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Abstract
A general framework for minimisation-based belief
change is presented. A problem instance is made up
of an undirected graph, where a formula is associ-
ated with each vertex. For example, vertices may
represent spatial locations, points in time, or some
other notion of locality. Information is shared be-
tween vertices via a process of minimisation over
the graph. We give equivalent semantic and syntac-
tic characterisations of this minimisation. We also
show that this approach is general enough to cap-
ture existing minimisation-based approaches to be-
lief merging, belief revision, and (temporal) extrap-
olation operators. While we focus on a set-theoretic
notion of minimisation, we also consider other ap-
proaches, such as cardinality-based and priority-
based minimisation.

1 Introduction and Motivation
Minimisation of change is a crucial element in many ap-
proaches to knowledge representation and reasoning, includ-
ing reasoning about action and time, belief revision, and be-
lief merging. Generally speaking, these approaches take as
input a collection of formulas (or sets of formulas) and have
as output another set of formulas (or sets of formulas). For
instance, in standard approaches to belief revision, we start
from an initial belief state represented by a formula φ,1 a for-
mula α, and come up with a new belief state φ∗α that satisfies
α while retaining as much as possible from φ. In belief merg-
ing, we start from a collection 〈φ1, . . . , φn〉 of belief states
(again, single formulas), possibly with integrity constraints,
and end up with a single belief state, computed by retaining
as much as possible from the initial information. In a num-
ber of approaches to reasoning about time and change, the
input consists of a series of observations and/or actions over
a discrete time scale, and the output is series of belief states,
one for each time point, obtained by minimising change over
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1More generally, initial beliefs are expressed by belief sets, i.e.
closed propositional theories; it is well-known that both representa-
tions are equivalent when the set of propositional symbols is finite.

time. (Note that, for each of these areas, there is obviously
not a single nor a best way of minimising change.)

Two questions come to mind. First, can we see (some of)
these change-minimising approaches as instances of a more
general framework? Second, are there other specific cases of
this more general setting that are worth considering? This
paper answers both questions. The general setting we con-
sider starts with a set of points structured in a graph, and with
a formula attached to each point. Following a minimisation
step, a formula is determined at each point, representing the
original information associated with the point along with in-
formation gleaned from connected points. This minimisation
step is driven by disagreements among the formulas attached
to connected points. We show that a number of approaches to
belief merging fit within this general setting, as do a number
of approaches to reasoning about time and change, as well as
an approach to revision.

The approach is intended to model any domain that can be
modelled by a set of connected points, with data associated
with each point. Here are some typical examples:
Multisource merging The graph is a network of intercon-

nected agents (or knowledge bases), where each agent
consistently incorporates information from other agents.

Temporal minimisation of change The graph is a set of
time points, and we minimise the set of changes between
successive time points.

Spatial minimisation of change The points are places or re-
gions in space, vertices express adjacency or proximity
between places/regions, and the principle of minimising
change is justified by the assumption of spatial persis-
tence between connected places or points.

Thus for the last example, if it is raining in some place, e.g.
Amsterdam, and we don’t know whether it is raining in a
neighbouring place, e.g. Brussels, we might want to infer by
default that it is also raining there. However, if we also know
that it is not raining in Luxembourg, we might want to con-
clude that we don’t know whether it is raining in Brussels.

The next section introduces basic notation and reviews re-
lated work. Section 3 presents the general approach, while
Section 4 discusses specific instances of the approach. This
is followed by a section on extensions to the approach, in-
cluding adding weights to edges. The final section gives con-
cluding remarks and directions for future work.



2 Related Work
The approach described herein falls into a broad category of
approaches to belief change based on minimisation of change.
In our approach, we employ a graph G = 〈V,E〉 to model
various phenomena. Some earlier work can be regarded as a
specific case of this general approach (and in Section 4 we
show that this is indeed the case). Thus belief extrapolation
[Dupin de Saint-Cyr and Lang, 2002] involve minimisation of
change in a chain (with intended interpretation of the chain
being a series of time points). Similarly, the approaches to
merging of [Delgrande and Schaub, 2006] can be regarded as
minimisation over complete graph or star graphs. Chronolog-
ical minimisation corresponds to a version of the approach on
a chain with priorities on edges. The approach of [Zhang et
al., 2004] to negotiation essentially reduces negotiation to a
form of mutual belief revision.

On the other hand, the general approach is distinct from
belief merging as usually understood, in that most merging
operators begin with a set of belief states but yield a single
belief state (see for example [Liberatore and Schaerf, 1995;
Konieczny and Pino Pérez, 2002]). The conciliation opera-
tors of [Gauwin et al., 2005] however are closer to the ap-
proach at hand: in this case there is a global merging of the
agent’s knowledge after which each agent revises its beliefs
by the “consensual” knowledge. Similar remarks apply to
[Booth, 2002] which, for our purposes, can be regarded as
employing multi-agent contraction. [Liberatore and Schaerf,
2000] describes a specific approach combining merging of
multiple sources, revision and update; there the process of
propagating information temporally is somewhat similar to
extrapolation. One approach that conforms very well to our
underlying intuitions is the REV!GIS project [Würbel et al.,
2000] which addresses revision in geographical information
systems: flooding information (for example) is encoded for
different regions, and persistence of water levels can be used
for revising information in adjacent regions.

3 Global minimisation of change
Let LP be a propositional language over Alphabet P =
{p, q, . . . }, using the logical constants >, ⊥ and connectives
¬, ∨, ∧, ⊃ and ↔. Formulas are denoted by Greek letters
α, ϕ, . . . The set of interpretations of LP is denoted by ΩP .
(Whenever clear from the context, we omit the underlying
alphabet P .) We denote interpretations explicitly as lists of
literals, the falsity of an atom p being indicated by p̄. For in-
stance, for P = {p, q, r}, the interpretation where only q is
true is denoted by p̄qr̄. Mod(α) is the set of models of α;
Cn(α) is the deductive closure of α.

For each i > 0, define alphabet Pi = {pi | p ∈ P};
that is, Pi is a copy of P where atomic symbols carry the
superscript i. We rely on the fact that Pi and Pj are disjoint
for i 6= j. Similarly, Li is a shorthand for LPi . We asso-
ciate P0 with P and L0 with LP . For α ∈ Li, the function
ren is defined so that ren(α, j) is the formula α where ev-
ery occurrence of pi ∈ Pi is replaced by the corresponding
proposition pj ∈ Pj . We can thus write αj for α ∈ L as an
abbreviation for ren(α, j). For instance, if α = (¬p∧(q∨r))
then ren(α, 3) = (¬p3 ∧ (q3 ∨ r3)) = α3.

3.1 Completion and consensus
In this paper we make use of finite undirected graphs only.
Thus for graph G, G = 〈V,E〉 where E is a set of unordered
pairs of elements of V . For the sake of simplicity we as-
sociate the set of vertices V with an initial sequence of the
natural numbers; thus for |V | = n we have V = {1, . . . , n}.
Conventionally we write an edge as (x, y) rather than {x, y}.

In the entire paper, let G = 〈V,E〉 be a graph where |V | =
n, and P an alphabet.

Definition 3.1 (Scenarios and Interpretations)
• A G-scenario ΣG is a list 〈φ1, . . . , φn〉, where φi ∈ LP

for each i ∈ V .
ΣG is consistent iff φi is consistent for all i ∈ V .
ΣG[i] denotes φi, the ith component of ΣG.

• A G-interpretation MG is a list 〈M1, . . . ,Mn〉, where
each Mi is an interpretation from ΩP .
MG is said to satisfy ΣG, denotedMG |= ΣG, iffMi |=
φi holds for all i ∈ V .
ΩV is the set of all G-interpretations and Mod(ΣG) =
{MG | MG |= ΣG} is the set of all G-models of ΣG.

• The shared or invariant knowledge of a G-scenario ΣG,
SK(ΣG), is the formula

∨n
i=1 φi.

When clear from the context we drop the subscript G, and
simply write Σ and M rather than ΣG and MG. Sometimes,
to make notation more readable, we make use of this notation
for scenarios: 〈1 : φ1, . . . , n : φn〉 instead of 〈φ1, . . . , φn〉.
Similarly, a G-interpretation 〈M1, . . . ,Mn〉 is sometimes de-
noted as 〈1 : M1, . . . , n : Mn〉. Slightly abusing notation,
we denote by Mi(p) the truth value of p ∈ P given by the
interpretation Mi.

Definition 3.2 (Change sets)
• A change set for P and G is a subset ∆ of E × P .
• Let M be a G-interpretation. The change set associated

with M, ∆(M), is defined as

{〈(x, y), p〉 | (x, y) ∈ E and Mx(p) 6= My(p)}.

• A change set ∆ is a change set for a G-scenario Σ iff
there exists a G-interpretation M such that M |= Σ
and ∆ = ∆(M).

• ∆ is a minimal change set for Σ if ∆ is a change set for
Σ and there is no change set ∆′ for Σ such that ∆′ ⊂ ∆.

Minimal change sets pick out those G-interpretations that
in a certain (viz. set-containment) sense maximise “close-
ness” between individual interpretations of members of Σ.
To be sure, there are other measures of “closeness” that can
be used, a point that we return to later.
Definition 3.3 (Preferred G-interpretations) Given twoG-
interpretations M and M′, define M � M′ iff ∆(M) ⊆
∆(M′), and M�M′ iff ∆(M) ⊂ ∆(M′).

Given a G-scenario Σ and a G-interpretation M, we say
that M is a preferred G-interpretation of Σ iff

1. M |= Σ;
2. there is no M′ such that M′ �M and M′ |= Σ.



The set of preferred G-interpretations of Σ is denoted
Pref (Mod(Σ),�).
Thus M is preferred to M′ iff the change set of M is in-
cluded in the change set of M′.
Definition 3.4 Let Σ be a G-scenario.
• A completion Θ(Σ) of Σ is a G-scenario Σ′ =
〈φ′1, . . . , φ′n〉 such that for every i ∈ {1, . . . , n},

Mod(φ′i) = {Mi | 〈M1, . . . ,Mn〉 ∈ Pref (Mod(Σ),�)} .

• The consensus of Σ is the invariant of its completion,
that is, Consensus(Σ) =

∨n
i=1 φ

′
i

We note that a completion is unique up to logical equivalence.
Consequently we henceforth refer to the completion, under-
standing some canonical representative for a set of formulas;
see also Proposition 3.3.

Example 1 Let G = 〈V,E〉 be the graph with V =
{1, 2, 3, 4} and E = {(1, 2), (2, 3), (2, 4), (3, 4)}. Let Σ =
〈1 : ¬p, 2 : (p ∨ q) ∧ r, 3 : ¬q, 4 : ¬r〉, The preferred
models of Σ are 〈p̄qr, p̄qr, p̄q̄r, p̄q̄r̄〉, 〈p̄qr, p̄qr, p̄q̄r, p̄qr̄〉,
〈p̄qr, p̄qr, p̄q̄r̄, p̄q̄r̄〉, 〈p̄qr, p̄qr, p̄q̄r̄, p̄qr̄〉,〈p̄q̄r, pq̄r, pq̄r, pq̄r̄〉
and 〈p̄q̄r, pq̄r, pq̄r̄, pq̄r̄〉.

Therefore, the completion of Σ is Θ(Σ) = 〈1 : ¬p ∧ r, 2 :
(p↔ ¬q) ∧ r, 3 : ¬q, 4 : ¬r ∧ (¬p ∨ ¬q)〉.

Although Vertices 2 and 4 disagree about r, the comple-
tion of Σ contains r at Vertex 1 (because 1 is connected
to 2 only, and so r being true at 2 “blocks” the potential
propagation of ¬r at 3 to Vertex 1). In contrast, the com-
pletion contains neither r nor ¬r at 3. The consensus of
Σ is Consensus(Σ) ≡ ¬p ∨ ¬q As can be verified, this is
equivalent to the disjunction of the constituent formulas, viz
(¬p ∧ r) ∨ ((p↔ ¬q) ∧ r) ∨ ¬q ∨ (¬r ∧ (¬p ∨ ¬q)).

3.2 Syntactic characterisation
Definition 3.5 (Equivalence sets, Fits, Maximal fits)
• An equivalence set is a subset of

{pi ↔ pj | 〈(i, j), p〉 ∈ E × P}.

• The equivalence set induced by a change set ∆ is

EQ(∆) = {pi ↔ pj | 〈(i, j), p〉 ∈ (E × P) \∆}.

• An equivalence set EQ is a fit for a G-scenario Σ =
〈φ1, . . . , φn〉 iff EQ ∪

⋃
1≤i≤nren(φi, i) is consistent.

A fit EQ for Σ is maximal iff for every EQ ′ ⊃ EQ we
have EQ ′ ∪

⋃
1≤i≤n ren(φi, i) is inconsistent.

Proposition 3.1 ∆ is a minimal change set for Σ iff EQ(∆)
is a maximal fit for Σ.

Hence, maximising fit between propositional symbols or min-
imising change between models is equivalent. This in turn
leads to a syntactic characterisation of completion:
Proposition 3.2 Let Σ = 〈φ1, . . . , φn〉 be a G-scenario, and
let F be the set of maximal fits of Σ.

Then, Θ(Σ) = 〈φ′1, . . . , φ′n〉 is the completion of Σ iff for
every i ∈ {1, . . . , n},

Cn(φ′i) =
⋂

EQ∈F

{
α | αi ∈ Cn(EQ ∪

⋃n
j=1ren(φj , j))

}

Here is an equivalent formulation of Proposition 3.2:

Corollary 3.1 Let Σ = 〈φ1, . . . , φn〉 be a G-Scenario and
let Θ(Σ) = 〈φ′1, . . . , φ′n〉. Then, for any β ∈ LP , φ′i |= β
iff for every ⊆-maximal set EQ ⊆ {pi ↔ pj | 〈(i, j), p〉 ∈
E × P} consistent with

⋃n
j=1 ren(φj , j) we have

EQ ∪
⋃n

j=1ren(φj , j) |= ren(β, i).

This result shows that determining whether some formula
holds at some vertex of the completion of Σ can be expressed
as skeptical inference in normal default theories without pre-
requisites [Reiter, 1980]. An immediate consequence of this
is that inference from the completion of a scenario is in Πp

2.
(We will see shortly that it is also a lower bound.)

Next we describe a syntactic characterisation that deter-
mines a specific formula for the completion at each vertex.
We begin by adapting the standard notion of a substitution to
our requirements: Given alphabets Pi, Pj a substitution is a
set {pi/l(pj) | pi ∈ Pi, pj ∈ Pj} where l(pj) is pj or ¬pj .
That is, a substitution is simply a set of pairs, where each pair
is made up of an atom in one language and that atom or its
negation in the other language. For binary relation R, let R∗

be its transitive closure.
Definition 3.6 Let EQ be an equivalence set. For i, j ∈ V

define σEQ
i,j = (σEQ

i,j )+ ∪ (σEQ
i,j )− where

(σEQ
i,j )+ = {pi/pj | EQ |= pi ↔ pj}

(σEQ
i,j )− = {pi/¬pj | (i, j) ∈ E∗, EQ 6|= pi ↔ pj}

A substitution instance of αi ∈ Pi with respect to σEQ
i,j , writ-

ten αiσEQ
i,j , is as expected: every atom in αi is replaced by its

unique counterpart according to σEQ
i,j .

We obtain the following finite characterisation:
Proposition 3.3 Let Σ = 〈φ1, . . . , φn〉 a scenario of G. Let
Θ(Σ) = 〈φ′1, . . . , φ′n〉 be the completion of Σ, and let F be
the set of maximal fits of Σ. Then for 1 ≤ j ≤ n we have that

φ′j ↔
∨

EQ∈F

(∧
(j,i)∈E∗ (φi

iσ
EQ
i,j )0

)
Thus the above proposition gives a recipe whereby one can
compute a formula for each vertex that gives the completion.

Example 2 Consider Example 1 again, and Vertex j = 3.
For preferred model M1 and Vertex i = 2 we have that φ2

is (p ∨ q) ∧ r; thus φ2
2 is (p2 ∨ q2) ∧ r2. The relevant part

of EQ is p2 ≡ p3 and r2 ≡ r3. Consequently φ2
2σ

EQ
2,3 is

(p3 ∨ ¬q3) ∧ r3. Continuing in this fashion, for the maximal
fit based on M1 we obtain:

φ1
1σ

EQ
1,3 = ¬p3, φ2

2σ
EQ
2,3 = (p3 ∨ ¬q3) ∧ r3,

φ3
3σ

EQ
3,3 = ¬q3, φ4

4σ
EQ
4,3 = r3.

The conjunction of these terms is equivalent to¬p3∧¬q3∧r3;
re-expressed in our original language this is ¬p∧¬q∧r. The
other five preferred models similarly yield formulas for Vertex
j = 3, in this example, each being a conjunction of literals.
It can be confirmed that their disjunction is equivalent to ¬q.



3.3 Properties of completion and consensus
Here are some properties of completion and consensus.

Proposition 3.4 Let Σ = 〈φ1, . . . , φn〉 be a G-scenario, and
let Θ(Σ) = 〈φ′1, . . . , φ′n〉.

1. Θ(Σ) = Θ(Θ(Σ)).
2. If ∃φ′i ∈ Θ(Σ), φ′i |= ⊥ then ∀φ′j ∈ Θ(Σ), φ′j |= ⊥.

3. If G is connected and
∧

1≤i≤n φi is consistent then
φ′j ↔

∧
1≤i≤n φi for every j ∈ {1, . . . , n}.

4. Σ is consistent iff Θ(Σ) is consistent.

5. φ′i |= φi for every φi ∈ Σ.

6. Consensus(Σ) |= SK(Σ).

Note that Property 3 above refers to the structure of the graph.
Clearly, the information at a given vertex i can propagate to
vertex j only if there is a path from i to j. This brings us to
the following (easy but useful) decomposability result:

Proposition 3.5 Let G1, . . . , Gq be the connected compo-
nents of G and let {V1, . . . , Vq} be the corresponding par-
tition of V . For each i ∈ {1, . . . n}, let k(i) be the unique
integer such that i ∈ Vk(i). Given a G-scenario Σ, Θ(Σ) =
〈φ′1, . . . , φ′n〉, and k ∈ {1, . . . , q}, let Σk = 〈φi | i ∈ Vk〉,
and let Θ(Σk) = 〈φ′′i | i ∈ Vk〉. Then:

• φ′i = φ′′i for each i ∈ {1, . . . , n};

• Consensus(Σ) ≡
∨

1≤k≤q Consensus(Σk).

This result is a bit tedious to state but is very intuitive: if the
graph G is not connected, then it is sufficient to consider its
connected components separately, and to compute the com-
pletion of Σ for each one of these.

Example 3 Let G = 〈V,E〉 with V = {1, 2, 3, 4} and E =
{(1, 2), (3, 4)}. Let Σ = 〈1 : a ∨ b, 2 : ¬a ∨ ¬b, 3 :
a, 4 : ¬a ∧ ¬b〉. The connected components of G are G1 =
〈{1, 2}, {(1, 2)}〉 and G2 = 〈{3, 4}, {(3, 4)}〉, hence,

Σ1 = 〈1 : a ∨ b, 2 : ¬a ∨ ¬b〉 and Σ2〈3 : a, 4 : ¬a ∧ ¬b〉.
We obtain Θ(Σ1) = 〈1 : a↔ b, 2 : a↔ b〉 and Θ(Σ2) =

〈3 : a ∧ ¬b, 4 : ¬a ∧ ¬b〉. Therefore,
Θ(Σ) = 〈1 : a↔ b, 2 : a↔ b, 3 : a ∧ ¬b, 4 : ¬a ∧ ¬b〉.

Thus, without loss of generality, we may now assume that G
is connected.

Another decomposition result concerns the propositional
symbols the logical theories at different vertices are about.
We say that φi is irrelevant toQ ⊆ P iff φi is logically equiv-
alent to some formula ψi in which no symbol in Q appears
[Lang et al., 2003].

Proposition 3.6 Let Σ be a G-scenario. Suppose there exist
a partition {V1, V2} of V and a partition {Q1,Q2} of P such
that for each i ∈ V1 (resp. i ∈ V2), φi is irrelevant to Q2

(resp. to Q1). Let Σ1 and Σ2 be the restrictions of Σ to V1

and V2, defined by Σ1[i] = Σ[i] if i ∈ V1 and Σ1[i] = >
otherwise (and similarly for Σ2). Let Θ(Σ) = 〈φ′1, . . . , φ′n〉.
Then, for every i ∈ V ,

• φ′i = Θ(Σ1)[i] ∧Θ(Σ2)[i]
• Consensus(Σ) = Consensus(Σ1) ∧ Consensus(Σ2).

Example 4 Let V = {1, 2, 3, 4, 5}, E = {(1, 2), (2, 3),
(3, 4), (4, 5), (5, 1)} and Σ = 〈1 : p ∨ q, 2 : ¬p, 3 : a ∧ b, 4 :
¬p ∧ q, 5 : a ∧ ¬b〉. Taking Q1 = {a, b}, Q2 = {p, q},
V1 = {3, 5} and V2 = {1, 2, 4}, we get Θ(Σ1) = 〈1 :
a, 2 : a, 3 : a ∧ b, 4 : a, 5 : a ∧ ¬b〉 and Θ(Σ2) = 〈1 :
¬p∧ q, 2 : ¬p∧ q, 3 : ¬p∧ q, 4 : ¬p∧ q, 5 : ¬p∧ q〉. Hence,
Θ(Σ) = 〈1 : a∧¬p∧ q, 2 : a∧¬p∧ q, 3 : a∧ b∧¬p∧ q, 4 :
a ∧ ¬p ∧ q, 5 : a ∧ ¬b ∧ ¬p ∧ q〉.

Let us now consider conjunctive formulas: a formula φi is
conjunctive iff it is a consistent conjunction of literals.
Proposition 3.7 Let Σ = 〈φ1, . . . , φn〉 be a G-scenario
such that each φi is a conjunctive formula. Let Θ(Σ) =
〈φ′1, . . . , φ′n〉. Then, φ′i |= p iff the two following holds:

1. φj |= p for some j ∈ {1, . . . , n};
2. If φl |= ¬p, then for every path π from l to i, there is a
m in π such that φm |= p.

Proposition 3.7 gives a simple method for computing Θ(Σ)
when Σ consists of conjunctive belief bases. For any p ∈ P:

1. let Gp (resp. G¬p) be the graph obtained from G by
deleting all vertices i such that φi |= ¬p (resp. φi |= p)
and all edges to or from i;

2. let Xp (resp. X¬p) be the set of all i such that there is
a path in Gp (resp. in G¬p) from a vertex j such that
φj |= p (resp. φj |= ¬p).

Proposition 3.8 Let Σ = 〈φ1, . . . , φn〉 be a G-scenario
such that each φi is a conjunctive formula and let Θ(Σ) =
〈φ′1, . . . , φ′n〉. Then for every i ∈ {1, . . . , n},

φ′i ↔
∧
{p|i∈Xp∩X¬p}p ∧

∧
{p|i∈X¬p∧Xp}¬p

As a corollary, the completion and the consensus of a con-
junctive scenario can be computed in polynomial time.
Example 5 Let V = {1, 2, 3, 4, 5, 6}, E =
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6)} and Σ = 〈1 :
p ∧ q, 2 : ¬q, 3 : ¬p, 4 : p, 5 : >, 6 : >〉. Gp is the graph
whose set of edges is Ep = {(1, 2), (4, 5), (5, 6), (1, 6)},
therefore Xp = {1, 2, 4, 5, 6}. G¬p is the graph whose set
of edges is E¬p = {(2, 3), (5, 6)}, therefore X¬p = {2, 3}.
Similarly, E¬q = {(2, 3), (3, 4), (4, 5), (5, 6)},
Eq = {(3, 4), (4, 5), (5, 6), (1, 6)}, Xq = {(1, 3, 4, 5, 6} and
X¬q = {2, 3, 4, 5, 6}. Therefore, Θ(Σ) = 〈1 : p ∧ q, 2 :
¬q, 3 : ¬p, 4 : p, 5 : p, 6 : p〉.

4 Particular Instances of the Approach
Our approach falls into the broad category of approaches to
belief change based on minimisation. We consider initial for-
mulas believed at vertices of G, and select those models that
minimise differences between models of the individual for-
mulas. So far, we haven’t said much about specific interpre-
tations of G. In this section, we give several examples of
such interpretations, sometimes corresponding to particular
classes of graphs; and we show that our setting generalises
frameworks that have been explored previously.

We first consider three specific types of graphs: chain
graphs, star graphs and complete graphs, and show that each
of these three cases leads to a specific belief change operator
studied previously.



Definition 4.1 (Extrapolation) Let G = 〈V,E〉 be a chain
graph, where E = {(i, i+ 1) | i ∈ V, 1 ≤ i < n}, and let Σ
be aG-scenario. The extrapolation operator Ext(Σ) induced
by � is unchanged from Definition 3.4: Ext(Σ) = Θ(Σ).
Ext is an extrapolation operator in the sense of [Dupin de
Saint-Cyr and Lang, 2002], in which V is considered as a set
of time points: if Θ(Σ) = 〈φ′1, . . . , φ′n〉, then φ′t is the com-
pleted scenario at time t, obtained from the initial observa-
tions and a principle of minimal change. Other extrapolation
operators can be obtained by varying the preference relation
(see Section 5). As to Consensus(Σ), it simply expresses the
information that remains invariant over time in the scenario.
Definition 4.2 (Projection) Let G = 〈V,E〉 be a star graph,
where V = {0, 1, . . . , n} andE = {(0, i) | i ∈ V \{0}}, and
let Σ be a G-scenario. The projection operator Proj induced
by � is the function Proj(Σ) = Θ(Σ)[0]
Consensus(Σ) here coincides with the projection operator
given in [Delgrande and Schaub, 2006]: {1, . . . , n} are the
labels of the knowledge bases to be merged; φi represents the
beliefs of source/agent i; and 0 is the label for the result of the
merging (with φ0 = IS for set of integrity constraints IS).
Definition 4.3 (Consensus) Let G be a complete graph and
let Σ be a G-scenario. The consensus operator of G is
Con(Σ) = Consensus(Σ).
That is, the consensus operator contains the common knowl-
edge implicit in the minimal models of Σ. This operator cor-
responds to the consensus merging operator of [Delgrande
and Schaub, 2006].

A crucial difference between the preceding two operators
is illustrated in the following example. LetG be the complete
graph on 3 vertices, and assume we have φ1 = p ∧ q ∧ r,
φ2 = ¬p ∧ ¬q ∧ r, φ3 = >. The projection on φ3 is r while
the consensus is (p ↔ q) ∧ r. See [Delgrande and Schaub,
2006] for a detailed examination of these operators.
Definition 4.4 (Revision) Let G = 〈{1, 2}, {(1, 2)}〉 and let
〈φ1, φ2〉 be a G-scenario. The revision operator +̇ is the
function φ1+̇φ2 = Θ(Σ)[2]
This notion of revision corresponds to the basic notion of re-
vision given in [Satoh, 1988; Delgrande and Schaub, 2003].

Deciding whether β ∈ φ1+̇φ2 is Πp
2-complete [Delgrande

et al., 2004]. Thus (given the remark in Section 3.2) the gen-
eral problem of deciding, given a G-scenario Σ, a formula β,
and i ∈ V , whether β ∈ Θ(Σ)[i], is Πp

2-complete (and so no
more complex than all the particular cases considered above).
A similar result holds for consensus.

There are of course other graph structures that could be
investigated, for example trees or cycles. Further, one can
consider other interpretations. Thus a graph may be consid-
ered under a spatial interpretation, in which nodes correspond
to regions of space and edges correspond to connections be-
tween adjacent regions. Completion is then based on the prin-
ciple that, normally, what holds in a region also holds in the
adjacent region. Another possible interpretation of the graph
would be a mixture of merging and extrapolation, in the same
vein as [Liberatore and Schaerf, 2000], where we have sev-
eral time points, and possibly several independent informa-
tion sources at each time point.

5 Alternative Definitions of Completion and
Consensus

So far, we have focussed on a very simple criterion for select-
ing preferred interpretations, namely, M being preferred to
M′ iff ∆(M) ⊂ ∆(M′). Clearly, this notion of preference
between change sets (and between interpretations) frequently
gives many incomparable interpretations, hence a large num-
ber of preferred interpretations, and then completion and con-
sensus may be rather weak. Here we give a more general
definition without changing much of our notions and results.

A preference relation on change sets � is a reflexive and
transitive relation over E × P . Any such preference rela-
tion induces a preference relation � on interpretations, by
M � M′ iff ∆(M) � ∆(M′). We recover the prefer-
ence relation considered previously if we define ∆ �I ∆′ iff
∆ ⊆ ∆′. Another intuitive preference relation is cardinality:
∆ �C ∆′ iff |∆| ≤ |∆′|. The definition of a preferred G-
interpretation (w.r.t. �) as well as those of completion and
consensus are straightforward generalisations of Definitions
3.3 and 3.4. Note that for a star graph and �C one obtains
majority merging as in [Konieczny and Pino Pérez, 2002].

A second generalisation of the approach begins from the
observation that edges, representing connected points, may
have differing strengths or reliability. Hence, more sophisti-
cated preference relations may incorporate ranking functions,
or numerical weights, on edges. For graph G = 〈V,E〉, a
priority assignment P is a mapping from E to the natural
numbers IN (any totally ordered set serves equally well).

Definition 5.1 (P-preferred G-interpretations) Let Σ be a
scenario of graph G = 〈V,E〉, and let P be a priority as-
signment to E. Let M and M′ be interpretations of Σ, and
let ∆(M, e) (resp. ∆(M′, e)) be the change set associated
with edge e ∈ E in M (resp. M′).

Define M�P M′ iff

• M |= Σ and M′ |= Σ;

• there is i ∈ IN such that:

– for every e ∈ E such that P (e) = i we have
∆(M, e) ⊂ ∆(M′, e), and

– for every e′ ∈ E such that P (e′) > i we have
∆(M, e′) = ∆(M′, e′).

Example 6 Consider Example 1 where P ((1, 2)) = 2 and
other edges are assigned value 1. The preferred models are
now M1, M2, M3, and M4. Consequently ¬p is true at
each point in Θ(Σ).

The completion of Σ under P , Θ(Σ, P ), is defined in an ob-
vious extension to Definition 3.4, over the P -preferred inter-
pretations; we omit details given space constraints.

Proposition 5.1 Let Σ be a scenario of graph G = 〈V,E〉
and let P be a priority assignment to E. Let Θ(Σ) =
〈φ′1, . . . , φ′n〉 be the completion of Σ and let Θ(Σ, P ) =
〈φ′′1 , . . . , φ′′n〉 be the completion of Σ under P . Then φ′′i |= φ′i
for every 1 ≤ i ≤ n.

The notion of P -preferred G-interpretations captures the
notion of chronological minimisation: let G be a chain graph
〈V,E〉 with V = {1, . . . , n}, E = {(t, t + 1) | t =



0, . . . , n− 1}, and priority assignment P (t, t+ 1) = t. Then
the completion of Σ corresponds to chronological ignorance
[Shoham, 1988] in which later changes are preferred to ear-
lier changes. Further, when G is star graph (for merging), the
priority of the edge connecting a source i to the centre point
0 can encode the reliability of i. Of course other alternatives
are possible.

In a further direction, and generalising cardinality-based
preference, one can assign weights to propositions, reflecting
that some propositions are more likely to persist than others.
For instance, when crossing the border between two countries
in Europe, the official language is more likely to change than
the main religion. These weights would then be aggregated
to assign an overall weight to a change set.

6 Discussion
We have described a general approach to belief change based
on minimisation of change. In the approach, an undirected
graph G = 〈V,E〉 has associated with each vertex some in-
formation represented in a formula. The graph structure can
model various phenomena including spatially adjacent points,
temporally adjacent points in time, connected agents, etc.
Consequently it is quite expressive, and generalises similar
frameworks that have been explored previously. The intu-
ition is that change between neighbours is exceptional; this
assumption justifies global minimisation of change. Follow-
ing the minimisation process, the completion of the graph
provides new information at each vertex, representing that in-
formation that may be consistently gleaned from other con-
nected vertices. The approach generalises previous frame-
works involving change minimisation, including extrapola-
tion and related belief change operators, and some merging
and revision operators. However, the general approach is of
independent interest. In particular, it proves to be suitable to
spatial mininisation of change. Along this line, an interesting
practical issue would be to apply the approach to a domain
such as is addressed in [Würbel et al., 2000]. Lastly, the gen-
eral approach is computationally no more complex than each
of these particular cases.

An interpretation of the graph that warrants more investiga-
tion is when it represents a network of agents. Global minimi-
sation of change with respect to a network of agents can be
understood as follows: agents have some initial beliefs that
they don’t want to give up, and after some communication
process, the agents come to an equilibrium where changes
between the belief bases of neighbouring agents are globally
minimal. (Hence, our approach, based on global minimisa-
tion, can also be characterised as consistent expansion in a
network of agents.) One interesting issue for future research
is that of local minimisation of change, wherein minimisa-
tion at a vertex is with respect to that vertex’s adjacent neigh-
bours only. Clearly in this case the process admits nontrivial
iteration. Our approach also departs from approaches such
as [Gauwin et al., 2005], where agents iteratively revise or
merge their current beliefs by/with the beliefs of other agents.
Another promising issue for further research is to allow infor-
mation to be similarly revised (and not just strengthened) at a
vertex (and so where Theorem 3.4, Part 5 does not necessarily

hold). In this case, an agent may in fact give up beliefs, per-
haps as a result of contradicting beliefs at an adjacent vertex
with higher reliability.
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Pérez. Merging information under constraints: A logical
framework. J. Logic and Comput., 12(5):773–808, 2002.

[Lang et al., 2003] J. Lang, P. Liberatore, and P. Marquis.
Propositional independence : Formula-variable indepen-
dence and forgetting. JAIR, 18:391–443, 2003.

[Liberatore and Schaerf, 1995] P. Liberatore and M. Schaerf.
Arbitration: A commutative operator for belief revision. In
Proceedings of WOCFAI’95, 217–228.

[Liberatore and Schaerf, 2000] P. Liberatore and M. Schaerf.
Brels: A system for the integration of knowledge bases.
Proceedings of KR’00, pages 145–152.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Art.
Intelligence, 13(1-2):81–132, 1980.

[Satoh, 1988] K. Satoh. Nonmonotonic reasoning by min-
imal belief revision. In Proceedings of 5th Generation
Computer Systems, pages 455–462, 1988.

[Shoham, 1988] Y. Shoham. Reasoning About Change: Time
and Causation from the Standpoint of Artificial Intelli-
gence. The MIT Press, 1988.

[Würbel et al., 2000] E. Würbel, R. Jeansoulin, and O. Pap-
ini. Revision: An application in the framework of GIS.
Proceedings of KR’00, pages 505–515.

[Zhang et al., 2004] D. Zhang, N. Foo, T. Meyer, and
R. Kwok. Negotiation as mutual belief revision. In Pro-
ceedings of AAAI’04, pages 317–322.


