
Merging Logic Programs under Answer Set Semantics

James Delgrande1, Torsten Schaub2?, Hans Tompits3, and Stefan Woltran3

1 Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
2 Universität Potsdam, August-Bebel-Str. 89, D–14482 Potsdam, Germany

3 Technische Universität Wien, Favoritenstraße 9–11, A–1040 Vienna, Austria

Abstract. This paper considers a semantic approach for merging logic programs
under answer set semantics. Given logic programs P1, . . . , Pn, the goal is to pro-
vide characterisations of the merging of these programs. Our formal techniques
are based on notions of relative distance between the underlying SE models of
the logic programs. Two approaches are examined. The first informally selects
those models of the programs that vary the least from the models of the other
programs. The second approach informally selects those models of a program P0

that are closest to the models of programs P1, . . . , Pn. P0 can be thought of as
analogous to a set of database integrity constraints. We examine formal properties
of these operators. Moreover, we give encodings for computing the mergings of a
multiset of logic programs, within the same logic programming framework. As a
by-product, we provide a complexity analysis revealing that our operators do not
increase the complexity of the base formalism.

1 Introduction

Answer set programming [1] is an appealing approach for representing problems in
knowledge representation and reasoning: It has a conceptually simple theoretical foun-
dation, while at the same time it has found application in a wide range of practical
problems. As well, there are now efficient and well-studied implementations. However,
as is the case with any large program or body of knowledge, a logic program is not
a static object in general, but rather it will evolve and be subject to change, whether
as a result of correcting information in the program, adding to the information already
present, or in some other fashion modifying the knowledge represented in the program.

In the past, research on the evolution of logic programs mostly focussed on updating
logic programs [2–7]. In such approaches, the issue was to characterise the answer sets
of a sequence of programs 〈P1, . . . , Pn〉, where for j > i, program Pj has higher prior-
ity, in some sense, over Pi. However, seemingly the nonmonotonic nature of extended
logic programs makes the problem of belief change intrinsically harder compared to a
monotonic setting, often leading to subtle effects. In previous work [8], we addressed
this challenge by defining an approach for revising logic programs under answer set
semantics based on the notion of an SE model [9]. The key point of this undertaking
is that SE models provide a monotonic semantic foundation of answer set programs.
More specifically, SE models derive from models in the logic of here-and-there, which

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

e[1] f[1] t[0] d[0] s[2.0.0] paper.tex 28/04/2009 at 11:00 page 2 #0

is intermediate between classical logic and intuitionistic logic, representing the logi-
cal underpinning of strong equivalence [10]. Indeed, the latter notion can be seen as
the logic programming analogue of ordinary equivalence in classical logic, in the sense
that both equivalence notions adhere to a substitution principle. With our revision ap-
proach for logic programs based on SE models we thus phrased the problem of belief
revision in logic programs in terms analogous to those of revision in classical logic.
Additionally, the approach possesses appealing features as it adheres to all but one of
the established postulates for belief revision [11].

In this paper, we employ these techniques to address the merging of logic programs.
The problem of merging multiple, potentially conflicting bodies of information arises
in different contexts. For example, an agent may receive reports from differing sources
of knowledge, or from sets of sensors that need to be reconciled. As well, an increas-
ingly common phenomenon is that collections of data may need to be combined into a
coherent whole. In these cases, the problem is that of combining knowledge sets that
may be jointly inconsistent in order to get a consistent set of merged beliefs.

In characterising the merging of logic programs, the central idea is that the SE mod-
els of the merged program are those that are in some sense “closest” to the SE models
of the programs to be merged. However, as with merging knowledge bases expressed
in classical logic, there is no one preferred notion of distance nor closeness, and conse-
quently different approaches have been defined for combining sources of information.
We introduce two merging operators for logic programs under answer set semantics.
Both operators take an arbitrary (multi-)set of logic programs as argument. The first
operator can be regarded an instance of arbitration [12]. Basically (SE) models are se-
lected from among the SE models of the programs to be merged; in a sense this operator
is a natural extension of our belief revision operator, presented in [8]. The second merg-
ing operator can be regarded as an instance of Konieczny and Pino Pérez’s merging op-
erator [13]. Here, models of a designated program (representing information analogous
to database integrity constraints) are selected that are closest to (or perhaps, informally,
represent the best compromise among) the models of the programs to be merged.

2 Background

Answer Set Programming: A (generalised) logic program1 (GLP) over an alphabet A
is a finite set of rules of the form

a1; . . . ; am;∼bm+1; . . . ;∼bn ← cn+1, . . . , co,∼do+1, . . . ,∼dp, (1)

where ai, bj , ck, dl ∈ A are atoms, for 1 ≤ i ≤ m ≤ j ≤ n ≤ k ≤ o ≤ l ≤ p.
Operators ‘;’ and ‘,’ express disjunctive and conjunctive connectives. A default literal
is an atom a or its (default) negation ∼a. A rule r as in (1) is called a fact if p = 1,
normal if n = 1, disjunctive if m = n, and an integrity constraint if n = 0, yielding
an empty disjunction denoted by ⊥. Accordingly, a program is called disjunctive, or a
DLP, if it consists of disjunctive rules only. Likewise, a program is normal if it contains
normal rules only. We furthermore define H(r) = {a1, . . . , am,∼bm+1, . . . ,∼bn} as

1 Such programs were first considered by Lifschitz and Woo [14] .

• • • — Preliminary Draft — April 28, 2009 — • • • p2:#0 —©R©M

e[1] f[2] t[0] d[0] s[2.0.0] paper.tex 28/04/2009 at 11:00 page 3 #0

the head of r and B(r) = {cn+1, . . . , co,∼do+1, . . . ,∼dp} as the body of r, for r as
in (1). Moreover, given a set X of literals, X+ = {a ∈ A | a ∈ X}, X− = {a ∈
A | ∼a ∈ X}, and ∼X = {∼a | a ∈ X ∩ A}. For simplicity, we sometimes use a
set-based notation, expressing r as in (1) as H(r)+;∼H(r)−← B(r)+,∼B(r)−.

In what follows, we restrict ourselves to a finite alphabet A. An interpretation is
represented by the subset of atoms in A that are true in the interpretation. A (classical)
model of a program P is an interpretation in which all of the rules in P are true accord-
ing to the standard definition of truth in propositional logic, and where default negation
is treated as classical negation. By Mod(P) we denote the set of all classical models of
P . An answer set Y of a program P is a subset-minimal model of

{H(r)+← B(r)+ | r ∈ P,H(r)− ⊆ Y,B(r)− ∩ Y = ∅}.

The set of all answer sets of a program P is denoted by AS (P). For example, the
program P = {a←, c; d← a,∼b} has answer sets AS (P) = {{a, c}, {a, d}}.

As defined by Turner [9], an SE interpretation is a pair (X,Y) of interpretations
such that X ⊆ Y ⊆ A. An SE interpretation (X,Y) is an SE model of a program P if
Y |= P and X |= PY . The set of all SE models of a program P is denoted by SE (P).
Note that Y is an answer set of P iff (Y, Y) ∈ SE (P) and no (X,Y) ∈ SE (P) with
X ⊂ Y exists. Also, we have (Y, Y) ∈ SE (P) iff Y ∈ Mod(P).

A program P is satisfiable just if SE (P) 6= ∅. Two programs P and Q are strongly
equivalent, symbolically P ≡s Q, iff SE (P) = SE (Q). Alternatively, P ≡s Q holds
iff AS (P ∪ R) = AS (Q ∪ R), for every program R [10]. We also write P |=s Q iff
SE (P) ⊆ SE (Q). For simplicity, we often drop set-notation within SE interpretations
and simply write, e.g., (a, ab) instead of ({a}, {a, b}).

A set S of SE interpretations is well-defined if, for each (X,Y) ∈ S, also (Y, Y) ∈
S. A well-defined set S of SE interpretations is complete if, for each (X,Y) ∈ S, also
(X,Z) ∈ S, for any Y ⊆ Z with (Z,Z) ∈ S.

We have the following properties: (i) for each GLP P , SE (P) is well-defined;
(ii) for each DLP P , SE (P) is complete. Furthermore, for each well-defined set S
of SE interpretations, there exists a GLP P such that SE (P) = S, and for each com-
plete set S of SE interpretations, there exists a DLP P such that SE (P) = S. Programs
meeting these conditions can be constructed thus [15, 16]: In case S is a well-defined
set of SE interpretations over a (finite) alphabet A, define P by adding

1. the rule rY : ⊥ ← Y,∼(A \ Y), for each (Y, Y) /∈ S, and
2. the rule rX,Y : (Y \X);∼Y ← X,∼(A \ Y), for eachX ⊆ Y such that (X,Y) /∈
S and (Y, Y) ∈ S.

In case S is complete, define P by adding

1. the rule rY , for each (Y, Y) /∈ S, as above, and
2. the rule r′X,Y : (Y \X) ← X,∼(A \ Y), for each X ⊆ Y such that (X,Y) /∈ S

and (Y, Y) ∈ S.

We call the resulting programs canonical.

• • • — Preliminary Draft — April 28, 2009 — • • • p3:#0 —©R©M

e[1] f[2] t[0] d[0] s[2.0.0] paper.tex 28/04/2009 at 11:00 page 4 #0

For illustration, consider S = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, p)} over
A = {p, q}.2 Note that S is not complete. The canonical GLP is as follows:

r∅ : ⊥ ← ∼p,∼q;
r∅,q : q;∼q ← ∼p;
r∅,pq : p; q;∼p;∼q ← .

For obtaining a complete set, we have to add (∅, pq) to S. Then, the canonical DLP is
as follows:

r∅ : ⊥ ← ∼p,∼q; r∅,q : q ← ∼p.

One feature of SE models is that they contain “more information” than answer sets,
which makes them an appealing candidate for problems where programs are examined
with respect to further extension (in fact, this is what strong equivalence is about).
We illustrate this point with the following well-known example, involving programs
P = {p; q ←} and Q = {p ← ∼q, q ← ∼p}. Here, we have AS (P) = AS (Q) =
{{p}, {q}}. However, the SE models (we list them for A = {p, q}) differ:

SE (P) = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq)};
SE (Q) = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, pq)}.

This is to be expected, since P and Q behave differently with respect to program ex-
tension (and thus are not strongly equivalent). Consider R = {p ← q, q ← p}. Then,
AS (P ∪R) = {{p, q}}, while AS (Q ∪R) has no answer set.

Belief Merging: This section reviews previous work in belief merging. We survey re-
lated work, first in logic programming and then in the belief merging literature.

With respect to merging logic programs, we have already mentioned updating logic
programs, which can also be considered as prioritised logic program merging. With
respect to combining logic programs, Baral et al. [17] describe an algorithm for com-
bining a set of normal, stratified logic programs in which the union of the programs is
also stratified. In their approach the combination is carried out so that a set of global
integrity constraints, which is satisfied by individual programs, is also satisfied by the
combination. Buccafurri and Gottlob [18] present an interesting approach whereby rules
in a given program encode desires for a corresponding agent. A predicate okey indicates
that an atom is acceptable to an agent. Answer sets of these compromise logic programs
represent acceptable compromises between agents. While it is shown that the joint fix-
points of such logic programs can be computed as stable models, and complexity results
are presented, the approach is not analysed from the standpoint of properties of merging.
Sakama and Inoue [19] address what they call the generous and rigorous coordination
of logic programs in which, given a pair of programs P1 and P2, a program Q is found
whose answers sets are equal to the union of the answer sets of P1 and P2 in the first
case, and their intersection in the second. As the authors note, this approach and its
goals are distinct from program merging.

Earlier work on merging operators includes approaches by Baral et al. [20] and
Revesz [21]. The former authors propose various theory merging operators based on

2 We assume henceforth that the alphabet in an example consists of just the mentioned atoms.

• • • — Preliminary Draft — April 28, 2009 — • • • p4:#0 —©R©M

e[1] f[2] t[0] d[2] s[2.0.0] paper.tex 28/04/2009 at 11:00 page 5 #0

the selection of maximum consistent subsets in the union of the belief bases. The lat-
ter proposes an “arbitration” operator (see below) that, intuitively selects from among
the models of the belief sets being merged. Lin and Mendelzon [22] examine major-
ity merging, in which, if a plurality of knowledge bases hold φ to be true, then φ is
true in the merging. Liberatore and Schaerf [12] address arbitration in general, while
Konieczny and Pino Pérez [13] considers a general approach in which merging takes
place with respect to a set of global constraints, or formulas that must hold in the merg-
ing. We examine these latter two approaches in detail below.

Konieczny, Lang, and Marquis [23] describe a very general framework in which
a family of merging operators is parameterised by a distance between interpretations
and aggregating functions. More or less concurrently, Meyer [24] proposed a general
approach to formulating merging functions based on ordinal conditional functions [25].
Booth [26] also considers the problem of an agent merging information from different
sources, via what is called social contraction. Last, much work has been carried out in
merging possibilistic knowledge bases; see for example [27].

We next describe the approaches by Liberatore and Schaerf [12] and by Konieczny
and Pino Pérez [13], since we use the intuitions underlying these approaches as the basis
for our approaches for merging logic programs. First, Liberatore and Schaerf [12] con-
sider merging two belief bases based on the intuition that models of the merged bases
should be taken from those of each belief base closest to the other. This is called an
an arbitration operator (Konieczny and Pino Pérez [13] call it a commutative revision
operator). They consider a propositional languages over a finite set of atoms; conse-
quently their merging operator can be expressed as a binary operator on formulas. The
following postulates characterise this operator:

Definition 1. � is an arbitration operator (or commutative revision operator) if � satis-
fies the following postulates.

(LS1) ` α � β ≡ β � α.
(LS2) ` α ∧ β ⊃ α � β.
(LS3) If α ∧ β is satisfiable then ` α � β ⊃ α ∧ β.
(LS4) α � β is unsatisfiable iff α is unsatisfiable and β is unsatisfiable.
(LS5) If ` α1 ≡ α2 and ` β1 ≡ β2 then ` α1 � β1 ≡ α2 � β2.

(LS6) α � (β1 ∨ β2) =

α � β1 or
α � β2 or
(α � β1) ∨ (α � β2).

(LS7) ` (α � β) ⊃ (α ∨ β).
(LS8) If α is satisfiable then α ∧ (α � β) is satisfiable.

The first postulate asserts that merging is commutative, while the next two assert that,
for mutually consistent formulas, merging corresponds to their conjunction. (LS5) en-
sures that the operator is independent of syntax, while (LS6) provides a “factoring”
postulate, analogous to a similar factoring result in (AGM-style) belief revision and
contraction. Postulate (LS7) can be taken as distinguishing � from other such opera-
tors; it asserts that the result of merging implies the disjunction of the original formu-
las. The last postulate informally constrains the result of merging so that each operator
“contributes to” (i.e. is consistent with) the final result.

• • • — Preliminary Draft — April 28, 2009 — • • • p5:#0 —©R©M

e[1] f[2] t[0] d[2] s[3.0.0] paper.tex 28/04/2009 at 11:00 page 6 #0

Next, Konieczny and Pino Peréz [13] consider the problem of merging possi-
bly contradictory belief bases. To this end, they consider finite multisets of the form
Ψ = {K1, . . . ,Kn}. They assume that the belief sets Ki are consistent and finitely rep-
resentable, and so representable by a formula. Kn is the multiset consisting of n copies
of K. Multiset union is denoted by ∪. Following Konieczny and Pino Peréz [13], let
∆µ(Ψ) denote the result of merging the multi-set Ψ of belief bases given the entailment-
based integrity constraint expressed by µ. The intent is that ∆µ(Ψ) is the belief base
closest to the belief multiset Ψ . They provide the following set of postulates:

Definition 2 ([13]). Let Ψ be a multiset of sets of formulas, and φ, µ formulas (all
possibly subscripted or primed). Then, ∆ is an IC merging operator if it satisfies the
following postulates.

(IC0) ∆µ(Ψ) ` µ.
(IC1) If µ 6` ⊥ then ∆µ(Ψ) 6` ⊥.
(IC2) If

∧
Ψ 6` ¬µ then ∆µ(Ψ) ≡

∧
Ψ ∧ µ.

(IC3) If Ψ1 ≡ Ψ2 and µ1 ≡ µ2 then ∆µ1(Ψ1) ≡ ∆µ2(Ψ2).
(IC4) If φ ` µ and φ′ ` µ then: ∆µ(φ ∪ φ′) ∧ φ 6` ⊥ implies ∆µ(φ ∪ φ′) ∧ φ′ 6` ⊥.
(IC5) ∆µ(Ψ1) ∧∆µ(Ψ2) ` ∆µ(Ψ1 ∪ Ψ2).
(IC6) If ∆µ(Ψ1) ∧∆µ(Ψ2) 6` ⊥ then ∆µ(Ψ1 ∪ Ψ2) ` ∆µ(Ψ1) ∧∆µ(Ψ2).
(IC7) ∆µ1(Ψ) ∧ µ2 ` ∆µ1∧µ2(Ψ).
(IC8) If ∆µ1(Ψ) ∧ µ2 6` ⊥ then ∆µ1∧µ2(Ψ) ` ∆µ1(Ψ) ∧ µ2.

(IC2) states that, when consistent, the result of merging is simply the conjunction of
the belief bases and integrity constraints. (IC4) asserts that when two belief bases
disagree, merging doesn’t give preference to one of them. (IC5) states that a model of
two mergings is in the union of their merging. With (IC5) we get that if two mergings
are consistent then their merging is implied by their conjunction. Note that merging
operators are trivially commutative. (IC7) and (IC8) correspond to the extended AGM
postulates (K ∗ 7) and (K ∗ 8) for revision, but with respect to the integrity constraints.

3 Merging Logic Programs

We denote (generalised) logic programs by P1, P2, . . . , reserving P0 for a program rep-
resenting global constraints, as described later. For logic programs P1, P2, we define
P1 uP2 to be a program with SE models equal to SE (P1)∩ SE (P2) and P1 tP2 to be
a program with SE models equal to SE (P1)∪SE (P2). By a belief profile, Ψ , we under-
stand a sequence 〈P1, . . . , Pn〉 of (generalised) logic programs. For Ψ = 〈P1, . . . , Pn〉
we write uΨ for P1 u · · · u Pn. We write Ψ1 ◦ Ψ2 for the (sequence) concatenation
of belief profiles Ψ1, Ψ2; and for logic program P0 and Ψ = 〈P1, . . . , Pn〉 we abuse
notation by writing 〈P0, Ψ〉 for 〈P0, P1, . . . , Pn〉. A belief profile Ψ is satisfiable just
if each component logic program is satisfiable. The set of SE models of Ψ is given by
SE (Ψ) = SE (P1) × · · · × SE (Pn). For S ∈ SE (Ψ) such that S = 〈S1, . . . , Sn〉, we
use Si to denote the ith component Si of S. Thus, Si ∈ SE (Pi). Analogously, the set of
classical propositional models of Ψ is given by Mod(Ψ) = Mod(P1)×· · ·×Mod(Pn);
also we use Xi to denote the ith component of X ∈ Mod(Ψ).

• • • — Preliminary Draft — April 28, 2009 — • • • p6:#0 —©R©M

e[2] f[2] t[0] d[4] s[3.1.0] paper.tex 28/04/2009 at 11:00 page 7 #0

Let 	 denote the symmetric difference operator between sets, i.e., X 	 Y =
(X \ Y) ∪ (Y \ X) for every set X,Y . We extend 	 so that it can be used with SE
interpretations as follows: For every pair (X1, X2), (Y1, Y2),

(X1, X2)	 (Y1, Y2) = (X1 	 Y1, X2 	 Y2).

Similarly, (X1, X2) ⊆ (Y1, Y2) iff X1 ⊆ Y1 and X2 ⊆ Y2, and, moreover, (X1, X2) ⊂
(Y1, Y2) iff (X1, X2) ⊆ (Y1, Y2) and either X1 ⊂ Y1 or X2 ⊂ Y2.

3.1 Arbitration Merging

For the first approach to merging, called arbitration, we consider models of Ψ , and se-
lect those models in which, in a global sense, the constituent models vary minimally.
The result of arbitration is a logic program made up of SE models from each of these
minimally-varying tuples. Note that, in particular, if a set of programs is jointly consis-
tent, then there are models of Ψ in which all constituent SE models are the same. That
is, the models that vary minimally are those S ∈ SE (Ψ) in which Si = Sj for every
1 ≤ i, j ≤ n; and merging is the same as simply unioning the programs.

The first definition provides a notion of distance between models of Ψ , while the
second then defines merging in terms of this distance.

Definition 3. Let Ψ = 〈P1, . . . , Pn〉 be a satisfiable belief profile and let S, T be two
SE models of Ψ (or two classical models of Ψ).

Then, define S ≤a T , if Si 	 Sj ⊆ T i 	 T j for every 1 ≤ i < j ≤ n.

Clearly, ≤a is a partial pre-order. In what follows, let Mina(N) denote the set of all
minimal elements of a set N of tuples relative to ≤a, i.e.,

Mina(N) = {S ∈ N | T ≤a S implies S ≤a T for all T ∈ N} .

Preparatory for our central definition to arbitration merging, we furthermore define,
for a set N of n-tuples,

∪N = {S | S = Si for some S ∈ N and some i ∈ {1, . . . , n}}.

Definition 4. Let Ψ be a belief profile. The arbitration merging, or simply arbitration of
Ψ , is a logic program∇(Ψ) such that

SE (∇(Ψ)) = {(X,Y) | Y ∈ ∪Mina(Mod(Ψ)), X ⊆ Y,
and if X ⊂ Y then (X,Y) ∈ ∪Mina(SE (Ψ))} ,

provided Ψ = 〈P1, . . . , Pn〉 is satisfiable, otherwise, if Pi is unsatisfiable for some
1 ≤ i ≤ n, define ∇(Ψ) = ∇(〈P1, . . . , Pi−1, Pi+1, . . . , Pn〉).

For illustration, consider the belief profile

〈P1, P2〉 = 〈{p← , u←}, {← p , v ←}〉 . (2)

Given that SE (P1) = {(pu, pu), (pu, puv), (puv, puv)} and SE (P2) = {(v, v),
(v, uv), (uv, uv)}, we obtain nine SE models for SE (〈P1, P2〉). Among them, we find

• • • — Preliminary Draft — April 28, 2009 — • • • p7:#0 —©R©M

e[2] f[2] t[1] d[5] s[3.2.0] paper.tex 28/04/2009 at 11:00 page 8 #0

P1 P2 SE(∇(〈P1, P2〉)) ∇(〈P1, P2〉)
{p←} {q ←} {(pq, pq)} {p← , q ←}
{p←} {← p} {(p, p), (∅, ∅)} {p;∼p←}
{p← ∼p} {← p} {(∅, p), (p, p), (∅, ∅)} {}
{p← , q ←} {← p, q} {(pq, pq), (p, p), (q, q)} {p; q ←, p;∼p←, q;∼q ←}

{⊥ ← ∼p ,⊥ ← ∼q} {← p, q} {S ∈ SE(∅) | S 6= (∅, ∅)} {⊥ ← ∼p,∼q}
{⊥ ← p ,⊥ ← q} {p; q ←} {(∅, ∅), (p, p), (q, q)} {← p, q, p;∼p←, q;∼q ←}

Table 1. Examples on Arbitration Merging.

a unique ≤a-minimal one, yielding Mina(SE (〈P1, P2〉)) = {〈(puv, puv), (uv, uv)〉}.
Similarly, 〈P1, P2〉 has a single≤a-minimal collection of pairs of classical models, viz.
Mina(Mod(〈P1, P2〉)) = {〈puv, uv〉}. Accordingly, we get

∪Mina(Mod(〈P1, P2〉)) = {puv, uv},
∪Mina(SE (〈P1, P2〉)) = {(puv, puv), (uv, uv)}, and

SE (∇((P1, P2))) = ∪Mina(SE (〈P1, P2〉)) .

We thus obtain the program ∇(〈P1, P2〉) = {p;∼p ← , u ← , v ←} as the resultant
arbitration of P1 and P2.

For further illustration, consider the technical examples given in Table 1.
We note that merging normal programs often leads to disjunctive or generalised pro-

grams. Although plausible, this is also unavoidable because merging does not preserve
the model intersection property of the reduced program satisfied by normal programs.

Moreover, we have the following general result.

Theorem 1. Let Ψ = 〈P1, P2〉 be a belief profile, and define P1 � P2 = ∇(Ψ). Then, �
satisfies the following versions of the postulates of Definition 1.

(LS1′) P1 � P2 ≡s P2 � P1.
(LS2′) P1 u P2 |=s P1 � P2.
(LS3′) If P1 u P2 is satisfiable then P1 � P2 |=s P1 u P2.
(LS4′) P1 � P2 is satisfiable iff P1 is satisfiable and P2 is satisfiable.
(LS5′) If P1 ≡s P2 and P ′1 ≡s P ′2 then P1 � P2 ≡s P ′1 � P ′2.
(LS7′) P1 � P2 |=s P1 t P2.
(LS8′) If P1 is satisfiable then P1 u (P1 � P2) is satisfiable.

3.2 Basic Merging

For the second approach to merging, programs P1, . . . , Pn are merged with a target
logic program P0 so that the SE models in the merging will drawn from models of P0.
This operator will be referred to as the (basic) merging of P1, . . . , Pn with respect to
P0. The information in P0 must hold in the merging, and so can be taken as necessarily
holding. Konieczny and Pino Pérez [13] call P0 a set of integrity constraints, though

• • • — Preliminary Draft — April 28, 2009 — • • • p8:#0 —©R©M

e[2] f[2] t[2] d[6] s[3.2.0] paper.tex 28/04/2009 at 11:00 page 9 #0

this usage of the term differs from its usage in logic programs. Note that in the case
where SE (P0) is the set of all SE models, the two approaches do not coincide, and that
merging is generally a weaker operator than arbitration.

Definition 5. Let Ψ = 〈P0, . . . , Pn〉 be a belief profile and let S, T be two SE models
of Ψ (or two classical models of Ψ).

Then, define S ≤b T , if S0 	 Sj ⊆ T 0 	 T j for every 1 ≤ j ≤ n.

As in the case of arbitration merging, ≤b is a partial pre-order. Accordingly, let
Minb(N) be the set of all minimal elements of a set N of tuples relative to ≤b. In
extending our notation for referring to components of tuples, we furthermore define
N0 = {S0 | S ∈ N}. We thus can state our definition for basic merging as follows:

Definition 6. Let Ψ be a belief profile. The basic merging, or simply merging of Ψ , is a
logic program ∆(Ψ) such that

SE (∆(Ψ)) = {(X,Y) | Y ∈ Minb(Mod(Ψ))0, X ⊆ Y,
and if X ⊂ Y then (X,Y) ∈ Minb(SE (Ψ))0} ,

provided Ψ = 〈P1, . . . , Pn〉 is satisfiable, otherwise, if Pi is unsatisfiable for some
1 ≤ i ≤ n, define ∆(Ψ) = ∆(〈P0, . . . , Pi−1, Pi+1, . . . , Pn〉).

Let us reconsider Program P1 and P2 from (2) in the context of basic merging. To
this end, we consider the belief profile 〈∅, {p ← , u ←}, {← p , v ←}〉. We are
now faced with twenty-seven SE models for SE (〈∅, P1, P2〉). Among them, we get the
following ≤b-minimal SE models

Minb(SE (〈∅, P1, P2〉)) = {〈(uv, uv), (puv, puv), (uv, uv)〉,
〈(uv, puv), (puv, puv), (uv, uv)〉, 〈(puv, puv), (puv, puv), (uv, uv)〉}

along with Minb(Mod(〈∅, P1, P2〉)) = {〈uv, puv, uv〉, 〈puv, puv, uv〉}. We get:

Minb(Mod(〈∅, P1, P2〉))0 = {puv, uv},
Minb(SE (〈∅, P1, P2〉))0 = {(uv, uv), (uv, puv), (puv, puv)}, and

SE (∆(〈∅, P1, P2〉)) = Minb(SE (〈∅, P1, P2〉))0 .

While arbitration resulted in ∇(〈P1, P2〉) = {p;∼p← , u← , v ←}, the more conser-
vative approach of basic merging yields ∆(〈∅, P1, P2〉) = {u← , v ←}.

We have just seen that basic merging adds “intermediate” SE models, viz. (uv, puv),
to the ones obtained in arbitration merging. This can also be observed on the exam-
ples given in Table 1, where every second merging is weakened by the addition of
such intermediate SE models. This is made precise in Theorem 3 below. We summarise
the results in Table 2 (but omit programs due to limited space). In fact, the programs
∆(〈∅, P1, P2〉) are obtained from ∇(〈P1, P2〉) in Table 1 by simply dropping all rules
of form p;∼p← and q;∼q ←, respectively.

The next example further illustrates the difference between arbitration an ba-
sic merging. Take P1 = {p ← , q ←} and P2 = {∼p ← ,∼q ←}. We get
SE (∇(〈P1, P2〉)) = {(pq, pq), (∅, ∅)} and SE (∆(〈∅, P1, P2〉)) = SE (∅). That is, in
terms of programs, we obtain

∇(〈P1, P2〉) = {p;∼p←, q;∼q ←, ← p,∼q, ← ∼p, q }; ∆(〈∅, P1, P2〉) = ∅ .

• • • — Preliminary Draft — April 28, 2009 — • • • p9:#0 —©R©M

e[2] f[2] t[4] d[6] s[4.0.0] paper.tex 28/04/2009 at 11:00 page 10 #0

P1 P2 SE(∆(〈∅, P1, P2〉))
{p←} {q ←} {(pq, pq)}
{p←} {← p} {(p, p), (∅, ∅)} ∪ {(p, ∅)}
{p← ∼p} {← p} {(∅, p), (p, p), (∅, ∅)}
{p← , q ←} {← p, q} {(pq, pq), (p, p), (q, q)} ∪ {(p, pq), (q, pq)}

{⊥ ← ∼p ,⊥ ← ∼q} {← p, q} {S ∈ SE(∅) | S 6= (∅, ∅)}
{⊥ ← p ,⊥ ← q} {p; q ←} {(∅, ∅), (p, p), (q, q)} ∪ {(p, ∅), (q, ∅)}

Table 2. Examples on Basic Merging.

Theorem 2. Let Ψ be a belief profile, P0 a program representing global constraints,
and∆ as given in Definition 6. Then,∆ satisfies the following versions of the postulates
of Definition 2:

(IC0′) ∆(〈P0, Ψ〉) |=s P0.
(IC1′) If P0 is satisfiable then ∆(〈P0, Ψ〉) is satisfiable.
(IC2′) If If u(Ψ) is satisfiable then ∆(〈P0, Ψ〉) ≡s P0 u (u(Ψ)).
(IC3′) If P0 ≡s P ′0 and Ψ ≡s Ψ ′ then ∆(〈P0, Ψ〉) ≡s ∆(〈P ′0, Ψ ′〉).
(IC4′) If P1 |=s P0 and P2 |=s P0 then:

if ∆(〈P0, P1, P2〉)uP1 is satisfiable, then ∆(〈P0, P1, P2〉)uP2 is satisfiable.
(IC5′) ∆(〈P0, Ψ〉) u∆(〈P0, Ψ

′〉) |=s ∆(〈P0, Ψ ◦ Ψ ′〉).
(IC7′) ∆(〈P0, Ψ〉) u P ′0 |=s ∆(〈P0 u P ′0, Ψ〉).
(IC9′) Let Ψ ′ be a permutation of Ψ . Then, ∆(〈P0, Ψ〉) ≡s ∆(〈P0, Ψ

′〉).

We also obtain that arbitration merging is stronger than (basic) merging in the case of
tautologous constraints in P0.

Theorem 3. Let Ψa and Ψb = 〈∅, Ψ〉 be belief profiles. Then∇(Ψa) |=s ∆(Ψb).

As well, for belief profile Ψ = 〈P1, P2〉 we can express our merging operators in terms
of the revision operator defined in previous work [8].

Theorem 4. Let 〈P1, P2〉 be a belief profile.

1. ∇(〈P1, P2〉) = (P1 ∗ P2) t (P2 ∗ P1).
2. ∆(〈P1, P2〉) = P2 ∗ P1.

Note that in the second part of the preceding result, P1 is regarded as a set of constraints
(usually with name P0), as according to our convention for basic merging.

4 Computational Issues

In this section, we provide encodings for arbitration and basic merging. Since our en-
codings can be computed efficiently from a given belief profile, we are able to provide
complexity results for decision problems, typically associated to merging operators. We
start, however, with the formal machinery required for the encodings.

• • • — Preliminary Draft — April 28, 2009 — • • • p10:#0 —©R©M

e[3] f[2] t[4] d[6] s[4.0.0] paper.tex 28/04/2009 at 11:00 page 11 #0

In what follows, for basic merging we consider the program representing integrity
constraints to be part of a belief profile, and conventionally have it as the first element
of the belief profile. Thus, we write Ψ = 〈Pα, . . . , Pn〉, and depending on the merging
operator, we have α = 0 or α = 1. Moreover, we restrict ourselves to satisfiable belief
profiles here. In fact, a generalisation of the subsequent encodings to the general case is
possible but requires some further technical efforts, which we omit in order to provide
a more succinct presentation of the basic ideas.

We let A be the set of all atoms occurring in Ψ and require mutually disjoint atoms

{aih, ait, aim, âih, âit, âim | a ∈ A,α ≤ i ≤ n}, (3)

which are used as follows: Atoms aih, a
i
t (1 ≤ i ≤ n) characterise SE (Pi), and like-

wise, aim is used to characterise Mod(Pi). In other words, an assignment to the atoms
{aih, ait | a ∈ A, 1 ≤ i ≤ n} represents a candidate for S ∈ SE (Ψ) and an assignment
to the atoms {aim | a ∈ A, 1 ≤ i ≤ n} represents a candidate for X ∈ Mod(Ψ). The
atoms âih, â

i
t, â

i
m play analogous roles and are used to range over further SE models

(resp., classical models) T of Ψ . In particular, we compare T to S (resp., to X) to make
the necessary checks for the merging operators. We give the formal details below.

To “guess” assignments, we need each atom a from the set (3) also in a “negated
way”, ã. Moreover, we use further atoms O = {aoh, aot | a ∈ A} to carry our final re-
sult, SE (∇(Ψ)) (resp., SE (∆(Ψ))), and atomsH for particular technical programming
issues, which we introduce as we go along. For the moment, we just have to assume that
our encodings are given over an alphabet AΨ which contains each atom from the set (3)
and its negation, the output atoms O and further atoms H .

We use sub- and superscripts also as renaming functions: Given a set Y ⊆ A of
atoms, x ∈ {h, t,m}, and an index i, Y ix denotes the set {yix | y ∈ Y }, Ŷ ix denotes the
set {ŷix | y ∈ Y }, etc. Likewise for a rule r, rix denotes the rule r after replacing each
of its atom y by yix; r̂ix denotes the rule r after replacing each atom y by ŷix, etc.

We are now able to formally associate an interpretation I ⊆ AΨ to several SE and
classical interpretations over A as follows: Let I ⊆ AΨ and i an index. Then,

σi(I) = {(X,Y) | X,Y ⊆ A,Xi
h = I ∩Aih, Y it = I ∩Ait},

πi(I) = {X | X ⊆ A,Xi
m = I ∩Aim}.

Moreover, let σ(I) = 〈σα(I), . . . , σn(I)〉 and π(I) = 〈πα(I), . . . , πn(I)〉. Likewise,
for a set I of interpretations over AΨ , we define Σi(I) =

⋃
I∈I σ

i(I), Πi(I) =⋃
I∈I π

i(I), Σ(I) = Σα(I)× · · · ×Σn(I), and Π(I) = Πα(I)× · · · ×Πn(I).
We define the following module for an index i:

G[i] = {aix; ãix ←, ⊥ ← aix, ã
i
x | a ∈ A, x ∈ {h, t,m}}∪

{⊥ ← aih, ã
i
t | a ∈ A}∪

{⊥ ← H+(r̃iy), H
−(riy), B

+(riy), B
−(r̃iy) | r ∈ Pi, y ∈ {t,m}}∪

{⊥ ← H+(r̃ih), H
−(rit), B

+(rih), B
−(r̃it) | r ∈ Pi}.

We note thatΣi(AS (G[i])) = SE (Pi) andΠi(AS (G[i])) = Mod(Pi)). Consequently,
Σ(AS (G[α] ∪ · · · ∪G[n])) = SE (Ψ) and Π(AS (G[α] ∪ · · · ∪G[n])) = Mod(Ψ).

• • • — Preliminary Draft — April 28, 2009 — • • • p11:#0 —©R©M

e[3] f[2] t[4] d[6] s[4.0.0] paper.tex 28/04/2009 at 11:00 page 12 #0

The next module guesses the remaining atoms which are used to check minimality
of the guess above. However, we use now a spoiling technique rather than constraints, to
exclude (SE) interpretations which are not (SE) models of the respective program. The
new atom z indicates whether we have to spoil. Moreover, this spoiling is also activated
below where we compare the new guess with the guess from above.

H[i] = {âix; ˜̂aix ←, z ← âix,
˜̂aix, âix ← z, ˜̂aix ← z | a ∈ A, x ∈ {h, t,m}}∪

{z ← âih,
˜̂ait | a ∈ A}∪

{z ← H+(˜̂riy), H
−(r̂iy), B

+(r̂iy), B
−(˜̂riy) | r ∈ Pi, y ∈ {t,m}}∪

{z ← H+(˜̂rih), H
−(r̂it), B

+(r̂ih), B
−(˜̂rit) | r ∈ Pi}.

For the moment, we can assume that the H[i] modules act in the same way as the G[i]
modules. In particular, assuming that each Pi has at least one SE model, there exists
a situation where z is not derived. Below, on the one hand, we derive z to indicate the
outcome of several checks, and finally force z to be included in an answer set. However,
for the moment, we can use the operators σ̂, π̂, Σ̂, Π̂ in an analogous way as above.
Hence, for instance, given I ⊆ AΨ and an index i, we have π̂i(I) = {X | X ⊆
A, X̂i

h = I ∩ Âih}, and so on.
Next, we want to compare different models, e.g., Σ(I) with Σ̂(I), for some I ⊆

AΨ . By the considerations above, this allows us to compare two SE models S, T of Ψ .
We require the following property:

Lemma 1. For Ψ = 〈Pα, . . . , Pn〉 a belief profile, we have S ∈ Mina(SE (Ψ)) iff

(i) for each T ∈ SE (Ψ), S ≤a T , and
(ii) there exist α ≤ i < j ≤ n such that Si 	 Sj 6= T i 	 T j .

An analogous results holds for Mod(Ψ) instead of SE (Ψ).

Exploiting a somewhat dual method to this lemma, the following module derives, for
given i, j,

– the atom z iff Si 	 Sj 6⊆ T i 	 T j , and
– the atom zi,j iff Si 	 Sj = T i 	 T j .

For the latter, we require further new atoms ai,jx,δ , for x ∈ {h, t,m}. Indeed, the com-
pared models S and T are characterised via I ⊆ AΨ by Σ(I) = S and Σ̂(I) = T ,
resp., Π(I) = S and Π̂(I) = T . We define

C[i, j] = { z ← aix, ã
j
x, â

i
x, â

j
x, z ← aix, ã

j
x,

˜̂aix, ˜̂a
j
x,

z ← ãix, a
j
x, â

i
x, â

j
x, z ← ãix, a

j
x,

˜̂aix, ˜̂a
j
x,

ai,jx,δ ← aix, ã
j
x, â

i
x,

˜̂ajx, ai,jx,δ ← aix, ã
j
x,

˜̂aix, â
j
x,

ai,jx,δ ← ãix, a
j
x, â

i
x,

˜̂ajx, ai,jx,δ ← ãix, a
j
x,

˜̂aix, â
j
x,

ai,jx,δ ← aix, a
j
x, â

i
x, â

j
x, ai,jx,δ ← aix, a

j
x,

˜̂aix, ˜̂a
j
x,

ai,jx,δ ← ãix, ã
j
x, â

i
x, â

j
x, ai,jx,δ ← ãix, ã

j
x,

˜̂aix, ˜̂a
j
x | a ∈ A, x ∈ {h, t,m}}∪

{ zi,j ← Ai,jh,δ ∪A
i,j
t,δ, zi,j ← Ai,jm,δ}.

• • • — Preliminary Draft — April 28, 2009 — • • • p12:#0 —©R©M

e[3] f[2] t[7] d[6] s[4.0.0] paper.tex 28/04/2009 at 11:00 page 13 #0

In other words, if we have guessed S and T in such a way that Si 	 Sj 6⊆ T i 	 T j ,
then S ≤a T cannot hold and we derive the spoiling atom z. In case Si	Sj = T i	T j ,
we store this result by deriving an intermediate spoiling atom zi,j . Below, we spoil if
all relevant zi,j’s have been derived.

Arbitration Merging. For a belief profile Ψ = 〈P1, . . . , Pn〉, we put things together as
follows, where Z is the set {zi,j | 1 ≤ i < j ≤ n}:

E(Ψ) =
⋃n
i=1(G[i] ∪H[i]) ∪

⋃n
i=1

⋃n
j=i+1 C[i, j] ∪

{z ← Z, ⊥ ← ∼z} ∪ {g1 ∨ · · · ∨ g2n ←} ∪
{aot ← gi, a

i
m, aoh ← gi, a

i
m

aot ← gn+i, a
i
t, aoh ← gn+i, a

i
h | a ∈ A, 1 ≤ i ≤ n} ∪

{fj ← gn+i, a
j
m, ã

i
t, fj ← gn+i, ã

j
m, a

i
t | 1 ≤ i, j ≤ n, a ∈ A} ∪

{⊥ ← f1, . . . fn}.

Roughly speaking, the guess via the gi’s selects from which Pi we now add a pair
(X,Y) into SE (∇(Ψ)). More precisely, if a gi is selected, with 1 ≤ i ≤ n, we add
(Xi, Xi) for the currently guessedX ∈ Mod(Ψ). Otherwise, i.e., when gn+i is selected
(1 ≤ i ≤ n), we add Si = (X,Y), where S ∈ SE (Ψ) is the current guess, provided
that Y matches some Xj .

Let now for a set I of interpretations over AΨ ,

Σo =
⋃
I∈I
{(X,Y) | X,Y ⊆ A,Xo

h = I ∩Aoh, Y ot = I ∩Aot}.

We obtain the following result:

Theorem 5. SE (∇(Ψ)) = Σo(AS (E(Ψ))).

Basic Merging. We now continue with the encoding for basic merging. We already
have most ingredients at hand. In fact, for a belief profile Ψ = 〈P0, . . . , Pn〉 define

F (Ψ) =
⋃n
i=0(G[i] ∪H[i]) ∪

⋃n
i=1 C[0, i] ∪

{z ← z0,1, . . . , z0,n, ⊥ ← ∼z} ∪ {g0 ∨ g1 ←} ∪
{aot ← g0, a

0
m, aoh ← g0, a

0
m, aot ← g1, a

0
t , aoh ← g1, a

0
h | a ∈ A} ∪

{⊥ ← g1, a
0
m, ã

0
t , ⊥ ← g1, ã

0
m, a

0
t}.

F (Ψ) follows the same ideas as used in E(Ψ) but significantly simplifies due to the
special role of P0 in basic merging. Note that we require much less comparisons C[0, i]
here. As well, we only have to select classical and SE models of P0 to become output
atoms. Our result is thus as follows:

Theorem 6. SE (∆(Ψ)) = Σo(AS (F (Ψ))).

• • • — Preliminary Draft — April 28, 2009 — • • • p13:#0 —©R©M

e[3] f[2] t[7] d[6] s[5.0.0] paper.tex 28/04/2009 at 11:00 page 14 #0

Complexity. In our previous work [8], the following decision problem has been studied
with respect to the revision operator ∗: Given GLPs P , Q, R. Does P ∗Q |=s R hold?
This problem was shown to be ΠP

2 -complete.
Accordingly, we give here results for the following problems: Given a belief profile

Ψ and a further program R. (1) Does∇(Ψ) |=s R hold? (2) Does ∆(Ψ) |=s R hold?
By Theorem 4, it can be shown that the hardness result for the revision problem

also applies to the respective problems in terms of merging. On the other, hand ΠP
2 -

membership can be obtained by a slight extension of the above encodings such that
these extensions possess an answer set iff the respective problem (1) or (2) does not
hold. Since checking whether a program has at least one answer set is a problem on the
second of layer of the polynomial hierarchy and our (extended) encodings are polyno-
mial in the size of the encoded problems, the desired membership results follow.

Theorem 7. Given a belief profile Ψ and a program R, deciding ∇(Ψ) |=s R (resp.,
∆(Ψ) |=s R) is ΠP

2 -complete.

5 Discussion

We have addressed the problem of merging of logic programs under the answer set
semantics. Unlike related work in updating logic programs, but similar to our work in
logic program revision [8], our approach is based on a monotonic characterisation of
logic programs, given in terms of the set of SE models of a sequence of programs. We
defined and examined two operators for logic program merging, the first following intu-
itions from [12], the second being closer to [13]. Notably, since these merging operators
are defined via a semantic characterisation, the results of merging are independent of
the particular syntactic expression of a logic program. As well as giving properties of
these operators, we also considered the complexity and an encoding scheme for both.

This work is original, given that it addresses merging in terms familiar to researchers
in belief change. However, it applies these concepts in the context of logic programs.
While we considered set-containment-based merging here, cardinality-based merging
(which in fact would be closer to the specific operators proposed by Konieczny and
Pino Pérez [13]) can also easily be defined.

Acknowledgements The first author acknowledges support from a NSERC Discovery
Grant. The second author was supported by the German Science Foundation (DFG)
under grant SCHA 550/8-1.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University (2003)

2. Zhang, Y., Foo, N.: Updating logic programs. In: ECAI’98, IOS (1998) 403–407
3. Alferes, J., Leite, J., Pereira, L., Przymusinska, H., Przymusinski, T.: Dynamic updates of

non-monotonic knowledge bases. JLP 45(1–3) (2000) 43–70
4. Leite, J.: Evolving Knowledge Bases: Specification and Semantics. IOS (2003)

• • • — Preliminary Draft — April 28, 2009 — • • • p14:#0 —©R©M

e[3] f[2] t[7] d[6] s[5.0.0] paper.tex 28/04/2009 at 11:00 page 15 #0

5. Inoue, K., Sakama, C.: Updating extended logic programs through abduction. In: LP-
NMR’99, Springer (1999) 147–161

6. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on
causal rejection. TPLP 2(6) (2002) 711–767

7. Delgrande, J., Schaub, T., Tompits, H.: A preference-based framework for updating logic
programs. In: LPNMR’07, Springer (2007) 71–83

8. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: Belief revision of logic programs under
answer set semantics. In: KR’08, AAAI Press (2008) 411–421

9. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. TPLP
3(4-5) (2003) 609–622

10. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM TOCL
2(4) (2001) 526–541

11. Gärdenfors, P.: Knowledge in Flux MIT Press (1988)
12. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE TKDE

10(1) (1998) 76–90
13. Konieczny, S., Pino Pérez, R.: Merging information under constraints: A logical framework.

JLC 12(5) (2002) 773–808
14. Lifschitz, V., Woo, T.: Answer sets in general nonmonotonic reasoning (preliminary report).

In: KR’92, Morgan Kaufmann (1992) 603–614
15. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set programming.

In: IJCAI’05, Professional Book Center (2005) 97–102
16. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs.

TPLP 7(6) (2007) 745–759
17. Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE Trans. on

Knowl. and Data Eng. 3 (1991) 208–220
18. Buccafurri, F., Gottlob, G.: Multiagent compromises, joint fixpoints, and stable models.

In: Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A.
Kowalski, Part I, London, UK, Springer-Verlag (2002) 561–585

19. Sakama, C., Inoue, K.: Coordination in answer set programming. ACM Transactions on
Computational Logic 9 (2008) 1–30

20. Baral, C., Kraus, S., Minker, J., Subrahmanian, V.: Combining multiple knowledge bases
consisting of first order theories. CI 8(1) (1992) 45–71

21. Revesz, P.: On the semantics of theory change: Arbitration between old and new information.
In: ACM Principles DBS (1993) 71–82

22. Lin, J., Mendelzon, A.: Knowledge base merging by majority. In: Dynamic Worlds: From
the Frame Problem to Knowledge Management. Kluwer (1999) 195–218

23. Konieczny, S., Lang, J., Marquis, P.: Distance-based merging: a general framework and some
complexity results. In: KR’02 (2002) 97–108

24. Meyer, T.: On the semantics of combination operations. JANCL 11(1-2) (2001) 59–84
25. Spohn, W.: Ordinal conditional functions: A dynamic theory of epistemic states. In: Causa-

tion in Decision, Belief Change, and Statistics. Kluwer (1988) 105–134
26. Booth, R.: Social contraction and belief negotiation. In: KR’02 (2002) 375–384
27. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic merging and distance-based

fusion of propositional information. AMAI 34(1-3) (2003) 217–252

This article was processed using the comments style on April 28, 2009.
There remain 0 comments to be processed.

• • • — Preliminary Draft — April 28, 2009 — • • • p15:#0 —©R©M

