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Abstract

Approaches to belief revision most commonly deal with categorical information: an
agent has a set of beliefs and the goal is to consistently incorporate a new item of
information given by a formula. However, most information about the real world is
not categorical. In revision, one may circumvent this fact by assuming that, in some
fashion or other, an agent has elected to accept a formula φ, and the task of revision
is to consistently incorporate φ into its belief corpus. Nonetheless, it is worth asking
whether probabilistic information and noncategorical beliefs may be reconciled with,
or even inform, approaches to revision. In this paper, one such account is presented.
An agent receives uncertain information as input, and its probabilities on (a finite set
of) possible worlds are updated via Bayesian conditioning. A set of formulas among
the noncategorical beliefs is identified as the agent’s categorical belief set. The effect
of this updating on the belief set is examined with respect to its appropriateness as a
revision operator. We show that few of the classical AGM belief revision postulates
are satisfied by this approach. Most significantly, though not surprisingly, the success
postulate is not guaranteed to hold. However it does hold after a sufficient number of
iterations. As well, it proves to be the case that in revising by a formula consistent with
the agent’s beliefs, revision does not correspond to expansion. Postulates for iterated
revision also examined, and it proves to be the case that most such postulates also do
not hold. On the other hand, limiting cases of the presented approach correspond to
specific approaches to revision that have appeared in the literature.

1 Introduction

In all but the simplest of circumstances, an agent’s knowledge of a domain will be incomplete
and inaccurate. Consequently, an agent will need to change its beliefs in response to receiving
new information. Belief revision is the area of knowledge representation that is concerned
with how an agent may incorporate new information about a domain into its set of beliefs.
It is assumed that the agent has some corpus of beliefs K which are accepted as being true,
or holding in the domain of application. A new formula φ is given, which the agent is to

1



incorporate into its set of beliefs. Since consistency is to be maintained wherever possible,
if φ conflicts with K some beliefs will have to be dropped from K before φ can be added.
It is generally accepted that there is no single “best” revision operator, and different agents
may have different revision functions. However, revision functions are not arbitrary, but
are usually regarded as being guided, or characterised, by various rationality criteria. The
original and best-known approach to belief revision is called the AGM approach [Alchourrón
et al., 1985; Gärdenfors, 1988], named after the developers of this framework.

There are of course other approaches for revising an agent’s beliefs, most notably and ob-
viously via probability theory and using Bayesian conditioning (e.g. [Pearl, 1988; Gärdenfors,
1988]). In this case, formulas are held with attached (subjective) probabilities. New evidence
is received, also with an attached probability, and the agent’s corpus of beliefs is modified
via updating the associated probabilities.

Superficially, these approaches may be seen as broadly addressing the same problem since
they both address the change in an agent’s beliefs in the presence of new information. Yet it
can also be argued that the two approaches can be seen as addressing quite different problems.
In the case of belief revision, an agent accepts a certain set of beliefs as categorically holding,
and another categorical belief is to be consistently incorporated into this set. This approach is
fundamentally qualitative, since sentences of the language can be partitioned into those that
are accepted and those that are not.1 In the case of updating via Bayesian conditioning,
beliefs are generally not held with certainty, but rather with varying levels or degrees of
confidence. The task then is to modify these degrees of confidence, expressed as probabilities,
as new evidence is received. Hence this approach is fundamentally quantitative.

The issue of whether (or when) beliefs are best treated as certain or uncertain is an
important one, but one that we don’t get into here. Certainly, compelling arguments can
be made for either view: On the one hand, most people if pressed would agree that their
beliefs are not fully certain, but rather are held with varying degrees of confidence. Thus,
most people would be confident that their car would be left where they parked it (if they
drove to work, for example) but would admit that there was a small chance that it wasn’t
there, perhaps having been stolen or towed. In fact, if pressed, it seems plausible that many,
if not most, people would agree that the probability that the sun will rise tomorrow morning
is not 1, but rather is something less – maybe extremely close to 1 but nonetheless less by
some finite amount. On the other hand, most people act as though their beliefs are true, and
generally describe or regard their beliefs in day-to-day affairs as simply being true. Hence if
asked where their car was, most people would reply that it was where they had parked it,
not that it was likely there or very probably there.

These considerations reflect a broader division in Artificial Intelligence and perhaps in
science as a whole, between what has been called the probabilists on the one hand and
logicists on the other. Henry Kyburg put it as follows:

There are two fundamentally distinct ways of thinking about thinking about the
world. One is contemplative; the other oriented toward action. One seeks pure
knowledge; the other is pragmatic. One leads to hedged claims; the other leads

1There is more to the story, as discussed later, but the main point is that the focus rests on an agent’s
belief set.
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to categorical claims in a hedged way. [Kyburg, 1994, p. 3]

As to the last point, a categorical, albeit hedged, belief is one that may be altered or
withdrawn on the basis of new evidence; i.e. it may be the subject of belief revision. However,
since categorical beliefs arise from noncategorical, hedged claims (and so uncertain evidence),
it is an interesting question to ask whether the latter approach may inform the former. That
is, an interesting question is whether an underlying non-categorical approach, here based
on subjective probabilities, may have something to say about the categorical approach of
belief revision. Another way of phrasing this is to first observe that evidence about the real
world is generally uncertain (as well as incomplete and inaccurate), and so it is of interest
to examine how such a setting may be reconciled with the assumptions underlying the area
of belief revision.

To address this question, we begin with a simple model of an agent’s beliefs. Probabilities
are associated with possible worlds, characterising the agent’s subjective knowledge. To ease
the development, and because nothing of interest is lost with respect to the goals of the
paper, the set of possible worlds is assumed to be finite. The agent’s accepted, categorical
beliefs are characterised by the least set of possible worlds, such that the set contains those
worlds of highest probability such that the sum of the probabilities over those worlds exceeds
a given threshold. As new, uncertain information is received, the probabilities attached to
worlds are modified and the set of accepted beliefs correspondingly changes. One can then
examine the properties of belief change with respect to the accepted beliefs from the point
of view of classical AGM belief revision. It proves to be the case that, not surprisingly,
only a subset of the AGM revision postulates are satisfied. For example, in a revision of a
belief set K by φ, in the AGM approach φ is believed. In the approach at hand, φ is not
necessarily believed following revision of K by φ, but it is believed to be possible, in that ¬φ
is not believed. As well, after some number of iterations of revision by φ, φ will come to be
believed. Further, if a formula φ is consistent with a belief set K, revision of K by φ may not
correspond to the addition of φ to K. We also examine the approach with respect to iterated
revision, specifically the Darwiche and Pearl [1997] and Jin and Thielscher [2007] accounts
of iterated revision. Here it proves to be the case that only one of the Darwiche/Pearl
postulates hold, and the Jin and Thielscher independence postulate does not hold. On the
other hand, two extant approaches to belief revision prove to be closely related to instances
of the approach developed here.

The next section provides requisite background material: terminology is introduced,
belief revision is reviewed, and related work is surveyed. Section 3 describes the updating of
probabilities in terms of probabilities on possible worlds. The following section motivates and
defines the notion of epistemic state as used in the paper. Section 5 describes belief revision
in this framework, including properties of the resulting revision operator and a comparison
to related work. Section 6 gives a brief summary.
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2 Background

2.1 Formal Preliminaries

We assume a propositional language L over a finite set of atomic sentences, P = {a, b, . . .},
closed under the usual connectives ¬, ∧, ∨, and ⊃, and with the classical consequence
relation `. Cn(A) is the set of logical consequences of a formula or set of formulas A; that
is Cn(A) = {φ ∈ L | A ` φ}. > stands for some arbitrary tautology and ⊥ is defined to be
¬>. Given two sets of formulas A and B, A + B denotes the expansion of A by B, that is
A+B = Cn(A ∪B). Expansion of a set of formulas A by a formula φ is defined analogously.
Two sentences φ and ψ are logically equivalent, written φ ≡ ψ, iff φ ` ψ and ψ ` φ. This
also extends to sets of formulas.

A propositional interpretation (also referred to as a possible world) is a mapping from
P to {true, false}. The set of all interpretations of L is denoted by WL. A model of
a sentence φ is an interpretation w that makes φ true according to the usual definition
of truth, and is denoted by w |= φ. For W ⊆ WL, we also write W |= φ if w |= φ
for every w ∈ W . For a set of sentences A, Mod(A) is the set of all models of A. For
simplicity, Mod({φ}) is also written as Mod(φ). Conversely, given a set of possible worlds
W ⊆ WL, we denote by T (W ) the set of sentences which are true in all elements of W ; that
is T (W ) = {φ ∈ L | w |= φ for every w ∈ W}.

A total preorder � is a reflexive, transitive binary relation, such that either w1 � w2 or
w2 � w1 for every w1, w2. As well, w1 ≺ w2 iff w1 � w2 and w2 6� w1. w1 = w2 abbreviates
w1 � w2 and w2 � w1.

2 Given a set S and total preorder � defined on members of S, we
denote by min(S,�) the set of minimal elements of S in �.

Last, let P : WL 7→ [0, 1] be a function such that 0 ≤ P (w) ≤ 1 and
∑

w∈WL
P (w) = 1.

P is a probability assignment to worlds. We distinguish the function P> where P>(w) = 1
|WL|

for every world w. We also include the absurd assignment P⊥ among the set of probability
assignments, where P⊥(w) = 1 for every world w. P> can be used to characterise a state of
ignorance for an agent, while P⊥ is a technical convenience that will be used to characterise
an inconsistent belief state. Thus, when we come to define an agent’s categorical beliefs based
on a probability assignment (Definition 4), an agent with associated probability assignment
P> will believe only the tautologies, whereas one with P⊥ will believe all formulas.

These functions are extended to subsets of WL by, for W ⊆ WL, P (W ) =
∑

w∈W P (w).
Informally, P (w) is the (subjective) probability that, as far as the agent knows, w is the
actual world being modelled; and for W ⊆ WL, P (W ) is the probability that the real world
is a member of W . As will be later described, the function P can be taken as comprising
the major part of an agent’s epistemic state [Darwiche and Pearl, 1997; Peppas, 2007]. The
probability of a formula φ then is given by:

P (φ) =
∑
w|=φ

P (w) = P (Mod(φ)).

2As will be subsequently described, relations in a total preorder will be subscripted by an epistemic state.
In particular the last relation will be written =K and so there is no confusion with equality, written as usual
as =, unsubscripted.
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This then overloads the function P (·); however, this overloading is benign in that there is
no ambiguity in the use of this function. Conditional probability is defined, as usual, by

P (φ|ψ) =
P (φ ∧ ψ)

P (ψ)

and is undefined when P (ψ) = 0.

2.2 Belief revision

A common approach in addressing belief revision is to provide a set of rationality postulates
for belief change functions. The AGM approach of Alchourrón, Gärdenfors, and Makinson
[Alchourrón et al., 1985; Gärdenfors, 1988] provides the best-known set of such postulates.3

The goal is to describe belief change at the knowledge level, that is on an abstract level,
independent of how beliefs are represented and manipulated. An agent’s beliefs are modelled
by a set of sentences, called a belief set, closed under the logical consequence operator of a
logic that includes classical propositional logic. Thus a belief set K satisfies the constraint:

φ ∈ K if and only if K logically entails φ.

K can be seen as a partial theory of the world. K⊥ is the inconsistent belief set (i.e. K⊥ = L).
In belief revision, a formula φ is to be incorporated into the agent’s set of beliefs K so

that the resulting belief set is consistent, provided that φ is consistent. Since φ may be
inconsistent with K, revision may also necessitate the removal of beliefs from K in order
to retain consistency. In the AGM approach, revision is modeled as a function from belief
sets and formulas to belief sets. However, various researchers have argued that it is more
appropriate to consider epistemic states (also called belief states) as objects of revision. An
epistemic state K effectively includes sufficient information to determine how the revision
function itself changes following a revision; see [Darwiche and Pearl, 1997] or [Peppas, 2007]

for discussions on this topic. The belief set corresponding to belief state K is denoted
Bel(K). As well, we will use the notation Mod(K) to mean Mod(Bel(K)). Formally, a
revision operator ∗ maps an epistemic state K and new information φ to a revised epistemic
state K ∗ φ. Then, in the spirit of [Darwiche and Pearl, 1997], the AGM postulates for
revision can be reformulated as follows:

(K*1) Bel(K ∗ φ) = Cn(Bel(K ∗ φ))

(K*2) φ ∈ Bel(K ∗ φ)

(K*3) Bel(K ∗ φ) ⊆ Bel(K) + φ

(K*4) If ¬φ /∈ Bel(K) then Bel(K) + φ ⊆ Bel(K ∗ φ)

(K*5) Bel(K ∗ φ) is inconsistent, only if 0 ¬φ

(K*6) If φ ≡ ψ then Bel(K ∗ φ) ≡ Bel(K ∗ ψ)

3See also [Peppas, 2007] for a comprehensive survey of belief change.
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(K*7) Bel(K ∗ (φ ∧ ψ)) ⊆ Bel(K ∗ φ) + ψ

(K*8) If ¬ψ /∈ Bel(K ∗ φ) then Bel(K ∗ φ) + ψ ⊆ Bel(K ∗ (φ ∧ ψ))

That is, the result of revising K by φ is an epistemic state in which φ is believed in the
corresponding belief set ((K*1), (K*2)); whenever the result is consistent, the revised belief
set consists of the expansion of Bel(K) by φ ((K*3), (K*4)); the only time that Bel(K) is
inconsistent is when φ is inconsistent ((K*5)); and revision is independent of the syntactic
form of the formula for revision ((K*6)). The last two postulates deal with the relation
between revising by a conjunction and expansion: revision by a conjunction corresponds to
revision by one conjunct followed by expansion by the other, whenever the final result thus
obtained is consistent.4 Motivation for these postulates can be found in [Gärdenfors, 1988].
A dual operator, called contraction, is similarly defined, so that for a contraction of φ from
K, denoted K−̇φ, the result is a belief set in which φ is not believed. See [Gärdenfors, 1988]

for the set of contraction postulates and its relation with revision.
Several constructions have been proposed to characterise belief revision. Katsuno and

Mendelzon [1991] (but see also [Grove, 1988]) have shown that a universal scheme for con-
structing an AGM revision operator can be given where any epistemic state K can induce
a total preorder on the set of possible worlds. Formally, for epistemic state K, a faithful
ranking on K is a total preorder �K on the possible worlds WL, such that for any possible
worlds w1, w2 ∈ WL:

1. If w1, w2 |= Bel(K) then w1 =K w2

2. If w1 |= Bel(K) and w2 6|= Bel(K), then w1 ≺K w2

Intuitively, w1 �K w2 if w1 is at least as plausible as w2 according to the agent. The first
condition asserts that all models of the agent’s knowledge are ranked equally, while the
second states that the models of the agent’s knowledge are lowest in the ranking.

It follows directly from the results of [Katsuno and Mendelzon, 1991] that a revision
operator ∗ satisfies (K∗1)–(K∗8) iff there exists a faithful ranking �K for an arbitrary belief
state K, such that for any sentence φ:

Bel(K ∗ φ) =

{
L if ` ¬φ
T (min(Mod(φ),�K)) otherwise

Thus in the case where φ is satisfiable, the belief set corresponding to K ∗ φ is characterised
by the least φ models in the ranking �K.

The AGM postulates do not address properties of iterated belief revision. This has led
to the development of additional postulates for iterated revision; the best-known approach is
that of Darwiche and Pearl [1997]. They propose the following postulates, adapted according
to our notation:

(C1) If ψ ` φ, then Bel((K ∗ φ) ∗ ψ) = Bel(K ∗ ψ)

(C2) If ψ ` ¬φ, then Bel((K ∗ φ) ∗ ψ) = Bel(K ∗ ψ)

4I thank a referee for suggesting this wording.
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(C3) If φ ∈ Bel(K ∗ ψ), then φ ∈ Bel((K ∗ φ) ∗ ψ)

(C4) If ¬φ /∈ Bel(K ∗ ψ), then ¬φ /∈ Bel((K ∗ φ) ∗ ψ)

Darwiche and Pearl show that an AGM revision operator satisfies each of the postulates
(C1)–(C4) iff the way it revises faithful rankings satisfies the respective conditions:

(CR1) If w1, w2 |= φ, then w1 �K w2 iff w1 �K∗φ w2

(CR2) If w1, w2 6|= φ, then w1 �K w2 iff w1 �K∗φ w2

(CR3) If w1 |= φ and w2 6|= φ, then w1 ≺K w2 implies w1 ≺K∗φ w2

(CR4) If w1 |= φ and w2 6|= φ, then w1 �K w2 implies w1 �K∗φ w2

Thus postulate (C1) asserts that revising by a formula and then by a logically stronger
formula yields the same belief set as simply revising by the stronger formula at the outset.
The corresponding semantic condition (CR1) asserts that in revising by a formula φ, the
relative ranking of φ worlds remains unchanged. The other postulates and semantic condi-
tions can be interpreted similarly; see [Darwiche and Pearl, 1997] for more on motivation
and interpretation of these conditions.

Subsequently, other approaches for iterated revision have been proposed, including [Boutilier,
1996; Nayak et al., 2003; Jin and Thielscher, 2007]. For example, Jin and Thielscher [2007]

have proposed the so-called Postulate of Independence:

(Ind) If ¬φ /∈ Bel(K∗ψ) then φ ∈ Bel((K∗φ)∗ψ)

Postulate (Ind) strengthens both (C3) and (C4). Thus, Jin and Thielscher’s suggested set
of postulates consists of (C1), (C2), and (Ind). They also give a necessary and sufficient
condition for an AGM revision operator to satisfy (Ind):

(IndR) If w1 |= φ and w2 |= ¬φ, then w1 �K w2 implies w1 ≺K∗φ w2.

Again, this seems plausible: In the case not covered by (CR3) and (CR4), if two worlds are
equally ranked, and φ is true at one world but not the other, then a revision by φ is sufficient
to distinguish the relative rankings of the worlds.

2.3 Related Work

In probability theory and related approaches, there has of course been work on incorporating
new evidence to produce a new probability distribution. The simplest means of updating
probabilities is via conditionalisation: If an agent holds φ with probability q, and so P (φ) = q,
and the agent learns ψ with certainty, then one can define the updated probability P ′(φ) via

P ′(φ) = P (φ|ψ) = P (φ ∧ ψ)/P (ψ).

[Gärdenfors, 1988] in fact discusses conditionalisation as a form of expansion for probability
functions.
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Of course an agent may not learn ψ with certainty, but rather may change its probability
assignment to ψ from P (ψ) to a new value P ′(ψ). The question then is how probabilities
assigned to other formulas should be modified. Jeffrey [1983] proposes that for proposition
φ, the new probability should be given by what has come to be known as Jeffrey’s Rule for
updating probabilities:

P ′(φ) = P (φ|ψ)P ′(ψ) + P (φ|¬ψ)(1− P ′(ψ)).

So P ′(ψ) = q means that the agent has learned that the probability of ψ is q. In particular,
if the probability of ψ is further updated to P ′′(ψ) but it turns out that P ′′(ψ) = P ′(ψ),
then the distributions P ′ and P ′′ will coincide.

In contrast, we are interested in the case where we have some underlying proposition, say
that a light is on, represented by on, and we are given an observation Obson, where Obson
has an attached probability. Then if the agent receives repeated observations from a sensor
that the light is on, the agent’s confidence that on is true will increase with each positive
observation. Details are given in the next section; the main point here is that Bayes’ Rule
will be more appropriate in this case, where Bayes’ Rule is given by:

P (φ|ψ) =
P (ψ|φ)P (φ)

P (ψ)
.

In other related work, [Bovens and Hartmann, 2003] have a somewhat similar goal to
our’s, in that they use a Bayesian Network [Pearl, 1988] to model multiple reports of a given
fact, where the reports come with varying degrees of reliability. Essentially a probabilistic
graphical model is used to model a fixed number of information sources and their influ-
ence on a “summary” vertex. Analogously, there has been work on updating evidence in
other approaches to uncertain reasoning. For example in the Dempster-Shafer approach, a
rule for evidence combination is given; subsequent work includes [Fagin and Halpern, 1990;
Kulasekere et al., 2004].

Previous research dealing with both AGM-style belief revision and probability is generally
concerned with revising a probability function. In such approaches, an agent’s belief set K
is given by those formulas that have probability 1.0. These formulas with probability 1.0
are referred to as the top of the probability function. For a revision K ∗ φ, the probability
function is revised by φ, and the belief set corresponding to K ∗ φ is given by the top of the
resulting probability function. So such approaches allow the characterisation of not just the
agent’s beliefs, but also allow probabilities to be attached to non-beliefs. These approaches
will be seen to differ from that developed here, in that in the current approach, an agent
may accept a formula as true, even though the probability of that formula is less than 1.0.

One difficulty with revising probability functions is the non-uniqueness problem, that
there are many different probability functions that have K as their top. Lindström and
Rabinowicz [1989] consider various ways of dealing with this problem. Boutilier [1995] con-
siders the same general framework, but rather focuses on issues of iterated belief revision.
However the approach described herein addresses a different problem: a means of incorpo-
rating uncertain information into a given probability function is assumed, and the question
addressed is how such an approach may be reconciled with AGM revision, or alternatively,
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how such an approach may be considered as an instance (or proto-instance) of AGM-style
revision. To this end, Gärdenfors [1988, Ch. 5] has also considered an extension of the AGM
approach to the revision of probability functions; we discuss this work after our approach
has been presented.

In a somewhat different vein, results in belief change have been applied to issues in dealing
with probability. [Cozic, 2011] uses intuitions from belief change, namely the difference
between revision and update, to inform a proposed solution to a problem in probability and
belief dynamics called the Sleeping Beauty Problem. [Makinson, 2011] uses results in belief
revision to consider the situation in conditionalisation where a formula φ is consistent but
has zero probability, and yet arguably conditioning on φ is meaningful.

With respect to qualitative, AGM-style belief revision, the approach at hand might seem
to be an instance of an improvement operator [Konieczny and Pino Pérez, 2008]. An im-
provement operator according to Konieczny and Pino Pérez is a belief change operator where
new information isn’t necessarily immediately accepted. However plausibility is increased
and, after a sufficient number of iterations, the information will come to be believed. In-
terestingly, as we discuss later, the approach described here differs in significant ways from
those of [Konieczny and Pino Pérez, 2008].

The overall setting adopted here is similar to that of [Bacchus et al., 1999]: Agents receive
uncertain information, and alter their (probabilistic) beliefs about the world based on this
information. However, the goals are quite different. [Bacchus et al., 1999] is concerned with
an extension of the situation calculus [Levesque et al., 1998] to deal with noisy sensors.
Consequently their focus is on a version of the situation calculus in which the agent doesn’t
hold just categorical beliefs, but also probabilistic beliefs. The main issue then is how to
update these probabilities in the presence of sensing and non-sensing actions. In contrast,
the present paper is concerned with the possible role of probabilistic beliefs with respect to
a (classical AGM-style) belief revision operator. We further discuss this and other related
work once the approach has been presented.

3 Unreliable Observations and Updating Probabilities

Consider the situation in which we have an agent in some domain, and where this agent
may make observations concerning this domain. These observations are assumed to be
independent. However, the sensors associated with the agent may be unreliable, in that
an aspect of the domain may be incorrectly sensed or reported. Thus, an agent may sense
whether a light is on or not, and there is some probability that the sensor reports that the light
is on when in fact it is not, or that it is off when in reality it is on. This degree of (un)reliability
of a sensor is known to the agent. It is assumed also that the domain is static, in that it
does not evolve or change over time. The agent has an associated probability assignment to
formulas, expressed in terms of a probability assignment to possible worlds, and the task is
to update this probability assignment given such possibly-erroneous observations.

To put this in more concrete terms, consider a situation in which an agent observes or
senses φ with a given probability q > .5. That is, φ is either true or false in the domain.5

5The case of non-binary valued sensing is straightforward and adds nothing of additional interest with
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We can let Obsφ stand for the fact that the agent’s sensor reports φ as being true; ¬Obsφ
then means that the agent’s sensor does not report φ as being true, and thus reports it as
being false. So we can write P (Obsφ|φ) = q to indicate that the reliability of the sensor is q
in the case that φ is true. Because it simplifies the development and because it has no effect
on the results obtained, we make the simplifying assumption that a sensor for φ is equally
reliable whether or not φ is true. Hence, we also have that P (¬Obsφ|¬φ) = q. We return to
this point briefly, once the approach has been presented.

So, under the assumption that a sensor is equally reliable whether or not the sensed
formula is true, we have the following. From P (Obsφ|φ) = q we obtain that P (¬Obsφ|φ) =
1 − q, and similarly from P (¬Obsφ|¬φ) = q we obtain P (Obsφ|¬φ) = 1 − q. One would
expect then that following an observation that φ was true, the agent’s confidence in φ would
increase; following a subsequent observation that φ was true (say, Obs′φ), one would expect
that the agent’s confidence would increase further.

However, the probability of a proposition is determined via a probability assignment to
possible worlds. So the task at hand is to update probabilities attached to possible worlds,
given an observation report such as Obsφ.6 Consider the situation in which we sense φ with
probability q, and so P (Obsφ|φ) = q. As before, Obsφ is true if φ is observed to be true, and
false otherwise. For a world w ∈ WL, we also have the prior probability assignment P (w).7

For each w ∈ WL we wish to calculate P (w|Obsφ), that is the conditional probability of w
given the observation Obsφ.

From Bayes’ Rule we have:

P (w|Obsφ) =
P (Obsφ|w)P (w)

P (Obsφ)
(1)

On the left side of the equality, we wish to determine the (updated) probability of w, given
that φ is observed. For the numerator on the right hand side, P (Obsφ|w) is the probability of
observing φ given that the agent is in w. If w |= φ, then from our notion of sensor reliability,
we have that P (Obsφ|w) = q. If w 6|= φ, then from our notion of sensor reliability, we have
that P (¬Obsφ|w) = q, from which we obtain that P (Obsφ|w) = 1− q in this case. That is,

P (Obsφ|w) = q if w |= φ
P (Obsφ|w) = 1− q if w 6|= φ.

The other part of the numerator in (1), P (w), is simply the (known) probability assignment

respect to the problem at hand; see for example [Bacchus et al., 1999] for how this can be handled.
6Recall that we assume a finite language and a finite set of possible worlds. The concluding section

discusses this assumption further.
7Since a world may be associated with the conjunction of literals true at that world, we do not need to

introduce “worlds” as separate entities in what follows.
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Worlds P P (a, .8) P (a, .8)(a, .8) P (a, .8)(b, .8)
a, b, c .150 .240 .2824 .3333
a, b, c .150 .240 .2824 .3333

a, b, c .100 .160 .1882 .0556

a, b, c .100 .160 .1882 .0556
a, b, c .150 .060 .0176 .0972
a, b, c .150 .060 .0176 .0972

a, b, c .100 .040 .0118 .0139

a, b, c .100 .040 .0118 .0139

Table 1: Example of Updating Probabilities of Worlds

to w. For the denominator in (1), we have that

P (Obsφ) =
∑
w∈WL

P (Obsφ|w)P (w)

=
∑
w|=φ

P (Obsφ|w)P (w) +
∑
w 6|=φ

P (Obsφ|w)P (w)

=
∑
w|=φ

(q × P (w)) +
∑
w 6|=φ

((1− q)× P (w))

= q × P (Mod(φ)) + (1− q)× P (Mod(¬φ)).
= q × P (φ) + (1− q)× P (¬φ).

This justifies the following definition.

Definition 1 Let P be a probability assignment to worlds. Let φ ∈ L and q ∈ [0, 1]. Let
η = P (φ)× q + P (¬φ)× (1− q).

Define the probability assignment P (φ, q) by:

P (φ, q) = P⊥ if η = 0; otherwise:

P (φ, q)(w) =

{
(P (w)× q)/η if w |= φ
(P (w)× (1− q))/η if w 6|= φ

Thus, for a given probability function P , the new probability function P (φ, q) results after
sensing φ with probability q. It can be observed that P (φ, q)(w) in Definition 1 corresponds
to P (w|Obsφ) in (1). In the case where η = 0, the updated probability assignment involves
accepting with certainty (i.e. q = 1) an impossible proposition (P (φ) = 0), or rejecting
with certainty a necessarily true proposition. In either case, the incoherent state of affairs
(P⊥) results. Lastly, Definition 1 is clearly compatible with a sequence of observations. For
example the observation that φ was true with probability q would be given by P (φ, q), and the
subsequent observation that ψ was true with probability q′ would be given by P (φ, q)(ψ, q′).

Example: Table 1 provides an example. Let P = {a, b, c}. The first column lists possible
worlds in terms of an assignment of truth values to atoms, where for readability a is used for
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¬a. The second column gives an initial probability function, while the next three columns
show how P changes under different updates. It can be observed that at the outset P (a) = .5,
P (b) = .6, and P (c) = .5. Following an observation of a with reliability .8, we obtain that
P (a) = .8, P (b) = .6, and P (c) = .5. If we iterate the process and again observe a with the
same reliability, the respective probabilities become P (a) = .9412, P (b) = .6, and P (c) = .5.
Essentially the probability of a increases, and the probability of b and c varies depending on
the probabilities assigned to individual worlds. In the example they happen to be unchanged,
but usually they will not. Last if we first sense a and then b, in both cases with reliability .8
(last column) then we obtain that P (a) = .7778, P (b) = .8610, and P (c) = .5. In the next
section we return to this example to see how the agent’s set of accepted beliefs changes.

4 Epistemic States

This section presents the notion of epistemic state as it is used in the approach. Recall that
an epistemic state K implicitly includes information regarding how the revision function
itself changes following a revision. We first discuss intuitions then give the formal details.

4.1 Intuitions

An agent’s epistemic state K is given by a pair (P, c), where P is a probability assignment
over possible worlds and c is a confidence level. The intent is that the probability function
characterises the agent’s overall belief state, and that an agent accepts a belief represented
by a formula just if, in a sense to be described, the probability of the formula exceeds the
confidence level c.8 Thus, the agent accepts a formula if its probability is “sufficiently high”.
K⊥ is used to denote the incoherent epistemic state (P⊥, c).

The notion of acceptance adopted here is nonstandard, in that an accepted belief is
categorical but its associated probability may be less than 1. This is in contrast to the
previous approaches combining probability and revision described in Section 2.3, where the
agent’s categorical beliefs have probability 1. This also is in contrast with [Bacchus et al.,
1999], where non-beliefs have probability 0. In any case, for us an accepted belief is one
that is categorical, in that the agent may act under the assumption that it is true, yet it is
also “hedged” in that it can be given up following a revision. The issue then becomes one
of suitably defining the worlds characterising an agent’s accepted beliefs, to which we turn
next.

The most straightforward way of defining acceptance is to say that a formula φ is accepted
just if P (φ) ≥ c, for some “suitably high” choice of c. This leads immediately to the lottery
paradox [Kyburg, 1961]. This problem is usually expressed as follows: There is a lottery,
for which a large number of tickets have been sold, and for which there is some (unknown)
winner. For any given ticket, it is highly plausible (and so an accepted belief) that the
ticket will lose. But this leads to the conclusion that for any ticket, that ticket will lose,

8Note that the confidence level c is distinct from the reliability of a sensor described in the previous
section, and given by q. The former is part of an agent’s epistemic state and is used as a threshold for
determining accepted beliefs, while the latter gives the reliability of a sensor.
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while there is guaranteed to be a winning ticket. These statements together are inconsistent.
The difficulty is that for any c < 1.0 one can construct a scenario where p1, . . . , pn, along
with ¬p1 ∨ . . . ∨ ¬pn are all accepted. But the set consisting of these formulas is of course
inconsistent.

Instead, we define an agent’s (categorical, accepted) beliefs in terms of a unique, well-
defined set of possible worlds. The formal definition is given in the next subsection; in-
formally, this set is equal to the least set of worlds of greatest probability such that the
probability of the set is greater than or equal to c.9 We have the added proviso that, for
worlds w and w′, if P (w) = P (w′), then w is in this set iff w′ is. Since the agent’s accepted
beliefs are characterised by a unique set of worlds, the lottery paradox doesn’t arise.

The assumption that worlds with higher probability are to be preferred to those with
lower probability for characterising an agent’s beliefs can be justified by two arguments.

1. If an agent had to commit to a single world being the real world, then it would choose
a world w for which the probability P (w) was maximum; if it had to commit to n
worlds, then correspondingly it would choose the n worlds with highest probability.
Similarly, if one were aiming to choose some set of worlds most likely to contain the
real world then, for reasons of parsimony, it seems most reasonable to choose worlds
of higher probability. Since there is nothing that distinguishes worlds beyond their
probability, if P (w) = P (w′) then if w is in this set then so is w′.

2. The second argument is related to the principle of informational economy : It seems
reasonable to assume that, given a set of candidate belief sets, an agent will prefer a
set that gives more information over one that gives less.

This is the case here. In general there will be more than one set of worlds where the
probability of the set exceeds c. The set composed of the least number of worlds of
maximal probability is generally also the set with the least number of worlds, which in
turn will correspond to the belief set with the maximum number of (logically distinct)
formulas. So this approach commits the agent to the maximum set of accepted beliefs,
where the overall probability of the set exceeds c.10 Such a set may be said to have
the greatest epistemic content among the candidate belief sets.

Thus an epistemic state principally consists of a probability function on possible worlds.
Via an assumption of maximality of beliefs (or maximal epistemic content), and given the
confidence level c, a set of accepted beliefs is defined. So this differs significantly from prior
work on revising probability functions, in that in the present approach an accepted formula
will generally have an associated probability that is less than 1.0. Arguably this makes sense:
for example, I believe that my car is where I left it this morning, in that I act as if this was
a true fact even though I don’t hold that it is an absolute certainty that the car is where I
left it. Moreover, of course, I am prepared to revise this belief if I receive information to the
contrary.

9A reviewer of the paper suggested an appealing equivalent notion, whereby an agent discards or dismisses
from consideration the most unlikely worlds, such that the probability of the remaining set of worlds is not
less than the threshold c.

10These notions of course make sense only in a finite (under equivalence classes) language, which was
assumed at the outset.
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4.2 Formal Details

In this subsection we define our notion of epistemic state, and relate it to the faithful rankings
that have been used to characterise AGM revision.

Definition 2 K = (P, c) is an epistemic state, where:

• P is probability assignment to possible worlds and

• c ∈ (0, 1] is a confidence level.

As described, an epistemic state characterises the state of knowledge of the agent, both its
(contingent) beliefs as well as, implicitly, those beliefs that it would adopt or abandon in
the presence of new information. In order to relate this approach to the AGM theory of
revision, we need to specify the agent’s belief set or beliefs about the world at hand. This
is most easily done by first defining the worlds that characterise the agent’s belief set, and
then defining the belief set in terms of these worlds.

Definition 3 For epistemic state K = (P, c), the set of worlds characterising the agent’s
belief set, Mod(K) ⊆ WL, is the least set such that:

If P = P⊥ then Mod(K) = ∅; otherwise:

1. P (Mod(K)) ≥ c,

2. If w ∈Mod(K) and w′ 6∈Mod(K) then P (w) > P (w′).

Mod(·) is uniquely characterised; in particular we have that if P (w) = P (w′) then w ∈
Mod(K) iff w′ ∈Mod(K).

Definition 4 For epistemic state K, the agent’s accepted (categorical) beliefs, Bel(K), are
given by

Bel(K) = {φ |Mod(K) |= φ} = T (Mod(K)).

Consequently, an agent accepts a sentence if it is sufficiently likely, and a sentence is con-
sidered “sufficiently likely” if it is true in the least set of most plausible worlds such that
the probability of the set exceeds the given confidence level. Clearly, Bel(K) is closed under
conjunction, and it is also closed under classical consequence.

This then describes the static aspects of an epistemic state. For the dynamic aspects (i.e.
revision) it will be useful to distinguish those formulas that are possible, in the sense that
they are conceivable, which is to say they have a non-zero probability. We use PossK(φ) to
indicate that, according to the agent, φ is possible; that is, there is possible world w such
that w |= φ and P (w) > 0. PossK(·) has the properties of the uniterated modality ♦ in the
modal logic S5 [Hughes and Cresswell, 1996]. We have the simple consequence:

Proposition 1 If not PossK(φ) then ¬φ ∈ Bel(K)

The probability assignment to possible worlds can be used to define a ranking on worlds,
where worlds with higher probability are lower in the ranking:
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Definition 5 For given probability assignment P , define rankP (w) for every w ∈ WL by:

1. rankP (w) = 0 if 6 ∃w′ such that P (w′) > P (w).

2. Otherwise, rankP (w) = 1 + max{rankP (w′) : P (w′) > P (w)}.

The set of worlds of rank i is defined by:

RP (i) = {w ∈ WL | rankP (w) = i}.

RP defines a total preorder over worlds, where lower-ranked worlds are more plausible than
higher-ranked worlds. Thus, if cr is the least number such that

cr∑
i=0

P (RP (i)) ≥ c,

then the set of worlds characterising the agent’s accepted beliefs is alternately given by

Mod(K) =

{ ⋃cr
i=0 RP (i) if P 6= P⊥
∅ otherwise

This is slightly different usage from other work in iterated belief change, where an epistemic
state is often equated with a (qualitative or quantitative) ranking on possible worlds. Rather,
here a ranking on possible worlds is induced by an epistemic state.

Lastly, we can define a faithful ranking (as given in Section 2) to relate the ranking
defined here to rankings used in belief revision:

Definition 6 The faithful ranking �K based on K is given by:

1. If w1, w2 |= Bel(K) then w1 =K w2

2. If w1 |= Bel(K) and w2 6|= Bel(K), then w1 ≺K w2

3. Otherwise if rankP (w1) ≤ rankP (w2) then w1 �K w2.

Thus, from an epistemic state as given in Definition 2, a corresponding faithful ranking on
worlds can be defined in a straightforward manner. The first two conditions stipulate that
we have a faithful ranking. The third condition ensures that we have a total preorder that
conforms to the probability assignment for those worlds not in Mod(K). It is clear that this
faithful ranking suppresses detail found in P . First, quantitative information is lost in going
from Definition 2 to Definition 5. Second, gradations in an agent’s beliefs are lost: worlds in
Mod(K) may have varying probabilities, yet in the corresponding faithful ranking given in
Definition 6, all worlds in Mod(K) are ranked equally. Consequently, the notion of epistemic
state as defined here is a richer structure than that of a faithful ordering.
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5 Belief Revision in a Probabilistic Framework

We next consider how the approach of the previous sections fits with work in belief revision.
A natural way to define the revision of an epistemic state K = (P, c) by observation φ with
associated reliability q is to set K ∗ (φ, q) = (P (φ, q), c). Of course, revision so defined is
a ternary function,11 as opposed to the usual expression of revision as a binary function,
K ∗ φ. There are several ways in which this mismatch may be resolved. First, we could
simply regard revision in a probabilistic framework as a ternary function, with the extra
argument giving the reliability of the observation. This is problematic, at least with regards
to our present aims, since a ternary operator K ∗ (φ, q) represents a quantitative approach,
where the degree of support q of φ is somehow taken into account. However, standard
AGM revision is qualitative, in that for a revision K ∗ φ, it is the (unqualified) formula
φ that is a subject of revision. This clash then represents the main issue of this paper:
a probabilistic approach is intrinsically quantitative, while standard approaches to belief
revision are inherently qualitative. So, in one fashion or another we want to address revision
in qualitative terms.

In re-considering revision ∗ as a binary function, the intent is that in expressing K∗ (φ, q)
as a binary function K ∗ φ, we want to study properties of the function ∗ without regard
to specific values assigned to q. Consequently, we assume that the reliability of a revision
is some fixed probability q. Since revision corresponds to the incorporation of contingent
information, it is reasonable to assume that nothing can be learned with absolute certainty,
and so we further assume that q < 1.12 As well, revision by φ is intended to increase the
agent’s confidence in φ, and so for K ∗ φ it is understood that the probability of φ is greater
than 0.5; this is reflected in the fact that sensors are assumed to be reliable (see Section 3),
in that they are correct over 50% of the time. Consequently, in what follows, we assume
that the reliability of a revision is a fixed number q in the range (0.5, 1.0). Given that the
reliability is fixed, we can drop the probability argument from a statement of revision, and
simply write K∗φ. However, for completeness we also later consider the situation where the
reliability of observations may vary.

Definition 7 Let q ∈ (0.5, 1.0) be fixed. Let K = (P, c) be an epistemic state and φ ∈ L.
Define the revision of K by φ by:

K ∗ φ = (P (φ, q), c)

Clearly one needs to know the value of q (along with K and φ) before being able to determine
the specific value of K∗φ. However, without knowing the value of q, one can still investigate
properties of the class of revision functions, which is our goal here. Other aspects of the
definition are discussed below, in the discussion of postulates. However, we first revisit our
example of the previous section.

11In fact, taking into account the internal structure of an epistemic state, it is a 4-place function, on P , c,
φ, and q.

12It might be pointed out that a tautology can be learned with absolute certainty. However, it can be
pointed out in return that a tautology is in fact known with certainty, so the probability being 1 or less
makes no difference. In any case, we later examine the situation where q = 1.
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Example (continued): Consider again Table 1, and assume that our initial epistemic
state is given by K = (P, 0.9). At the outset, we have Bel(K) = Cn(>). If the probability
associated with the world characterised by {a, b, c} was .05, with the balance distributed
uniformly across other possible worlds, we would have Bel(K) = Cn(a ∨ b ∨ c).

We obtain that Bel(K ∗ a) = Cn(a ∨ b), and Bel(K ∗ a ∗ a) = Cn(a). On the other hand,
we obtain Bel(K ∗ a ∗ b) = Cn(a ∨ b) and (not illustrated in Table 1) Bel(K ∗ a ∗ b ∗ b) =
Cn(b). So, not unexpectedly, for repeated iterations, the resulting belief set “converges”
toward accepting the iterated formula, with the results being biased by the initial probability
distribution.

5.1 Properties of Probability-Based Belief Revision

Recall that PossK(φ) indicates that, according to the agent, φ is possible, in that there is
a world w such that w |= φ and P (w) > 0. The revision of K by φ, K ∗ φ, is as given in
Definition 7. K ∗n φ stands for the n-fold iteration of K ∗ φ, that is:

K ∗n φ =

{
K ∗ φ if n = 1
(K ∗n−1 φ) ∗ φ otherwise

We obtain the following results corresponding to the AGM revision postulates. For ease of
comparison, negative results (i.e. statements of postulates that do not hold) are included
below.

Theorem 1 Let K be an epistemic state and φ, ψ ∈ L.

(K ∗ 1) Bel(K ∗ φ) = Cn(Bel(K ∗ φ))

(K ∗ 2a) If PossK(φ) then φ ∈ Bel(K ∗n φ) for some n > 0

(K ∗ 2b) If K 6= K⊥ and φ ∈ Bel(K) then φ ∈ Bel(K ∗ φ)

(K ∗ 2c) If K 6= K⊥ and not PossK(φ) then Bel(K ∗ φ) = Bel(K)

(K ∗ 3) The postulate:

Bel(K ∗ φ) ⊆ Bel(K) + φ

does not necessarily hold.

(K ∗ 4) The postulate:

If ¬φ /∈ Bel(K) then Bel(K) + φ ⊆ Bel(K ∗ φ)

does not necessarily hold.

(K ∗ 5) Bel(K ∗ φ) is consistent.

(K ∗ 6) If φ ≡ ψ then Bel(K ∗ φ) ≡ Bel(K ∗ ψ)
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(K ∗ 7) The postulate:

Bel(K ∗ (φ ∧ ψ)) ⊆ Bel(K ∗ φ) + ψ

does not necessarily hold.

(K ∗ 8) The postulate:

If ¬ψ /∈ Bel(K ∗ φ) then Bel(K ∗ φ) + ψ ⊆ Bel(K ∗ (φ ∧ ψ))

does not necessarily hold.

Proof: (K ∗ 1) follows directly from Definition 4.
For (K ∗ 2a), it follows from Definition 1 that if 0 < P (φ) ≤ 1 then P (φ) < PP (φ,q)(φ) ≤

1.0, and so that as we iterate a revision by φ, the probability of φ monotonically increases,
with upper bound 1.0. It follows that for some n, Mod(K ∗n φ) ⊆ Mod(φ), from which we
obtain that for some n > 0, φ ∈ Bel(K ∗n φ). (K ∗ 2b) and (K ∗ 2c) have the prerequisite
condition that K is not the incoherent epistemic state. (K ∗ 2b) is obvious, and indicates
that once φ is accepted it remains accepted under further revisions by φ, under the proviso
that PossK(φ) holds. For (K ∗ 2c), if K 6= K⊥ then if there are no φ-worlds with non-zero
probability, then Definition 1 can be seen to leave the probability function unchanged.

For (K ∗ 3) consider where P = {a, b}, and K = (P, 0.97) and where:

P ({a, b}) = .96 P ({a,¬b}) = .02,
P ({¬a, b}) = .01 P ({¬a,¬b}) = .01

Hence Bel(K) is characterised by {a, b}, {a,¬b}, i.e. Bel(K) = Cn(a), and so Bel(K) + a =
Cn(a).

If we revise by a with confidence .8, we get

P (a, .9)({a, b}) ≈ .9746 P (a, .9)({a,¬b}) ≈ .0203
P (a, .9)({¬a, b}) ≈ .0025 P (a, .9)({¬a,¬b}) ≈ .0025

Thus Bel(K) is characterised by {a, b}, i.e. Bel(K) = Cn(a ∧ b) 6= Cn(a) = Bel(K) + a.
For (K ∗ 4) it is possible to have formulas φ and ψ such that φ and ψ are logically

independent, Bel(K) = Cn(φ) and Bel(K ∗ ψ) = Cn(ψ), thus contradicting the postulate.
To see this, consider where P = {a, b}, and K = (P, 0.9) and where:

P ({a, b}) = .46 P ({a,¬b}) = .46,
P ({¬a, b}) = .06 P ({¬a,¬b}) = .02

Hence Bel(K) is characterised by {a, b}, {a,¬b}, i.e. Bel(K) = Cn(a), and so Bel(K) + b =
Cn(a ∧ b).

If we revise by b with confidence .9, we get

P (b, .9)({a, b}) ≈ .802 P (b, .9)({a,¬b}) ≈ .089
P (b, .9)({¬a, b}) ≈ .105 P (b, .9)({¬a,¬b}) ≈ .004
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Since P (b, .9)({a, b}) + P (b, .9)({¬a, b}) > .9 = c, we get that Bel(K ∗ b) is characterised
by {a, b}, {¬a, b} and so Bel(K) = Cn(b).

For (K ∗ 5) it can be seen from the definitions that if K 6= K⊥, then there will be worlds
with a non-zero probability, and so Mod(K) 6= ∅ in Definition 3, and so Bel(K) is well defined
in Definition 4 and specifically Bel(K) 6= L. In particular, in the case of a revision by an
inconsistent formula φ, we get that K ∗ φ = K: All φ worlds (of which there are none) share
in the probability q, and all ¬φ worlds share in the probability 1 − q, where we have that
1− q > 0. The result is normalised, leaving the probabilities unchanged. If K = K⊥, then in
Definition 1 we get that η 6= 0, 0 < q < 1, and so the probability assignment P (φ, q) 6= P⊥,
and so in Definition 3 we obtain that Mod(K) 6= ∅.

Postulate (K ∗ 6) holds trivially, but by virtue of the fact that the reliability of an
observation of φ is the same as that of ψ.

(K ∗ 7) doesn’t hold for the same reason (K ∗ 3) doesn’t. Substituting > for φ in (K ∗ 7)
in fact yields (K ∗ 3).

(K ∗ 8) doesn’t hold for the same reason that (K ∗ 4) doesn’t. Substituting > for φ in
(K ∗ 8) yields (K ∗ 4).

Discussion The weaker version of postulate (K*2), given by (K∗2a), means that an agent
will accept that φ is true after a sufficient number of iterations (or “reports”) of φ. Hence,
despite the absence of other AGM postulates, the operator ∗ counts as a revision operator,
since the formula φ will eventually be accepted, provided that it is possible. Note that if a
formula φ is not possible, then from our earlier (non-revision) result

If not PossK(φ) then ¬φ ∈ Bel(K)

together with (K ∗ 5), we have that φ can never be accepted. As well, if φ is accepted, it
will continue to be accepted following revisions by φ (K ∗ 2b). This last point would seem
to be obvious, but is necessitated by the absence of a postulate of success and the absence
of (K ∗ 4). In the case that a formula φ is deemed to be not possible, but the agent is
not in the incoherent state K⊥, (K ∗ 2c) shows that revising by φ leaves the agent’s belief
set unchanged. Contrary to this, as mentioned earlier, [Makinson, 2011] discusses the case
where the probability of a contingent formula may be zero, but where it may nonetheless be
meaningful to condition on that formula; in fact he uses results in AGM revision to inform
just such conditionalisation.

Neither (K ∗ 3) nor (K ∗ 4) are guaranteed to hold, and so there is no relation between
expansion and revision, even in the case where the formula for revision is consistent with
the belief set. The counterexample to (K∗ 3) illustrates a curious aspect of the approach: In
the counterexample we have that Bel(K) = Cn(a) yet Bel(K ∗ a) = Cn(a ∧ b). In revising
by a, the probability of worlds given by {a, b}, {a,¬b} both increase, but that of {a, b}
increases to such an extent that its probability exceeds the confidence level c, and so it alone
characterises the agent’s set of accepted beliefs. We discuss this behaviour later, once we
have finished presenting the approach as a whole.

The counterexample to (K ∗ 4) illustrates another interesting point: not only does the
postulate fail but, unlike the success postulate (K ∗ 2), it may fail over any number of itera-
tions. For the example provided, the probability of the world given by {a, b} will converge to
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something just over .88, which is below the given confidence level of c = 0.9. Since Cn(a, b)
is the result of expansion in the example, this shows that Cn(a, b) will never come to be
accepted in this case. Similar remarks hold for (K ∗ 8).

It can be noted that K⊥ plays no interesting role in revisions; this is reflected by (K∗ 5),
which asserts that no revision can yield K⊥.13 Hence an epistemic state can be inconsistent
only if the original assignment of probabilities to worlds is the absurd probability assignment
P⊥. Any subsequent revision will have Bel(K⊥ ∗ φ) 6= L. In particular if φ is ⊥ then
P⊥(φ, q) = P> and so Bel(K⊥ ∗ ⊥) = Cn(>).

Postulate (K ∗ 5) appears to be remarkably strong, in that it imposes no conditions on
the original epistemic state K or the formula for revision. If one begins with the inconsistent
epistemic state K⊥, then revision is defined as being the same as a revision of the epistemic
state of complete ignorance P>. This is pragmatically useful: from K⊥, if one revises by
a formula φ where Pr(φ) 6= 0, then analogous to the AGM approach, one arrives at a
consistent belief state. This also goes beyond the AGM postulate (K ∗ 5), since if φ is held
to be impossible (i.e. there are no worlds with nonzero probability in which φ is true), then
there will be worlds in which ¬φ is true and with nonzero probability, and so revision yields
meaningful results, in particular yielding the epistemic state with probability assignment
P>.

It can be noted that if one allows revision with probability q = 1, then Postulate (K ∗ 5)
may be violated: In the approach, if a contingent formula φ is such that P (φ) = 0, then the
revision K ∗ φ, where q = 1, can be seen to yield the incoherent epistemic state K⊥.

Postulate (K ∗ 6) holds trivially, but by virtue of the fact that the reliability of an
observation of φ is the same as that of ψ. This assumption is, of course, limiting, and in
the case where observations may be made with differing degrees of reliability, the postulate
would not hold. It can be noted that in the case where observations may be made with
differing degrees of reliability, the postulate can be replaced by the weaker version:

If φ ≡ ψ then Bel(K ∗ φ) ⊆ Bel(K ∗ ψ) or Bel(K ∗ ψ) ⊆ Bel(K ∗ φ).

A final point is that in Definition 1 it was assumed that the reliability of a sensor for φ
was the same whether φ was true or not. It is trivially verified that the postulates that hold
(viz. (K ∗ 1), (K ∗ 2a), (K ∗ 2b), (K ∗ 2c), (K ∗ 5), and (K ∗ 6)) will also hold if a sensor has
differing reliability depending on whether φ is true or false.

5.2 Variants of the Approach

We next examine three variants of the approach. In the first, observations are made with
certainty. This variation can be seen to coincide with an extant approach in belief revision.
As well it can be seen to have close relations to Gärdenfors’ revision of probability functions
[Gärdenfors, 1988]; a discussion of the relation with this latter work is deferred to the next
section. In the second variant, observations are made with near certainty; again this variant
corresponds with an extant approach in belief revision. In the last variant, informally,

13We might of course declare by fiat that Bel(K ∗ φ) = K⊥ when ` ¬φ if we were interested in trying
to satisfy various AGM postulates. However, since our goal is to see how a probabilistic account fits with
AGM, (K ∗ 5) is the appropriate expression of the postulate.
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possible worlds that characterise an agent’s beliefs are retained after a revision if there is no
reason to eliminate them.

Certain Observations Consider where observations are certain, and so the (binary) revi-
sion K∗φ corresponds to K∗(φ, 1.0). Clearly, we have that if P (w) = 0, then P (φ, 1.0)(w) = 0
for any φ; that is, if a world had probability 0, then no observation is going to alter this
probability. As well, if w |= ¬φ then P (φ, 1.0)(w) = 0. So in a revision by φ with certainty,
any ¬φ world will receive probability 0, and by the previous observation, this probability of
0 will remain fixed after subsequent revisions.

Thus in this case, revision is analogous to a form of expansion, but with respect to the
epistemic state K. So following a revision by φ, all ¬φ worlds are discarded from the derived
faithful ranking. This corresponds to revision in the approach of [Shapiro et al., 2000],
where their account of revision is embedded in an account of reasoning about action. For
their revision, a plausibility ordering over worlds is given at each world.14 Observations are
assumed to be correct in this approach, and observation of φ means that ¬φ is impossible
in the current world, and so all ¬φ worlds are removed from the ordering. This also means
that an observation of φ followed by ¬φ yields the inconsistent epistemic state. This result
may be justified by the argument that, if φ is observed with certainty, then if the world does
not change, then it is impossible for ¬φ to be observed. [Shapiro et al., 2000] show that in
their approach, postulates (K*1)-(K*4), and (K*6) are satisfied.

Near-Certain Observations Consider next where we define the binary revision K ∗ φ
as K ∗ (φ, 1.0 − ε), where ε is “sufficiently small” compared to the probabilities assigned
by P . If the minimum and maximum values in the range of P are minP and maxP , then
“sufficiently small” would mean that maxP × ε < minP × (1.0− ε). Thus, in revision by φ,
it is guaranteed that φ will be an accepted belief. Moreover, the reliability of the observation
is high enough so that no ¬φ world will have probability greater than any φ world. Thus
for P ′ = P (φ, 1.0 − ε) we would have that for w |= φ, w′ 6|= φ, that P ′(w) > P ′(w′). This
yields the approach of lexicographic revision [Nayak, 1994] in which, in revising by φ, every
φ world is ranked below every ¬φ world in the faithful ranking, but the relative ranking of
φ worlds (resp. ¬φ worlds) is retained. In this approach, all AGM revision postulates hold.

Retaining Confirmed Possible Worlds The approach as given is clearly belief revision,
since under reasonable conditions a formula will become accepted. However, it has notable
weaknesses compared to the AGM approach; in particular the postulates (K ∗ 3), (K ∗ 4),
(K∗7), and (K∗8) all fail. In the case of (K∗4) and (K∗8) this seems unavoidable. However,
an examination of (K∗3) and (K∗7) shows a curious phenomenon underlying the approach.
Consider (K ∗ 3): In the counterexample presented, the agent believed that the real world
was among the set of worlds { {a, b}, {a,¬b} }. On revising by a, the agent believed that
the real world was among the set of worlds { {a, b} }, which is to say, that {a, b} was the
real world. But what this means is that {a,¬b} was considered to be one of the worlds
that characterised the agent’s accepted beliefs, but on receiving confirmatory evidence (viz.

14In fact, at each situation [Levesque et al., 1998]. However, for us the difference is immaterial.

21



a revision by a), this world was dropped from the characterising set. But arguably if w may
be the actual world according to the agent, and the agent learns φ where w |= φ, then it
seems that the agent should still consider w as possibly being the actual world.

The reason for this phenomenon is clear: The probability of some worlds (in the exam-
ple, given by {a, b}) becomes large enough following revision so that the other worlds (viz.
{a,¬b}), are no longer required in making up Mod(K). So, to counteract this phenomenon,
it seems reasonable to adopt a principle that if a world is considered “possible” by an agent,
then it remains “possible” after confirmatory evidence. To this end, the approach can be
modified as follows: One now needs to keep track of worlds considered possible by the agent,
where these are the worlds characterising the agent’s contingent beliefs. So an epistemic
state now would be a triple (P, c, B) where B ⊆ WL characterises the agent’s belief set.
Thus after revising by φ, B would be given by:

Mod(P (φ, q)) ∪ (Mod(K) ∩Mod(φ)).

It is easily shown that in this case postulates (K ∗ 3) and (K ∗ 7) in addition hold.

5.3 Iterated Belief Revision

Turning next to iterated revision, it proves to be the case that three of the Darwiche-Pearl
postulates for iterated revision fail to hold, as does the the Jin-Thielscher Independence
Postulate. However, as we will see, the reason that these postulates do not hold is not a
result of the probabilistic approach per se, but rather is a result of the expression of a faithful
ranking (and so, implicitly, a belief set) in terms of probabilities on possible worlds.

Theorem 2 Let K be an epistemic state with associated revision operator ∗. Then K satisfies
(C3). K does not necessarily satisfy (C1), (C3), (C4), and (Ind).

Proof: For the postulates that do not hold, we consider (C1) in detail; other postulates fail
for analogous reasons. For a counterexample to (C1), let P = {a, b}, and K = (P, 0.9), and
where:

P ({a, b}) = .85 P ({a,¬b}) = .06,
P ({¬a, b}) = .05 P ({¬a,¬b}) = .04

Bel(K) is characterised by {a, b}, {a,¬b} and so Bel(K) = Cn(a). If we subsequently revise
by a with confidence .7, we get

P (a, .7)({a, b}) ≈ .891 P (a, .7)({a,¬b}) ≈ .063
P (a, .7)({¬a, b}) ≈ .023 P (a, .7)({¬a,¬b}) ≈ .018

Thus Bel(K ∗ a) = Bel(K) = Cn(a).
If we next revise again by a with confidence .7, we get

P (a, .7)({a, b}) ≈ .917 P (a, .7)({a,¬b}) ≈ .065
P (a, .7)({¬a, b}) ≈ .010 P (a, .7)({¬a,¬b}) ≈ .008
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Since P (a, .9)({a, b}) > .9 = c, we get that Bel(K ∗ a ∗ a) is characterised by {a, b} alone.
Hence we get Bel(K ∗ a) 6= Bel(K ∗ a ∗ a), thereby violating (C1).15

Similar constructions can be formulated to show that (C2), (C4) and (IndR) do not
necessarily hold. We omit the details.

For (C3), we obtain that the semantic condition (CR3) holds: If w1 |= φ and w2 6|= φ, then
w1 ≺K w2 implies that P (w1) < P (w2) from which it follows that P (φ, q)(w1) < P (φ, q)(w2)
and so w1 ≺K∗φ w2. By the same argument as [Darwiche and Pearl, 1997, Theorem 13], we
get that (C3) is satisfied.

It is worth considering why most of the iteration postulates fail. Interestingly, for the
semantic conditions, (CR1) – (CR4) and (IndR), if expressions of the form w1 ≺K w2 are
replaced by expressions of the form P (w1) ≤ P (w2), then the modified conditions hold in
the current approach. That is, it is easily verified that all of the following hold:

Theorem 3

(PCR1) If w1, w2 |= φ, then P (w1) ≤ P (w2) iff P (φ, q)(w1) ≤ P (φ, q)(w2).

(PCR2) If w1, w2 6|= φ, then P (w1) ≤ P (w2) iff P (φ, q)(w1) ≤ P (φ, q)(w2).

(PCR3) If w1 |= φ and w2 6|= φ, then P (w1) < P (w2) implies P (φ, q)(w1) < P (φ, q)(w2).

(PCR4) If w1 |= φ and w2 6|= φ, then P (w1) ≤ P (w2) implies P (φ, q)(w1) ≤ P (φ, q)(w2).

(PIndR) If w1 |= φ and w2 6|= φ, then P (w1) ≤ P (w2) implies P (φ, q)(w1) < P (φ, q)(w2).

Proof: Straightforward from Definition 1.

The problem is that our faithful ranking (Definition 6) doesn’t preserve the ordering given
by P . In particular, if w1, w2 ∈ Mod(K) then w1 =K w2 in the derived faithful ranking,
while most often we will have P (w1) 6= P (w2). Essentially, in moving from values assigned
via P to the faithful ranking, gradations (given by probabilities) among worlds in Mod(K)
are lost. That is, in a sense, the probabilistic approach provides a finer-grained account of
an epistemic state than is given by a faithful ranking on worlds, in that models of the agent’s
belief set also come with gradations of belief.

5.4 Relation with Other Work

Other Approaches to Revision We have already discussed the relation of the present
approach to those described in [Shapiro et al., 2000] and [Nayak, 1994] in Section 5.2.

The work in belief change that is closest to that described here is [Konieczny and Pino
Pérez, 2008], which discusses improvement operators. Recall that an improvement operator
according to Konieczny and Pino Pérez is a belief change operator in which new information
isn’t necessarily immediately accepted, but where the plausibility is increased; and so after
a sufficient number of iterations, the information will come to be believed. The general idea

15In terms of (CR1), we have {a, b} =K∗a {a,¬b} but {a, b} ≺K∗a∗a {a,¬b}, thereby violating (CR1).
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of their approach then seems similar to results obtained here. As well, in both approaches
the success postulate does not necessarily hold, so new information is not necessarily im-
mediately accepted. However, beyond failure of the success postulate, the approaches have
quite different characteristics.

In the postulate set following,16 ◦ is an improvement operator, and × is defined by:
K × φ = K ◦n φ where n is the first integer such that φ ∈ Bel(K ◦n φ).

(I1) There exists n such that φ ∈ Bel(K ◦n φ)

(I2) If ¬φ /∈ Bel(K) then Bel(K × φ) ≡ Bel(K) + φ

(I3) Bel(K ◦ φ) is inconsistent, only if 0 ¬φ

(I4) If φi ≡ ψi for 1 ≤ i ≤ n then Bel(K ◦ φ1 ◦ . . . ◦ φn) ≡ Bel(K ◦ ψ1 ◦ . . . ◦ ψn)

(I5) Bel(K × (φ ∧ ψ)) ⊆ Bel(K × φ) + ψ

(I6) If ¬ψ /∈ Bel(K × φ) then Bel(K × φ) + ψ ⊆ Bel(K × (φ ∧ ψ))

To show that the approaches are independent, it suffices to compare (K ∗ 3)/(K ∗ 4) with
(I2). According to (I2), after a sufficient number of iterations of an improvement operator,
the resulting belief set will correspond to expansion of the original belief set by the formula
in question. However, there are cases in which neither (K ∗ 3) nor (K ∗ 4) are satisfied in
our approach regardless of the number of iterations. Similar comments apply to (K ∗ 7) and
(K∗8) on the one hand, and (I5) and (I6) on the other. The need for the extended postulate
for irrelevance of syntax for epistemic states (I4) was noted in [Booth and Meyer, 2006]. In
the present approach (K ∗ 6) suffices.

Revision of Probability Functions [Gärdenfors, 1988][Ch. 5] addresses, among other
belief change operators, the revision of probability functions. Let P denote some probability
function and let P⊥ be the absurd probability function in which P⊥(φ) = 1 for all formulas
φ. Gärdenfors defines the expansion of P by a formula φ, P +φ, to be the conditionalisation
of P on φ. Then revision is a function from the class of probability functions and formulas
to the class of probability functions. The following postulates are given:

(P*1) If P is a probability function and φ a sentence, then P ∗ φ is a probability function.

(P*2) (P ∗ φ)(φ) = 1

(P*3) If φ ≡ ψ then P ∗ φ = P ∗ ψ

(P*4) P ∗ φ 6= P⊥ iff not ` ¬φ.

(P*5) If P (φ) > 0 then P ∗ φ = P + φ

16[Konieczny and Pino Pérez, 2008] use the formulation of revision in [Katsuno and Mendelzon, 1991], in
which the result of revision is a formula, not a belief set. We retain the numbering of [Konieczny and Pino
Pérez, 2008], but rephrase their postulates in terms of belief sets. Most pertinently, postulates (K*3) and
(K*4) correspond to (I2), while postulates (K*7) and (K*8) correspond to (I5) and (I6) respectively.
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(P*6) If (P ∗ φ)(ψ) > 0 then P ∗ (φ ∧ ψ) = (P ∗ φ) + ψ

It is readily verified that if in Definition 1, P ∗ φ is read as P (φ, q) and given fixed q, that
only the first and third postulates above are satisfied. However, if we consider the variant of
the approach discussed earlier in which q = 1 we obtain:

Theorem 4 Let P be a probability assignment and P (φ, 1.0) a derived probability assign-
ment. Then taking P ∗φ as P (φ, 1.0), we have that postulates (P*1)–(P*3), (P*5) and (P*6)
are satisfied as well as:

(P*4′) P ∗ φ 6= P⊥ iff P (φ) > 0.

Proof: The proof follows directly from the relevant definitions, and is omitted.

Recall that when we discussed the variant of our approach where q = 1 in Section 5.2,
the resulting operator was described as being like an expansion with regards to a ranking
function. In our approach, when the reliability of an observation φ is certain, and so q = 1,
then any ¬φ worlds are assigned probability 0 and, as discussed earlier, once a world is given
a probability of zero, it remains at zero for subsequent revision. This is the reason that the
operator is characterised as an expansion.

In contrast, Gärdenfors describes postulates (P*1)–(P*6) as characterising revision. The
difference can be found in the difference between postulates (P*4) and (P*4′). The Gärdenfors
postulates characterise a class of functions, but notably the postulates don’t have anything
to say when the probability of a formula φ is zero but φ is consistent. However, it is pos-
sible – and, in the interesting case, essential – to have a situation in which P (φ) = 0 but
one may meaningfully revise by φ. In particular, if φ is consistent then even if P (φ) = 0,
postulate (P*2) requires that (P ∗ φ)(φ) = 1 and postulate (P*4) stipulates that the absurd
probability assignment does not result. In contrast, with our approach, if φ is consistent but
P (φ) = 0 then the absurd probability assignment results.

Other Related Work As discussed in Section 2, earlier work dealing specifically with
revision and probability has been concerned with revising probability functions. Thus, work
such as [Gärdenfors, 1988; Lindström and Rabinowicz, 1989; Boutilier, 1995] deals with
extensions to the AGM approach for the revision of probability functions. In such approaches
there is an underlying probability function associated with formulas in which the agent’s
belief set is characterised by formulas with probability 1.0. For a revision K ∗φ, φ represents
new evidence, and the probability function is revised by φ. The belief set corresponding
to K ∗ φ then is the set of propositions with probability 1.0. In contrast, in the approach
at hand, an agent’s accepted beliefs are characterised by a set of possible worlds whose
overall probability in the general case will be less than 1.0. In a sense then there is finer
granularity with regards the present approach, since the worlds characterising a belief set
may have varying probability. As well, for us if a formula φ has probability of 1.0, then it
cannot be removed by subsequent revisions. A formula is accepted as true if its probability
is sufficiently high; however it may potentially be revised away. This then arguably confirms
to intuitions, in that if a formula is held with complete certainty then it should be immune
from revisions.
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It was noted that [Bacchus et al., 1999] presents a similar setting in which an agent
receives possibly-unreliable observations. However, the concern in [Bacchus et al., 1999]

was to update probabilities associated with worlds and then to use this for reasoning about
dynamic domains expressed via the situation calculus. The approach at hand employs a
similar method for updating probabilities but addresses the question of how this may be
regarded as, or used to formulate, an approach to belief revision. Again, the present approach
also has finer granularity, in that in [Bacchus et al., 1999] non-beliefs are given by worlds
with probability 0; in the approach at hand, non-beliefs are those that fall outside the set of
accepted beliefs, and may have non-zero probability. Again, arguably the present approach
conforms to intuitions, since if a formula is held to be impossible then it seems it should
forever remain outside the realm of revision.

6 Conclusion

We have explored an approach to belief revision based on an underlying model of uncertain
reasoning. With few exceptions, research in belief revision has dealt with categorical infor-
mation in which an agent has a given set of beliefs and the goal is to consistently incorporate
a formula into this set of beliefs. A common means of specifying revision semantically is
via a ranking function on possible worlds wherein the agent’s beliefs are modelled by the
least worlds in the ranking. The revision by formula φ then is characterised by the least set
of φ worlds in the ranking. Clearly however, most information about the real world is not
categorical, and arguably no non-tautological belief may be held with complete certainty.
To accommodate this, one alternative is to adopt a purely probabilistic framework for be-
lief change. However, such a framework ignores the fact that an agent may well accept a
formula as being true, even if this acceptance is tentative, or hedged in some fashion. So
another alternative, and the one followed here, is to begin with a probabilistic framework,
but also define a set of formulas that the agent accepts. Revision can then be defined in this
framework, and the results of revision on the agent’s accepted beliefs examined.

To this end we have assumed that an agent receives uncertain information as input, and
the agent’s probabilities on possible worlds are updated via Bayesian conditioning. A set of
formulas among the (noncategorical) beliefs is identified as the agent’s (categorical) belief set.
These are determined via the set of most probable worlds, such that the summed probability
of the set exceeds a given threshold. The effect of updating on this belief set is examined
with respect to its appropriateness as a revision operator. We show that few of the classical
AGM belief revision postulates are satisfied by this approach. Most significantly, though not
surprisingly, the success postulate is not guaranteed to hold, though it is after a sufficient
number of iterations. As well, it also proves to be the case that in revising by a formula
consistent with the agent’s beliefs, revision does not necessarily correspond to expansion. As
another point of interest, of the postulates for iterated revision that we considered, only (C3)
holds. The reason for this is that, even though the updating of the probability assignment
P satisfies all of the corresponding semantic conditions, the induced faithful ordering ≺K
does not. Last, although the approach shares motivation and intuitions with improvement
operators, our results show that the approach does not fall into the category of improvement
operators.
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An apparent limitation of the approach is that it deals with a finite language. Moreover
it is not clear how the results presented here can be generalised to the infinite case. While
acknowledging that this is indeed a formal limitation, nonetheless an agent operating in the
real world is a finite entity, and has a finite knowledge base. As well, much of current work in
belief change follows the Katsuno-Mendelzon [1991] approach wherein an agent’s beliefs are
finitely representable. Thus, arguably, the assumption of a finite language is not a significant
limitation with respect to modelling revision for computational agents.

There are two ways that these results may be viewed with respect to classical AGM-style
belief revision. On the one hand, assuming that the approach to dealing with uncertainty
and the means of determining an agent’s belief set are reasonable, it can be suggested that
the current approach provides a revision operator that is substantially weaker than given
in the AGM approach and approaches to iterated revision. On the other hand, the AGM
approach and approaches to iterated revision have been justified by appeals to rationality, in
that it is claimed that any rational agent should conform to the AGM postulates and, say,
the Darwiche/Pearl iteration postulates. Thus, to the extent that the presented approach is
rational, the present approach would appear to undermine the rationale of these approaches,
at least in the case of uncertain information.

References

[Alchourrón et al., 1985] C.E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of
theory change: Partial meet functions for contraction and revision. Journal of Symbolic
Logic, 50(2):510–530, 1985.

[Bacchus et al., 1999] F. Bacchus, J.Y. Halpern, and H.J. Levesque. Reasoning about noisy
sensors and effectors in the situation calculus. Artificial Intelligence, 111(1-2):171–208,
1999.

[Booth and Meyer, 2006] Richard Booth and Thomas Andreas Meyer. Admissible and re-
strained revision. Journal of Artificial Intelligence Research, 26:127–151, 2006.

[Boutilier, 1995] C. Boutilier. On the revision of probabilistic belief states. Notre Dame
Journal of Formal Logic, 36(1):158–183, 1995.

[Boutilier, 1996] C. Boutilier. Iterated revision and minimal revision of conditional beliefs.
Journal of Logic and Computation, 25:262–305, 1996.

[Bovens and Hartmann, 2003] Luc Bovens and Stephan Hartmann. Bayesian Epistemology.
Oxford: Clarendon Press, 2003.

[Cozic, 2011] Mikal Cozic. Imaging and sleeping beauty: A case for double-halfers. Inter-
national Journal of Approximate Reasoning, 52:137–143, 2011.

[Darwiche and Pearl, 1997] A. Darwiche and J. Pearl. On the logic of iterated belief revision.
Artificial Intelligence, 89:1–29, 1997.

27



[Fagin and Halpern, 1990] Ronald Fagin and Joseph Y. Halpern. A new approach to up-
dating beliefs. In Proceedings of the Sixth Annual Conference on Uncertainty in Artificial
Intelligence, UAI ’90, pages 347–374. Elsevier Science Inc., 1990.

[Gärdenfors, 1988] P. Gärdenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic
States. The MIT Press, Cambridge, MA, 1988.

[Grove, 1988] A. Grove. Two modellings for theory change. Journal of Philosophical Logic,
17:157–170, 1988.

[Hughes and Cresswell, 1996] G.E. Hughes and M.J. Cresswell. A New Introduction to Modal
Logic. Routledge., London and New York, 1996.

[Jeffrey, 1983] Richard Jeffrey. The Logic of Decision. University of Chicago Press, second
edition, 1983.

[Jin and Thielscher, 2007] Y. Jin and M. Thielscher. Iterated belief revision, revised. Arti-
ficial Intelligence, 171(1):1–18, 2007.

[Katsuno and Mendelzon, 1991] H. Katsuno and A. Mendelzon. Propositional knowledge
base revision and minimal change. Artificial Intelligence, 52(3):263–294, 1991.

[Konieczny and Pino Pérez, 2008] Sébastien Konieczny and Ramón Pino Pérez. Improve-
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