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Abstract

A default conditional α → β has most often
been informally interpreted as a defeasible ver-
sion of a classical conditional, usually the mate-
rial conditional. That is, the intuition is that a de-
fault should behave (implicitly or explicitly) as its
(say) material counterpart “by default” or unless
explicitly overridden. In this paper, we develop
an alternative interpretation, in which a default is
regarded more like a rule, leading from premises
to conclusion. To this end, a general semantic
framework under a “rule-based” interpretation is
developed, and a family of weak conditional log-
ics is specified, along with associated proof theo-
ries. Nonmonotonic inference is defined very eas-
ily in these logics. One obtains a rich set of non-
monotonic inferences concerning the incorpora-
tion of irrelevant properties and of property in-
heritance. Moreover, this interpretation resolves
problems that have been associated with previous
approaches.

1 Introduction
A major approach in nonmonotonic reasoning has been to
represent a default as an object that one can reason about, ei-
ther as a conditional as part of some object language, or as a
nonmonotonic consequence operator. Thus for example “an
adult is (typically or normally) employed” might be repre-
sented a → e, where → represents a default conditional, dis-
tinct from the material conditional ⊃. Given a suitable proof
theory and semantics, one can derive other defaults from a
given set of defaults. There has been widespread agreement
concerning just what principles should constitute a minimal
logic, a suggested “conservative core,” of defaults. However,
the resulting conditional is quite weak, at least compared with
the material conditional, in that it does not (in fact, should
not) fully support principles such as strengthening of the an-
tecedent, transitivity, and modus ponens.

Since one would want to obtain these latter properties “by
default,” such logics are extended nonmonotonically by a
“closure” operation or step. This closure operation has, for
example, been defined by selecting a (preferred) subset of

the models of a theory; in the resulting subset of the mod-
els one obtains strengthening of the antecedent, transitivity,
or (effectively) modus ponens, wherever feasible. Essentially
then, there are two components to default reasoning within
such a system. First, there is a standard, monotonic logic
of conditionals that expresses relations among defaults that
are deemed to always hold. Second, there is a nonmonotonic
mechanism for obtaining defaults (and default consequences)
where justified. Representative (but not even remotely ex-
haustive) work in this area includes [Geffner and Pearl, 1992;
Pearl, 1990; Kraus et al., 1990]. In essence, these approaches
treat the default conditional like its classical counterpart, the
material conditional, where “feasible” or “by default”.

While this work captures an important notion of default
entailment – perhaps the most important notion – it is not
without difficulties. As described in the next section, some
principles of the “core” logic are not uncontentious; as well,
there are examples of default reasoning in which one obtains
undesired results. Lastly, there are more recent approaches,
notably addressing causality, in which one requires a weaker
notion of default inference, rejecting, for example, contrapos-
itive default inferences. In response to these points, we sug-
gest that there is a second, distinct, interpretation of default
conditionals, in which a default is regarded more like a rule,
with properties more in line with a rule of inference, than a
weakened classical conditional.

In the following sections we describe our proposed ap-
proach informally and formally. We begin by proposing an
exceptionally weak logic of conditionals; from this basis a
family of conditional logics is defined. Given a default con-
ditional α → β, the underlying intuition that is formalised
is that α supplies a context in which, all other things being
equal, β normally holds or, more precisely, in the context of
α, α ∧ β is more “normal” than α ∧ ¬β. Notably, all of the
logics that we consider are weaker than the aforementioned
“conservative core”. It proves to be the case however that
a nonmonotonic operation is very easily defined; this non-
monotonic step essentially specifies that a property is irrele-
vant with respect to a default unless it is known to be rele-
vant. This nonmonotonic step easily admits inferences that
in other approaches have taken significant formal machinery
to obtain. As well, we show that the aforementioned diffi-
culties that arise in interpreting a default as a weak classical
conditional do not arise here.



This distinction between treating a default as a condi-
tional or as a rule has been noted previously; see for example
[Geffner and Pearl, 1992]. As well, work on inheritance net-
works [Horty, 1994] can be viewed as investigating proof the-
ories for the latter interpretation; and work on causality such
as [McCain and Turner, 1997] falls in the rule-based frame-
work. However a logic (that is, with both semantics and proof
theory) capturing this interpretation has not (to our knowl-
edge) been investigated previously, nor has a fully general
nonmonotonic closure operator been developed under this in-
terpretation. Last, we suggest in the conclusion that this alter-
native interpretation may be widely applicable, extending to
areas such as counterfactual reasoning, generally treated via
the stronger interpretation.

2 Background
In recent years, much attention has been paid to conditional
systems of default reasoning. Such systems deal with defeasi-
ble conditionals based on notions of preference among worlds
or interpretations. Thus, the default that a bird normally flies
can be represented propositionally as b → f .1 These ap-
proaches are typically expressed using a modal logic in which
the connective → is a binary modal operator. The intended
meaning of α → β is approximately “in the least worlds (or
most preferred worlds) in which α is true, β is also true”.
Possible worlds (or, again, interpretations) are arranged in at
least a partial preorder, reflecting a metric of “normality” or
“preferredness” on the worlds. Given a set of defaults Γ, de-
fault entailment with respect to Γ, |∼

Γ
, can be defined via:

If Γ ` α → β then α |∼
Γ
β.

There has been a remarkable convergence or agreement on
what inferences ought to be common to all nonmonotonic
systems; space considerations preclude a full listing of ap-
proaches and references. The resulting set of principles has
been called the conservative core in [Pearl, 1989]. It was
originally considered in [Adams, 1975], and has been studied
extensively, as the system P, in [Kraus et al., 1990]. One ex-
pression of the logic of conditionals is as follows. The logic
includes classical propositional logic and the following rules
and axioms:2

RCEA/LLE: From ` α ≡ β infer ` (α → γ) ≡ (β → γ).

RCM/RW: From ` β ⊃ γ infer ` (α → β) ⊃ (α → γ)

ID/Ref: α → α

RT/Cut: ((α → β) ∧ (α ∧ β → γ)) ⊃ (α → γ)

ASC/CM: ((α → β) ∧ (α → γ)) ⊃ (α ∧ β → γ)

1An alternative is to treat the conditional as a nonmonotonic in-
ference operator, b |∼ f . In a certain sense these approaches can
be considered equivalent; here, for simplicity, we remain within the
conditional logic framework.

2Two systems of nomenclature have arisen, one associated with
conditional logic and one with nonmonotonic consequence opera-
tors. We list both (when both exist) when first presenting an axiom
or rule; for example the conditional logic rule for substitution of
logical equivalents in the antecedent is called RCEA; its nonmono-
tonic consequence operator, Left Logical Equivalence is abbreviated
LLE. Hence we first list the rule as RCEA/LLE.

CA/Or: ((α → γ) ∧ (β → γ)) ⊃ (α ∨ β → γ)

These principles are not uncontentious; for example, [Poole,
1991] can be viewed as arguing against a derived principle
CC/And (viz. ((α → β)∧(α → γ)) ⊃ (α → β∧γ) obtained
via RT and ASC). Likewise, [Neufeld, 1989] suggests against
CA in some cases.

Nonetheless, the resulting logic (and proposed strengthen-
ings of the logic) are weak. A central difficulty is that seem-
ingly irrelevant properties will block a desired inference. For
example, given that a bird is asserted to fly by default, one
cannot thereby conclude that a green bird flies by default.
The problem, essentially, is that there is nothing requiring
preferred worlds in which birds fly to include among them
green-bird worlds. Consequently, various means of strength-
ening the logic to incorporate irrelevant properties in a prin-
cipled fashion have been proposed. Thus for “birds fly,” since
being green is presumably irrelevant with respect to flight,
one would want to have, among the preferred worlds in which
birds fly, a (preferred) subset in which there are green birds.

Rational closure [Lehmann and Magidor, 1992], for exam-
ple, assumes that a world is ranked as unexceptional as pos-
sible. In conditional entailment [Geffner and Pearl, 1992],
a partial order on possible worlds is determined by ranking
worlds based on the highest-ranked default that distinguishes
between the worlds. In both cases, defaults are evaluated with
respect to the resulting ranking. Thus, since there is no rea-
son to suppose that greenness has any bearing on flight, one
assumes that greenness has no effect on flight.

However there are difficulties with both approaches. Ra-
tional closure employs a very strong minimization criterion;
see [Geffner and Pearl, 1992] for a number of problematic ex-
amples. As well, consider an elaboration of an example given
by John Horty:

> → ¬f, a → f, > → n, o → ¬n. (1)

(Normally one does not eat with the fingers (f ), but one does
when eating asparagus (a); normally one uses a napkin (n),
but not when one is out of napkins (o).) The rational closure
of these conditionals gives that, if one is not out of napkins
(¬o), one is not eating asparagus (¬a). Clearly this inter-
action between unrelated defaults is undesirable. As well,
in neither conditional entailment nor rational closure does
one obtain inheritance of properties (however see [Benferhat
et al., 1993]). In addition, consider the following example
[Geffner and Pearl, 1992]:

a → e, u → a, u → ¬e, f → a. (2)

(That is, adults are normally employed, university students
are normally adults but are not employed, and Frank Sina-
tra fans are normally adults.) In both conditional entailment
and rational closure we obtain the default inference that Frank
Sinatra fans are not university students. But this is a curious
inference, since there is nothing in the example that would
seem to relate Frank Sinatra fans to university students.

We suggest that at least some of these examples do not nec-
essarily reflect a problem with the approaches per se. Rather,
our thesis is that there are (at least) two distinct interpreta-
tions that can be given to a default. First, there is the intuition



that a default is essentially a weak version of the material
conditional (or, in more recent approaches, necessary entail-
ment), and should behave as such a conditional, except that
it is defeasible. This intuition is seen most clearly in the ex-
pression of defaults by circumscriptive abnormality theories
[McCarthy, 1986]. In this case a default α → β is repre-
sented as the formula α ∧ ¬Abi ⊃ β. The circumscription
of Abi asserts that Abi is false (roughly) if consistently pos-
sible. Obviously, if Abi is asserted to be false, the result is
exactly the material conditional. As well, conditional entail-
ment adopts this intuition: the default α → β is basically the
same as > → (α ⊃ β) (and so > → (¬β ⊃ ¬α)), together
with specificity information implicit in α [Geffner and Pearl,
1992, p. 232]. This interpretation also underlies approaches
that assume that defaults are founded (formally or informally)
on notions of probability.3

The second interpretation regards a default more as an
(object-level) rule, whose properties are closer to those of a
rule of inference. Thus, given a conditional α → β, if the
antecedent α happens to be true, we conclude β by default.
Given ¬β we specifically do not want to conclude ¬α. This
latter interpretation covers an important class of defaults that
have not been addressed as a logic of conditionals per se (al-
though this distinction has been noted in [Geffner and Pearl,
1992]; and inheritance networks [Horty, 1994] can be viewed
as proof theoretic accounts of this interpretation). A further
motivation for exploring this interpretation is that there has
been recent interest in conditional accounts of causality (for
example [McCain and Turner, 1997]), in which reasoning via
a default contrapositive is explicitly rejected. Thus, from “a
causes b” we don’t want to conclude “¬b causes ¬a.”

3 Defaults as Rules
The general approach is the same as those described in the
previous section: we begin by specifying a logic of defaults
and subsequently provide a principled, nonmonotonic, means
to extend the logic to account for irrelevant properties. Our
point of departure is that we informally treat defaults more
like rules of inference; in particular, defaults are intended to
be applied in a “forward” direction only. Our interpretation,
roughly, is that the antecedent of a default establishes a con-
text in which the consequent (normally) holds, or holds all
other things being equal. Thus, for default α → β, our in-
terpretation is roughly that, in the context established by α, it
is the case that β is more normal (typical, etc.) than ¬β. We
express this semantically by

‖α ∧ ¬β‖M < ‖α ∧ β‖M , (3)

that is, the proposition (see the next section) ‖α∧β‖M is more
normal (typical, etc.) than ‖α ∧ ¬β‖M . It seems reasonable
that our binary relation of relative normality < be asymmetric
and transitive, and so we generally assume that these condi-
tions hold. We note that the form of (3) has appeared regu-
larly in the literature, going back at least to [Lewis, 1973].4

3We note in passing that there are examples of defaults that have
nothing to do with probability, for example (1).

4We use < in the opposite sense of Lewis and many other au-
thors. For our interpretation, it seems to make more sense to express

The difference is that usually the interpretation of (3) is along
the lines of “the least worlds where α∧¬β is true are less nor-
mal than the least α ∧ β worlds”; our interpretation refers to
the proposition expressed by these formulas. Consequently,
our relation < is not an accessibility relation in the normal
sense, since it is a relation on sets of worlds.

Filling in the (formal) details yields a weak logic of condi-
tionals, significantly weaker than the so-called “conservative
core”. We also consider various strengthenings of the logic,
but these strengthenings are still weaker than this “core” set of
defaults. We subsequently define a notion of nonmonotonic
inference with respect to these logics. It proves to be the case
that this is very easy to do in our approach. Basically, the
(semantic) relation X < Y asserts that in the “context” (set
of possible worlds) X ∪ Y , partitioned by X ,Y , we have that
Y is more normal than X . Our nonmonotonic assumption
is that this obtains in all “feasible” subcontexts. That is, for
proposition Z, unless there is reason to conclude otherwise,
we assert that Z ∩X < Z ∩Y . The next section develops the
formal details.

4 The Approach
4.1 The Base Logic
Let LPC be the language of propositional logic defined, for
simplicity, over a finite alphabet P = {a, b, c, . . . } of propo-
sitional letters or atomic propositions, and employing the log-
ical symbols ¬, ∨, ∧, ⊃, and ≡. The symbol > is taken to be
some propositional tautology, and ⊥ is defined as ¬>. The
language L is LPC extended with the binary operator → as
a weak conditional. For convenience, arguments of → are
members of LPC ; hence, we do not allow nested occurrences
of →. Formulas are denoted by the Greek letters α, β, . . . and
sets of formulas by upper case Greek letters Γ, ∆, . . . . Sen-
tences are interpreted with respect to a comparative condi-
tional model M = 〈W, <, P 〉 where:

1. W is a set (of states or possible worlds);

2. < ⊆ W × 2W × 2W with properties described below;

3. P : P 7→ 2W .

We use the upper case letters X , X1, Y , . . . to denote sets
of possible worlds. P maps atomic sentences onto sets of
worlds, being those worlds at which the sentence is true. The
relation < associates with each world w ∈ W a binary notion
of relative normality between propositions; we write X <w

Y to assert informally that, according to world w, proposition
Y is more normal than X . That is, given a partition {X, Y }
of a context X∪Y , the relation X < Y asserts that Y is more
normal (unexceptional, etc.) than X . We assume that < is a
strict partial ordering on its last two arguments, that is for w ∈
W , <w is asymmetric and transitive. As well, we assume that
the incoherent proposition is maximally abnormal:

X 6= ∅ iff ∅ <w X. (4)

Truth of a formula at a world in a model is as for propositional
logic, with an addition for →:

“Y is more normal than X” by X < Y rather than by Y < X .



Definition 4.1
1. |=M

w p for p ∈ P iff w ∈ P (p).

2. |=M
w α ∧ β iff |=M

w α and |=M
w β.

3. |=M
w ¬α iff 6|=M

w α.

4. |=M
w α → β iff ‖α ∧ ¬β‖M <w ‖α ∧ β‖M or

‖α‖M = ∅.

A formula α is valid, written |= α, just if it is true at every
world in every model. We identify the proposition expressed
by a sentence α with the set of worlds in which α is true,
denoted ‖α‖M , that is,

‖α‖M = {w | |=M

w α}.

Thus α → β is true just if the proposition expressed by α∧β
is more normal than that expressed by α∧¬β. α is necessarily
true, 2α, is defined as ¬α → α.

Consider the logic closed under classical propositional
logic along with the following rules of inference and axioms:
RCEA/LLE: From ` α ≡ α′ infer ` (α → β) ≡ (α′ → β)

RCECA:
From ` α ⊃ (β ≡ β′) infer ` (α → β) ≡ (α → β′)

RI/SupraCl: From ` α ⊃ β infer ` α → β

WeakCEM: ¬(α → ⊥) ⊃ ((α → β) ⊃ ¬(α → ¬β))

Trans: ((α ∨ β → β) ∧ (β ∨ γ → γ)) ⊃ (α ∨ γ → γ)

We call the smallest logic based on the above axiomatisation
C. Theoremhood of a formula α is denoted, as usual, by ` α.
This system is quite weak; however in the full paper we con-
sider the even weaker logic C

− consisting of propositional
logic and RCEA, RCECA, and RI. RCEA asserts that con-
ditionals with the same consequent and equivalent (in propo-
sitional logic) antecedents are equivalent. RCECA asserts
the same thing with respect to consequents, but is somewhat
more general, in that the consequents need be equivalent just
in the “context” given by the antecedent. RI asserts that if
β is logically implied by α, then it is also normally implied.
WeakCEM gives a weak version of the excluded middle for
a weak conditional; in the semantics this is reflected by asym-
metry of <. Similarly Trans reflects transitivity of < in the
semantics. We obtain the following basic results:
Theorem 4.1

1. α → α

2. (α → β) ⊃ (α → (α ∧ β))

3. (α → β) ⊃ (α → (α ⊃ β))

4. if ` β then ` α → β

As well, we obtain:
Theorem 4.2 α is valid in the class of comparative condi-
tional models iff ` α in C.

For those familiar with conditional logic, the formulas
RCM, RT, ASC, CC, and CA (and their nonmonotonic con-
sequence operator counterparts: Right Weakening, Cut, Cau-
tious Monotonity, And, and Or) are not valid in C. Nonethe-
less, despite its (monotonic) inferential weakness, the logic
already allows a rich set of nonmonotonic inferences, as cov-
ered in the next section. However, before proceeding we first
consider various extensions to the logic.

4.2 Extensions to the Logic
In the logic C most properties of the relation <w stem from
its being a strict partial order (viz. asymmetric and transitive).
We also look at strengthening <w by considering properties
that seem reasonable for a notion of normality. Consider the
following:

CD: If X <w Y then X \ Z <w Y .

CU: If X <w Y then X <w Y ∪ Z provided X ∩ Z = ∅.

UD: If X <w Y then X \ Z <w Y ∪ Z.

WDjU: If X1 <w Y1, X2 <w Y2, Y1 ∩ Y2 = ∅ and (X1 ∪
X2) ∩ (Y1 ∪ Y2) = ∅ then X1 ∪ X2 <w Y1 ∪ Y2.

For CD, if X is less normal than Y , then a stronger propo-
sition than X (viz. X \ Z) is also less normal than Y . CU
is a dual: if X is less normal than Y , then a weaker propo-
sition than Y (viz. Y ∪ Z) is also more normal than X . UD
combines these conditions, and WDjU is a weak version of
disjoint unions, described below. Interestingly, the first two
of these conditions have appeared in the belief revision lit-
erature. Our relation < is what [Alchourrón and Makinson,
1985] call a (transitive) hierarchy; while < with CD and CU
is a regular hierarchy. Their interpretation of < echoes ours
for X < Y , that “X is less secure or reliable or plausible
. . . than Y ” [Gärdenfors and Rott, 1995, p. 75].

Consider next the following rules and formulas:

WeakRCM: If ` β ⊃ γ then ` (α → β) ⊃ (α ∧ γ → β)

CM/Cond: (α ∧ β → γ) ⊃ (α → (β ⊃ γ))

RCM: If ` β ⊃ γ then ` (α → β) ⊃ (α → γ)

D: ((α ∧ β → γ) ∧ (α ∧ ¬β → γ)) ⊃ (α → γ).

Space considerations preclude a full discussion of these con-
ditions. WeakRCM is a weaker version of both the rule
RCM and the formula ASC in conditional logic. CM
(“Conditionalisation” in nonmonotonic consequence rela-
tions) gives a conditional version of one half of the deduc-
tion theorem. Combining WeakRCM and CM yields the
rule RCM, allowing weakening of the consequent of a con-
ditional. D supplies a certain “reasoning by cases” for the
conditional.

We obtain the following correspondence between semantic
conditions and the axiomatisation:

Theorem 4.3 C + CD (CU, UD, WDjU) is complete with
respect to the class of comparative conditional models closed
under WeakRCM (CM, RCM, D).

We could go on and add other conditions in the semantics.
Again space considerations dictate against a lengthy discus-
sion, but two conditions are worth noting here:

Disjoint Union: If (X ∪ Y ) ∩ Z = ∅ then:
X <w Y iff X ∪ Z <w Y ∪ Z.

Connectivity: For X, Y ⊆ W , either Y <w X or X <w Y .

Disjoint union has appeared frequently in the literature, for
example [Savage, 1972; Fine, 1973; Dubois et al., 1994]. The
addition of disjoint union requires that the notion of a model
be altered slightly (from a relation < to ≤); the resultant se-
mantic framework would correspond to the basic definition



of a plausibility structure [Friedman and Halpern, 2001]. The
addition of connectivity would make <w a qualitative proba-
bility in the terminology of [Savage, 1972].

5 Nonmonotonic Reasoning
We claimed at the outset that the logic C and its strengthen-
ings would allow a simple approach to nonmonotonic infer-
ence, having just the “right” properties for a rule-based in-
terpretation of a conditional. For the logics, the central idea
was that, given a partition {X, Y } of a context X ∪ Y ⊆ W ,
the relation X < Y asserts that Y is more normal (unexcep-
tional, etc.) than X . To obtain nonmonotonic inference, we
simply assume that this relation holds in any subcontext, that
is X ∩ Z < Y ∩ Z wherever “reasonable”. More formally,
we have the following:

Definition 5.1 Let M = 〈W, <, P 〉 be a comparative condi-
tional model in C.
Define M∗ = 〈W, <∗, P 〉, the augmentation of M , by:

X <∗

w Y iff there are X ′ ⊇ X , Y ′ ⊇ Y such that

1. X ′ <w Y ′ and
2. for every X ′′, Y ′′ where

X ⊆ X ′′, Y ⊆ Y ′′ and Y ′′ <w X ′′

we have:
X ′ ⊆ X ′′, Y ′ ⊆ Y ′′.

In the augmentation of a model, we will have X <∗

w Y if
X <w Y . Otherwise, X <∗

w Y if there are X ′, Y ′ where
X ′ <w Y ′ for X ⊆ X ′ and Y ⊆ Y ′, and there is no X ′′, Y ′′

where X ⊆ X ′′ ⊆ X ′ and Y ⊆ Y ′′ ⊆ Y ′ and Y ′′ <w X ′′ in
the original model.

Theorem 5.1 If M = 〈W, <, P 〉 is a comparative condi-
tional model then so is M∗ = 〈W, <∗, P 〉.

We define |=∗ as validity in the class of augmented com-
parative conditional models; that is |=∗ α iff α is true at every
world in every augmented comparative conditional model.
Nonmonotonic inference is defined as follows:

Definition 5.2 Let Γ ⊆ {α → β | α, β ∈ LPC}.
α |∼

Γ
β iff |=∗ Γ ⊃ (α → β).

We say that β is a nonmonotonic inference from α with re-
spect to Γ, or just β is a nonmonotonic inference from α if
the set Γ is clear from the context of discussion.

We illustrate nonmonotonic inference first by a familiar
example:

b → f, (5)

b → w, (6)

2(p ⊃ b), (7)

p → ¬f. (8)

Thus birds fly and have wings, and penguins are (necessarily)
birds that do not fly. We obtain the following:

b ∧ w |∼ f, p ∧ w |∼¬f,
b ∧ ¬w |∼ f, p ∧ b |∼¬f,
b ∧ ¬p |∼ f, p ∧ b ∧ w |∼¬f.

We also obtain b ∧ x ∧ y ∧ z |∼w for x ∈ {>, g,¬g}, y ∈
{>, p,¬p}, z ∈ {>, f,¬f}. Thus green (g) birds have wings,

as do non-green flying penguins. As well p |∼w, and so pen-
guins inherit the property of having wings by virtue of neces-
sarily being birds. Note that if we replaced (7) by p → b, we
would no longer obtain p |∼w; however we would obtain the
weaker b ∧ p |∼w. We justify this by noting that a normality
conditional α → β does not imply a strict specificity relation
between α and β whereas 2(α ⊃ β) does.

The next example further illustrates reasoning in the pres-
ence of exceptions.

q → p, r → ¬p, q → g (9)

So Quakers are pacifists while Republicans are not, and
Quakers are generous. We obtain q ∧ ¬r |∼ p and q ∧ r |∼ g.
Thus in the last case, while Quakers that are Republican are,
informally, exceptional Quakers, they are nonetheless still
generous by default.

Concerning our original motivating examples, in (1) we do
not obtain the undesirable inference ¬o |∼¬a, and in (2) we
do not obtain f |∼¬u. Last, we note that while we obtain full
incorporation of irrelevant properties, we do not obtain full
default transitivity. Thus

a → b, b → c

does not yield a |∼ c (nor, incidentally, do we obtain
¬b |∼¬a). However we do get a ∧ b |∼ c. If we replaced
a → b with 2(a ⊃ b) we would get a |∼ c. If we replaced
b → c with 2(b ⊃ c) we would again get a |∼ c, in C (in fact
we could derive a → c in those logics containing RCM, as
given in Theorem 4.3).

6 Discussion
We have argued that there are two interpretations of a default
conditional: as a weak (typically material) implication, or as
something akin to a rule of inference. The former interpreta-
tion is explicit in, for example, circumscriptive abnormality
theories, and implicit in an approach such as conditional en-
tailment. It is clear that there are many, and varied, applica-
tions in which the first interpretation is appropriate. However
we have also noted that there are various reasons to suppose
that this is not the only such interpretation: First, work such
as [Poole, 1991] and [Neufeld, 1989] can be viewed as ar-
guing against principles of the “core” logic underlying this
first interpretation (the former arguing against the principle
CC/And and the latter against CA/Or). Second, there are ex-
amples of inferences in approaches such as rational closure
or in conditional entailment that are either too weak or too
strong. Last, there are emerging areas (such as causal reason-
ing) in which a “weak material implication” interpretation is
not appropriate. While this distinction has been recognized
previously, what is new here is the development of a fam-
ily of logics, with a novel semantic theory and proof theory,
along with a specification of nonmonotonic inference, for the
“rule-based” interpretation.

All of the logics presented here are quite weak, at least
compared to the “conservative core” or, equivalently, the
system P of [Kraus et al., 1990]. We argue however that
such lack of inferential capability is characteristic of a “rule-
based” interpretation of a conditional. Moreover it proves to



be the case that nonmonotonic reasoning is defined very eas-
ily in these logics, and allows a rich set of inferences concern-
ing the incorporation of irrelevant properties and of property
inheritance.

An open question concerns how informal, commonsense
defaults should be classified – whether as a defeasible classi-
cal conditional or as a rule. Certainly past work has favoured
the “defeasible classical conditional” interpretation. How-
ever, a case can be made that many examples formerly in-
terpreted as belonging to the first category are better inter-
preted as belonging to the “rule” category. Consider Lewis’
approach to counterfactuals [Lewis, 1973] in which the fol-
lowing example, concerning a past party, is given: “If John
had gone it would have been a good party” and “If John and
Mary had gone it would have not been a good party”. From
this we deduce that “if John had gone, Mary would not have
gone”. This, to most readers, is a strange result: John’s going
and Mary’s going are (presumably) independent events. Ar-
guably this result ought not to obtain, and so perhaps counter-
factuals, as previously modelled by Lewis’ sphere semantics,
may be better interpreted via the “rule” interpretation.
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