
Reconsidering AGM-Style Belief Revision in the Context
of Logic Programs

Zhiqiang Zhuang1 and James Delgrande2 and Abhaya Nayak3 and Abdul Sattar1

Abstract.
Belief revision has been studied mainly with respect to back-

ground logics that are monotonic in character. In this paper we study
belief revision when the underlying logic is non-monotonic instead—
an inherently interesting problem that is under explored. In particular,
we will focus on the revision of a body of beliefs that is represented
as a logic program under the answer set semantics, while the new
information is also similarly represented as a logic program. Our ap-
proach is driven by the observation that unlike in a monotonic set-
ting where, when necessary, consistency in a revised body of beliefs
is maintained by jettisoning some old beliefs, in a non-monotonic
setting consistency can be restored by adding new beliefs as well.
We will define two revision functions through syntactic and model-
theoretic methods respectively and subsequently provide representa-
tion theorems for characterising them.

1 Introduction
The ability to change one’s beliefs when presented with new informa-
tion is crucial for any intelligent agent. In the area of belief change,
substantial effort has been made towards the understanding and re-
alisation of this process. Traditionally, it is assumed that the agent’s
reasoning is governed by a monotonic logic. For this reason, tradi-
tional belief change is inapplicable when the agent’s reasoning is
non-monotonic. Our goal in this research program is to extend the es-
tablished (AGM) belief set [1] and belief base [13] approaches in be-
lief revision to nonmonotonic setting. In this paper, we focus on dis-
junctive logic programs, as a well-studied and well-known approach
to nonmonotonic reasoning that also has efficient implementations.

Much, if not most, of our day-to-day reasoning involves non-
monotonic reasoning. To illustrate issues that may arise, consider
the following example. In a university, professors generally teach,
unless they have an administrative appointment. Assume we know
that John is a professor. Since most faculty do not have an admin-
istrative appointment, and there is no evidence that John does, we
conclude that he teaches. This reasoning is a classical form of non-
monotonic reasoning, namely using the closed world assumption. It
can be represented by the following logic program under the answer
set semantics.

Teach(X)← Prof(X), not Admin(X). (1)

Prof(John)← . (2)

The answer set {Prof(John), T each(John)} for this logic pro-
gram corresponds exactly to the facts we can conclude.

1 IIIS, Griffith University, Australia
2 School of Computing Science, Simon Fraser University, Canada
3 Department of Computing, Macquarie University, Australia

Suppose we receive information that John does not teach, which
we can represent by the rule

← Teach(John). (3)

Now our beliefs about John are contradictory; and it is not surprising
that the logic program consisting of rules (1) – (3) has no answer set.
For us or any intelligent agent in this situation to function properly,
we need a mechanism to resolve this inconsistency. This is a typical
belief revision problem; however, the classical (AGM) approach can
not be applied, as we are reasoning non-monotonically.

It is not hard to suggest possible causes of the inconsistency and
to resolve it. It could be that some of our beliefs are wrong; perhaps
professors with administrative duties may still need to do teaching
or perhaps John is not a professor. Thus we can restore consistency
by removing rule (1) or (2). Alternatively and perhaps more inter-
estingly, it could be that assuming that John is not an administrative
staff via the absence of evidence is too adventurous; that is he may
indeed be an administrative staff member but we don’t know it. Thus
we can also restore consistency by adding the missing evidence of
John being an administrative staff member by

Admin(John)← . (4)

The second alternative highlights the distinction for belief revi-
sion in monotonic and non-monotonic settings. In the monotonic
setting, an inconsistent body of knowledge will remain inconsistent
no matter how much extra information is supplied. On the other
hand, in the non-monotonic setting, inconsistency can be resolved
by either removing old information, or adding new information, or
both. Therefore, belief revision functions in a non-monotonic setting
should allow a mixture of removal and addition of information for
inconsistency-resolution. In this paper, we will define two such re-
vision functions for disjunctive logic programs under the answer set
semantics.

Our first revision function called slp-revision4 is like belief base
revision which takes syntactic information into account. In revising
P by Q, a slp-revision function first obtains a logic program R that
is consistent with Q and differs minimally from P , then combines
R with Q. For example, if P = {(1), (2)} and Q = {(3)}, then R
could be {(1)} (i.e., resolving inconsistency by removing (2)); {(2)}
(i.e., resolving inconsistency by removing (1)); or {(1), (2), (4)}
(i.e., resolving inconsistency by adding (4)). Our second revision
function called llp-revision function5 is like AGM belief set revision
which ignores syntactic difference and focuses on the logical content
of a knowledge base. So in revising P by Q, a llp-revision function

4 “s” stands for syntactic and “lp” for logic program.
5 “l” stands for logical content and “lp” for logic program.

will instead obtain a logic program R whose logical content differ
the least from that of P where the logical content is characterised by
strong equivalent (SE) models [27].

The next section gives logical preliminaries. The following two
sections develop our approach to slp-revision and llp-revision, in
each case providing postulates, a semantic construction, and a rep-
resentation result. This is followed by a comparison to other work,
and a brief conclusion.

2 Preliminary Considerations
In this paper, we consider only fully grounded disjunctive logic pro-
grams. Thus a logic program (or program for short) here is a finite
set of rules of the form:

a1; . . . ; am ← b1, . . . , bn, not c1, . . . , not co

where m,n, o ≥ 0, m + n + o > 0, and ai, bj , ck ∈ A for A a
finite set of propositional atoms. We denote the set of all logic pro-
grams by P . For each rule r, let H(r) = {a1, . . . , an}, B+(r) =
{b1, . . . , bm}, and B−(r) = {c1, . . . , co}. The letters P , Q and R
are used to denote a logic program throughout the paper.

An interpretation is represented by the subset of atoms in A that
are true in the interpretation. A classical model of a program P is
an interpretation in which all rules of P are true according to the
standard definition of truth in propositional logic, and where default
negation is treated as classical negation. The set of classical models
of P is denoted as Mod(P). Given an interpretation Y , we write
Y |= P to mean Y is a classical model of P . The reduct of a program
P with respect to an interpretation Y , denoted PY , is the set of rules:

{H(r)← B+(r) | r ∈ P,B−(r) ∩ Y = ∅}.

An answer set Y of P is a subset-minimal classical model of PY .
The set of all answer sets of P is denoted as AS(P).

An SE interpretation [27] is a pair (X,Y) of interpretations such
that X ⊆ Y ⊆ A. The set of all SE interpretations (over A) is de-
noted SE . The letters M and N are used to denote a set of SE inter-
pretations throughout the paper. An SE interpretation is an SE model
of a program P if Y |= P and X |= PY . The set of all SE models
of P is denoted as SE(P). SE models are first proposed to capture
strong equivalence [18] between programs that is SE(P) = SE(Q)
iff P and Q are strongly equivalent, thus they contain more informa-
tions than answer sets. For this reason, SE models have been used
by many to characterise the logical content of a program [5, 7]. The
following definitions and results are given in [10, 8]. A set M of SE
interpretations is well-defined if (X,Y) ∈ M implies (Y, Y) ∈ M .
M is complete if it is well-defined and if (X,Y) ∈M , (Z,Z) ∈M
and Y ⊆ Z, then (X,Z) ∈ M . For each disjunctive logic pro-
gram P , SE(P) is complete and for each complete set M , there is a
unique (up to strong equivalence) disjunctive logic program P such
that SE(P) =M .

In this paper, we work with two notions of closure. The closure of
a setM under completeness is denoted as Cl(M). Formally, Cl(M)
is the minimal superset of M such that

1. if (X,Y) ∈M , then (Y, Y) ∈ Cl(M) and
2. if (X,Y), (Z,Z) ∈M and Y ⊆ Z, then (X,Z) ∈ Cl(M).

The closure of a program P which intends to capture all logical con-
sequence of P is denoted as cl(P). Formally

cl(P) = {r |SE(P) ⊆ SE({r}) and r is a program rule}.

We say P is closed if P = cl(P).
The following two properties of SE models [27] are crucial to this

paper:

1. Y ∈ AS(P) iff (Y, Y) ∈ SE(P) and there is no (X,Y) ∈
SE(P) such that X ⊂ Y .

2. (Y, Y) ∈ SE(P) iff Y ∈Mod(P).

So SE(P) 6= ∅ iff Mod(P) 6= ∅ but SE(P) 6= ∅ does not imply
AS(P) 6= ∅. This gives rise to two notions of consistency.

Definition 1. P is consistent iff AS(P) 6= ∅ and P is m-consistent6

iff SE(P) 6= ∅.

It follows from the SE model properties that consistency implies
m-consistency and m-inconsistency implies inconsistency. In other
words, a consistent program is m-consistent but not vice versa. For
convenience, we say a setM of SE interpretations is consistent iff the
program P such that SE(P) = Cl(M) is consistent; we say (Y, Y)
is an “answer set” inM iff (Y, Y) ∈M and there is no (X,Y) ∈M
such thatX ⊂ Y . Clearly, the consistency ofM indicates the consis-
tency of its corresponding logic program and (Y, Y) being an answer
set in M indicates Y is an answer set of the corresponding program.

In subsequent sections, we will need to describe the difference
between two logic programs and between their sets of SE models.
For this purpose, we use the symmetric difference operator 	 which
is defined as

X 	 Y = (X \ Y) ∪ (Y \X)

for any sets X and Y .

3 SLP-Revision Functions
In this section, we give a syntax-based revision function ∗ : P ×
P 7→ P for revising one logic program by another. The function
takes a logic program P called the original logic program and a logic
program Q called the revising logic program, and returns another
logic program P ∗ Q called the revised logic program. Following
AGM belief revision, we want to have Q contained in P ∗ Q (i.e.,
Q ⊆ P ∗Q) and P ∗Q is consistent whenever possible.

A main task in defining ∗ is to deal with the possible inconsistency
between Q and P . As illustrated in the teaching example, one means
of ensuring that P ∗ Q is consistent is to remove a minimal set of
beliefs from P so that adding Q to the result is consistent. Of course
there may be more than one way to remove beliefs fromP . Following
this intuition, we obtain all maximal subsets of P that are consistent
with Q, which we call the s-removal compatible programs of P with
respect to Q.

Definition 2. The set of s-removal compatible programs of P with
respect to Q, denoted P ↓ Q, is such that R ∈ P ↓ Q iff

1. R ⊆ P ,
2. R ∪Q is consistent, and
3. if R ⊂ R′ ⊆ P , then R′ ∪Q is inconsistent.

The notion of s-removal compatible programs is not new, classical
revision functions [1, 11] are based on more or less the same no-
tion. The difference is that this notion alone is sufficient to capture
the inconsistency-resolution strategy of classical belief revision, but
there is more that one can do in non-monotonic belief revision.

In our non-monotonic setting, we are able to express assumptions
(i.e., negation as failure) and to reason with them. Earlier, we as-
sumed John is not an administrator, in the absence of evidence to the
contrary. With this, we came to the conclusion that he has to teach.

6 “m” stands for “monotonic” which indicates that the notion of m-
consistency is based on a monotonic characterisation (i.e., SE models) for
logic programs.

Consequently, if we learn that John does not teach, as in our exam-
ple, one way of resolving this inconsistency is by adding a minimal
set of information so that our assumption does not hold. Following
this intuition, we obtain all the minimal supersets of P that are con-
sistent with Q, which we call the s-expansion compatible programs
of P with respect to Q.

Definition 3. The set of s-expansion compatible programs of P with
respect to Q, denoted P ↑ Q, is such that R ∈ P ↑ Q iff

1. P ⊆ R,
2. R ∪Q is consistent, and
3. if P ⊆ R′ ⊂ R, then R′ ∪Q is inconsistent.

Since the s-expansion and s-removal compatible programs are
consistent with Q and are obtained by removing or adding mini-
mal sets of rules from or to P , the union of Q with any of these
sets is consistent and comprises a least change made to P in order
to achieve consistency. These programs clearly should be candidates
for forming the revised logic program P ∗ Q; however, they do not
form the set of all candidates. In particular, we can obtain a program
that differs the least from P and is consistent with Q by removing
some beliefs of P and at the same time adding some new beliefs to
P . Thus we consider all those logic programs that differ the least
from P and are consistent with Q; these are called the s-compatible
programs of P with respect to Q.

Definition 4. The set of s-compatible programs of P with respect to
Q, denoted P l Q, is such that R ∈ P l Q iff

1. R ∪Q is consistent and
2. if P 	R′ ⊂ P 	R, then R′ ∪Q is inconsistent.

For example, let P = {a ← b, not c., b., e ← f, not g., f.} and
Q = {← a.,← e.}. Then P ∪Q is inconsistent since a and e can be
concluded from P but they contradict the rules of Q. To resolve the
inconsistency via making the least change to P , we could remove
b ← from P (which eliminates the contradiction about a) and add
g ← to P (which eliminates the contradiction about e). The program
thus obtained (i.e., (P \ {b.}) ∪ {g.}) is a s-compatible program in
P l Q.

It is obvious, but worth noting that the notion of s-compatible pro-
gram subsumes those of s-removal and s-expansion compatible pro-
grams. In the above example, P l Q also contains P \ {b., f.} and
P ∪{c., g.}, which are respectively an s-removal and an s-expansion
compatible program of P with respect to Q.

Proposition 1. (P ↑ Q) ∪ (P ↓ Q) ⊆ P l Q.

There are cases in which we cannot resolve inconsistency by only
adding new beliefs which means the set of s-expansion compatible
programs is empty. For example, if P = {a.} and Q = {← a.},
then P ∪ Q is inconsistent and we cannot restore consistency with-
out removing a← from P . In these cases, the inconsistency is due to
contradictory facts that can be concluded without using any reason-
ing power beyond that of classical logic. Clearly, the inconsistency is
of a monotonic nature, that is, in our terminology, m-inconsistency.

Proposition 2. If P ∪Q is m-inconsistent, then P ↑ Q = ∅.

So far, we have identified the candidates for forming P ∗ Q. It
remains to pick the “best” one. Such extralogical information is typ-
ically modelled by a selection function, which we do next.

Definition 5. A function γ is a selection function for P iff for any
program Q, γ(P l Q) returns a single element of P l Q whenever
P l Q is non-empty; otherwise it returns P .

The revised logic program P ∗ Q is then formed by combining Q
with the s-compatible program picked by the selection function for
P . We call the function ∗ defined in this way a slp-revision function
for P .

Definition 6. A function ∗ is a slp-revision function for P iff

P ∗Q = γ(P l Q) ∪Q

for any program Q, where γ is a selection function for P .

In classical belief revision, multiple candidates maybe chosen by
a selection function, and their intersection is combined with the new
belief to form the revision result. There, a selection function that
picks out a single element is called a maxichoice function [1]. In
classical logic, maxichoice selection functions lead to undesirable
properties for belief set revision but not for belief base revision.
In our non-monotonic setting, picking multiple candidates does not
make sense, as intersection of s-compatible programs may not be
consistent with the revising program. For example, let P = {a ←
not b, not c.} and Q = {← a.}. We can restore consistency of P
withQ by, for instance, adding the rule b← to P which corresponds
to the s-compatible program P ∪ {b.} or by adding the rule c ←
which corresponds to the s-compatible program P ∪ {c.}. However,
the intersection of the two s-compatible programs is inconsistent with
Q.

We turn next to properties of slp-revision functions. Consider the
following set of postulates where ∗ : P × P 7→ P is a function.

(s∗s) Q ⊆ P ∗Q
(s∗c) If Q is m-consistent, then P ∗Q is consistent
(s∗f) If Q is m-inconsistent, then P ∗Q = P ∪Q
(s∗rr) If ∅ 6= R ⊆ P \ (P ∗Q), then (P ∗Q) ∪R is inconsistent
(s∗er) If ∅ 6= E ⊆ (P ∗Q)\(P∪Q), then (P ∗Q)\E is inconsistent
(s∗mr) If ∅ 6= R ⊆ P \ (P ∗Q) and ∅ 6= E ⊆ (P ∗Q) \ (P ∪Q),

then ((P ∗Q) ∪R) \ E is inconsistent
(s∗u) If P l Q = P l R, then P \ (P ∗ Q) = P \ (P ∗ R) and

(P ∗Q) \ (P ∪Q) = (P ∗R) \ (P ∪R)

(s∗s) (Success) states that a revision is always successful in incor-
porating the new beliefs. (s∗c) (Consistency) states that a revision
ensures consistency of the revised logic program whenever possi-
ble. In the monotonic setting, a revision results in inconsistency only
when the new beliefs are themselves inconsistent. This is not the case
in the non-monotonic setting. For example, consider the revision of
P = {a.} by Q = {b ← not b}. Although Q is inconsistent,
we have P ∪ {b.} as a s-compatible program of P with respect to
Q. Thus we can have P ∪ {b.} ∪ Q as the revised logic program,
which contains Q and is consistent. Here, a revision results in incon-
sistency only when the revising logic program is m-inconsistent. In
such a case, (s∗f) (Failure) states that the revision corresponds to the
union of the original and revising logic program.

(s∗rr) (Removal Relevance) states that if some rules are removed
from the original logic program for the revision, then adding them
to the revised logic program results in inconsistency. It captures the
intuition that nothing is removed unless its removal contributes to
making the revised logic program consistent. (s∗er) (Expansion Rel-
evance) states that if some new rules other than those in the revising
logic program are added to the original logic program for the revi-
sion, then removing them from the revised logic program results in
inconsistency. It captures the intuition that nothing is added unless
adding it contributes to making the revised logic program consistent.
(s∗mr) (Mixed Relevance) states that if some rules are removed from

the original logic program and some new rules other than those in
the revising logic program are added to the original logic program
for the revision, then adding back the removed ones and removing
the added ones result in inconsistency. Its intuition is a mixture of
the two above. Note that putting (s∗rr) and (s∗er) together does not
guarantee (s∗mr), nor the reverse. In summary, these three postulates
express the necessity of adding and/or removing certain belief for re-
solving inconsistency and hence to accomplish a revision. In classical
belief revision, inconsistency can only be resolved by removing old
beliefs; the necessity of removing particular beliefs is captured by the
Relevance postulate [11].7 The three postulates are the counterparts
of Relevance in our non-monotonic setting, and we need all three of
them to deal respectively with addition, removal, and a mixture of
addition and removal.

Finally, (s∗u) (Uniformity) states the condition under which two
revising logic programs Q and R trigger the same changes to the
original logic program P . That is the rules removed from P (i.e.,
P \ (P ∗ Q)) and the rules added to P (i.e., (P ∗ Q) \ (P ∪ Q))
for accommodating Q are identical to those for accommodating R.
Certainly having Q and R be strongly equivalent (i.e., SE(Q) =
SE(R)) is a sufficient condition. However, it is too strong a require-
ment. Suppose P = {← a.}, Q = {a.}, and R = {a ← b., b.}.
Then the minimal change to P we have to made to accommodate Q
and R are the same, that is we remove← a. However Q and R are
not strongly equivalent, even though they incur the same change to
P . The essential point of this example is that instead of a global con-
dition like strong equivalence, we need a condition that is local to the
original logic program P . Unfortunately, it seems there is no exist-
ing notion in the logic programming literature that captures this local
condition. Thus we use our newly defined notion of s-compatible
programs and come up with the local but more appropriate condition
in (s∗u).

We can show that these postulates are sufficient to characterise all
slp-revision functions.

Theorem 1. A function ∗ is a slp-revision function iff it satisfies
(s∗s), (s∗c), (s∗f), (s∗rr), (s∗er), (s∗mr), and (s∗u).

4 LLP-Revision Functions
Slp-revision functions preserve the syntactic structure of the original
logic program as much as possible. Thus is most useful for scenarios
in which syntactic information is prioritised over that of logical con-
tent. In this section, we provide a revision function called llp-revision
function that prioritises the preservation of logical content over that
of syntactic information.

The main strategy of llp-revision functions is the same as that of
slp-revision functions, which is to first obtain a logic program that
differs the least from the original one and that is consistent with the
revising one, and then combine it with the revising program. The
distinguishing feature of llp-revision is in the interpretation of “dif-
fers the least”. Slp-revision interprets this notion as symmetric differ-
ence between the constituent rules whereas llp-revision interprets it
as between the logical content. Since the standard approach in char-
acterising the logical content of logic programs is through their SE
models, the difference between logical content is represented as the
difference between sets of SE models. This brings about the follow-
ing dual notion of s-compatible program which we call l-compatible
program. Note that although we are using SE models, we concern

7 If ψ ∈ K and ψ 6∈ K ∗φ, then there is some K′ such that K ∗φ ⊆ K′ ⊆
K ∪ {φ}, K′ is consistent but K′ ∪ {ψ} is inconsistent.

with the stronger notion of consistency (i.e. P is consistent if it has
an answer set).

Definition 7. The set of l-compatible programs of P with respect to
Q, denoted P m Q, is such that R ∈ P m Q iff

1. R = cl(R),
2. R ∪Q is consistent, and
3. if SE(P) 	 SE(R′) ⊂ SE(P) 	 SE(R), then R′ ∪ Q is

inconsistent.

A l-compatible program of P with respect to Q is a logic program
that is consistent with Q (condition 1) and whose set of SE models
differ minimally from that of P (condition 2). Moreover, since we
ignore syntactic difference, the logic program is closed (condition
1). We denote by P ⇓ Q and P ⇑ Q the set of l-removal compatible
programs and l-expansion compatible programs such that R ∈ P ⇓
Q iff SE(P) ⊆ SE(R) andR ∈ P m Q;R ∈ P ⇑ Q iff SE(R) ⊆
SE(P) and R ∈ P m Q.

We have given a declarative definition for l-compatible programs.
The following theorem serves as a constructive one which is crucial
for investigating the behaviour of llp-revision functions. The theorem
identifies the set of SE models for a l-compatible program under all
possible situations.

Theorem 2. R ∈ P m Q iff R = cl(R) and one of the following
conditions holds:

1. P ∪Q is inconsistent. SE(R) = Cl((SE(P) ∪ {(Y, Y)}) \
M) where (Y, Y) ∈ SE(Q) \ SE(P) and M = {(X,Z) ∈
SE(P) | (X,Y) ∈ SE(Q) \ SE(P) and Z ⊂ Y }.8

2. P ∪Q is inconsistent but m-consistent. SE(R) = SE(P)\M
where there is (Y, Y) ∈ SE(P)∩SE(Q) such that (W,W) ∈
SE(P) ∩ SE(Q) implies W 6⊂ Y and M = {(X,Z) ∈
SE(P) | (X,Y) ∈ SE(Q)∩SE(P), X 6= Y and Z ⊆ Y } 8

3. P ∪Q is consistent. SE(R) = SE(P).

Due to the mixture of the minimality (i.e., for any l-compatible pro-
gram R, SE(P) 	 SE(R) is minimal among programs consistent
with P) and completeness requirement (i.e., SE(R) is complete), it
is a challenging task identifying such models. We will explain the
process with the aid of Figure 1 which gives a visualisation of Theo-
rem 2.

In Figure 1, a rectangle represents the space of all SE interpreta-
tions. In each rectangle, the left circle represents the SE models of P
and the right one represents those of Q. When the two circles inter-
sect as in diagram (1.1), (1.3), (2) and (4), it means the SE models of
P intersect with those of Q. Finally, the shaded area in each rectan-
gle represents the SE models of a l-compatible program and the black
dot represents the SE model (Y, Y) such that Y is the answer set of
the l-compatible program (i.e., the SE model (Y, Y) in Theorem 2).

Condition 1 of Theorem 2 corresponds to diagrams (1.1) – (1.4)
in which the SE models of the l-compatible program consists of
the closure of all or part of SE(P) and an SE model (Y, Y) from
SE(Q) \SE(P). The set M corresponds to the area in SE(P) that
is not intersecting with the shaped area. Such M is empty for (1.1) –
(1.2) indicating that (Y, Y) is an answer set inCl(SE(P)∪{Y, Y })
and non-empty for (1.3) – (1.4) indicating that (Y, Y) is not an
answer set in Cl(SE(P) ∪ {Y, Y }) but will be one after the re-
moval of M from SE(P). To see why all elements of M have to
be removed, suppose (X,Z) ∈ M is not removed. Then we have
{(Y, Y), (X,Y)} ⊆ SE(R)∩SE(Q) = Cl(((SE(P)∪ (Y, Y)) \

8 For (X,Z) ∈M , X may be identical to Z.

SE(P) SE(Q)

SE

(1.1)

SE(P) SE(Q)

SE

(1.2)

SE(P) SE(Q)

SE

(1.3)

SE(P) SE(Q)

SE

(1.4)

SE(P) SE(Q)

SE

(2)

SE(P) SE(Q)

SE

(4)

Figure 1. SE models for l-compatible programs of P w.r.t. Q

M) ∪ {X,Z}) ∩ SE(Q), thus (Y, Y) no longer leads to an an-
swer set for R. Condition 2 corresponds to diagram (2) in which the
SE models of the l-compatible program are contained in SE(P). As
for condition 1, the set M corresponds to the area in SE(P) that
is not intersecting with the shaped area and the removal of M is
necessary for guaranteeing (Y, Y) is an answer set in SE(R). Con-
dition 3 corresponds to diagram (3) in which the SE models of the
l-compatible program consists all of SE(P). Since P ∪Q is consis-
tent, we don’t have to make any change to SE(P). It is easy to see
that the l-compatible programs in diagrams (1.1) – (1.2) are l-removal
compatible programs; that in diagram (2) is a l-expansion compatible
program; and that in diagram (4) is a l-removal compatible program
as well as a l-expansion compatible program.

In the AGM setting, a belief setK is inconsistent with another one
K′ iff the (classical) models of K disjoint with those of K′. So if a
belief set K′′ differs minimally from K, but is consistent with K′,
then the models of K′′ consist of the models of K together with a
single model ofK. In our non-monotonic setting, P can be inconsis-
tent with Q even though the (SE) models of P intersect with those
of Q. In this setting, there are more options for a program to be con-
sistent with Q and such that its models differ minimally from those
of P . Diagram (1.2) represents the counterpart of the only option in
the AGM setting. Diagrams (1.1), (1.3), (1.4) and (2) represent the
other options that are characteristic of our non-monotonic setting. In
particular, the inconsistency resolving strategy by adding new rules
is evident in diagram (1.3), (1.4) and (2). Since the SE models of the
l-compatible programs in these diagrams do not contain all those of
P , the l-compatible programs must contains rules outside of P .

Now we give the definition of llp-revision functions. As for slp-
revision functions, a selection function γ is assumed for choosing
the “best” l-compatible program. Then the closure of the chosen l-
compatible program and the revising logic program is returned as
the revised logic program.

Definition 8. A function ∗ is a llp-revision function for P iff

P ∗Q = cl(γ(P m Q) ∪Q)

for any program Q, where γ is a selection function for P .

For properties of llp-revision functions, consider the following set
of postulates where ∗ : P × P 7→ P is a function.

(l∗cl) P ∗Q = cl(P ∗Q)
(l∗s) Q ⊆ P ∗Q
(l∗c) If Q is m-consistent, then P ∗Q is consistent

(l∗f) If Q is m-inconsistent, then P ∗Q = cl(P ∪Q)
(l∗rr) If ∅ 6=M ⊆ (SE(P)∩SE(Q))\SE(P ∗Q), then SE(P ∗

Q) ∪M is inconsistent.
(l∗er) If ∅ 6= N ⊆ SE(P ∗Q)\SE(P), then either SE(P ∗Q)\N

is inconsistent or Cl(SE(P ∗Q) \N) = SE(P ∗Q).
(l∗mr) If ∅ 6= M ⊆ (SE(P) ∩ SE(Q)) \ SE(P ∗ Q) and ∅ 6=

N ⊆ SE(P ∗ Q) \ SE(P), then (SE(P ∗ Q) ∪M) \ N is
inconsistent.

(l∗u) If P m Q = P m R, then Cl((SE(P) ∪ SE(P ∗ Q)) \
M) = Cl((SE(P)∪SE(P ∗R)) \N) for M = {(X,Z) ∈
SE(P)|Cl(SE(P ∗Q)∪{(X,Z)})∩SE(Q) is inconsistent}
and N = {(X,Z) ∈ SE(P)|Cl(SE(P ∗R) ∪ {(X,Z)}) ∩
SE(R) is inconsistent}

(l∗cl) (Closure) states that the revised logic program is closed. (l∗s),
(l∗c) and (l∗f) are the same as their counterparts for slp-revision func-
tion, except for (l∗f) in which the revised logic program has to be
closed. Since (l∗s) requires that SE(P ∗ Q) is a subset of SE(Q),
SE models outside of SE(Q) is of no concern. Then the principle
of minimal change dictates that as much as possible the intersecting
models of P and Q are preserved and as least as possible the mod-
els outside of SE(P) are added. (l∗rr) states that if a subset M of
SE(P)∩SE(Q) is not in SE(P ∗Q), then addingM to SE(P ∗Q)
results in inconsistency. The postulate captures the intuition that no
intersecting models of P and Q is excluded in the revision unless
this contributes to the consistency of P ∗ Q. (l∗er) states that if a
subset N of SE(P ∗ Q) is not in SE(P), then removing N from
SE(P ∗ Q) results in inconsistency or its inclusion in SE(P ∗ Q)
is required for SE(P ∗ Q) to be closed under completeness. Re-
call that the set of SE models of any logic program has to be closed
under completeness. The postulate captures the intuition that no SE
models outside SE(P) is included in those of P ∗Q unless this con-
tributes to the consistency of P ∗ Q or to the closure of the set of
SE models of P ∗ Q. (l∗mr) is a mixture of (l∗rr) and (l∗er), cap-
turing the necessity of exclusion of SE models in SE(P) ∩ SE(Q)
and inclusion of SE models not in SE(P). Finally, (l∗u) states that
the selection function that determines a llp-revision function is in-
deed a function, that is if P m Q = P m R then γ(P m Q) =
γ(P m R) for γ a selection function. It follows from the other postu-
lates that Cl((SE(P) ∪ SE(P ∗Q)) \M) = SE(γ(P m Q)) and
Cl((SE(P) ∪ SE(P ∗ R)) \ N) = SE(γ(P m R)). The postu-
late is not as neat as its counterpart (s∗u) for slp-revision functions.
However the role of (s∗u) in characterising slp-revision functions is
the exactly the same as (l∗u) in characterising llp-revision functions.

We can show that these postulates are sufficient to characterise all
llp-revision functions.

Theorem 3. A function ∗ is a llp-revision function iff ∗ satisfies
(l∗cl), (l∗s), (l∗c), (l∗f), (l∗rr), (l∗er), (l∗mr), and (l∗u).

5 Related Work

There has been much work on belief revision for logic programs.
Delgrande et al [7] generalise Satoh’s [22] and Dalal’s [4] revision
operators to logic programs. Significantly, they bring SE model into
the picture which has inspired several approaches that are based on
SE models. Slota and Leite [24, 25, 26] investigate Katsuno and
Mendelzon style [14] update for logic programs. Schwind and Inoue
[23] provide a constructive characterisation for the revision operators
in [7]. Delgrande et al [5] adapt the model-based revision of Katsuno
and Mendelzon [15] to logic programs. Finally, Binnewies et al [3]

provide a variant of partial meet revision and contraction for logic
programs.

Comparing with our llp-revision function which also makes use
of SE models, these approaches assume a weaker notion of consis-
tency, that is m-consistency. For this reason, some contradictions will
not be dealt with in these approaches. For instance, the contradictory
rule a ← not a is m-consistent thus is considered to be an accept-
able state of belief. Also in our teaching example, as the program
consisting of rules (1) – (3) is m-consistent, no attempt will be made
to resolve the contradiction about John’s teaching duty by the SE
model approaches. Therefore for application scenarios in which such
contradictions can not be tolerant, our llp-revision function is clearly
a better choice. It worth noting that Slota and Leite [24, 26] argue
that SE model is not sufficiently expressive to capture all aspects of
a program and this gives rise to undesirable properties for the SE
model approaches. llp-revision functions also suffer from this defect
of SE models, however our slp-revision function, since it is purely
syntactic, avoids all such undesirable properties.

Apart from the SE model approaches, Krümpelmann and Kern-
Isberner [16] provide a revision function for logic programs that orig-
inates from Hansson’s semi-revision [12]. For reference we call the
revision function base revision function as the revision they consid-
ered is belief base revision. Since they assume the same notion of
consistency as ours, all the above mentioned contradictions will be
resolved in their approach. As we have noted, classical belief revision
is defined for monotonic setting, not for non-monotonic ones. Incon-
sistency can be caused by wrong assumptions in the non-monotonic
setting but not in the monotonic setting. Such causes are not con-
sidered in [16]. Consequently, their approach only supports one of
the many possible inconsistency-resolution strategies we have devel-
oped. Specifically, in [16], inconsistency can be resolved only by re-
moving old beliefs; this strategy is captured by a notion analogous to
s-removal compatible programs. The inconsistency-resolution strate-
gies captured by the notion of s-expansion compatible program and
s-compatible program in general are not considered.

A group of work under the title of update [2, 6, 9, 17, 20, 21, 28,
19, 29, 30] also deals with changes of logic programs. The update
however is different from the Katsuno and Mendelzon style update
[14]. Following [2, 17], a typical problem setting is to consider a
sequence P1, P2, . . . , Pn of programs such that 1 ≤ j < j ≤ n
implies Pi has higher priority over Pj . The goal of the update then is
to obtain a set of answer sets from such a program sequence that in
some sense respects the priority ordering. Clearly, these approaches
have very different focus from ours and from those of [16, 7, 24, 25,
26, 5] in which a single new logic program is returned.

6 Conclusion and Future Work

Depending on the application, the logic governing an agent’s beliefs
could be either monotonic or non-monotonic. Traditional belief revi-
sion assumes that an agent reasons monotonically; therefore, by def-
inition, it is applicable to such situations only. Here we have aimed
to study belief revision for situations in which the agent reasons non-
monotonically. To this end, we defined slp-revision function and llp-
revision function for disjunctive logic programs under the answer set
semantics, catering respectively for application scenarios that priori-
tise the preservation of the syntactic structure and that prioritise the
preservation of logical content.

Inconsistency-resolution is an essential task for belief revision.
However, the strategies used in traditional belief revision functions
are limited to situations when the agent reasons monotonically. With

a logic program we have the luxury of making assumptions via lack
of contrary evidence, and we can deduce certain facts from such as-
sumptions. Thus if a set of beliefs is inconsistent, then one possible
cause is that we made the wrong assumption. In such cases, we can
resolve the inconsistency by adding some new rules so that the as-
sumption can no longer be made. Such a cause of inconsistency and
the associated inconsistency-resolution strategy is beyond the scope
of traditional belief revision, but is crucial for non-monotonic belief
revision. We argue that this rationale, which is encoded in our be-
lief revision functions, captures the fundamental difference between
monotonic and non-monotonic belief revision.

This paper then has explored AGM-style revision and belief base
revision in the non-monotonic setting of disjunctive logic programs;
in future work we propose to extend this to a general approach to
belief revision in arbitrary non-monotonic settings.

Appendix: Proof of Results

Proof for Proposition 2
Suppose P ∪ Q is m-inconsistent. We need to show P ↑ Q = ∅.

SinceP∪Q is m-inconsistent, we have SE(P)∩SE(Q) = ∅. By the
definition of expansion compatible program, any element in P ↑ Q
has to be a superset of P and consistent with Q. However, for any
superset R of P , SE(R) ⊆ SE(P). Thus SE(R) ∩ SE(Q) = ∅
which implies R ∪Q is m-inconsistent.
Proof for Theorem 1

For one direction, suppose ∗ is a slp-revision function for P and
the associated selection function is γ. We need to show ∗ satisfies
(s∗s), (s∗c), (s∗f), (s∗rr), (s∗er), (s∗mr), and (s∗u). (s∗s), (s∗c), and
(s∗f) follow immediately from the definition of slp-revision func-
tions.

(s∗rr): Suppose there is a setR such thatR 6= ∅ andR ⊆ P \(P ∗
Q). By the definition of slp-revision, we haveP∗Q = γ(P l Q)∪Q,
hence P \(γ(P l Q)∪Q) 6= ∅which implies γ(P l Q) 6= P . Then
it follows from the definition of selection function that P l Q 6= ∅
and γ(P l Q) ∈ P l Q. Let γ(P l Q) = X . Then (P ∗Q) ∪R =
X∪Q∪R. Since ∅ 6= R ⊆ P , we have ((X∪R)	P) ⊂ (X	P).
By the definition of compatible program, X ∪R∪Q is inconsistent,
that is (P ∗Q) ∪R is inconsistent.

(s∗er): Suppose there is a set E such that E 6= ∅ and E ⊆ (P ∗
Q) \ (P ∪ Q). By the definition of slp-revision, we have P ∗ Q =
γ(P l Q)∪Q, hence (γ(P l Q)∪Q)\ (P ∪Q) 6= ∅ which implies
γ(P l Q) 6= P . Then it follows from the definition of selection
function that P l Q 6= ∅ and γ(P l Q) ∈ P l Q. Let γ(P l
Q) = X . Then (P ∗ Q) \ E = (X ∪ Q) \ E. Since E ∩ P = ∅
and ∅ 6= E ⊆ X , ((X \ E) 	 P) ⊂ (X 	 P). By the definition
of compatible program, (X \ E) ∪ Q is inconsistent. Then since
E ∩Q = ∅, we have (X \E)∪Q = (X ∪Q) \E = (P ∗Q) \E.
Thus (P ∗Q) \ E is inconsistent.

(s∗mr): Can be proved by combining the proving method for (s∗rr)
and (s∗er).

(s∗u): Suppose P l Q = P l R. Then γ(P l Q) = γ(P l R). If
P l Q = P l R = ∅, then by the definition of slp-revision P ∗Q =
P ∪Q and P ∗R = P ∪R. Thus P \ (P ∗Q) = P \ (P ∗R) = ∅
and (P ∗ Q) \ (P ∪ Q) = (P ∗ R) \ (P ∪ R) = ∅. So suppose
P l Q = P l R 6= ∅ and let X = γ(P l Q) = γ(P l R). By
the definition of slp-revision, we have P \ (P ∗Q) = P \ (X ∪Q).
Assume ∅ 6= P ∩Q 6⊆ X . Then sinceX∪(P ∩Q) is consistent with
Q and (X∪(P ∩Q))	P ⊂ X	P ,X is not a compatible program,
a contradiction! Thus P ∩Q = ∅ or P ∩Q ⊆ X . In either case we
have by set theory that P \(P ∗Q) = P \(X∪Q) = P \X . It can be

shown in the same manner that P \(P ∗R) = P \(X∪R) = P \X .
Thus P \ (P ∗ Q) = P \ (P ∗ R). Again by the definition of slp-
revision, we have (P ∗Q)\(P ∪Q) = (X∪Q)\(P ∪Q) = X \P .
Similarly (P ∗R) \ (P ∪R) = (X ∪R) \ (P ∪R) = X \P . Thus
(P ∗Q) \ (P ∪Q) = (P ∗R) \ (P ∪R).

For the other direction, suppose ∗ is a function that satisfies (s∗s),
(s∗c), (s∗f), (s∗rr), (s∗er), (s∗mr), and (s∗u). We need to show ∗ is a
slp-revision function.

Let γ be defined as:

γ(P l Q) = ((P ∗Q) ∩ P) ∪ ((P ∗Q) \Q)

for all Q. It suffices to show γ is a selection function for P and
P ∗Q = γ(P l Q) ∪Q.

Part 1: For γ to be a selection function, it must be a function.
Suppose P l Q = P l R. Then (s∗u) implies P \ (P ∗ Q) =
P \ (P ∗ R) and (P ∗ Q) \ (P ∪ Q) = (P ∗ R) \ (P ∪ R). Since
P = (P \(P ∗Q))∪((P ∗Q)∩P) = (P \(P ∗R))∪((P ∗R)∩P),
P \ (P ∗Q) = P \ (P ∗R) implies (P ∗Q) ∩ P = (P ∗R) ∩ P .
Thus (P ∗Q) \ (P ∪Q) = (P ∗R) \ (P ∪R) implies ((P ∗Q) ∩
P)∪ ((P ∗Q) \ (P ∪Q)) = ((P ∗R)∩P)∪ ((P ∗R) \ (P ∪R)).
Then by set theory, we have ((P ∗ Q) ∩ P) ∪ ((P ∗ Q) \ Q) =
((P ∗R)∩P)∪ ((P ∗R)\R). Finally, it follows from the definition
of γ that γ(P l Q) = γ(P l R).

If P l Q = ∅, then we have to show γ(P l Q) = P . P l Q = ∅
impliesQ is m-inconsistent, hence it follows from (s∗f) that P ∗Q =
P ∪Q. Then by the definition of γ, γ(P l Q) = ((P ∗Q) ∩ P) ∪
((P ∗Q) \Q) = ((P ∪Q) ∩ P) ∪ ((P ∪Q) \Q) = P .

If P l Q 6= ∅, then we have to show γ(P l Q) ∈ P l Q.
Since P l Q 6= ∅, Q is m-consistent. Then (s∗c) implies P ∗ Q is
consistent. Since γ(P l Q)∪Q = ((P∗Q)∩P)∪((P∗Q)\Q)∪Q =
P ∗Q, γ(P l Q)∪Q is consistent. Assume there is X s.t. X ∪Q is
consistent and X 	 P ⊂ γ(P l Q)	 P . Then we have three cases:

Case 1, there is R s.t. ∅ 6= R ⊆ P \ γ(P l Q), and X = γ(P l
Q) ∪ R: If R ∩ Q = ∅, then since γ(P l Q) ∪ Q = P ∗ Q,
R ∩ (P ∗ Q) = ∅. Then it follows from (s∗rr) that (P ∗ Q) ∪ R is
inconsistent. Since X ∪ Q = (P ∗ Q) ∪ R, X ∪ Q is inconsistent,
a contradiction! If R ∩Q 6= ∅, then since R ⊆ P , R ∩ P ∩Q 6= ∅.
Since (s∗s) implies Q ⊆ P ∗ Q, we have Q ∩ P ⊆ (P ∗ Q) ∩ P ,
which implies R∩ ((P ∗Q)∩P) 6= ∅. Then since ((P ∗Q)∩P) ⊆
γ(P l Q), γ(P l Q) ∩R 6= ∅, a contradiction! Thus R ∩Q 6= ∅ is
an impossible case.

Case 2, there is E s.t. E ∩ P = ∅, ∅ 6= E ⊆ γ(P l Q), and
X = γ(P l Q) \ E: Then E ⊆ γ(P l Q) ∪ Q = P ∗ Q. If
E ∩ Q = ∅, then (s∗er) implies (P ∗ Q) \ E is inconsistent. Since
X∪Q = γ(P l Q)\E∪Q = (P ∗Q)\E,X∪Q is inconsistent, a
contradiction! IfE∩Q 6= ∅, thenE 6⊆ (P ∗Q)\Q. SinceE∩P = ∅,
we haveE∩(P ∗Q)∩P = ∅. ThusE 6⊆ ((P ∗Q)∩P)∪((P ∗Q)\
Q) = γ(P l Q), a contradiction! Thus E ∩Q 6= ∅ is an impossible
case.

Case 3, there are R and E s.t. ∅ 6= R ⊆ P , R ∩ γ(P l Q) = ∅,
E ∩ P = ∅, ∅ 6= E ⊆ γ(P l Q), and X = (γ(P l Q) ∪ R) \ E:
Then we can show as in Case 1 and 2 that R ∩ P ∗ Q = ∅ and
E ⊆ P ∗ Q. If R ∩ Q = ∅ and E ∩ Q = ∅, then (s∗mr) implies
((P ∗Q)∪R)\E is inconsistent. ThusX∪Q = ((γ(P l Q)∪R)\
E) ∪Q = ((P ∗Q) ∪R) \ E is inconsistent, a contradiction! Also
we can show as in Case 1 and 2 that that R∩Q = ∅ and E ∩Q = ∅
are impossible cases.

Part 2: By set theory, γ(P l Q) ∪ Q = ((P ∗ Q) ∩ P) ∪ ((P ∗
Q) \Q) ∪Q = ((P ∗Q) ∩ P) ∪ (P ∗Q) = P ∗Q.
Proof for Theorem 2

For one direction, let R ∈ P m Q. Then R = cl(R), R ∪ Q

is consistent and SE(P) 	 SE(S) ⊂ SE(P) 	 SE(R) implies
S ∪ Q is inconsistent. Since R ∪ Q is consistent, there is (Y, Y) ∈
SE(R) ∩ SE(Q) and there is no (X,Y) ∈ SE(R) ∩ SE(Q) with
X ⊂ Y . We have three cases:

Case 1, P ∪ Q is inconsistent and (Y, Y) ∈ SE(Q) \ SE(P):
Let M = {(X,Z) ∈ SE(P)|(X,Y) ∈ SE(Q) \ SE(P) and Z ⊂
Y }. Let SE(S) = Cl((SE(P) ∪ {(Y, Y)}) \M). Then (Y, Y) ∈
SE(S) ∩ SE(Q) and the removal of all elements in M guarantees
that there is no (X,Y) ∈ SE(S) ∩ SE(Q) with X ⊂ Y , hence
S ∪Q is consistent.

Assume SE(R) 6= Cl((SE(P) ∪ {(Y, Y)}) \M). Then
SE(R) = Cl(((SE(P) ∪ {(Y, Y)}) \M) \G),
SE(R) = Cl(((SE(P) ∪ {(Y, Y)}) \M) ∪N), or
SE(R) = Cl((((SE(P) ∪ {(Y, Y)}) \M) \G) ∪N)
where G 6= ∅, G ⊆ SE(P) \M , N 6= ∅, and N ∩SE(P) = ∅. For
any of the possibilities, we have by basic set theory that SE(P) 	
SE(P) ⊂ SE(P) 	 SE(R), which means P ∪ Q is inconsistent,
a contradiction! So SE(R) = Cl((SE(P) ∪ {(Y, Y)}) \M). This
case corresponds to condition 1 of Theorem 2.

Case 2, P ∪ Q is inconsistent and (Y, Y) ∈ SE(Q) ∩ SE(P):
Let M = {(X,Z) ∈ SE(P) | (X,Y) ∈ SE(Q) \ SE(P), X 6=
Y and Z ⊆ Y }. Note that SE(P) \M = Cl(SE(P) \M). Let
SE(S) = SE(P) \M . Then (Y, Y) ∈ SE(S) ∩ SE(Q) and the
removal of all elements in M guarantees that there is no (X,Y) ∈
SE(S) ∩ SE(Q) with X ⊂ Y , hence S ∪Q is consistent.

Assume SE(R) 6= SE(P) \M . Then
SE(R) = (SE(P) \M) \G,
SE(R) = (SE(P) \M) ∪H , or
SE(R) = ((SE(P) \M) \G) ∪H)
forG 6= ∅,G ⊆ SE(P)\M ,H 6= ∅, andH∩SE(P) = ∅. For any
of the possibilities, we have SE(P)	SE(S) ⊂ SE(P)	SE(R),
which means P ∪ Q is inconsistent, a contradiction! So SE(R) =
SE(P) \M .

Assume there is (W,W) ∈ SE(P) ∩ SE(Q) such that W ⊂
Y . Let SE(S) = SE(P) \ M ′ where M ′ = {(X,Z) ∈
SE(P) | (X,W) ∈ SE(Q) \ SE(P), X 6= W and Z ⊆ W}.
Then (W,W) ∈ SE(S) ∩ SE(Q) and the removal of all elements
in M ′ guarantees that there is no (X,W) ∈ SE(S) ∩ SE(Q)
with X ⊂ W , hence S ∪ Q is consistent. By the completeness
of SE models, it follows from (X,W) ∈ SE(Q) \ SE(P) and
W ⊂ Y that (X,Y) ∈ SE(Q) \ SE(P). Then it is easy to see
that M ′ ⊂ M . Thus SE(P)	 SE(S) ⊂ SE(P)	 SE(R) which
implies S ∪ Q is inconsistent, a contradiction! So there is no such
(W,W) ∈ SE(P) ∩ SE(Q).

This case corresponds to condition condition 2 of Theorem 2.
Case 3, P ∪ Q is consistent: Assume SE(R) 6= SE(P). Then

SE(R) = SE(P) ∪M ,
SE(R) = SE(P) \N , or
SE(R) = (SE(P) ∪M) \N
for M ∩ SE(P) = ∅ and N ⊆ SE(P). For any of the possibilities,
we have SE(P)	SE(P) ⊂ SE(P)	SE(R), which means P ∪Q
is inconsistent, a contradiction! Thus SE(R) = SE(P). This case
corresponds to condition 3 of Theorem 2.

For the other direction, we need to show if R = cl(R) and any of
the three conditions of Theorem 2 is true, then R ∈ P m Q. So we
have three cases which correspond to the three conditions.

Case 1: Conditions 1 and 2 for l-compatible programs are trivially
satisfied. Let SE(P)	 SE(S) ⊂ SE(P)	 SE(R). Then
SE(S) = SE(P) \M ,
SE(S) = (SE(P) \M) ∪N , or
SE(S) = Cl(((SE(P) ∪ (Y, Y)) \M) ∪N

for ∅ 6= N ⊆ M . It is easy to see that for all cases, S ∪Q is incon-
sistent.

Case 2: Conditions 1 and 2 for l-compatible programs are trivially
satisfied. Let SE(P)	SE(S) ⊂ SE(P)	SE(R). Then SE(S) =
(SE(P) \M) ∪ G for ∅ 6= G ⊆ M . It is easy to see that S ∪Q is
inconsistent.

Case 3: Conditions 1 and 2 for l-compatible programs are trivially
satisfied. Since there is no S such that SE(P)	SE(S) ⊂ SE(P)	
SE(R), condition 3 is also trivially satisfied.
Proof for Theorem 3

For one direction, suppose ∗ is a llp-revision function. We need
to show ∗ satisfies (l∗cl), (l∗s), (l∗c), (l∗f), (l∗rr), (l∗er), (l∗mr), and
(l∗u). (l∗cl), (l∗s), (l∗f), and (l∗c) follow immediately from the defi-
nition of llp-revision functions.

(l∗rr): Let ∅ 6= J ⊆ (SE(P)∩SE(Q))\SE(P ∗Q). We need to
show SE(P ∗Q)∪J is inconsistent. By the definition of llp-revision
function, we have P ∗ Q = cl(γ(P m Q) ∪ Q). Let γ(P m Q) =
X . Then we have SE(P ∗ Q) = SE(X) ∩ SE(Q). According to
Theorem 2 there are three cases:

Case 1, P ∪ Q is inconsistent and SE(X) = Cl((SE(P) ∪
{(Y, Y)}) \M) for M = {(X,Z) ∈ SE(P) | (X,Y) ∈ SE(Q) \
SE(P) and Z ⊂ Y }: Then we have SE(P ∗ Q) = Cl((SE(P) ∩
SE(Q)) \ M ∪ {(Y, Y)}) which implies O ⊆ M . So there is
(X,Y) ∈ Cl((SE(P ∗Q) ∪O) with X ⊂ Y which means (Y, Y)
is no longer an answer set in SE(P ∗Q) ∪O.

Case 2, P ∪ Q is inconsistent but m-consistent and SE(X) =
SE(P) \ M for there is (Y, Y) ∈ SE(P) ∩ SE(Q) such that
(W,W) ∈ SE(P)∩SE(Q) implies W 6⊂ Y and M = {(X,Z) ∈
SE(P) | (X,Y) ∈ SE(Q) \ SE(P), X 6= Y and Z ⊆ Y }: Then
SE(P ∗Q) = (SE(P) ∩ SE(Q)) \M which implies O ⊆M . So
there is (X,Y) ∈ Cl(SE(P ∗Q) ∪ O) with X ⊂ Y which means
(Y, Y) is no longer an answer set in SE(P ∗Q) ∪O.

Case 3: Since SE(X) = SE(P), we have SE(P ∗ Q) =
SE(P) ∩ SE(Q) which means O does not exist. So this is an im-
possible case.

(l∗er): Let ∅ 6= O ⊆ SE(P ∗ Q) \ SE(P). We need to show
SE(P ∗Q) \O is inconsistent or Cl(SE(P ∗Q) \O) = SE(P ∗
Q). By the definition of llp-revision function, we have P ∗ Q =
cl(γ(P m Q)∪Q). Let γ(P m Q) = X . Then we have SE(P∗Q) =
SE(X) ∩ SE(Q). According to Theorem 2 there are three cases:

Case 1: As for (l∗rr) we have SE(P ∗ Q) = Cl((SE(P) ∩
SE(Q)) \M ∪ {(Y, Y)}). If (Y, Y) ∈ O, then SE(P ∗ Q) \ O
no longer contains any answer set. If (Y, Y) 6∈ O, then since
O ∩ SE(P) ∩ SE(Q) = ∅, we have Cl(SE(P ∗ Q) \ O) =
SE(P ∗Q).

Case 2: As for (l∗rr) we have SE(P ∗Q) = (SE(P)∩SE(Q))\
M . This means O does not exist. So this is an impossible case.

Case 3: As for (l∗rr) we have SE(P ∗ Q) = SE(P) ∩ SE(Q).
This means O does not exist. So this is an impossible case.

(l∗mr): Can be proved by combining the proving methods for
(l∗rr) and (l∗er).

(l∗u): Suppose P m Q = P m R, we need to show Cl((SE(P)∪
SE(P ∗ Q)) \M) = Cl((SE(P) ∪ SE(P ∗ R)) \ N) for M =
{µ ∈ SE(P) |Cl(SE(P ∗Q)∪{µ})∩SE(Q) is inconsistent} and
N = {µ ∈ SE(P) |Cl(SE(P∗Q)∪{µ})∩SE(R) is inconsistent}

Let γ be the selection function for P . Since P m Q = P m R, we
have γP m Q = γP m R. Let γP m Q = X . It is easy to see from
the proof for other direction that Cl((SE(P)∪SE(P ∗Q))\M) =
Cl((SE(P) ∪ SE(P ∗R)) \N) = SE(X).

For the other direction, suppose ∗ is a function that satisfies (l∗cl),
(l∗s), (l∗c), (l∗f), (l∗rr), (l∗er), (l∗mr), and (l∗u). We need to show ∗

is a llp-revision function.
Let γ be defined as:

SE(γ(P m Q)) = Cl((SE(P) ∪ SE(P ∗Q)) \M)

for all Q, where M = {µ ∈ SE(P) |Cl(SE(P ∗ Q) ∪ {µ}) ∩
SE(Q) is inconsistent}. It remains to show P ∗ Q = cl(γ(P m
Q) ∪Q) and γ is a selection function for P .

Part 1: Due to (l∗cl), it suffices to show SE(P ∗Q) = SE(γ(P m
Q)) ∩ SE(Q).
⊆: It follows from (l∗s) that SE(P ∗ Q) ⊆ SE(Q), hence it

suffices to show SE(P ∗ Q) ⊆ SE(γ(P m Q)), that is SE(P ∗
Q) ⊆ Cl((SE(P) ∪ SE(P ∗ Q)) \ M). Let µ ∈ SE(P ∗ Q).
Then Cl(SE(P ∗Q)∪ {µ})∩ SE(Q) = SE(Q)∩ SE(P ∗Q) =
SE(P ∗Q). It follows from (l∗c) that SE(P ∗Q) is consistent, hence
Cl(SE(P ∗Q)∪ {µ})∩ SE(Q) is consistent. This means µ 6∈M ,
hence µ ∈ Cl((SE(P) ∪ SE(P ∗Q)) \M).
⊇: Assume there is µ ∈ SE(γ(P m Q)) ∩ SE(Q) such that µ 6∈

SE(P ∗Q). Then µ ∈ Cl((SE(P)∪SE(P ∗Q)) \M)∩SE(Q).
It follows from µ 6∈ SE(P ∗ Q) that µ ∈ SE(P) \ M . Then it
follows from µ ∈ SE(P) ∩ SE(Q), µ 6∈ SE(P ∗ Q), and (l∗rr)
that SE(P ∗Q)∪ {µ} is inconsistent. Since SE(P ∗Q) ⊆ SE(Q)
and µ ∈ SE(Q), we have SE(Q) ∩ Cl(SE(P ∗ Q) ∪ {µ}) =
Cl(SE(P ∗ Q) ∪ {µ}). Thus SE(Q) ∩ Cl(SE(P ∗ Q) ∪ {µ}) is
inconsistent, which means µ ∈M , a contradiction.

Part 2: For γ to be a selection function, it must be a function.
Suppose P m Q = P m R, we need to show γ(P m Q) = γ(P m
R), that isCl((SE(P)∪SE(P ∗Q))\M) = Cl((SE(P)∪SE(P ∗
R)) \ N) for M = {µ ∈ SE(P) |SE(R) ∩ Cl(SE(P ∗ Q) ∪
{µ}) is inconsistent} andN = {µ ∈ SE(P) |SE(R)∩Cl(SE(P ∗
R)∪{µ}) is inconsistent}. This follows immaculately from (l∗u). It
remains to show γ(P m Q) ∈ P m Q.

It has been shown in part 1 that SE(P ∗Q) = SE(γ(P m Q)) ∩
SE(Q). It follows from (l∗c) that SE(P ∗ Q) is consistent, which
means SE(γ(P m Q)) ∩ SE(Q) is consistent. Thus condition 1
for the definition of l-compatible program is satisfied. Now we focus
on condition 2. Let γ(P m Q) = R and SE(P) 	 SE(X) ⊂
SE(P)	SE(R). We need to show SE(X)∩SE(Q) is inconsistent.
There are three cases:

Case 1, SE(X) = SE(R)∪S for S ⊆ SE(P) and S∩SE(R) =
∅: Since R = Cl((SE(P) ∪ SE(P ∗ Q)) \M), we have S ⊆ M
which implies SE(Q) ∩Cl(SE(P ∗Q) ∪ S) is inconsistent. Since
SE(P ∗Q) = SE(R)∩SE(Q), we have SE(Q)∩Cl(SE(P ∗Q)∪
S) = SE(Q)∩Cl((SE(R)∩SE(Q))∪S) = (SE(Q)∩SE(R))∪
(SE(Q) ∩ S) = (SE(R) ∪ S) ∩ SE(Q) = SE(X) ∩ SE(Q) is
inconsistent. Case 2, SE(X) = SE(R) \ T for T ⊆ SE(R) and
T ∩SE(P) = ∅: Since SE(R) = Cl((SE(P)∪SE(P ∗Q))\M),
we have T ⊆ Cl((SE(P) ∪ SE(P ∗ Q)) \M). Let T ∩ SE(P ∗
Q) = N . Note that N 6= ∅ for otherwise SE(X) 6= Cl(SE(X)).
Then SE(X) ∩ SE(Q) = (SE(R) \ T) ∩ SE(Q) = (SE(R) ∩
SE(Q)) \T = SE(P ∗Q) \T = SE(P ∗Q) \N . It follows from
N ⊆ SE(P ∗Q),N∩SE(P) = ∅, and (l∗er) that SE(P ∗Q)\N is
inconsistent. Case 3, SE(X) = (SE(R)∪S) \ T for S ⊆ SE(P),
S ∩ SE(R) = ∅, T ⊆ SE(R) and T ∩ SE(P) = ∅: Then from
Case 1 we have S ⊆M . Let N = T ∩ SE(P ∗Q). If N = ∅, then
the SE(X) = SE(R) ∪ S and this situation has been taken care in
Case 1. So suppose N 6= ∅. Now SE(X) ∩ SE(Q) = ((SE(R) ∪
S) \N)∩SE(Q) = ((SE(R)∩SE(Q))∪ (S ∩SE(Q))) \N . If
S ∩ SE(Q) = ∅, then SE(X)∩ SE(Q) = ((SE(R)∩ SE(Q))∪
(S ∩ SE(Q))) \ N = SE(P ∗ Q) \ N and it follows from (l∗er)
that SE(X) ∩ SE(Q) is inconsistent. If S ∩ SE(Q) 6= ∅, then it
follows from (l∗mr) that SE(X) ∩ SE(Q) is inconsistent.

REFERENCES

[1] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson, ‘On the
logic of theory change: Partial meet contraction and revision functions’,
The Journal of Symbolic Logic, 50(2), 510–530, (1985).

[2] José Júlio Alferes, João Alexandre Leite, Luı́s Moniz Pereira, Halina
Przymusinska, and Teodor C. Przymusinski, ‘Dynamic updates of non-
monotonic knowledge bases’, J. Log. Program., 45(1-3), 43–70, (2000).

[3] Sebastian Binnewies, Zhiqiang Zhuang, and Kewen Wang, ‘Partial
meet revision and contraction in logic programs’, in Proceedings of the
29th AAAI Conference on Artificial Intelligence (AAAI-2015), (2015).

[4] Mukesh Dalal, ‘Investigations into a theory of knowledge base revi-
sion’, in Proceedings of the 7th National Conference on Artificial Intel-
ligence (AAAI-1988), pp. 475–479, (1988).

[5] James P. Delgrande, Pavlos Peppas, and Stefan Woltran, ‘Agm-style
belief revision of logic programs under answer set semantics’, in Pro-
ceedings of the 12th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR-2013), pp. 264–276, (2013).

[6] James P. Delgrande, Torsten Schaub, and Hans Tompits, ‘A preference-
based framework for updating logic programs’, in Proceedings of the
9th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR-2007), pp. 71–83, (2007).

[7] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan
Woltran, ‘A model-theoretic approach to belief change in answer set
programming’, ACM Trans. Comput. Log., 14(2), (2013).

[8] Thomas Eiter, Michael Fink, Jörg Pührer, Hans Tompits, and Stefan
Woltran, ‘Model-based recasting in answer-set programming’, Journal
of Applied Non-Classical Logics, 23(1-2), 75–104, (2013).

[9] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits,
‘On properties of update sequences based on causal rejection’, TPLP,
2(6), 711–767, (2002).

[10] Thomas Eiter, Hans Tompits, and Stefan Woltran, ‘On solution corre-
spondences in answer-set programming’, in Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI-2015),
pp. 463–498, (2005).

[11] Sven Ove Hansson, ‘Reversing the Levi Identity’, Journal of Philo-
sophical Logic, 22(6), 637–669, (1993).

[12] Sven Ove Hansson, ‘Semi-revision’, Journal of Applied Non-Classical
Logics, 7(1-2), 151–175, (1997).

[13] Sven Ove Hansson, A Textbook of Belief Dynamics Theory Change and
Database Updating, Kluwer, 1999.

[14] Hirofumi Katsuno and Alberto O. Mendelzon, ‘On the difference be-
tween updating a knowledge base and revising it’, in Proceedings of
the 2nd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-1991), pp. 387–394, (1991).

[15] Hirofumi Katsuno and Alberto O. Mendelzon, ‘Propositional knowl-
edge base revision and minimal change’, Artificial Intelligence, 52(3),
263–294, (1992).

[16] Patrick Krümpelmann and Gabriele Kern-Isberner, ‘Belief base change
operations for answer set programming’, in Logics in Artificial Intel-
ligence - 13th European Conference, JELIA 2012, Toulouse, France,
September 26-28, 2012. Proceedings, pp. 294–306, (2012).

[17] João Alexandre Leite, Evolving Knowledge Bases: Specifications and
Semantics, IOS Press, 2003.

[18] Vladimir Lifschitz, David Pearce, and Agustı́n Valverde, ‘Strongly
equivalent logic programs’, ACM Trans. Comput. Logic, 2(4), 526–541,
(2001).

[19] Mauricio Osorio and Vı́ctor Cuevas, ‘Updates in answer set program-
ming: An approach based on basic structural properties’, TPLP, 7(4),
451–479, (2007).

[20] Teodor C. Przymusinski and Hudson Turner, ‘Update by means of in-
ference rules’, J. Log. Program., 30(2), 125–143, (1997).

[21] Chiaki Sakama and Katsumi Inoue, ‘An abductive framework for com-
puting knowledge base updates’, TPLP, 3(6), 671–713, (2003).

[22] Ken Satoh, ‘Nonmonotonic reasoning by minimal belief revision’, in
Proceedings of the International Conference on Fifth Generation Com-
puter Systems, pp. 455–462, (1988).

[23] Nicolas Schwind and Katsumi Inoue, ‘Characterization theorems for
revision of logic programs’, in Proceedings of the 12th International
Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR-2013), pp. 485–498, (2013).

[24] Martin Slota and João Leite, ‘On semantic update operators for answer-
set programs’, in Proceedings of 19th European Conference on Artifi-
cial Intelligence (ECAI-2010), pp. 957–962, (2010).

[25] Martin Slota and João Leite, ‘Robust equivalence models for seman-
tic updates of answer-set programs’, in Proceedings of the 13th Inter-
national Conference on Principles of Knowledge Representation and
Reasoning (KR-2012), pp. 158–168, (2012).

[26] Martin Slota and João Leite, ‘The rise and fall of semantic rule up-
dates based on se-models’, Theory and Practice of Logic Programming,
14(6), 869–907, (2014).

[27] Hudson Turner, ‘Strong equivalence made easy: Nested expressions
and weight constraints’, Theory Pract. Log. Program., 3(4), 609–622,
(2003).

[28] Fernando Zacarı́as, Mauricio Osorio, Acosta Guadarrama, and Jürgen
Dix, ‘Updates in answer set programming based on structural proper-
ties’, in Proceedings of the 7th Internaltional Symposium on Logical
Formalizations of Commonsense Reasoning, pp. 213–219, (2005).

[29] Yan Zhang and Norman Y. Foo, ‘Towards generalized rule-based up-
dates’, in Proceedings of the 15th International Joint Conference on
Artificial Intelligence, (IJCAI-1997) 97, pp. 82–88, (1997).

[30] Yan Zhang and Norman Y. Foo, ‘Updating logic programs’, in Proceed-
ings of ECAI-1998, pp. 403–407, (1998).

