concept > that is
true of all individuals, and most have another concept ⊥ that is true of none. Given
the standard (Tarskian) assumption that there is at least one individual, a description
logic knowledge base is inconsistent just if > v ⊥ is entailed; that is, the top concept
is subsumed by the bottom concept.

Thus in inferentially-weak logics, the direct adaptation of the AGM approach to re-
vision may be anticipated to be problematic. A plausible alternative is to first define a
suitable contraction function, and then define revision via the Levi Identity (2). How-
ever in general this strategy is also problematic. Consider again Horn theories. To
begin with, there is more than one way that one may define contraction. Informally,
for a contraction K − φ there are the two notions: K − φ can be defined as a subset of
K that does not entail φ, or K − φ can be defined as a subset of K that is consistent
with φ; in symbols:

(1) If φ ∈ K then one requires φ 6∈ K − φ.
(2) If K ∪ {φ} is inconsistent then one requires that (K − φ) ∪ {φ} is consistent.

Note that in the second case, if the underlying logic contains propositional logic, we
would have ¬φ ∈ K, and so the AGM contraction would in fact be expressed as K−¬φ;
in (2), we write K − φ instead, because in an arbitrary logic ¬φ may not be a formula.

These two conceptions of contraction are easily shown to coincide for propositional
logic: For the antecedents, one has

φ ∈ K iff K ∪ {¬φ} is inconsistent,

and for the consequents we have that

φ 6∈ K − φ iff (K − φ) ∪ {¬φ} is consistent.

However, for Horn clause theories these are distinct, simply because if φ is a Horn
formula, then ¬φ may not be. (As a simple example, ¬p∧¬q is a Horn formula, whereas
¬(¬p ∧ ¬q), or (p ∨ q), is not.)7 There has been extensive work in contraction in Horn
theories [Delgrande 2008; Booth et al. 2009; Zhuang and Pagnucco 2010; 2011; Booth
et al. 2011; Zhuang and Pagnucco 2012; Delgrande and Wassermann 2013]. However,
such work either ends up with postulates that differ from the standard AGM set, or
else makes use of non-Horn clauses along the route to determining Horn contraction.
What this means is that, given the current state of research, it is not clear that an
approach to contraction for inferentially-weak logics that follows the AGM approach is
possible.

However, there is a more immediate reason why defining revision via contraction
may not work, and that is that in general the Levi Identity may fail, and so revision
would not then be definable in terms of contraction via this identity. Thus in Horn
theories, as well as in weak description logics such as the EL family, the Levi Identity
can’t be used since for an arbitrary formula φ in one of these approaches, ¬φ may not
be defined.

Informally, these results suggest that in inferentially weak systems, revision and
contraction become two distinct operations, in that they are no longer obviously inter-

7It is interesting to note that these two formulations for contraction differ in other ways. For example the
first makes sense in a system with no notion of inconsistency (such as in definite clauses or the description
logic EL) whereas the second does not. Hence the first may potentially be useful in such logics, whereas the
second would presumably be inapplicable.
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definable. In fact, with contraction, it appears that while some semantic constructions
in the AGM approach may be adaptable to weaker logics, others may not be so readily
adapted.8 Moreover, to date the prospects of coming up with a contraction function in
such weak systems that satisfies the full AGM postulate set are unclear.

It is of interest that, while a modification of AGM contraction to accommodate other
logics is uncertain, our results here show that this is not the case for revision. We show
instead that the AGM approach can be adapted to apply in a very wide class of logics.
Included in this class is Horn logic, description logics, relevance logics, extended logic
programs, and, more broadly, any system that seems to satisfy a very basic notion of
logic.

3. RELATED WORK
This section reviews related work that has been carried out in belief revision, focussing
on what we called “inferentially weak” logics in the previous section. Such work can
be considered as belonging to one of two broad groups. The first involves revision in
fragments of classical logic, while the second addresses revision in nonclassical logics.
We also examine at the end of this section an approach that addresses distance-based
revision from first principles.

In the first group, perhaps the earliest work in studying revision in a system weaker
than classical propositional logic is that described in [Restall and Slaney 1995], where
revision in the relevance logic [Anderson and Belnap Jr. 1975] of first degree entail-
ment, Efde , is studied. In Efde a formula may be true or false, as usual, but it may also
be both true and false, or neither true nor false. As a result, the so-called paradoxes
of implication, such as φ ∧ ¬φ⇒ ψ, do not hold. Restall and Slaney’s work focusses on
the semantic constructions, in particular those based on epistemic entrenchment, par-
tial meet, and systems of spheres. In each case it is shown how a construction can be
adapted to the 4-valued semantics. In the case of epistemic entrenchment and partial
meet, a revision function is obtained from a contraction function via the Levi Identity.
Interestingly, in the case of Efde , the Harper Identity fails.

With regards to Horn revision, Zhuang et al. [2013] present a technique for obtaining
a Horn revision in terms of contraction. As previously described, the difficulty in defin-
ing Horn revision in terms of contraction is that, in employing the Levi Identity, one
must deal with the negation of a Horn formula; this, in general, is not Horn. Zhuang
et al. circumvent this difficulty by contracting by a sequence of Horn strengthenings
[Selman and Kautz 1996] of the negation of the formula for revision.

As noted in the previous section, Delgrande and Peppas [2011; 2015] investigate be-
lief revision where the underlying logic is that governing Horn clauses. In this work,
the AGM approach is augmented in two ways. First, a further postulate is added to the
set of revision postulates. This postulate, in semantic terms, rules out certain undesir-
able circularities among possible world orderings. Second, a condition is imposed on
faithful rankings to exclude certain undesirable orderings (i.e., orderings that would
yield a result that is not expressible in Horn logic). Of key importance is the fact that
both of these restrictions, while necessary for the Horn case, are redundant in the stan-
dard AGM approach. A representation result shows that the class of revision functions
captured by these restricted faithful rankings is precisely that given by the (extended)
set of Horn revision postulates. Consequently, this work extends AGM revision to the
inferentially-weaker Horn case. Moreover it is shown that Horn revision is compatible
with other work in revision, including iterated revision and work concerning relevance.

8While it is beyond the scope of the present paper, we can note that the approach of remainder sets appears
to be naturally extendable to the Horn case [Delgrande and Wassermann 2013], while more effort is required
to adapt epistemic entrenchment to this case [Zhuang and Pagnucco 2010].
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The present paper then can be seen as in part extending and generalising these results
to arbitrary logics.

More recently, belief revision in other fragments of propositional logic, including
Krom and affine formulas, has been addressed in [Creignou et al. 2014]. However,
the main focus of that work is not concerned with representation results. Instead,
the authors propose to adapt known revision operators by means of a certain post-
processing and then study the limits of this approach in terms of satisfaction of the
postulates. One of the main results of that paper is that in this framework it is not
possible to keep Postulate (K*8) satisfied.

[Delgrande et al. 2013] addresses AGM-style revision in logic programs under the
answer set semantics [Gelfond and Lifschitz 1988; Brewka et al. 2011]. This approach
makes use of a standard, monotonic (albeit non-classical) model theory based on the
notion of SE-models [Turner 2003].9 Using techniques from [Delgrande and Peppas
2015], it is shown how classical AGM-style revision can be extended to various classes
of logic programs by means of SE-models. That is, the AGM postulates are rephrased
to refer to logic programs; a semantic construction for revision operators is given based
on orderings over SE models; and then a representation result shows that these ap-
proaches coincide. See also [Schwind and Inoue 2013] for a related approach.

Recently, AGM-style revision has also gained interest in the field of abstract argu-
mentation. Here, the outcome of so-called argumentation frameworks [Dung 1995] is
revised on the level of extensions, see e.g. [Coste-Marquis et al. 2014]. In order to guar-
antee that the result of a revision remains expressible as an argumentation frame-
work, similar issues as recognized for Horn revision come into play; a recent paper
[Diller et al. 2018] shows how AGM revision of argumentation frameworks needs to
be defined such that it is guaranteed to work properly within the restricted language
of argumentation frameworks. In these papers, the outcomes of argumentation frame-
works are treated like models of propositional formulas which obey certain restrictions.
Using a completely different recent approach, [Baumann and Brewka 2015] develops a
weaker logic in order to study revision of argumentation frameworks; this approach is
closer to the SE-model based revision in logic programming (where, likewise, a weaker
monotonic logic underlying the nonmonotonic semantics of logic programming is taken
as a base logic for formalizing belief change).

Regarding belief revision in general, [Gabbay et al. 2008] tackles a somewhat dif-
ferent problem than that addressed here. For a non-classical logic whose semantics
can be axiomatised in first-order logic, they show how a revision operator for classical
logic can be used to define a revision operator in the non-classical logic. This is done
by translating a belief set and formula expressed in the non-classical logic, along with
an axiomatic specification of the logic, into classical logic. The (standard, AGM) revi-
sion operator is applied to the resulting theory; and the results are subsequently re-
expressed in the original logic. The overall result then is a methodology for “exporting”
an AGM revision operator in classical logic to non-classical logics. This methodology
has recently been applied also to Horn logic [Brewka et al. 2016].

Ribeiro and Wassermann [2014] consider revision in non-classical logics. Their ap-
proach is to begin with the basic AGM postulates, and then consider additional postu-
lates (in place of (K*7) and (K*8)) that would express a notion of minimality. Two con-
structions are provided, based on the (contraction) constructions of remainder sets and
kernels, and representation results are provided making use of an additional postulate

9Without going into details, an SE-model of a logic program P is an ordered pair of classical models, satis-
fying certain constraints and related to the classical models of P .
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of relevance10 on the one hand, and core retainment on the other. Last, [Wassermann
2011] provides a survey of research on belief change in non-classical logics.

The work of Lehman, Magidor, and Schlechta [2001] (see also [Schlechta 2004] for
further details and in a wider context) also deals with foundational issues in belief
revision. However, the focus of Lehman, Magidor, and Schlechta (LMS for short) is on
distance-based revision: they assume that a fixed, global, distance is given between
all pairs of possible worlds. Once such a distance is given, an AGM revision function
is implicitly specified for every set of possible worlds; as well, the results of iterated
revision are automatically determined by such a distance function. LMS begins by con-
sidering the notion of “distance” broadly, as an abstract, algebraic concept. Once such
an algebraic theory is developed, it is then applied in the specific instance of distances
between sets of models. Two cases are considered. First, the notion of distance is not
necessarily symmetric; this is developed with respect to finite sets of models. Second
they consider the case where distance is a symmetric relation; this case allows sets of
models of infinite cardinality.

There are some similarities between the current approach and that of LMS. Notably,
both have a postulate schema, called (Loop) in LMS and (Acyc) here, that rules out
cycles of < relations between worlds; these schemas in turn go back to the (Loop)
condition in [Kraus et al. 1990]. As well, in both approaches not all sets of models are
representable by a set of formulas. In LMS this is a result of allowing infinite theories
for symmetric distances; in the present approach, this results from dealing with non-
classical logics and fragments of classical logic. There are also major differences: LMS
gives a restriction of the AGM approach, in that certain revision functions are ruled out
in their approaches. The present approach is a generalisation of the AGM framework,
in that revision is extended to arbitrary logics. The present approach is also more
general, since nothing is assumed about the underlying language, whereas LMS makes
explicit use of disjunction. On the other hand, we note that the LMS approach permits
logics with infinitely many models (though confined to symmetric distances between
models), whereas our approach is limited to logics with finitely many possible worlds.

4. THE APPROACH
In this section we present our approach. The first subsection defines the general frame-
work, while the next subsection expresses the AGM postulates in this framework. The
last subsection provides a representation result.

4.1. Building the Framework
Our framework is built from three primitive entities:

— A nonempty (possibly countably infinite) language L. The elements of L are called
sentences or, equally, formulas. We shall use the last few letters of the Greek alphabet,
like φ, χ, ψ, . . ., to denote sentences, and the first few upper-case letters of the English
alphabet, like A, B, . . . , to denote sets of sentences. Nothing is assumed of the internal
structure of sentences (not even the Boolean connectives).

— A finite setM containing at least two members, the elements of which are called
possible worlds or simply worlds. Worlds will be denoted with the last few lower-case
letters of the English alphabet, like, r, w, . . . Once again, nothing is assumed of the
internal structure of worlds.

— A function f from L to 2M. For a sentence φ ∈ L, we often write [φ] as an alterna-
tive to f(φ).

10For a thorough discussion of this, and other proposed postulates, we refer the reader to [Hansson 1999].
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With the above three primitive entities we gradually develop the full framework. Let
w be any world in M, φ any sentence in L, and S an arbitrary set of worlds, that is,
S ⊆ M. We say that w satisfies a sentence φ, denoted w |= φ, iff w ∈ [φ]. Similarly, we
say that S satisfies φ, denoted S |= φ, iff for every w ∈ S we have w |= φ. Moreover we
define

t(S) = {φ ∈ L | S |= φ}.
It can be noted that, by definition, ∅ |= φ for any φ ∈ L, and therefore t(∅) = L.

Let A ⊆ L be an arbitrary set of sentences. We define [A] to be the set of worlds

[A] = {w ∈M | for all φ ∈ A,w |= φ}.
We shall say that a world w satisfies A, denoted w |= A, iff w ∈ [A]. Observe that by
definition [∅] = M. We shall say that A is consistent iff [A] 6= ∅. We say that a set of
sentences B is consistent with A iff A∪B is consistent. Two sets of sentences A,B ⊆ L
are said to be equivalent, denoted A ≡ B iff [A] = [B]. For φ, ψ ∈ L, we shall often write
φ ≡ ψ as an abbreviation of {φ} ≡ {ψ}. We define the closure of a set of sentences A,
denoted Cn(A), to be the set

Cn(A) = {φ ∈ L | [A] ⊆ [φ]}.
A is said to be a theory iff A = Cn(A). Finally, for two sets of sentences A,B, by A+B
we denote the set

A+B = Cn(A ∪B).

Up to now we have made no assumptions about the primitive ingredients L,M, and
f of our framework. To proceed further however we impose a simple restriction:

(Expr) For any two distinct worlds w,w′ ∈ M, there exists a sentence φ such that
w |= φ and w′ 6|= φ.

This restriction requires that the language is expressive enough to distinguish be-
tween any two possible worlds. (Expr) has two important consequences. First, it en-
sures that no world satisfies fewer sentences (set-theoretically) than some other world.
That is, if every sentence satisfied by possible world w was also satisfied by possible
world w′, this would mean that there was no sentence φ such that w |= φ and w′ 6|= φ.
But this contradicts (Expr). Consequently, all worlds are in a sense “maximal”. Sec-
ond, (Expr) rules out incoherent worlds, that is, worlds at which no sentence of L is
satisfied. To see this, assume that w is a world at which no sentence is satisfied. We
have assumed thatM contains at least two possible worlds. Let w′ be a world distinct
from w. Then (Expr) says that there is a sentence satisfied by w, contradicting the
assumption that w is incoherent.

The following auxiliary result will be useful in the forthcoming discussion:

LEMMA 4.1. For any possible world w ∈M, [t({w})] = {w}.
PROOF. Let w be any possible world in M. Clearly, by the definition of t, w ∈

[t({w})]. Hence what is left to show is that [t({w})] ⊆ {w}. Consider any possible world
w′ ∈ M such that w′ 6= w or, for our purposes, w′ 6∈ {w}. Then by (Expr), there is a
φ ∈ L such that w |= φ and w′ 6|= φ. From w |= φ it follows that φ ∈ t({w}). Hence from
w′ 6|= φ we derive that w′ 6∈ [t({w})].

The following small results will be used extensively in the forthcoming discussion.
They are stated without a proof since they follow immediately from the definitions:

PROPOSITION 4.2. For any sets of sentences A,B ⊆ L, and sets of worlds S,Q ⊆M:

(1) [A] = [Cn(A)].
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(2) [A ∪B] = [A] ∩ [B].
(3) t([A] ∩ [B]) = A+B.
(4) If S 6= ∅ then t(S) is consistent.
(5) S ⊆ [t(S)].
(6) If S ⊆ Q then t(Q) ⊆ t(S).

We observe that Cn(.) is a Tarskian consequence relation [Tarski 1936], that is, it
satisfies the following conditions:

PROPOSITION 4.3. For any sets of sentences A,B ⊆ L:

(1) A ⊆ Cn(A). Inclusion
(2) If A ⊆ B then Cn(A) ⊆ Cn(B) Monotony
(3) Cn(A) = Cn(Cn(A)) Idempotence

PROOF. The proof of the proposition is obvious, with the possible exception of the
containment ⊇ in Part 3.

For this part and direction, from set theory we have that for any set of formulas A
that [A] ⊆ ∩{[φ] | [A] ⊆ [φ]}. By repeated application of Proposition 4.2.2 we have that
∩{[φ] | [A] ⊆ [φ]} = [{φ | [A] ⊆ [φ]}] and so [A] ⊆ [{φ | [A] ⊆ [φ]}]. We observe that
{φ | [A] ⊆ [φ]} is just Cn(A) and so we get [A] ⊆ [Cn(A)].

[A] ⊆ [Cn(A)] implies that for every formula φ that if [Cn(A)] ⊆ [φ] then [A] ⊆ [φ]. We
can observe from the definition of Cn that we have: [A] ⊆ [φ] iff φ ∈ Cn(A). Applying
this to the preceding gives that: for every φ if φ ∈ Cn(Cn(A)) then φ ∈ Cn(A), or
Cn(Cn(A)) ⊆ Cn(A), which was to be shown.

4.2. The AGM Approach in the Generalized Framework
In the classical AGM framework the epistemic input for revision was assumed to be
a single sentence φ. Subsequently, the AGM framework was generalised to allow for
(possibly infinite) sets of sentences as epistemic input [Peppas 1996; 2004; Zhang and
Foo 2001]. Since herein we aim for generality, we shall follow the later approach.

Postulates. A revision function ∗ maps a theory K (also called a belief set) and a
(possibly infinite) set of sentences A to a revised belief set K ∗ A. For ease of notation,
if A = {φ} for a sentence φ ∈ L, we shall often use K ∗ φ as an abbreviation of K ∗ {φ}.

Assume that K is a theory, and A,B are sets of sentences, that is, A,B ⊆ L. The
AGM postulates for revision can be reformulated as follows:

(K*1) K ∗A = Cn(K ∗A)
(K*2) A ⊆ K ∗A
(K*3) K ∗A ⊆ K +A
(K*4) If K ∪A is consistent then K +A ⊆ K ∗A
(K*5) If A is consistent then K ∗A is consistent
(K*6) If A ≡ B then K ∗A = K ∗B
(K*7) K ∗ (A ∪B) ⊆ (K ∗A) +B
(K*8) If (K ∗A) ∪B is consistent, then (K ∗A) +B ⊆ K ∗ (A ∪B)

The postulates (K*1) – (K*8) are the well-known AGM postulates for revision,
rephrased to allow sets of sentences for the epistemic input. However at the high level
of abstraction at which our framework is developed, a ninth postulate is (sometimes)
necessary:

(Acyc) If A1, . . . , An are sets of sentences such that An is consistent with K ∗ A1,
and for all 1 ≤ i < n, Ai is consistent with K ∗ Ai+1, then A1 is consistent
with K ∗An
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If our abstract framework is instantiated to classical propositional logic, then (Acyc)
follows from (K*1) – (K*8) (see [Delgrande and Peppas 2015, Proposition 3]). In general
however this is not true.

Preorders on Possible Worlds. For defining preorders on possible worlds, we basically
adopt the definitions given earlier. The only notable difference is that, since now there
could be sets of worlds that are not expressible by any set of sentences, we need to be
a bit more careful with the set of minimal worlds that satisfy the input.

We shall say that a set S of worlds is elementary iff there exists a set of sentences
A ⊆ L such that [A] = S. The following proposition is immediate, but useful.

PROPOSITION 4.4.

(1) A set S of worlds is elementary iff S = [t(S)]
(2) If w is a possible world then {w} is elementary.

PROOF.

(1) For the right-to-left direction, the proof of the proposition is trivial: if S = [t(S)]
then, by definition, S is elementary.
For the opposite direction, assume that S is elementary. Then there exists a set of
formulas A such that S = [A]. Hence

Cn(A) = {φ | [A] ⊆ [φ]}
= {φ | S ⊆ [φ]}
= {φ | S |= φ}
= t(S)

Thus Cn(A) = t(S). Moreover from Proposition 4.2, [A] = [Cn(A)]. Therefore, S = [A] =
[Cn(A)] = [t(S)] as desired.

(2) Lemma 4.1 states, for possible world w, that {w} = [t({w})]. Hence {w} is ele-
mentary from the previous part.

Depending on the specifics of L,M, and f , there may, or may not, exist non-elementary
sets of worlds. For example, if our framework is instantiated to classical propositional
logic with finitely many propositional variables, all sets of worlds are elementary. How-
ever, if the framework is instantiated to Horn logic, then non-elementary sets of worlds
exist even when there are only finitely many variables.

A preorder � on possible worlds is called faithful to a belief set K iff it satisfies the
following conditions:

(F1) � is total
(F2) if [K] 6= ∅, then min(M,�) = [K].

In addition, a preorder on possible worlds is called regular iff it satisfies:

(F3) for any A ⊆ L, min([A],�) is elementary.

The first two conditions (F1) – (F2) are the same as those of the classical AGM
framework. The third condition was identified in [Peppas 2004], where it is called (SD),
as being necessary for possibly infinite epistemic input. Subsequently it was noted to
also be required in finite Horn theories by [Delgrande and Peppas 2015]. Of course in
the context of propositional logic with finitely many variables, (F3) is vacuous since all
sets of worlds are elementary.

The function ∗ induced from a preorder � faithful to a theory K is defined as follows:
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(�∗) K ∗A = t(min([A],�)).

The following example illustrates various aspects of regular faithful rankings. As-
sume that we are working in Horn logic where P = {p, q, r}. Then the following is a
regular faithful ranking with respect to K = Cn({p, q, r}):11

pqr ≺ p̄q̄r ≺ p̄qr
pq̄r
≺

pqr̄
p̄q̄r̄
p̄qr̄
pq̄r̄

(4)

As a subtlety, note that even though the set of worlds {p̄qr, pq̄r} is not elementary,
the preorder is regular. In particular, there is no set of Horn formulas A such that
min([A],�) = {p̄qr, pq̄r}, and so (F3) is satisfied in this case. Defining the function ∗ via
condition (�∗), we have that

K ∗ (¬p ∨ ¬q) = K ∗ ¬p = Cn(¬p ∧ ¬q ∧ r)
and

K ∗ ¬r = Cn(¬r).
In some cases, distinct regular faithful preorders may induce the same function ∗.

For example it can be verified that the preorder

pqr ≺ p̄q̄r ≺ p̄qr ≺ pq̄r ≺
pqr̄
p̄q̄r̄
p̄qr̄
pq̄r̄

(5)

induces the same function as (4) at K. This would not be the case if the underlying
logic were classical propositional logic, where for example via (4) we would have

K ∗ (p ≡ ¬q) = Cn((p ≡ ¬q) ∧ r)
whereas via (5) we would have

K ∗ (p ≡ ¬q) = Cn(¬p ∧ q ∧ r).
So at this point we have two definitions of a function ∗, one in terms of postulates

and the other in terms of preorders over possible worlds. In the next subsection we
show that these two notions coincide.

4.3. Representation Results
In the standard AGM approach, the preorder � would be faithful but not necessarily
regular, and the aim would be to prove that the functions induced from (�∗) coincided
with those satisfying (K*1) – (K*8). In our general framework however this does not
hold, and to a large extent this is due to the existence of non-elementary sets of worlds.

We illustrate the anomaly through a counter-example. Suppose that w0, w1, w2, w3

are distinct possible worlds, and A1, A2, A3 ⊆ L are sets of sentences such that,

(i) w0 ∈ [t({w1, w2, w3})].
(ii) w1, w2 ∈ [A1] and w3 6∈ [A1].

(iii) w2, w3 ∈ [A2] and w1 6∈ [A2].

11For convenience, we occasionally will deviate from our standard set representation of interpretations
(where the set contains the atoms assigned to true), and write interpretations as strings of literals, where x̄
is just an abbreviation for ¬x.
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w0#
w1#

w2#

w3#

�!�! �! w4# �! .!!.!!.!�!w5#

Fig. 1. An example for a pseudo-preorder.
.

(iv) w1, w3 ∈ [A3] and w2 6∈ [A3].

An example of worlds and sets of sentences satisfying conditions (i) – (iv) can be
easily constructed, for example, in Horn logic. In particular, assume that L is built over
three propositional variables p, q, r. As usual in Horn logic, we identify possible worlds
with the set of variables they satisfy. With this convention, define w0 = ∅, w1 = {p, q},
w2 = {p, r}, and w3 = {q, r}. Moreover define A1 = {p}, A2 = {r}, and A3 = {q}. It is
not hard to see that all four conditions (i) – (iv) are indeed satisfied.12

Now consider the pseudo-preorder over worlds depicted in Figure 1. The minimal
world is w0 followed by a cycle of the three worlds w1 ≺ w2 ≺ w3 ≺ w1, followed by a
linear order over the remaining worlds.

Clearly, ≺ is not transitive and therefore not a preorder. Moreover, as shown next,
there is no total preorder �′ that is “revision-equivalent” to �:

PROPOSITION 4.5. Let w0, w1, w2, w3 ∈ M and A1, A2, A3 ⊆ L be possible worlds
and sets of sentences respectively, satisfying conditions (i) – (iv). Moreover let ≺ be the
binary relation defined in Figure 1, and � its reflexive closure. Then there is no total
preorder �′ such that t(min([A],�′)) = t(min([A],�)), for all A ⊆ L.

PROOF. Assume towards a contradiction that such a preorder �′ does exist. Clearly
by condition (ii), min([A1],�) = {w1}, and consequently, min([A1],�′) = {w1}. This en-
tails that w1 ≺′ w2. In a similar manner, from condition (iii) we derive that w2 ≺′ w3,
and from condition (iv) we conclude that w3 ≺′ w1. From the transitivity of �′ we then
derive that w1 ≺′ w1. Contradiction.

Despite the above result, it turns out that the function ∗ induced from ≺ satisfies all
eight postulates (K*1) – (K*8).

PROPOSITION 4.6. The function ∗ induced via (�∗) from the binary relation ≺ of
Figure 1 satisfies (K*1) – (K*8).

PROOF. Postulates (K*1), (K*2), (K*3), (K*4), and (K*6) follow trivially from (�∗).
For (K*5), let A be any consistent set of sentences. We need to show that min([A],�
) 6= ∅. If w0 ∈ [A] then this is trivially true. Assume therefore that w0 6∈ [A]. Next
we show that at least one of the worlds w1, w2, w3 is not in [A]. Assume on the con-
trary that w1, w2, w3 ∈ [A]. Then A ⊆ t({w1, w2, w3}). Hence, since by construction
w0 ∈ [t({w1, w2, w3})], it follows that w0 ∈ [A], which however contradicts our earlier
assumption. Hence we have shown that at least one of w1, w2, w3 is not in [A]. From
the definition of ≺ it then follows that [A] has a minimal element wrt � and therefore
K ∗A is consistent.

12Conditions (ii) – (iv) are straightforward to verify. For condition (i), one only needs to recall that for any
two worlds w,w′ and Horn sentence φ, if w |= φ and w′ |= φ, then w ∩ w′ |= φ.
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For (K*7) and (K*8), consider any two sets of sentences A,B of L. Observe that
according to Figure 1, K = t({w0}). If B is inconsistent with K ∗ A then (K*7) and
(K*8) are trivially true.

Assume therefore that B is consistent with K ∗ A; i.e. [t(min([A],�)] ∩ [B] 6= ∅. Then
clearly [A] 6= ∅. Moreover, as already argued earlier, if w1, w2, w3 ∈ [A], then w0 ∈ [A]
and consequently min([A],�) is singleton (namely {w0}). This is also the case, as can
be easily verified from Figure 1, if at least one of w1, w2, w3 is missing from [A]. Hence
in all cases, min([A],�) is a singleton. From (Expr) we then derive that [t(min([A],�
)] is also a singleton. Consequently from [t(min([A],�)] ∩ [B] 6= ∅ it follows that the
unique minimal A-world also satisfies B. Therefore min([A],�) = min([A ∪ B],�) and
consequently (K ∗A) +B = K ∗A = K ∗ (A ∪B). Thus (K*7) and (K*8) are true.

PROPOSITION 4.7. The function ∗ induced via (�∗) from the binary relation ≺ of
Figure 1 violates (Acyc).

PROOF. From Conditions (ii) – (iv) and the definition of ≺, we have that [K ∗ A1] =
{w1}, [K ∗ A2] = {w2}, and [K ∗ A3] = {w3}. Hence A3 is consistent with K ∗ A1; A1 is
consistent with K ∗ A2; and A2 is consistent with K ∗ A3. From (Acyc) then we derive
that A1 is consistent with K ∗A3. Contradiction.

It is informative to consider an instance of this example in Horn logic: Choose
A1, A2, A3 ⊆ L, such that 13

[A1] = {w1, w2, w1 ∩ w2},
[A2] = {w2, w3, w2 ∩ w3},
[A3] = {w1, w3, w1 ∩ w3}.

Note that we can assume that w1 ∩ w2, w2 ∩ w3, w1 ∩ w3 are all different from wi

(i ∈ {0, 1, 2, 3}) and thus are of form wj for j > 3. Moreover, by the definition of ≺ it
follows that [K∗A1] = {w1}, [K∗A2] = {w2}, and [K∗A3] = {w3}. Hence A3 is consistent
with K ∗A1, A1 is consistent with K ∗A2, and A2 is consistent with K ∗A3. From (Acyc)
then we derive that A1 is consistent with K ∗A3. Contradiction.

To this point we have shown that directly applying the AGM approach to arbitrary
logics is problematic. On the one hand, the standard AGM postulates are not strong
enough to rule out cycles in an intended corresponding preorder on worlds. On the
other hand, a revision function defined in terms of an arbitrary faithful ranking over
worlds may violate the AGM postulates. It proves to be the case that by adding the
postulate (Acyc) and by restricting faithful rankings to those that are regular, we can
obtain a representation result. We first show that any faithful regular preorder satis-
fies the AGM postulates and (Acyc).

THEOREM 4.8. Let K be a belief set and � a preorder overM that is faithful to K
and regular. Then the function ∗ induced from (�∗) satisfies postulates (K*1) – (K*8)
and (Acyc).

PROOF. Postulates (K*1) – (K*4) follow immediately from (�∗) and the fact that �
is faithful to K. For (K*5), let A be any consistent set of sentences inM. Then [A] 6= ∅
and therefore min([A],�) 6= ∅, which again entails that K ∗A is consistent.

For (K*6), assume that A,B ⊆ L are such that A ≡ B. Then [A] = [B] and conse-
quently, min([A],�) = min([B],�). This again entails K ∗A = K ∗B as desired.

13Recall for instance our earlier example where L is built over propositional variables p, q, r and we define
w0 = ∅, w1 = {p, q}, w2 = {p, r}, and w3 = {q, r}, as well as A1 = {p}, A2 = {r}, and A3 = {q}.
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For (K*8), consider any two sets A,B ⊆ L such that B is consistent with K ∗A. Then
clearly both A and B are consistent, and moreover we have [B]∩ [t(min([A],�))] 6= ∅ by
assumption. Since, by (F3), min([A],�) is elementary, we derive from Proposition 4.4
that [B] ∩ min([A],�) 6= ∅. This again entails that min([A ∪ B],�) = [B] ∩ min([A],�).
Hence K ∗ (A ∪B) = (K ∗A) +B. Thus (K*8) is satisfied.

The argument above also proves that (K*7) holds if B is consistent with K ∗ A. If
on the other hand B is inconsistent with K ∗ A, then (K ∗ A) + B = L, and therefore,
clearly, (K*7) is once again satisfied.

Finally for (Acyc), let A1, . . . An ⊆ L be sets of sentences such that An is consistent
with K ∗A1, and for all 1 ≤ i < n, Ai is consistent with K ∗Ai+1.

Since A1 is consistent with K ∗ A2 it follows that [A1] ∩ [t(min([A2],�))] 6= ∅. Then
by (F3) and Proposition 4.4 we derive that [A1] ∩ min([A2],�) 6= ∅. Hence there is
an A1-world, call it w′1, such that w′1 � r, for all r ∈ [A2]. Similarly, from A2 being
consistent with K ∗ A3 we conclude that there is a w′2 ∈ [A2] such that w′2 � r, for all
r ∈ [A3]. Applying the same argument (n− 1)-times, we derive that there exist worlds
w′1, . . . , w

′
n−1 such that for all 1 ≤ i < n, w′i � r for all r ∈ [Ai+1]. From the transitivity

of � we then derive that w′1 � r, for all r ∈ [An]. Finally, from An being consistent
with K ∗ A1 it follows that there is a minimal A1-world, call it w′′1 , that satisfies An.
Moreover, from w′′1 � w′1 � r (for all r ∈ [An]), it follows that w′′1 is also a minimal An-
world; that is, w′′1 ∈ min([An],�). Since min([An],�) contains an A1-world, it follows
that A1 is consistent with K ∗An as desired.

The next theorem gives the converse result, that, for any revision function satisfying
the AGM postulates and (Acyc), there is a corresponding regular faithful ranking on
possible worlds. The full proof can be found in the appendix.

THEOREM 4.9. Let K be a belief set and ∗ a revision function satisfying (K*1) –
(K*8) and (Acyc). Then there exists a total preorder � overM that is faithful to K and
regular, such that (�∗) is satisfied.

PROOF IDEA. We progressively construct the preorder� alluded to in the statement
of the theorem. First we define, using K and ∗, a binary relation v overM for which
we show that [K ∗ A] = min([A],v) for all A ⊆ L. In general, v is neither transitive
nor total (although it is reflexive). The transitive closure of v, denoted �0, is clearly a
preorder, but in general it is not total. We therefore construct a series of extensions of
�0, denoted �1,�2, · · · , that preserve the minimal elements of [A] for all A ⊆ L. The
union of this series is denoted � and it is shown to be a total preorder having all the
desired properties. 2

5. ITERATED REVISION IN THE GENERAL FRAMEWORK
The previous section has shown that the classical AGM approach can be rephrased in
a highly general framework. In this section we examine the Darwiche and Pearl [1997]
approach to iterated revision with respect to the general approach.

Firstly we note that the Darwiche and Pearl approach (or the DP approach for short)
differs from the classical AGM approach in an important aspect: revision functions
apply to epistemic states rather than to belief sets.

As already noted, a belief set K (alias theory14) represents the beliefs of an agent
at a certain point in time. An epistemic state, on the other hand, is a richer structure.
It contains, in addition to K, “...the entire information needed for coherent reasoning,

14To be precise, [Darwiche and Pearl 1997] follow the conventions of [Katsuno and Mendelzon 1991] and
model a belief set as a sentence rather than a theory. Moreover new input is also modelled as a sentence,
rather than a set of sentences. However, in the present context where we assume only finitely many possible
worlds, these differences are immaterial.
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including, in particular, the very strategy of belief revision which the agent wishes to
employ at that given time” [Darwiche and Pearl 1997].

The belief set assigned to an epistemic state S is denoted by bel(S). Crucially, two
different epistemic states S, S′, can be assigned the same belief set, i.e. bel(S) = bel(S′).
It is fairly straightforward to switch to epistemic states in our general framework.15

The main step is to introduce two extra primitives:

- a nonempty set Σ, the elements of which we call epistemic states.
- a function bel : Σ 7→ 2L.

Moreover, for Σ and bel to have their intended meaning we need the following two
restrictions:

(Σ1) For all S ∈ Σ, bel(S) is a theory of L.
(Σ2) For every theoryK of L, there is an epistemic state S ∈ Σ such that bel(Σ) =

K.

Conditions (Σ1) - (Σ2) are pretty much self-explanatory. (Σ1) restricts the set of sen-
tences assigned to an epistemic state to be a theory. (Σ2) says that epistemic states are
at least as rich as belief sets; the same assumption is made, implicitly, in [Darwiche
and Pearl 1997].

Rephrasing Darwiche and Pearl in our extended general framework, a revision func-
tion ∗ is defined as a function mapping an epistemic state S and a set of sentences A
to an epistemic state S ∗ A. Of course the postulates (K*1) - (K*8), (Acyc) need to be
adjusted accordingly. In particular each occurrence of “K ∗ X” in the postulates is re-
placed with “bel(S ∗ X)”, and each remaining occurrence of “K” in the postulates is
replaced with “bel(S)”. Thus for example, (K*4) becomes:16

(K*4) If bel(S) ∪A is consistent then bel(S) +A ⊆ bel(S ∗A).

Having changed to epistemic states on the postulational side, Darwiche and Pearl
make analogous adjustments to the semantic side. Following their lead, we now assign
faithful preorders � to epistemic states (rather than to belief sets). Moreover we define
� to be a faithful (regular) preorder with respect to an epistemic state S iff it is faithful
(regular) with respect to bel(S).

With the above changes, the representation results connecting the postulates with
the semantics (Theorems 4.8 and 4.9), also hold for the extended general framework.
The reason is that (K*1) - (K*8), (Acyc), regulate only one-step transitions; under this
restriction the distinction between epistemic states and belief sets is immaterial.

Consider now the postulates introduced in [Darwiche and Pearl 1997], call them the
DP postulates, to regulate iterated revision:17

(DP1) If A ⊆ Cn(B), then bel((S ∗A) ∗B) = bel(S ∗B).
(DP2) If B ∪A is inconsistent, then bel((S ∗A) ∗B) = bel(S ∗B).
(DP3) If A ⊆ bel(S ∗B), then A ⊆ bel((S ∗A) ∗B).
(DP4) If A ∪ bel(S ∗B) is consistent, then A ∪ bel((S ∗A) ∗B) is also consistent.

15We make this change to epistemic states only for this section where we discuss iterated revision. For the
rest of the paper we move back to belief sets.
16We note that Darwiche and Pearl work with postulates (R1) - (R6) of [Katsuno and Mendelzon 1991],
rather than the original AGM postulates (K*1) - (K*8). As already mentioned the difference is inessential.
In fact, by using (K*1) - (K*8) we have a completely uniform mapping of the postulates to the DP approach,
instead of dealing with one of the postulates separately, like Darwiche and Pearl need to do with (R4).
17As already mentioned, [Darwiche and Pearl 1997] follow the modelling conventions of [Katsuno and
Mendelzon 1991] and hence the DP postulates therein are formulated differently. The differences however
are inessential.
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The theorem below shows that, in our extended general framework, the new postulates
(DP1) - (DP4) are consistent with (K*1) - (K*8), (Acyc).

THEOREM 5.1. Let S be any epistemic state in Σ. Then there exists a revision func-
tion ∗ such that at S it satisfies (K*1) - (K*8), (Acyc) as well as (DP1) - (DP4).

PROOF. See Appendix A.2

Theorem 5.1 shows that our extended general framework is compatible with the DP
approach. Yet Darwiche and Pearl did more than just to show consistency between
their postulates and the AGM postulates. In particular they provided a semantic char-
acterisation of (DP1) - (DP4) in terms of constraints over faithful preorders.

More precisely, consider an arbitrary revision function ∗ and an epistemic state S.
Denote by � the faithful preorder that ∗ assigns to S by means of (�∗). Moreover, for
every set A ⊆ L, denote by �A the faithful preorder that ∗ assigns to S ∗ A. It was
shown in [Darwiche and Pearl 1997] that ∗ satisfies (DP1) - (DP4) at S iff the following
constraints between � and {�A}A⊆L are satisfied:

(IR1) If w |= A and w′ |= A then w ≺ w′ iff w ≺A w′.
(IR2) If w 6|= A and w′ 6|= A then w ≺ w′ iff w ≺A w′.
(IR3) If w |= A and w′ 6|= A then w ≺ w′ entails w ≺A w′.
(IR4) If w |= A and w′ 6|= A then w � w′ entails w �A w′.

Unfortunately this nice correspondence between (DP1) - (DP4) and (IR1) - (IR4)
breaks down in our extended general framework. We show this with a counter-
example. We shall construct a revision function that satisfies (DP1) - (DP4) but violates
(IR2).

The counter-example is based on an instantiation of our framework to Horn logic
built over only two propositional variable p, q. The possible worlds of this instantiation
areM = {pq, pq, pq, pq}, where each world satisfies the literals that appear in it.18

Let S be an epistemic state such that bel(S) is the closure under Horn logic, denoted
CnH, of the Horn sentence ¬p ∧ ¬q; in symbols, bel(S) = CnH({¬p ∧ ¬q}). Clearly,
for any revision function ∗ satisfying (K ∗ 1) - (K ∗ 8), (Acyc), we have bel(S ∗ {pq}) =
CnH({p ∧ q}). Now, consider the following two preorders overM:

pq ≺ pq
pq
≺ pq

pq ≺pq pq ≺pq pq ≺pq pq

It is not hard to verify that �, �pq are regular and faithful preorders with respect
to S and S ∗ {pq} respectively. Hence there exists a revision function ∗ that satisfies
(K ∗ 1) - (K ∗ 8), (Acyc), such that ∗ is associated with � at S, and with �pq at S ∗ {pq},
via means of (�∗) . Next we show that ∗ satisfies (DP1) - (DP4) at S for A = {p ∧ q}.

Consider any set of Horn sentences B. For (DP1), assume that {p ∧ q} ⊆ CnH(B),
and therefore [B] ⊆ [p ∧ q]. If B is inconsistent, then (DP1) is trivially true. Assume
therefore that [B] 6= ∅. Then, [B] = {pq}, and therefore, min([B],�) = min([B],�pq),
which again entails bel((S ∗A) ∗B) = bel(S ∗B) as desired.

For (DP2), assume that B ∪ {p ∧ q} is inconsistent. Then [B] ⊆ {pq, pq, pq}. If B is
inconsistent, then (DP2) is trivially true. Moreover, if [B] is a singleton, then clearly

18Recall that, for the sake of readability, for a literal x we shall often write x as an abbreviation of ¬x.
Moreover, whenever a sequence of literals appears in the place of a sentence, we take it to be the conjunction
of the literals in the sequence; for example “S ∗ {pq}” is an abbreviation for “S ∗ {p ∧ ¬q}”.
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min([B],�) = min([B],�pq) = [B], which in turn entails bel((S ∗ A) ∗ B) = bel(S ∗ B).
Assume therefore that [B] contains at least two worlds. Next observe that there is no
set of Horn sentencesX such that [X] = {pq, pq}. Consequently the only possible values
for [B] are [B] = {pq, pq, pq}, [B] = {pq, pq}, and [B] = {pq, pq}. In all three cases, it is
easy to see that min([B],�) = min([B],�pq) = {pq}. Hence bel((S ∗A) ∗B) = bel(S ∗B)
as desired.

For (DP3), assume that A ⊆ bel(S ∗ B). If B is inconsistent then (DP3) follows
immediately. Assume therefore that B is consistent. Then by (K ∗ 1) - (K ∗ 5), from
{p ∧ q} ⊆ bel(S ∗ B) we derive that [bel(S ∗ A)] = [bel(S ∗ B)] = {pq}; moreover
B ⊆ bel(S ∗B). Hence, from (K ∗ 1) - (K ∗ 4) it follows that bel((S ∗A) ∗B) = bel(S ∗A),
which again entails A ⊆ bel((S ∗A) ∗B).

Finally for (DP4), assume that {p ∧ q} ∪ bel(S ∗B) is consistent. Then, by (K*2), B is
consistent, and pq ∈ min([B],�). Since pq is also the maximum world with respect to
�, we derive that [B] = {pq}. Hence A ≡ B, and consequently, bel(S ∗ A) = bel(S ∗ B) =
bel((S ∗A) ∗B). Therefore {p ∧ q} ∪ bel((S ∗A) ∗B) is consistent, as desired.

We have thus shown that ∗ satisfies the DP postulates at S for A = {p ∧ q}. On the
other hand, � and �pq violate (IR2). In particular, observe that pq 6|= p ∧ q, pq 6|= p ∧ q,
pq � pq, and yet pq ≺pq pq.

The main reason the correspondence between (DP1) - (DP4) and (IR1) - (IR4) breaks
down in our framework is because of the existence of non-elementary sets of worlds. In
particular, on the one hand, with “non-elementariness” there could be more than one
regular faithful preorder that is associated with the same revision function ∗ and epis-
temic state S by means of (�∗). On the other hand, the extra constraint of regularity
for the preorders �A may not necessarily be compatible with (IR1) - (IR4).

In the rest of the paper we focus once again on one-step transitions and hence we
switch back to belief sets and to the general framework as it was developed before this
section.

6. INSTANCES OF THE APPROACH
In this section we consider various instantiations of the general approach with respect
to specific logics. We begin with revision in classical propositional logic, noting that in
this case the general approach reduces to the standard AGM approach. Subsequently
we review revision in Horn theories, briefly considering as a special case revision in
definite clause theories. Third, we discuss revision in extended logic programs. While
the model theory looks quite different from that of classical logic, nonetheless it is
straightforward to show that our results cover this class of approaches. Last, we ex-
amine revision in what is arguably the simplest approach that may be considered to
be a non-trivial logic, in what we call literal revision.

6.1. Classical Propositional Logic
In propositional logic, our language LP is built from a finite set of atoms P = {p, q, . . . }
with sentences formed using the usual set of propositional connectives. The set of pos-
sible worlds MP corresponds to the set of interpretations of LP , and the function fP
assigning sentences of LP to sets of possible worlds is given by the standard satisfac-
tion relation of propositional logic.

In this setting the restriction (Expr) is trivially satisfied. Moreover, in this setting,
the postulate (Acyc) is derivable from the AGM postulates (K*1) – (K*8) [Delgrande
and Peppas 2015, Proposition 3]. Every set of worlds S ⊆ MP is elementary, in that
for any S ⊆ MP there is a sentence φ ∈ LP such that [φ] = S. In particular, in the
proof of Theorem 4.9 we obtain for any worlds w1, w2 that [B(w1, w2)] = {w1, w2}.
Consequently, the relation �′ defined in the proof of Theorem 4.9 corresponds to the
definition of � in [Katsuno and Mendelzon 1991], where they show that � defines
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a total preorder. The overall result is that restricted to finite propositional logic, we
just need the standard AGM postulates, all sets of worlds are elementary, and the
soundness and completeness results of [Katsuno and Mendelzon 1991] go through.
Hence our general approach reduces to the AGM approach (as formulated by Katsuno
and Mendelzon) when the underlying logic contains classical propositional logic.

6.2. Horn Logic
We next consider revision in Horn clause theories. Basic definitions and issues were
presented in Section 2.2; as well, [Delgrande and Peppas 2015] provides an extensive
development of AGM-style revision in Horn theories. Consequently, in this subsection
we just examine Horn revision from the perspective of the general approach. However,
first we briefly consider a restriction of Horn clauses, to that of definite clauses.

A definite clause is a clause (viz. disjunction of literals) that contains exactly one
unnegated literal. Hence a definite clause can be written as an implication a1 ∧ a2 ∧
· · · ∧ an ⇒ a where n ≥ 0 and each ai, 1 ≤ i < n, and a are atoms. Thus, without
worrying about formalities too much, our language LD is the set of conjunctions of
definite clauses, based on a finite set of atoms P. The set of possible worlds would
again correspond to the set of interpretations on the language. Definite clauses are
expressively impoverished, in that any set of definite clauses is satisfiable.19 What
this means for our general approach is that revision is still definable, but it becomes
a trivial operation. Thus, for any definite clause belief set K, the notion of a faithful
assignment is still meaningful, as is the induced function (�∗). However, given that
any set of definite clauses is satisfiable, this means that for any set of definite clauses
A, [K] ∩ [A] 6= ∅ and so we obtain that K ∗ A = t(min([A],�)) = Cn(K ∪ A). Which is a
roundabout way of saying that, not unexpectedly, while we obtain AGM-style revision
for definite clauses, in fact it reduces to expansion.

Turning to Horn clauses, where a Horn clause is a clause with at most one unnegated
literal, things become quite a bit more complicated, in fact arguably more complicated
than the case of classical propositional logic. As reviewed in Section 2.2, a Horn clause
can be written as an implication a1∧a2∧ · · ·∧an ⇒ a, as in the case of definite clauses,
but where a may be the falsum ⊥. In terms of the basic components of our approach,
our language LH is that of Horn formulas (that is, conjunctions of Horn formulas)
over a finite set of atoms. The set of possible worlds again is the set of propositional
interpretations. As with propositional logic, our restriction (Expr) is trivially satisfied.
It proves to be the case that the postulate (Acyc) is required: with respect to Horn
logic, (Acyc) is independent of the postulates (K*1) – (K*8). As well, not every set of
worlds is elementary: if a set of worlds is closed under intersection of atoms true in
an interpretation, it is elementary; otherwise it is not. So in Horn clause theories, a
preorder over interpretations is regular, if for all sets of Horn formulas A, min([A],�)
is closed under intersection. Consequently, we obtain a representation result for Horn
clause theories with respect to the general revision postulates on the one hand, and
faithful regular preorders over possible worlds on the other.

6.3. Answer Set Programs
Answer set programming (ASP) [Gelfond and Lifschitz 1988; Gebser et al. 2012;
Brewka et al. 2011] is a major area of research in knowledge representation and rea-
soning. On the one hand it has a conceptually simple, declarative, theoretical founda-
tion, while on the other hand efficient implementations are available. We omit a full in-
troduction to ASP here, but refer the reader to the above citations; as well, [Delgrande
et al. 2013] is a full development of AGM-style revision in ASP from first principles. So

19For example, the interpretation that assigns true to every atom satisfies every definite clause.
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here we just describe how revision in ASP can be directly expressed using our general
approach.

As before, our language is based on a finite set of propositional atoms P. The lan-
guage, LLP , is that of generalised logic programs, where a generalised logic program
over P is a set of rules of the form:

a1; . . . ; am; ∼ b1; . . . ;∼ bn ← c1, . . . , cj , ∼ d1, . . . ,∼ dk (6)
where ap, bq, cr, ds ∈ P and p, q, r, s ≥ 0. The operators ‘;’ and ‘,’ express disjunctive and
conjunctive connectives respectively while the unary operator ∼ is default negation or
negation-as-failure. Two important subclasses of logic programs are given as follows.
A rule r as in (6) is called disjunctive if n = 0; and normal if m ≤ 1 and n = 0. (For a
normal rule in which k = 0, we are back with a Horn clause.) A program is a disjunctive
logic program if it consists of disjunctive rules only, and a program is a normal logic
program if it consists of normal rules only. Any logic program as above induces zero
or more answer sets, informally classical models of the program that satisfy certain
minimality conditions.

Our interests aren’t with answer sets here, but rather with the underlying model
theory of such programs. This is given by a standard, albeit perhaps intricate, model
theory, based on so-called SE models [Turner 2003]. The set of SE models is defined to
be, for a set of atoms P, the set of all ordered pairs (X,Y ) where X ⊆ Y ⊆ P.

This defines the language and set of models. The last component that we need to
specify is the mapping f from sentences in the language to possible worlds, in this
case, SE models. For this we need some additional terminology. A rule as in (6) can be
written

H(r)+;∼ H(r)− ← B(r)+,∼ B(r)−

where ∼X = {∼a | a ∈ X} and

a1, . . . , am = H(r)+, b1, . . . , bn = H(r)−,
c1, . . . , cj = B(r)+, d1, . . . , dk = B(r)−.

The reduct of a generalised logic program Π with respect to a set of atoms Y , denoted
ΠY , is the set of rules:

{H(r)+ ← B(r)+ | r ∈ Π, H(r)− ⊆ Y, B(r)− ∩ Y = ∅}.
Note that the reduct consists of negation-free rules only. Informally Y can be thought
of as a guess of a model of Π, and the reduct is composed of the rules in Π where the
default negations have been “compiled out”. An SE model (X,Y ) is an SE model of Π
iff Y |= Π and X |= ΠY , where |= is the satisfaction relation in classical propositional
logic.

So this defines the three major components required in our general approach to
revision: the language, set of possible worlds, and satisfaction relation. While it is
quite a bit more complex than the previously-described instances of the approach (and
indeed won’t make a whole lot of intuitive sense to someone not passingly familiar
with ASP), it nonetheless fits within our general specification of a “logic”.

Continuing, it turns out that the notion of an elementary set of worlds is non-trivial
in ASP, in that there are sets of SE models S for which there is no program Π where
[Π] = S. For the classes of programs that we are interested in, we have the following
constraints on sets of SE models:

A set of SE models S is elementary:20

20The following conditions are referred to as well-defined, complete, and closed under here-intersection, re-
spectively, in [Eiter et al. 2005; Cabalar and Ferraris 2007].
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— in the class of generalised logic programs, if (X,Y ) ∈ S implies (Y, Y ) ∈ S;
— in the class of disjunctive logic programs, if S is elementary in the class of gen-

eralised programs and if (X,Y ) ∈ S and (Z,Z) ∈ S where Y ⊆ Z then (X,Z) ∈ S;
and

— in the class of normal logic programs, if S is elementary in the class of disjunctive
programs and if (X,Z), (Y,Z) ∈ S then (X ∩ Y, Z) ∈ S.

With this we are done: We can apply Theorems 4.8 and 4.9, obtaining a representation
result for AGM-style revision in these three classes of answer set programs.

6.4. Literal Revision
Our last instance of the general approach is of independent interest, in that it illus-
trates that AGM revision is definable even in extremely weak (albeit non-trivial) logics.
To motivate this instance, we can ask “what is the weakest system that might reason-
ably be called a logic?” and then examine the associated AGM-style revision function in
that logic. Arguably, for a system to be considered a non-trivial logic, it needs some no-
tion of inconsistency expressible in the language. This could be given by a designated
atom, such as ⊥ in Horn logic, or it could be given in terms of a notion of negation. In
this latter case, a set of formulas A is inconsistent if some formula and its negation are
derivable from A. To this end, assume that an agent’s knowledge is comprised of facts
only, where a fact is an atom or a negated atom, and consequently in which an agent’s
knowledge is given by a set of literals. We refer to the resulting approach to revision
as literal revision.

We need to first specify the three components of the general framework. As before,
our language will be based on a finite set of atoms P. The sentences of our language
LL will be sets of literals definable from P. Hence, for P = {p, q, r} sentences include
{p,¬q} and {p,¬p, q} which, as before, we can abbreviate as pq̄ and pp̄q. The set of
possible worldsM will be the set of propositional interpretations over P. The function
f is defined as one would expect: for sentence φ, f(φ) is just the set of interpretations
at which φ is true.

A sentence φ is inconsistent just if φ contains complementary literals, and a set of
sentences A is inconsistent just if the union of members of A contains complementary
literals. If a set of sentences A is inconsistent then Cn(A) = LL; and if A is consistent
then Cn(A) = P(∪A) where P(X) is the power set of X. For two sets of sentences A
and B, we can define a notion of logical consequence by: A |= B iff A is inconsistent or
(∪A) ⊇ (∪B).

In general, an arbitrary set of worlds S ⊆ M will not be elementary. For exam-
ple, for P = {p, q, r}, there is no set of sentences whose models is precisely {pq̄r, p̄qr}.
It is straightforward to show that a set of worlds S ⊆ M is elementary just if
[
⋂

w∈S w] = S. Thus for example, if S = {p̄q̄r, pq̄r, p̄qr, pqr} then [
⋂

w∈S w] = [{r}] =
{p̄q̄r, pq̄r, p̄qr, pqr} = S. In contrast, S′ = {p̄q̄r, pq̄r, p̄qr} is not elementary; we have
[
⋂

w∈S′ w] = [{r}] = {p̄q̄r, pq̄r, p̄qr, pqr} 6= S′. Given this, our representation results ap-
ply and so we obtain a class of AGM-style revision functions in this approach. It can be
noted that while the formal system is trivial, the resulting set of revision functions is
not; for example, for P = {p, q, r} and K = Cn({p, q}), the following is a faithful regular
preorder defining a revision function:

pqr
pqr̄

�
p̄qr
pq̄r
p̄q̄r

� pq̄r̄
p̄qr̄

� p̄q̄r̄.

Consequently, we obtain, for example, that K ∗ {¬p} = {¬p, r}. As well, the exam-
ple illustrates a subtlety about the approach mentioned earlier: neither the set of
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worlds {p̄qr, pq̄r, p̄q̄r} nor {pq̄r̄, p̄qr̄} as they appear in the total preorder are elemen-
tary.21 However, we don’t run into trouble in defining revision in this preorder, since
the preorder is nonetheless regular; for example, there is no set of sentences A such
that min([A],�) = {pq̄r̄, p̄qr̄}.

Literal revision, while very basic, is of interest in at least two respects. First, it high-
lights aspects of the general approach while, second, it may also be of independent
interest. With regards to the first point, literal revision demonstrates that AGM-style
belief revision obtains in a very weak framework. The revision postulates are satisfied
in this approach, and the semantic approach of regular faithful rankings captures lit-
eral belief revision. In a certain sense also, these results show that the AGM approach
per se can be decoupled from the underlying logic, in that the AGM approach can be
obtained even assuming essentially no meaningful underlying logic.

As well, literal revision may be of independent interest, since there has been some
interest in proper knowledge bases [Levesque 1998], where a proper knowledge base
is equivalent to a set of literals. Arguably a proper knowledge base is the simplest
kind of knowledge base that allows open world reasoning. So, to the extent that proper
knowledge bases are interesting, it is an interesting question to ask how change can
be managed in such knowledge bases. Literal revision then addresses revision with re-
spect to proper knowledge bases and demonstrates that meaningful revision operators
that adhere to the AGM approach are definable.

7. DISCUSSION
In this section we briefly examine some of the underlying assumptions, results, and
implications of the approach.

At the outset we suggested that the approach extends the AGM framework to any
system that might reasonably be called a logic, with the caveat that for us a logic was
defined in terms of a set of models and a satisfaction relation between models and
formulas. Consequently, the approach is inapplicable for a system for which a model
theory has not yet been developed, or for one with a non-standard notion of satisfaction
of formulas.

However, it is interesting to note that the central constructions of the AGM ap-
proach are expressed essentially independently of a model theory. The approaches to
constructing contraction functions are expressed in terms of certain maximal subsets
of a belief set (in the case of remainders) or in terms of an ordering over the formulas
in a belief set (for epistemic entrenchment). In Grove’s system-of-spheres construction
of revision functions, “possible worlds” are in fact maximal consistent sets of formulas.
To be sure, approaches have been developed with respect to models, best known being
the Katsuno-Mendelzon formulation of revision. However, in the Katsuno-Mendelzon
approach, a crucial assumption is made that the language, and the set of models, is
finite; consequently every set of models is representable by a formula.

We follow the Katsuno-Mendelzon approach in assuming that the set of models, or
possible worlds, is finite. Of course it proves to be the case that in arbitrary logics it
no longer holds that every set of models is representable by a formula; this leads to
the notions in our approach of elementary sets of worlds and regular preorders. So for
us the assumption of finiteness helps accentuate the difference between classical AGM
belief revision and our approach.

On the postulational side, the schema (Acyc) provides a counterpart to regular pre-
orders. Just as one does not need to distinguish regular preorders in the AGM ap-
proach, so too is the (Acyc) schema not required there. It can be noted also that

21For instance, the set {pq̄r̄, p̄qr̄, p̄q̄r̄, pqr̄} is the least set of worlds containing pq̄r̄ and p̄qr̄ that is elementary.
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the acyclicity postulate (Acyc) differs from the other AGM postulates, in that it is
schematically infinite, and it specifies a schema for every n ≥ 3. This raises the ques-
tion of whether (Acyc) might be replaced by a finite schema. However, Yaggie and
Turán [2015] show that the class of Horn belief revision operators require (Acyc), and
cannot be characterized by finitely many postulate schemas. Since Horn belief revision
is an instance of our approach, this means that a schematically infinite postulate is un-
avoidable. This is perhaps not surprising, since the (Loop) schema in distance-based
revision similarly cannot be finitely characterised [Schlechta 2004; Ben-Naim 2006].

8. CONCLUSION
In this paper we have investigated belief revision in arbitrary logics, and we have
shown that AGM-style revision can be obtained even when extremely little is assumed
of the underlying language and its semantics. This is done by adding a postulate
schema (Acyc) to the usual set of AGM postulates, on the one hand, and adding a con-
straint of regularity to preorders over possible worlds on the other hand. Both of these
additions are redundant in the original AGM approach. Subsequently, a representa-
tion result established a correspondence between operators satisfying the postulates,
and operators defined via minimal worlds in regular faithful rankings. The approach
is also shown to be compatible with the general Darwiche-Pearl postulates for iterated
revision, and several instances of the framework are given to illustrate the approach.

Consequently, AGM revision is extended to arbitrary logics, or at least to those
based on a notion of model and satisfaction of formulas. Conceptually then, revision in
such logics can in theory be addressed no differently than in classical logic. Expressed
slightly differently, the AGM approach provides constraints on a rational belief oper-
ator; what our results show is that (rational) belief revision is definable essentially
within any logic. This may not help immediately in the development of a specific revi-
sion operator; however, the approach may provide a guide to the formulation of specific
revision operators in fragments of classical logic (such as Horn logic and description
logics), and non-classical logics (such as modal logics and extended logic programs). In
part, this is due to the fact that our representation result is applicable to any “rea-
sonable” logic; thus once one has specified a language, set of models, and satisfaction
relation, and supplied an appropriate notion of regularity, the representation results
(Theorems 4.8 and 4.9) apply. To be sure, an appropriate logic-specific characterisation
of elementary sets of worlds may be non-obvious; however our formal results offer the
possibility of a very significant short cut in developing a representation result for logics
(such as, for example, in description logics or modal logics) for which revision functions
have not been developed.

These results may also help to better understand the overall landscape of belief
change, particularly the interrelation of different belief change operators. In the classi-
cal AGM approach, belief revision and contraction are essentially two sides of the same
coin, in that revision and contraction are interdefinable via the Levi and Harper iden-
tities. However, when the underlying logic is weaker than classical propositional logic,
these identities generally fail. Thus, when the underlying logic is weaker than classi-
cal propositional logic, revision and contraction become distinct, independent change
operations. Of interest then is to determine what relations exist between revision and
contraction in the context of arbitrary logics.

A. PROOF OF THEOREMS 4.9 AND 5.1
A.1. Proof of Theorem 4.9
Let K ⊆ L be an arbitrary theory. We shall progressively construct the preorder �
alluded to in the statement of the theorem. First we define, using K and ∗, a binary
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relationv overM for which we show that [K∗A] = min([A],v) for all A ⊆ L. In general,
v is neither transitive nor total (although it is reflexive). The transitive closure of v,
denoted �0, is clearly a preorder, but in general it is not total. We therefore construct
a series of extensions of �0, denoted �1,�2, · · · , that preserve the minimal elements of
[A] for all A ⊆ L. The union of this series is denoted � and it will be shown to be a total
preorder having all the desired properties.

In progressing from v to � we shall prove a number of supplementary results that
will help us establish the main line of the argument.

First some notation. For any two worlds w1, w2 ∈M, we define

B(w1, w2) = t({w1}) ∩ t({w2}).
Clearly, w1, w2 ∈ [B(w1, w2)]. Moreover, according to the following result, B(w1, w2) is
the strongest set of sentences consistent with both w1 and w2:

LEMMA A.1. Let A ⊆ L be any set of sentences and w1, w2 ∈ M any two
worlds. If w1, w2 ∈ [A], then [B(w1, w2)] ⊆ [A].

PROOF. Assume that w1, w2 ∈ [A]. Let w3 be an arbitrary world in
[B(w1, w2)] and assume towards a contradiction that w3 6∈ [A]. Then for
some φ ∈ A, w3 6|= φ. On the other hand, since w1, w2 ∈ [A], it follows
that w1 |= φ and w2 |= φ; hence φ ∈ t({w1}) ∩ t({w2}). Since [B(w1, w2)] =
[t({w1})∩ t({w2})], we derive that w3 ∈ [t({w1})∩ t({w2})], and consequently
w3 |= φ. This of course contradicts our earlier conclusion.

We now define the binary relation v overM as follows:

w1 v w2 iff w1 ∈ [K ∗B(w1, w2)].

As usual, @ denotes the strict part of v; that is, w1 @ w2 iff w1 v w2 and w2 6v w1.

LEMMA A.2. Let w1, w2 be any two worlds such that w1 v w2 and let
A ⊆ L be a set of sentences such that w1 ∈ [A] and w2 ∈ [K ∗A]. Then we have
that w1 ∈ [K ∗A].

PROOF. Let A be any set of sentences such that w1 ∈ [A] and w2 ∈ [K ∗A].
Then clearly B(w1, w2) is consistent with K ∗ A. Hence by (K*7) and (K*8)
we derive that K ∗ (A∪B(w1, w2)) = (K ∗A)+B(w1, w2). Moreover, from w2 ∈
[K ∗A] and (K*2), it follows that w2 ∈ [A]. From w1, w2 ∈ [A] and Lemma A.1,
it follows that [B(w1, w2))] ⊆ [A]. Hence, [A ∪ B(w1, w2)] = [A] ∩ [B(w1, w2)]
= [B(w1, w2))]. Therefore by (K*6), K ∗ (A ∪ B(w1, w2)) = K ∗ B(w1, w2), and
thus K ∗B(w1, w2) = (K ∗A)+B(w1, w2). This, together with w1 v w2, entails
w1 ∈ [K ∗A].

LEMMA A.3. For all A ⊆ L, min([A],v) = [K ∗A].

PROOF.
LHS ⊆ RHS
Let A ∈ L be any set of sentences and assume towards a contradiction that
there is a w1 ∈ min([A],v) such that w1 6∈ [K ∗ A]. From w1 ∈ min([A],v)
it follows that A is consistent, and therefore, by (K*5), [K ∗ A] 6= ∅. Let w2

be any world in [K ∗ A]. By Lemma A.2 we derive that w1 6v w2. This again
entails that w2 6v w1 (for otherwise w1 wouldn’t be minimal in [A]). Hence
by the definition of v, w1, w2 6∈ [K ∗B(w1, w2)]. Since B(w1, w2) is consistent,
from (K*5) it follows that there is a world w3 ∈ [K ∗B(w1, w2)]. Clearly then,
B(w1, w3) is consistent with K ∗B(w1, w2), and therefore by (K*7) and (K*8),
K ∗ (B(w1, w2) ∪B(w1, w3)) = (K ∗B(w1, w2)) +B(w1, w3).
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Next we show that [B(w1, w3)] ⊆ [B(w1, w2)]. Assume towards a contra-
diction that for some r ∈ [B(w1, w3)], r 6∈ [B(w1, w2)]. Then for some
φ ∈ B(w1, w2), r 6|= φ. This again entails that φ 6∈ t({w3}), and there-
fore w3 6|= φ. Notice however that from (K*2), φ ∈ K ∗ B(w1, w2), which
of course contradicts w3 ∈ [K ∗ B(w1, w2)]. Hence we have shown that
[B(w1, w3)] ⊆ [B(w1, w2)].
From [B(w1, w3)] ⊆ [B(w1, w2)], it follows that [B(w1, w2) ∪ B(w1, w3)] =
[B(w1, w3)]. Together with (K*6) we then derive that K ∗ B(w1, w3) =
(K ∗ B(w1, w2)) + B(w1, w3). Hence it follows that w3 ∈ [K ∗ B(w1, w3)] and
consequently, w3 v w1. On the other hand from w3 ∈ [K ∗ B(w1, w2)] and
w1 6∈ [K ∗ B(w1, w2)], we derive from Lemma A.2 that w1 6v w3; hence,
w3 @ w1.
Finally notice that from w1, w2 ∈ [A], it follows that [B(w1, w2)] ⊆ [A]. Then,
since we have shown that [B(w1, w3)] ⊆ [B(w1, w2)], we derive that w3 ∈ [A].
This however contradicts our assumption that w1 is minimal in [A] with
respect to v.

RHS ⊆ LHS
Let A ⊆ L be any set of sentences and let w1 be any world in [K∗A]. We show
that w1 is v-minimal in [A]. Let w2 be any world in [A]. Clearly, since w1 ∈
[K ∗ A], B(w1, w2) is consistent with K ∗ A, and consequently, by (K*7) and
(K*8), K ∗ (A∪B(w1, w2)) = (K ∗A)+B(w1, w2). Moreover, since w1, w2 ∈ [A],
it follows that [B(w1, w2)] ⊆ [A], and therefore, [A ∪B(w1, w2)] = [B(w1, w2)].
Hence by (K*6), K ∗ B(w1, w2) = K ∗ (A ∪ B(w1, w2)) = (K ∗ A) + B(w1, w2).
Consequently, from w1 ∈ [K ∗ A] we derive that w1 ∈ [K ∗ B(w1, w2)], and
therefore, w1 v w2. Since w2 was chosen arbitrarily, it follows that w1 ∈
min([A],v).

LEMMA A.4. If w1 v w2 v . . . v wn v w1 then w1 v wn.

PROOF. If n = 1, the lemma is trivially true.
Let w1, w2, . . . , wn be any sequence of worlds, with n > 1, such that w1 v
w2 v . . . v wn v w1.
Then w1 ∈ [K∗B(w1, w2)], w2 ∈ [K∗B(w2, w3)], . . . , wn−1 ∈ [K∗B(wn−1, wn)],
and wn ∈ [K ∗B(w1, wn)]. Hence,

K ∗B(w2, w3) is consistent with B(w1, w2)
...

K ∗B(wn−1, wn) is consistent with B(wn−2, wn−1)
K ∗B(w1, wn) is consistent with B(wn−1, wn)

and
K ∗B(w1, w2) is consistent with B(w1, wn)

Then by (Acyc) we derive that K ∗ B(w1, wn) is consistent with B(w1, w2).
Consequently, by (K*7) and (K*8), K ∗ (B(w1, wn) ∪ B(w1, w2)) = K ∗
B(w1, wn)) +B(w1, w2).
On the other hand, since K ∗ B(w1, w2) is consistent with B(w1, wn), (K*7)
and (K*8) entail thatK∗(B(w1, wn)∪B(w1, w2)) = (K∗B(w1, w2))+B(w1, wn).
Hence, from w1 v w2, it follows that w1 ∈ [K ∗ (B(w1, wn) ∪ B(w1, w2))].
Consequently, since K ∗ (B(w1, wn)∪B(w1, w2)) = K ∗B(w1, wn))+B(w1, w2),
we conclude that w1 ∈ [K ∗ (B(w1, wn)], and therefore w1 v wn.

LEMMA A.5. For any A ⊆ L, if w ∈ min([A],v) and w′ ∈ [A], then w v w′.
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PROOF. Assume on the contrary that for someA ⊆ L, there are w,w′ ∈M
such that w ∈ min([A],v), w′ ∈ [A], and w 6v w′. Clearly then w′ 6v w.
Consequently, w,w′ 6∈ [K ∗B(w,w′)].
Since B(w,w′) is consistent, from (K*5) it follows that [K ∗B(w,w′)] 6= ∅. Let
r be any world in [K ∗ B(w,w′)]. Clearly r 6= w and r 6= w′. From (K*2) it
follows that r ∈ [B(w,w′)] and therefore by Lemma A.1, r ∈ [A].
Next observe that [B(w, r)] ⊆ [B(w,w′)]. To see this consider any world r′ ∈
[B(w, r)] and let φ be any sentence in B(w,w′). Since w, r ∈ [B(w,w′)] we
derive that w |= φ and r |= φ. Hence φ ∈ B(w, r). Then from r′ ∈ [B(w, r)]
we derive that r′ |= φ. This again entails that r′ ∈ [B(w,w′)]. Therefore
[B(w, r)] ⊆ [B(w,w′)].
From [B(w, r)] ⊆ [B(w,w′)] and (K*6) we then derive that K ∗ (B(w,w′) ∪
B(w, r)) = K ∗B(w, r). On the other hand from r ∈ [K ∗B(w,w′)] and (K ∗ 7)
- (K ∗ 8) we derive that K ∗ (B(w,w′) ∪ B(w, r)) = (K ∗ B(w,w′)) + B(w, r)).
Combining the above it follows that [K ∗B(w, r)] = [K ∗B(w,w′)] ∩ [B(w, r)].
Hence, given that r ∈ [K ∗ B(w,w′)] and w 6∈ [K ∗ B(w,w′)], we derive that
r ∈ [K∗B(w, r)] and w 6∈ [K∗B(w, r)]. That is, r @ w. Since, as we have shown
earlier, r ∈ [A], this contradicts our initial assumption that w is v-minimal
in [A].

Let us now define �0 to be the transitive closure of v; that is, w �0 w
′ iff there exist

worlds u1, . . . , un, such that w v u1 v · · · v un v w′. By construction, �0 is reflexive
and transitive; that is, �0 is a partial preorder. Moreover,

LEMMA A.6. For any A ⊆ L, min([A],�0) = [K ∗A].

PROOF. Let A be any set of sentences in L. Given Lemma A.3 it suffices
to show that min([A],�0) = min([A],v).
From Lemma A.5 it follows immediately that min([A],v) ⊆ min([A],�0). For
the converse, let w be any element of min([A],�0). Consider any w′ ∈ [A]
such that w′ v w. Since w ∈ min([A],�0) it follows that w �0 w′. Hence
there exist u1, . . . , un ∈ M such that w v u1 v · · · v un v w′. Consequently,
w v u1 v · · · v un v w′ v w. Therefore by Lemma A.4, w v w′. This shows
that w ∈ min([A],v).

An immediate corollary of Lemmas A.3, A.5, A.6 is the following:

COROLLARY A.7. For all A ⊆ L, if w ∈ min([A],�0) and w′ ∈ [A], then
w �0 w

′.

If �0 happens to be total, then in view of the above results it is easy to verify that
it satisfies all the properties required by the theorem. Assume therefore that �0 is
not total. Then there are pairs of worlds that are incomparable with respect to �0.
Given that there are only finitely many worlds inM, there are also only finitely many
incomparable pairs of worlds with respect to �0. Let S1, . . . Sm be an enumeration of
these incomparable pairs of world. We shall denote the elements of Si as wi

1 and wi
2;

that is, Si = {wi
1, w

i
2}.22 Moreover, we pick arbitrarily a world w ∈ M and we define

w0
1 = w0

2 = w.
Next we shall construct a series of preorders �1, · · · �m, each an extension of its

predecessor, that preserves the properties reported in Lemma A.6 and Corollary A.7.
The union of this series, denoted �, will be shown to have all the desired properties.

22It makes no difference which of the two worlds in Si is assigned the smaller subscript; the choice is
arbitrary.
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First one more definition. We define g to be a functions that maps any preorder �i

into a natural number g(�i) as follows:

g(�i) =


0 if �i is total

the smallest number k such that
wk

1 , w
k
2 are incomparable wrt �i otherwise

With the aid of the above definition, we recursively define the series of preorders
�1, · · · ,�m as follows:

�i+1 = the transitive closure of �i ∪{(wg(�i)
1 , w

g(�i)
2 )}.

Clearly all �i are preorders. Moreover,

LEMMA A.8. For all i ≥ 0 and any A ⊆ L,
(i) min([A],�i) = [K ∗A].

(ii) if w ∈ min([A],�i) and w′ ∈ [A], then w �i w
′.

PROOF. We prove the lemma by induction on i. For i = 0, the lemma
follows from Lemma A.6 and Corollary A.7. Assume that the lemma is true
for all 0 ≤ i ≤ k (induction hypothesis). Next we show that it holds for
i = k + 1 (induction step).
If �i is total then by construction �i+1=�i. Hence, since by the induction
hypothesis the conditions (i)–(ii) are satisfied for �i, they are also satisfied
for �i+1. Assume therefore that �i is not total.
Let A ⊆ L be an arbitrary set of sentences. To prove Condition (i) it suffices
to show, due to the induction hypothesis, that min([A],�i+1) = min([A],�i).
If [A] = ∅, then this is clearly true. Assume therefore that [A] 6= ∅. Then by
(K*5), [K ∗A] 6= ∅, and therefore by the induction hypothesis, min([A],�i) 6=
∅.
First we show that min([A],�i) ⊆ min([A],�i+1). Let w be any world in
min([A],�i). Then by Condition (ii) of the induction hypothesis it follows
that w �i r for all r ∈ [A]. Since �i+1 is an extension of �i we derive that
w �i+1 r for all r ∈ [A]. Hence w ∈ min([A],�i+1), which again shows that
min([A],�i) ⊆ min([A],�i+1).
For the converse we shall prove the contrapositive. Let r be any world such
that r 6∈ min([A],�i). We will show that r 6∈ min([A],�i+1). If r 6∈ [A]
this is trivially true. Assume therefore that r ∈ [A]. Let z be any world
in min([A],�i). Clearly r 6∈ min([A],�i) entails r 6�i z. Next we show that
r 6�i+1 z. Assume on the contrary that r �i+1 z. Then, since r 6�i z, if fol-
lows by the construction of �i+1 and the transitivity of �i, that r �i w

g(�i)
1

and w
g(�i)
2 �i z. Moreover by the induction hypothesis, Condition (ii),

z �i r. Hence, wg(�i)
2 �i z �i r �i w

g(�i)
1 , and consequently by transitivity,

w
g(�i)
2 �i w

g(�i)
1 , which of course contradicts the definition of wg(�i)

1 , w
g(�i)
2

as the pair of worlds with the smallest index among those that are incom-
parable wrt �i. Thus we have shown that r 6�i+1 z. On the other hand
from z �i r it follows that z �i+1 r. Hence, since z ∈ [A], we derive that
r 6∈ min([A],�i+1). Therefore min([A],�i+1) ⊆ min([A],�i).
We have thus shown that �i+1 satisfies Condition (i). For Condition (ii),
consider any w ∈ min([A],�i+1) and let w′ be any world in [A]. Since, as
already shown, min([A],�i+1) = min([A],�i), we derive that w ∈ min([A],�i
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). Moreover, by Condition (ii) of the induction hypothesis, w �i w
′. Hence,

since �i+1 is an extension of �i, w �i+1 w
′.

We now define � to be the union of �i for all 0 ≤ i ≤ m:

� =
⋃m

i=0(�i)

First we show that � is a preorder; that is, reflexive and transitive. Reflexivity is
straightforward: since �0 is reflexive and �0⊆�, then � is also reflexive. For transitiv-
ity, let w1, w2, w3 be any three worlds such that w1 � w2 � w3. Then for some i, j ≥ 0,
w1 �i w2 and w2 �j w3. Let k be the greatest of the two numbers i, j. Then by the con-
struction of the series �0, . . . ,�m, both preorders �i and �j are subsets of �k. Hence
w1 �k w2 �k w3, and therefore, w1 �k w3. Since �k⊆� we derive w1 � w3.

Next we show that � is total. Assume on the contrary that there are two worlds r, r′
that are incomparable wrt to �. Since �0⊆�, it follows that r, r′ are also incomparable
wrt �0. Hence for some i ≥ 0, Si = {r, r′}. Observe that by the definition of g, we have
g(�i+1) > i. Hence worlds in S1, are comparable wrt �i+1; and so are the worlds in
S2, in S3, . . ., in Si. That is r �i+1 r

′ or r′ �i+1 r. Since � extends �i+1 we derive that
r � r′ or r′ � r. Thus � is total, and hence it fulfills the first requirement, namely (F1),
for being faithful to K.

To complete the proof we need to show that �, also satisfies (F2) – (F3), as well as
(�∗). We start with the latter. In fact we shall prove something slightly stronger than
(�∗); namely that for all A ⊆ L, [K ∗A] = min([A],�).

Let A be any set of sentence in L. If [A] = ∅ then from (K*2) we immediately derive
[K ∗A] = min([A],�) = ∅. Assume therefore that [A] 6= ∅.

Consider any w ∈ [K ∗ A] and let r be any world in [A]. Then by Lemma A.8, w �0

r, and since �0⊆�, we derive that w � r. This entails that w ∈ min([A],�). Hence
[K ∗A] ⊆ min([A],�).

For the converse, let r be any world in min([A],�). Since [A] 6= ∅, from (K*5) we get
that [K ∗ A] 6= ∅. Let w be any world in [K ∗ A]. Clearly, by (K*2), w ∈ [A], and since as
already shown � is total, from r ∈ min([A],�) we derive that r � w. Hence, for some
i ≥ 0, r �i w. Moreover, from Lemma A.8 and w ∈ [K ∗A], it follows that w ∈ min([A],�i

). Therefore from r �i w we derive that r ∈ min([A],�i). Using Lemma A.8 again we
derive r ∈ [K ∗A] as desired.

We have thus shown that for all A ⊆ L, min([A],�) = [K ∗ A]. This clearly proves
(�∗). Moreover, combined with (K*5), it also proves (F3). Finally, by setting A = ∅, from
min([A],�) = [K ∗A] and (K*3) – (K*4), we derive (F2) as well. 2

A.2. Proof of Theorem 5.1
As already noted, Theorem 4.8 also holds for the extended framework developed in this
section. Hence we can define the revision function ∗ alluded to in the present theorem
in terms of total preorders over possible worlds.

More precisely, let us denote by � any regular faithful ranking with respect to S. For
every set of sentences A ⊆ L we shall construct a total preorder �A overM, which will
be shown to be faithful and regular with respect to t(min([A],�)). The initial preorder
� along with the family of preorders {�A}A⊆L is then used to define a revision function
∗ which is subsequently shown to satisfy (DP1) - (DP4).

Consider an arbitrary set of sentences A. If A is inconsistent, then we define �A to
be identical to �. If on the other hand A is consistent, then �A is defined as follows:

w �A w′ iff w ∈ min([A],�), or w � w′ and w′ 6∈ min([A],�).
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According to the above definition, to construct �A, one starts with � and simply
moves the minimal A-worlds (with respect to �) to the beginning of the ranking; ev-
erything else is unchanged. We note that this construction is not new. It was proposed
by Boutilier [Boutilier 1993; 1996] in his treatment of iterated revision, which he called
natural revision.

Since� is a total preorder, it is not hard to verify that�A is also a total preorder over
M, regardless of whether A is consistent or not. Moreover by construction it follows
immediately that �A is faithful with respect to t(min([A],�)). Next we show that �A

is also regular.
If A is inconsistent then �A=� and hence (F3) follows immediately. Assume there-

fore that A is consistent. To prove (F3) we need to show that for any nonempty set of
sentences C, min([C],�A) is elementary. From the construction of �A, there are only
two cases to consider: either min([C],�A) = min([C],�) or min([C],�A) ⊆ min([C],�).23

In the first case, since by assumption we have that min([C],�) is elementary, so is
min([C],�A). For the second case, from the definition of �A, we have min([C],�A

) = min([C],�) ∩ min([A],�). By assumption both min([C],�) and min([A],�) are el-
ementary, so there are sets of sentences B1 and B2 such that [B1] = min([C],�) and
[B2] = min([A],�). However, by Proposition 4.2 we have that [B1] ∩ [B2] = [B1 ∪ B2].
Hence min([C],�) ∩min([A],�) is elementary, and so min([C],�A) is elementary.

Now define ∗ to be any revision function that assigns the preorder � to S, and �A to
S ∗ A for every set of sentences A. According to Theorem 4.8, ∗ satisfies the postulates
(K*1) - (K*8), (Acyc). Hence what’s left to be shown is that ∗ also satisfies (DP1) - (DP4).

For (DP1), assume that B,A ⊆ L are such that A ⊆ Cn(B). If B is inconsistent then
(DP1) trivially holds. Assume therefore that B is consistent. We distinguish between
two cases. First suppose thatB∪bel(S∗A) is consistent. Then by (K*7) - (K*8) we derive
that bel(S ∗A) +B = bel(S ∗ (B ∪A)), and by (K*3) - (K*4) we get that bel(S ∗A) +B =
bel((S ∗ A) ∗ B). Moreover from (K*6) we derive that bel(S ∗ (B ∪ A)) = bel(S ∗ B).
Combining the above it follows that bel((S ∗A)∗B) = bel(S ∗A)+B = bel(S ∗ (B∪A)) =
bel(S∗B) as desired. Now for the second case, assume that B∪bel(S∗A) is inconsistent.
Then no B-world belongs to min([A],�). Hence, by the construction of �A it follows
that the restriction of � to [B] is identical with the restriction of �A to [B]. Therefore
min([B],�A) = min([B],�) and consequently, once again, bel((S ∗ A) ∗ B) = bel(S ∗ B)
as desired.

For (DP2), assume that B,A ⊆ L are such that B∪A is inconsistent. If A is inconsis-
tent, then clearly �A=�, and therefore min([B],�A) = min([B],�). This again entails
bel((S ∗A) ∗B) = bel(S ∗B) as desired. Hence assume that A is consistent. From B ∪A
being inconsistent it follows that no A-world satisfies B. Then by the construction of
�A, it is not hard to see that the restriction of �A to [B] is identical to the restriction of
� to [B]. This again entails that min([B],�A) = min([B],�) and therefore, once again,
bel((S ∗A) ∗B) = bel(S ∗B).

For (DP3), assume that B,A ⊆ L are such that A ⊆ bel(S ∗ B). If B is inconsistent,
then (DP3) follows immediately from (K*1) - (K*2). Assume therefore that B is consis-
tent. Then by (K*5), so is bel(S ∗B). Hence from A ⊆ bel(S ∗B) we derive that A is also
consistent. Moreover, from A ⊆ bel(S ∗B) we derive that min([B],�) ⊆ [A]. This again
entails that any B-world that is �-minimal in [A], is also �-minimal in [B]. Hence, by
the construction of �A, it follows that the restriction of �A to [B] is identical to the re-
striction of � to [B]. This again entails that min([B],�A) = min([B],�) and therefore
bel((S ∗A) ∗B) = bel(S ∗B) as desired.

23These cases arise from min([C],�) ∩min([A],�) = ∅ and min([C],�) ∩min([A],�) 6= ∅ respectively.
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Finally, for (DP4), assume that B,A ⊆ L are such that A ∪ bel(S ∗ B) is consistent.
Clearly then, by (K*2) both B and A are consistent. Moreover, from A∪ bel(S ∗B) being
consistent we derive that there exists an A-world in min([B],�). This entails that any
B-world that is �-minimal in [A], is also �-minimal in [B]. Hence, by the construction
of �A, it follows that the restriction of �A to [B] is identical to the restriction of � to
[B]. This again entails that min([B],�A) = min([B],�) and therefore bel((S ∗A) ∗B) =
bel(S ∗B). Hence, since A ∪ bel(S ∗B) is consistent, so is A ∪ bel((S ∗A) ∗B) 2
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