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Abstract

We use a transition system approach to reason
about the evolution of an agent’s beliefs as ac-
tions are executed. Some actions cause an agent
to perform belief revision and some actions cause
an agent to perform belief update, but the inter-
action between revision and update can be non-
elementary. We present a set of basic postulates
describing the interaction of revision and update,
and we introduce a new belief evolution operator
that gives a plausible interpretation to alternating
sequences of revisions and updates.

1 Introduction
Formalisms for reasoning about action effects typically focus
on the representation of actions that change the state of the
world. However, several formalisms have been introduced
for reasoning about actions that change the beliefs of an agent
without altering the state of the world[Shapiroet al., 2000;
van Ditmarsch, 2002; Herziget al., 2004]. In order to rea-
son about multiple actions in this context, it is necessary to
consider sequences of alternating belief revisions and belief
updates. However, to date there has been little explicit dis-
cussion about the formal properties of such sequences.

This paper makes two contributions to the existing work
on epistemic action effects. The first contribution is the de-
velopment of a transition system framework suitable for rea-
soning about belief change. The new framework provides a
simple tool for reasoning about revision and update in a single
formalism, and it facilitates the treatment of conditionalup-
dates. The second contribution is the presentation of a princi-
pled approach to the interaction between revision and update.
There are plausible examples in which agents appear to revise
a prior belief state in response to a new observation; such ex-
amples are difficult to represent in existing formalisms.

2 Background and Motivation
2.1 Belief Change
We distinguish two kinds of belief change. Belief revision
occurs when an agent receives new information about a static
world. The original approach to belief revision is the AGM
approach[Alchourronet al., 1985]. Due to limitations on

space, we do not review the approach here; instead, we simply
assume that the reader is familiar with the AGM postulates.
Belief update, on the other hand, is the process in which the
beliefs of an agent are modified in response to a world that
has changed. One standard approach to belief update is the
Katsuno and Mendelzon approach, which follows the AGM
tradition by introducing a set of rationality postulates for be-
lief update[Katsuno and Mendelzon, 1992].

2.2 Reasoning about Action
We introduce some standard terminology for describing tran-
sition systems[Gelfond and Lifschitz, 1998]. An action sig-
nature is a pair〈F,A〉 of non-empty sets, respectively called
the set offluent symbolsand the set ofaction symbols. Infor-
mally, fluent symbols are propositional variables representing
properties of the world that may change over time and action
symbols are atomic symbols representing actions that may be
performed. Astateis an interpretation overF, and atransi-
tion systemis a directed graph where each node is labeled by a
state and each edge is labeled by a set of action symbols. The
edges in a transition system indicate how the fluents change
values in response to the execution of actions. We use the
capital letterA, possibly with subscripts, to range over ac-
tions. The notation̄A will be used to denote a finite sequence
of actions of indeterminate length.

A belief stateis a set of states. We can think of a belief
state as expressing a proposition. Informally, a belief state is
the set of states that an agent considers possible. In this paper,
we use lower case Greek letters to denote belief states. We are
interested in belief change resulting from two distinct kinds of
actions:ontic actionsandepistemic actions. Ontic actions are
actions that change the state of the world, whereas epistemic
actions change the beliefs of an agent without altering the
state of the world. Informally, after executing an ontic action,
an agent should update the current belief state on a point-wise
basis. On the other hand, if an agent executes an epistemic
action, then the current belief state should be revised.

2.3 The Basic Problem
As noted above, belief update occurs when an ontic action
is performed. Hence, we define belief update operators that
take two arguments: a belief state and an ontic action. Epis-
temic actions are identified withobservations, which are sim-
ply sets of interpretations. As a result, revision operators also



take two arguments, each of which is a set of interpretations.
Informally, the observationα provides evidence that the ac-
tual world is inα. Let ⋄ be an update operator and let∗ be
a revision operator. We are interested in giving a reasonable
interpretation to sequences of the form

κ ⋄ A1 ∗ α1 ⋄ · · · ⋄ An ∗ αn.

There are intuitively plausible examples in which applying
the operators iteratively results in an unsatisfactory result. In
the next section, we introduce one such example.

2.4 Illustrative Example
We extend the litmus paper problem originally presented in
[Moore, 1985]. In the original problem, there is a beaker con-
taining either an acid or a base, and there is an agent holdinga
piece of litmus paper that can be dipped into the beaker to de-
termine the contents. The litmus paper turns red if it is placed
in an acid and it turns blue if it is placed in a base. We extend
the problem by admitting the possibility that the paper is not
litmus paper, instead it is just plain white paper.

Boutilier points out that the standard approach to belief
change provides an unintuitive representation of this prob-
lem[Boutilier, 1995]. One issue is that the standard approach
does not allow conditional action effects; an agent simply up-
dates the initial belief state by the new color of the litmus
paper. Intuitively, this seems incorrect because there areac-
tually two independent belief changes that occur. First, the
agent dips the paper in the beaker and projects each possi-
ble world to the outcome of the dipping action. Second, the
agent looks at the paper and observes the new color. Hence,
the problem involves an update followed by a revision.

Even if the belief change is broken into two steps, the stan-
dard approach is limited in that an agent can only revise the
current belief state. Suppose that an agent initially believes
that the paper is litmus paper, but then it remains white after
dipping it in the beaker. In this case, the agent should con-
clude that the paper was never litmus paper to begin with.
This indicates that it is sometimes necessary for agents to re-
vise prior belief states in the face of new knowledge.

We will return to this example periodically as we introduce
formal machinery that provides a more natural representation.

3 A Transition System Approach
3.1 Metric Transition Systems
Standard transition systems do not provide a useful basis for
performing belief revision, because belief revision generally
requires some notion of plausibility among states or formulas.
In order to define a revision operator, we introduce a distance
function between states. Ametricover2F is a functiond that
maps each pair of states to a non-negative real number, and
satisfies the following conditions:

1. d(w1, w2) = 0 iff w1 = w2

2. d(w1, w2) = d(w2, w1)

3. d(w1, w2) + d(w2, w3) ≥ d(w1, w3).

We will generally be concerned with metrics that return only
integral distances, so from here on we will use the term metric
to refer to integer-valued metrics.

Definition 1 A metric transition system is a triple〈S, R, d〉
where

1. S ⊆ 2F

2. R ⊆ S × A× S

3. d is a metric onS

Informally, if w1 is close tow2, then an agent considersw1

to be a plausible alternative tow2.

3.2 Belief Update
In this section, we define belief update with respect to a tran-
sition system. Recall that we update a belief state by an action
with effects given by a transition system. This contrasts with
the standard approach, in which a belief state is updated by a
formula. The advantage of our approach is that it facilitates
the representation of actions with conditional effects.

Intuitively, after executing an actionA, an agent updates
the belief state by projecting every states to the states′ that
would result if they executedA in s.

Definition 2 LetT = 〈S, R, d〉 be a metric transition system.
The update function⋄ : 2S × A → 2S is defined as follows

α ⋄ A = {f | (e, A, f) ∈ R for somee ∈ α}.

Note that the distance functiond does not play any role in
belief update.

We briefly illustrate that transition systems can be used to
define a standard update operator in which a belief state is
updated by a formula rather than an action. GivenF, let A
be the set of action symbols of the formAφ, whereφ is a
conjunction of literals overF. DefineTF to be the transi-
tion system withS = 2F andRsAφs′ just in cases′ |= φ
ands′ agrees withs on every atom that does not occur inφ.
Informally, the actionAφ corresponds to an update byφ.

Proposition 1 The update operator obtained fromTF satis-
fies the Katsuno and Mendelzon postulates.

3.3 Belief Revision
With each metric transition systemT , we associate a revi-
sion function. The revision function associated withT is
the distance-based revision function defined in[Delgrande,
2004]. We choose this approach because it requires the in-
troduction of relatively little formal machinery and, provided
thatd satisfies some natural conditions, this revision operator
satisfies the AGM postulates.

Definition 3 LetT = 〈S, R, d〉 be a metric transition system.
The revision function∗ : 2S × 2S → 2S is defined as follows

κ ∗ α = {w ∈ α | ∃v1 ∈ κ, ∀v2 ∈ α, ∀v3 ∈ κ,

d(w, v1) ≤ d(v2, v3)}.

Hence, if an agent is in belief stateκ, thenκ ∗ α is the set of
all worlds that are minimally distant from some world inκ.

3.4 Litmus Paper Revisited
We revisit the litmus paper problem in the context of metric
transition systems. The problem can be represented with the
following action signature:

〈{Red, Blue, Acid, Litmus}, {dip}〉.
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Figure 1: Extended Litmus Paper Problem

Intuitively, Red is true if the paper is red,B lue is true if the
paper is blue,Acid is true if the beaker contains an acid, and
Litmus is true if the paper is litmus paper. The effects of
dipping are given by the transition system in Figure 1. We
can extend this to a metric transition system by definingd to
be the Hamming distance between states. Note also that we
assume all actions are executable in all states, but self-loops
are omitted from Figure 1 for ease of readability.

Recall that we are interested in an agent that initially be-
lieves they are holding a piece of white litmus paper. Hence,
the initial belief stateE is

E = {{Litmus}, {Litmus, Acid}}.

After dipping the paper, we update the belief state:

E ⋄ dip = {{Litmus, Blue}, {Litmus, Red, Acid}}.

At this point, the agent observes that the paper is neither blue
nor red. This observation is represented by the following set:

O = {∅, {Litmus}, {Acid}, {Litmus,Acid}}.

The naive suggestion is to simply reviseE ⋄dip by O, giving

E′ = {{Litmus}, {Litmus,Acid}}.

However, this is not a plausible final belief state. Given the
transition system in Figure 1, it is clear that white litmus pa-
per can not remain white after a dipping action. Hence, suc-
cessively applying the update and revision operators obtained
from the transition system does not yield a plausible result.

4 Rationality Postulates
In this section, we give a set of rationality postulates spec-
ifying some natural properties that we expect to hold when
an update is followed by a revision. The postulates are not
overly restrictive and they do not provide a basis for a cate-
gorical semantics; they simply provide a point for discussion
and comparison. Our underlying intuition is that the most re-
cent observation should always be incorporated, provided that
it is consistent with the history of actions that have been ex-
ectuted. Hence, the postulates are most appropriate for action
domains in which there are no failed actions.

Assume a fixed propositional signatureF . Let κ and α
be sets of worlds, and let̄A be a sequence of actions. We
adopt the shorthand notationκ ⋄ Ā as an abbreviation for the
sequential update ofκ by each element of̄A. The following
postulates describe some basic properties of the interaction
between an update operator⋄ and a revision operator∗.

1. If (2F ⋄ Ā) ∩ α 6= ∅, then(κ ⋄ Ā) ∗ α ⊆ α

2. If (2F ⋄ Ā) ∩ α = ∅, then(κ ⋄ Ā) ∗ α = κ ⋄ Ā

3. (κ ⋄ Ā) ∩ α ⊆ (κ ⋄ Ā) ∗ α

4. If (κ ⋄ Ā) ∩ α 6= ∅, then(κ ⋄ Ā) ∗ α ⊆ (κ ⋄ Ā) ∩ α

5. (κ ⋄ Ā) ∗ α ⊆ 2F ⋄ Ā

We give some intuitive motivation for each postulate.
Postulate 1 is a straightforward AGM-type assertion that

α must hold after revising byα, providedα is possible af-
ter executingĀ. Postulate 2 handles the situation where it
is impossible to be in anα-world after executingĀ. In this
case, we simply discard the observationα. These postulates
together formalize the underlying assumption that there are
no failed actions.

Taken together, postulates 3 and 4 assert that revising by
α is equivalent to taking the intersection withα, provided
the intersection is non-empty. These postulates are similar
to the AGM postulates asserting that revisions correspond to
expansions, provided the observation is consistent with the
knowledge base.

Postulate 5 provides the justification for revising prior be-
lief states in the face of new knowledge. The postulate asserts
that, after revising byα, we must still have a belief state that
is a possible consequence of executingĀ. In some cases, the
only way to assure thatα holds after executinḡA is to modify
the initial belief state. We remark that the postulates do not
indicate how the initial belief state should be modified.

5 Belief Evolution
5.1 Representing Histories
Transition systems are only suitable for representing Marko-
vian action effects; that is, effects that are determined entirely
by the current state and the action executed. However, exam-
ples like the litmus paper problem indicate that sometimes
agents need to look at prior belief states as well. Hence, even
if ontic action effects are Markovian, it does not follow that
changes in belief are Markovian. As such, we need to intro-
duce some formal machinery for representing histories.

Definition 4 A belief trajectory of lengthn is an n-tuple
〈κ0, . . . , κn−1〉 of belief states.

Intuitively, a belief trajectory is an agent’s subjective view
of how the world has changed. We remark that a belief tra-
jectory represents the agent’s current beliefs about the world



history, not a historical account of what an agent believed at
each point in time.

We will also be interested in observation trajectories and
action trajectories; each of which is simply anothern-tuple.

Definition 5 An observation trajectory of lengthn is an n-
tupleOBS = 〈OBS1, . . . , OBSn〉 where eachOBSi ∈ 2S.

Definition 6 An action trajectory of lengthn is an n-tuple
ACT = 〈ACT1, . . . , ACTn〉 where eachACTi ∈ A.

Each setOBSi is interpreted to be evidence that the actual
world is in OBSi at timei. An action trajectory is a history
of the actions an agent has executed. Note that, as a matter of
convention, we start the indices at 0 for belief trajectories and
we start the indices at 1 for observation and action trajecto-
ries. The rationale for this convention will be clear later.We
also adopt the convention hinted at in the definitions, whereby
thenth component of an action trajectoryOBS will be de-
noted byOBSn, and thenth component of an action trajec-
tory ACT will be denoted byACTn

We define a notion of consistency between action trajecto-
ries and observation trajectories. The intuition is that anac-
tion trajectoryACT is consistent with an observation trajec-
tory OBS if and only if each observationOBSi is possible,
given that the actions(ACTj)j≤i have been executed.

Definition 7 Let ACT = 〈ACT1, . . . , ACTn〉 be an action
trajectory and letOBS = 〈OBS1, . . . , OBSn〉 be an obser-
vation trajectory. We say thatACT is consistent withOBS if
and only if there is a belief trajectory〈κ0, . . . , κn〉 such that,
for all i ≥ 1,

1. κi ⊆ OBSi

2. κi = κi−1 ⋄ ACTi.

If ACT is consistent withOBS, we writeACT ||OBS.
A pair consisting of an action trajectory and an observation

trajectory gives a complete history of all actions that have
occurred. As such, it is useful to introduce some terminology.

Definition 8 A world view of lengthn is a pair W =
〈ACT, OBS〉, whereOBS is an observation trajectory and
ACT is an action trajectory, each of lengthn.

If ACT ||OBS, we say that〈ACT, OBS〉 is consistent.

5.2 A New Belief Change Operator
We introduce a new operator◦ that takes two arguments: a be-
lief state and a world view. Roughly speaking, we would like
κ ◦ 〈ACT, OBS〉 to be the belief trajectory that results from
the initial belief stateκ and the alternating action-observation
sequenceACT1, OBS1, . . . , ACTn, OBSn. We call◦ a be-
lief evolutionoperator because it takes a sequence of actions,
and returns the most plausible evolution of the world.

The formal definition of◦ is presented in the following sec-
tions. The definition relies on a fixed revision operator∗ and
a fixed update operator⋄. As such, it might be more accu-
rate to adopt notation of the form◦∗,⋄, but we opt for the less
cumbersome◦ and assume that the underlying operators are
clear from the context. We remark, in particular, that every
finite metric transition system generates a unique belief evo-
lution operator. However, it is worth noting that the definition
of ◦ does not rely on any specific approach to revision.

The action domains of interest for belief evolution will be
those in which it is reasonable to assume that action trajecto-
ries are correct and actions are succesful. This is intuitively
plausible in a single agent environment, because it simply
amounts to assuming that an agent has complete knowledge
about the actions that they have executed. Hence, in the def-
inition of ◦, the belief trajectory returned will always be con-
sistent with the actions that have been executed.

5.3 Infallible Observations
In this section, we assume that observations are always cor-
rect. Formally, this amounts to a restriction on the class of
admissible world views. In particular, we need not consider
inconsistent world views.

We need to introduce a bit of notation.

Definition 9 Let T be a transition system, letĀ =
A0, . . . , An and letα be a set of states. Thenα−1(Ā) de-
notes the set of allw such that there is a path fromw to an
element ofα following the edgesA0, . . . , An.

Hence,α−1(Ā) is the set of states that can precede a world in
α, given that the sequencēA has been executed.

For illustrative purposes, it is useful to consider world
views of length 1. Suppose we have an initial belief state
κ, an ontic actionA and an epistemic actionα. Without for-
mally defining the belief evolution operator◦, we can give an
intuitive interpretation of an expression of the form

κ ◦ 〈〈A〉, 〈α〉〉 = 〈κ0, κ1〉.

The agent knows that the actual world is inα at the final point
in time, so we must haveκ1 ⊆ α. Moreover, the agent should
believe thatκ1 is a possible result of executingA from κ0. In
other words, we must haveκ0 ⊆ α−1(A). All other things
being equal, the agent would like to keep as much ofκ as
possible; therefore, the natural solution is the following:

1. κ0 = κ ∗ α−1(A),

2. κ1 = κ0 ⋄ A.

This procedure can be applied to world views of length
greater than 1. The idea is to trace every observation back
to a precondition on the initial belief state. After revising the
initial belief state by all preconditions, each subsequentbelief
state can be determined by a standard update operation.

We have the following formal definition for◦. In the
definition, let ACT i denote the subsequence of actions
ACT1, . . . , ACTi.

Definition 10 Let κ be a belief state, letACT be an action
trajectory of lengthn and letOBS be an observation trajec-
tory of lengthn such thatACT ||OBS. Define

κ ◦ 〈ACT, OBS〉 = 〈κ0, . . . , κn〉

where

1. κ0 = κ ∗
⋂

i OBS−1

i (ACT i)

2. for i ≥ 1, κi = κi−1 ⋄ ACT1 ⋄ · · · ⋄ ACTi.

We remark that the intersection of observation preconditions
in the definition ofκ0 is non-empty, becauseACT ||OBS.

The following propositions are immediate, and they
demonstrate that◦ subsumes both revision and update. In
each proposition, we assume thatACT ||OBS.



Proposition 2 Let κ be a belief state, letACT = 〈A〉 and
let OBS = 〈2F〉. Then

κ ◦ 〈ACT, OBS〉 = 〈κ, κ ⋄ A〉.

In the following, we assume thatλ is a null action that never
changes the state of the world.

Proposition 3 Letκ be a belief state, letACT = 〈λ〉 and let
OBS = 〈α〉. Then

κ ◦ 〈ACT, OBS〉 = 〈κ ∗ α, κ ∗ α〉.

Hence, both revision and update can be represented through
the◦ operator. As such, it is reasonable to adopt the following
notation for trajectories of length 1:

κ ⋄ ACT ∗ OBS = κ ◦ 〈〈ACT 〉, 〈OBS〉〉.

Proposition 4 If ACT ||OBS, the operators∗ and⋄ (defined
above) satisfy the interaction postulates (1)-(5).

The three preceding propositions demonstrate the suitability
of ◦ as a natural operator for reasoning about the interaction
between revision and update.

5.4 Fallible Observations
We address fallible observations by allowing inconsistent
world views. If a world view is inconsistent, then there is
no initial belief state that supports all of the observations,
so some observations need to be ignored. To deal with in-
consistency, we adopt the convention previously explored in
[Nayak, 1994] and[Papini, 2001], in which more credence is
given to the most recent observations. We demonstrate that
◦ can be extended naturally to represent belief change under
this convention. In order to state the extended definition, we
need to be able to extract a maximally consistent sub-view
from an inconsistent world view.

Definition 11 Let W = 〈ACT, OBS〉 be a world view of
lengthn. Defineτ(W ) = 〈ACT ′, OBS′〉 as follows.

1. ACT ′ = ACT

2. OBS′ = 〈OBS′
1
, . . . , OBS′

n〉 is defined by the follow-
ing recursion.

• if OBS−1

n (ACT ) 6= ∅ thenOBS′
n = OBSn,

otherwiseOBS′
n = 2F,

• for i < n, if

OBS−1

i (ACTi) ∩
⋂

j>i

(OBS′
j)

−1(ACTj) 6= ∅

thenOBS′
i = OBSi.

Otherwise,OBS′
i = 2F.

The observations inτ(W ) are determined by starting with the
most recent observation, then working backwards through the
observations from most recent until the initial observation.
At each point, we keep an observation if it is consistent with
the observations that followed it; otherwise, we discard the
observation as incorrect.

The following properties are immediate.

• If W is a world view, thenτ(W ) is consistent.

• If W is a consistent world view, thenτ(W ) = W .

Recall that the original definition of◦ applied only to consis-
tent world views. By passing throughτ , we can extend the
definition to apply to arbitrary world views.

Definition 12 Let κ be a belief state, and letW be a world
view of lengthn. If W is inconsistent, thenκ◦W = κ◦τ(W ).

We could equivalently have stated a single definition for◦ by
passing all world views throughτ . We have presented the
definition in two cases in order to highlight the distinct treat-
ment of fallible observations. The extended definition is still
satisfactory from the perspective of the rationality postulates.

Proposition 5 The operators∗ and⋄ (obtained from◦) sat-
isfy the interaction postulates (1)-(5).

Thus far, applying the◦ operator requires tracing action pre-
conditions back to the initial state for revision, then applying
action effects to get a complete history. If we are only con-
cerned with the final belief state, then there are many cases in
which we do not need to go to so much effort.

Proposition 6 Let κ be a belief state, letACT be an action
trajectory of lengthn and letα be a belief state such that
α ⊆ κ ⋄ ACT . If OBS is the observation trajectory with
n − 1 null observations followed byα, then the final belief
state inκ ◦ 〈ACT, OBS〉 is (κ ⋄ ACT ) ∗ α.

The proposition indicates that, given a single observationthat
is consistent with the actions that have been executed, we can
simply revise the outcome of the actions and we get the cor-
rect final belief state.

5.5 Litmus Paper Concluded
We conclude the litmus paper example by giving a plausible
treatment based on a belief evolution operator. The world
view WV = 〈〈dip〉, 〈O〉〉 represents a dipping action fol-
lowed by the observation that the paper is still white. If◦ is
defined from the metric transition system in Figure 1, the final
belief state inE ◦ WV is given by

E ∗ O−1(dip) ⋄ dip = E ∗ {∅, {Acid}} ⋄ dip

= {∅, {Acid}}.

This calculation is consistent with our original intuitions, in
that the agent revises the initial belief state before updating by
thedip action. This ensures that we will have a final belief
state that is a possible outcome of dipping. Moreover, the ini-
tial belief state is revised by the pre-image of the final obser-
vation, which means it is modified as little as possible while
still guaranteeing that the final observation will be feasible.
Note also that the final belief state given by this calculation is
intuitively plausible. It simply indicates that the contents of
the beaker are still unknown, but the agent now believes the
paper is not litmus paper. Hence, a belief evolution operator
employs a plausible procedure and returns a desirable result.

6 Relationship with Iterated Revision
If the null action is the only action permitted, then belief evo-
lution is closely related to iterated revision. We briefly con-
sider the suitability of belief evolution operators for reasoning
about iterated revision. In the following proposition, letλ̄ de-
note a sequence of null actions of indeterminate length.



Proposition 7 For anyκ andOBS, there is a unique belief
stateκ′ such thatκ ◦ 〈λ̄, OBS〉 = 〈κ′, . . . , κ′〉.

This result is consistent with the view that belief evolution
operators return a trajectory representing an agent’s current
beliefs about the evolution of the world. We remark that, in
general,κ′ is not obtained by successively revising by the el-
ements ofOBS. Moreover, we claim that this is appropriate
for action domains in which recency determines the plausi-
bility of an observation.

Darwiche and Pearl present a set of four postulates for it-
erated revision[Darwiche and Pearl, 1997]. It is easy to
verify that many belief revision operators do not satisfy the
Darwiche-Pearl postulates if applied in succession. However,
if we define the iterated revisionκ ∗ OBS1 ∗ . . . ∗ OBSn to
be the unique belief state inκ ◦ 〈λ̄, OBS〉, then we get the
following result.

Proposition 8 Iterated revision, as defined by any belief evo-
lution operator◦, satisfies all four Darwiche-Pearl postu-
lates.

Hence, given any belief revision operator, we can formulate
an adequate approach to iterated revision by passing to the
corresponding evolution operator.

7 Discussion
We make some quick remarks about related formalisms for
reasoning about epistemic action effects. Our formalism is
similar to the multi-agent belief structures of[Herzig et al.,
2004] in that both approaches combine revision with update
based on actions with conditional effects. However, multi-
agent belief structures do not consider any non-elementary
interaction between revision and update. On the other hand,
the Situation Calculus approach of[Shapiroet al., 2000] im-
plicitly handles the interaction of revision and update cor-
rectly. The “revision actions” employed in that formalism are
provably equivalent to belief evolution operators. Correctly
identifying these actions as evolution operators improvesthe
intuitive plausibility of iterated belief change in the Situation
Calculus approach.

The framework presented in this paper requires an agent to
believe the most recent observation. A more general approach
would attach a plausibility value to every observation, and
then an agent would keep the most plausible observations.
We are currently working on such a generalization. Similarly,
we are looking at attaching plausibilities to action histories
in order to represent domains in which an agent is uncertain
about the actions that have been executed.

8 Conclusion
We have presented a transition system framework for rea-
soning about the epistemic effects of actions. We identified
ontic action effects with belief update and epistemic action
effects with belief revision, and we focused on the interac-
tion between iterated update and revision operators. We il-
lustrated by example that the interaction between update and
revision can be non-elementary, so we proposed a set of ratio-
nality postulates restricting the interaction and demonstrated

that the postulates all hold in our transition system frame-
work. By contrast, existing formalisms for reasoning about
epistemic action effects either ignore the interaction between
revision and update or they deal with it implicitly. Hence,
our formalism contributes to the existing work on epistemic
action effects in two ways. First, it is able to provide simple
object level representations of action domains in which prior
belief states need to be revised. Second, it provides an explicit
treatment of the the interaction between revision and update,
which has not always been salient in related formalisms.
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