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Abstract

An intelligent agent must be able to change its beliefs in a ra-
tional manner and with a plausible outcome. While the cen-
tral belief change theories have well-developed formal char-
acterisations, there has been limited work on applying these
theories in a practical setting. In this paper we examine be-
lief base contraction, specifically kernel contraction, in the
framework of the description logic EL. This is potentially
interesting first, because EL is used in large-scale knowledge
bases and second, because the EL constructs for structuring
knowledge allow the specification of heuristics to choose an
intuitive, commonsense result for the contraction. We intro-
duce algorithms that perform belief contraction based on hit-
ting sets, and examine different ways of finding a suitable
hitting set. Heuristics based on localization and specificity
are introduced. As well, our main contraction operators are
shown to conform to Hansson’s postulates for smooth base
contraction.

Introduction
An agent interacting with some domain will be required to
modify its beliefs, perhaps as a result of receiving additional
information about the domain, or perhaps in correcting an
inaccurate belief. The dominant approach to belief change
with respect to a static domain1 is the AGM approach. Two
primary belief change operators are considered, belief revi-
sion in which the agent must consistently (when possible)
incorporate a new belief into its belief corpus, and belief
contraction, in which an agent ceased to believes a given
formula.

In this paper we focus on belief contraction: It is seen
as the more basic operation; it is applicable even when the
underlying system lacks a notion of inconsistency; and as
covered in the Background section, revision may be defined
in terms of it.

Our goal is to address belief contraction in a Description
Logic called EL. A Description Logic (DL) is one of a
family of formalisms that are used to represent knowledge.
Knowledge is structured, in that concepts are used to rep-
resent classes of individuals and roles are used to represent
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1The alternative, in which the domain may have changed, is
belief update, which we do not consider here.

relationships between concepts. Different DLs have differ-
ent expressive powers and different reasoners with different
complexities. EL is one of the simplest DLs, yet is expres-
sive enough to have found significant application. Conse-
quently it is of interest to consider change within an EL
knowledge base. A further point of interest in addressing
change within a DL is that, because of the constructs for
structuring knowledge, heuristics can be introduced to se-
lect the most “reasonable”, or perhaps commonsense, con-
traction from among a set of candidate contractions.

A key feature of EL is that an EL knowledge base (KB)
can be translated in polynomial time into a normal form of
“small” independent assertions. Then contracting a formula
φ from a KB can be most easily accomplished by, first de-
termining all minimal sets of assertions (called kernels) that
imply φ and then removing an element of each kernel from
the KB. This means of contraction is called kernel contrac-
tion, and was first studied by Hansson (1994).

The problem of determining kernels has been previously
addressed (as described in the next section), so in this paper
we focus on the second part, determining which formulas
to remove from each kernel. We look at some basic im-
plementations as well as more advanced ones. Our focus
is on investigating the algorithmic aspects of these different
approaches. Algorithmic time complexity is taken into con-
sideration as well as the overall suitability of the solutions
found. “Suitability” can be measured in different ways, in-
cluding optimality, but also in terms of what makes more
sense as a “reasonable” solution.

We begin by examining simplistic algorithms for remov-
ing formulas from a kernel, and move on to examining things
from the point of view of the hitting set problem, where
the hitting set problem is simply the problem of finding the
smallest set of elements that intersect with a given set of sets
of elements. However, approaches that only consider the
size of the solution do not always make a meaningful choice
on which beliefs to remove. A contributions of this study is
the subsequent investigation of algorithms that perform ker-
nel contraction based on the structure of a EL knowledge
base. These approaches exploit the structure of EL knowl-
edge bases to find most reasonable solutions. A first ap-
proach is to select beliefs that are somehow related to each
other, rather than selecting the beliefs that are not. This idea
motivates the heuristic that we call localization. A second



heuristic we introduce is specificity, which is based on the
idea that removing beliefs about more specific matters is
more reasonable than removing beliefs about more general
ones. So we can then use these heuristics as a tie-breaker
step when we get more than one solution.

The next section covers background material, including
the prominent approaches to belief change, and a brief intro-
duction to description logic, focusing on EL. The following
section covers basic approaches to belief contraction in EL
while the next section discusses commonsense heuristics,
specifically dealing with localization and specificity. Fur-
ther details and full descriptions of algorithms may be found
in (Dawood 2017).

Background
In this section, we provide some background on the main
building blocks of our work. We discuss belief change
first with respect to the AGM framework (Alchourrón,
Gärdenfors, and Makinson 1985) and second according to
Hansson (1999). Following this, Description Logics (DLs)
are briefly introduced, focusing on the DL EL.

Belief Change
AGM Belief Change The AGM framework (Alchourrón,
Gärdenfors, and Makinson 1985), named after its founders,
is the most prominent framework for belief change. Belief
change is described on an abstract level, independent of how
beliefs are represented and manipulated. Belief states are
modeled by sets of sentences, called belief sets, closed un-
der the logical consequence operator of a logic that includes
classical propositional logic in a language L. Thus a belief
set K satisfies the constraint:

If K logically entails φ then φ ∈ K.

Three types of belief change are identified: expansion,
revision, and contraction. For expansion, a new belief is
simply added to a belief set and the deductive closure taken.
That is, for belief set K and formula φ, the expansion of K
by φ is defined by

K + φ
.
= Cn(K ∪ {φ})

where Cn(·) is the deductive closure of its argument. Ex-
pansion can be reasonably applied when new information is
consistent with a belief set; it is also useful in specifying the
postulates for revision and contraction, and in their relation.

Revision represents the situation in which new informa-
tion may be inconsistent with the reasoner’s beliefs, and
needs to be incorporated in a consistent manner where possi-
ble. Consequently, if a new formula is inconsistent with re-
spect to an agent’s beliefs, some beliefs have to be dropped
before the formula can be consistently incorporated.

Contraction represents the situation in which the reasoner
loses information. Informally, the contraction of a belief set
by a formula is another belief set in which that formula is not
believed. We denote the belief set resulting from contracting
the belief set K with respect to sentence φ by K − φ. Since
contraction is the subject of this study, we discuss the ratio-
nality criteria (or postulates) of such change. In the AGM

framework, the following eight postulates are introduced as
a basis for ensuring the rationality of contraction functions
(more details can be found in (Peppas 2008) and (Gärdenfors
1988)):

(K-1) K − φ is a belief set.

(K-2) K − φ ⊆ K.

(K-3) If φ /∈ K, then K − φ = K.

(K-4) If not ` φ, then φ /∈ K − φ.

(K-5) If φ ∈ K, then K ⊆ (K − φ) + φ.

(K-6) If ` φ↔ ψ, then K − φ = K − ψ.

(K-7) K − φ ∩K − ψ ⊆ K − φ ∧ ψ.

(K-8) If φ /∈ K − (φ ∧ ψ), then K − (φ ∧ ψ) ⊆ K − φ.

The fifth postulate, the so-called recovery postulate, is con-
troversial; it asserts that following a contraction, all beliefs
are recoverable by an expansion by the formula for contrac-
tion.

In (Alchourrón, Gärdenfors, and Makinson 1985;
Gärdenfors 1988), various constructions, including partial
meet and epistemic entrenchment are developed, and shown
to exactly capture the set of functions that conform to the
contraction postulates; we omit details, as they are not di-
rectly pertinent here.

Both revision and contraction are formulated to follow a
principle of informational economy. In the case of contrac-
tion, this informally means not giving up a formula if there
is no need to do so. Compared to revision, contraction is
usually seen as a more basic change function, since a belief
set can only decrease. However, revision can be regarded
as a combination of contraction and expansion, via the Levi
Identity:

K ∗ φ = (K − ¬φ) + φ.

Belief Bases The AGM approach presents belief change
at a high level, independent of how a belief is represented,
and where the agent’s beliefs are described by a deductively-
closed belief set. Hansson (1999) presents an approach to
belief change where the agent’s beliefs are represented by an
arbitrary set of formulas, called a belief base. The intuition
is that a belief base may be “closer” to how an agent’s beliefs
may be represented in a finite computer.

Two constructions for a belief base contraction B − φ are
described:

1. Remainders: Compute all maximal subsets of B that do
not entail φ. The contraction is defined as the intersection
of some “select” set of these subsets.

2. Kernels: Compute all minimal subsets of B that entail φ.
Remove (in some fashion) an element of each such set to
obtain a belief base that does not entail φ.

Here, we consider kernel contraction on belief bases. The
function in a kernel contraction that removes an element of
each subset is called an incision function.

For example, consider the following set where we wish to
remove the element b:

{a, a→ b, b, c}



It is not enough to simply remove b from the set; if we do so,
we get: {a, a→ b, c} which still implies b. In this example,
there are two kernels, {b} and {a, a → b}. An incision
function must remove {b} and one of a, a → b. The two
possible resulting belief bases after contraction are:

{a, c} and {a→ b, c}
In the following, B will refer to an arbitrary belief base.

We refer to the set of φ-kernels of B by B ⊥ φ.

Definition 1 (Kernel Set (Hansson 1999)) For a belief base
B and a formula φ, B ⊥ φ is a set such that X ∈ B ⊥ φ if
and only if:

1. X ⊆ B,
2. X ` φ, and
3. if Y ⊂ X then Y 0 φ.

B ⊥ φ is a kernel set that contains all φ-kernels of B.

Kernels are the smallest subsets of the knowledge base that
imply a specific belief. Therefore, in order to give up that
belief, every one of those kernels needs to be incised. If
the kernels are not minimal, they might contain a belief that
does not contribute to the implication of the belief to be con-
tracted. For example, in {p, q}, q is a belief that does not
contribute to make the set imply p. In this case, removing q
only would not help in giving up p.

An incision function is defined in as follows:

Definition 2 (Incision function (Hansson 1999)) An inci-
sion function σ is a function such that for all beliefs φ:

1. σ(B ⊥ φ) ⊆
⋃
(B ⊥ φ)

2. If ∅ 6= X ∈ B ⊥ φ, then X ∩ σ(B ⊥ φ) 6= ∅
Contraction is carried out by removing the beliefs that are
selected by the incision function from the original knowl-
edge base. Contraction using the incision function σ2 can be
defined as:

Definition 3 (Hansson 1999) (Contraction)

B − φ = B r σ(B ⊥ φ)
Hansson provides the following postulates that are shown

to exactly capture belief base contraction based on incision
functions:

(B-1) If 6` φ then B − φ 6` φ (Success)

(B-2) B − φ ⊆ B (Inclusion)

(B-3) If ψ ∈ B and ψ 6∈ B − φ then there is a set B′ ⊆ B
such that B′ 6` φ but B′ ∪ ψ ` φ (Core retainment)

(B-4) If for every B′ ⊆ B we have B′ ` φ iff B′ ` ψ, then
B − φ = B − ψ. (Uniformity)

As well, Hansson provides the following postulate which,
along with the preceding, characterises smooth kernel con-
traction:

(B-5) B ∩ Cn(B − φ) ⊆ B − φ. (Relative closure)

2Technically the contraction function − should be parame-
terised by σ. For simplicity and because no confusion arises, we
omit it.

See (Hansson 1999) for details.
Although the AGM framework is very popular, we find

the postulates introduced by Hansson more suitable to be
applied to kernel contraction. First, in our approach we work
with a normalized form of an EL knowledge base, which is
to say, a belief base of formulas. Second, as we show at the
end of this section, contraction of EL belief bases do not
satisfy the recovery postulate of the AGM framework.

Description Logic
A Description Logic (DL) is one of a class of logics based on
describing sets of individuals using concepts and describing
the relationships between them using roles. Two types of
knowledge are represented: Intensional knowledge is gen-
eral knowledge about a problem or a domain, while exten-
sional knowledge is knowledge about a specific problem in-
stance. For this purpose, a knowledge base3 is composed of
two corresponding components: A TBox containing the in-
tensional knowledge and an ABox containing the extensional
knowledge.

The ABox gives assertions, much like in a relational
database, such as Female(Sally) and FatherOf(Adam, Sally).
Since our focus is on contraction in TBoxes, we don’t con-
sider the ABox further. A TBox is composed of a set of
assertions, made up of equivalences such as Man .

= Human
uMale (the individuals satisfying Man are exactly those sat-
isfying Human and Male) and subsumptions such as Man v
Human (every individual that is a Man is a Human). The
latter are referred to as General Concept Inclusions (GCIs).
Every equivalence can be trivially broken down into two
GCIs.

There are many members of the DL family; they vary
widely in expressivity power and the complexity of their
reasoning algorithms. In the following section we discuss
a well-known member of the DL family, EL, which we will
use the representation language for the rest of this study.

The EL Description Logic EL is a description logic that
has recently attracted much attention. It is a “light-weight”
DL, in that it is limited expressively, although it is used in
well-known ontologies such as SNOMED CT (Spackman
2000), a large-scale commercial medical ontology with well
over 300000 concepts (Baader 2011). EL contains the fol-
lowing concept constructors:

• Conjunction (u):
If C1 and C2 are concepts, then C1 u C2 is a concept
standing for the conjunction of C1, C2.

• Existential restriction (∃):
If C is a concept andR is a role, then ∃R.C is the concept
of those individuals that are R-related to an item belong-
ing to concept C.

• The top concept >, true of all individuals.

Assertions express either equivalences between concepts
or a subsumption relation. The following are example asser-
tions in EL.

3By knowledge base we refer to a belief base – a set of sentences
that represent the beliefs of an agent.



1. Woman .
= Human u Female.

A Woman is exactly a Human and a Female.

2. Mother .= Female u∃ParentOf.Human.
A (human) Mother is a Female and a ParentOf of an indi-
vidual that is a Human.

EL is simple and easy to use; as well it has a polynomial-
time subsumption algorithm, where the subsumption algo-
rithm determines whether a specific subsumption relation
holds or not in a given knowledge base.

The subsumption algorithm is made up of four steps:

1. Normalize the TBox.

2. Translate the normalized TBox into a graph.

3. Complete the graph using completion rules.

4. Read off the subsumption relationships from the normal-
ized graph.

We are most interested in the first step, normalization. It
is shown (Baader et al. 2007) that any EL TBox can be trans-
lated in polynomial time into a set of GCIs of the following
form:

• A v B
• A1 uA2 v B
• A v ∃r.B
• ∃r.A v B
A,A1,A2, andB are concept names, and r is a role name. A
normalized TBox can be thought of as a knowledge base that
has been translated into a canonical form, where each GCI
represents an individual item of information. For our con-
traction functions, we will work with a normalized TBox.
Such TBoxes can be thought of as corresponding to a (non-
closed) equivalent of a belief set.

Related work
There has been some related work regarding contraction in
light-weight description logics. In (Booth, Meyer, and Varz-
inczak 2009a) a contraction operator is introduced that con-
tracts EL belief sets (rather than belief bases) using remain-
ders. A representation result is given relating the first six
contraction postulates, adapted to EL, to the construction of
infra-remainder sets (Booth, Meyer, and Varzinczak 2009b).

Zhuang and Pagnucco (2009) also address belief con-
traction in EL. They point out that the recovery postulate
doesn’t hold in EL. Informally the problem, as in other
inferentially-weak approaches (see e.g. (Delgrande 2008)
regarding Horn clause theories), is that EL doesn’t support
negation or disjunction. For a problematic example, con-
sider where the TBox contains just the closure of A v B
and one wishes to contract by A u C v B; in the contrac-
tion, A v B must be removed, but it is not “recovered” if
one expands the result by A u C v B. The authors pro-
pose a suitable alternative to the recovery postulate based on
the notion of logical difference, and develop algorithms that
implement this approach.

A model-based approach to contraction of DL-Lite belief
bases is introduced in (Zhuang et al. 2016). The approach

depends on defining an alternative semantics, called type se-
mantics, that skirts the problem that a knowledge base with
a finite signature may have an infinite number of models.

Kernel Contraction
For the kernel contraction of a formula φ from a belief base
B there are three steps:

1. Determine the kernels K of B with respect to φ.
2. Determine a set of incised formulas I from K.
3. Set B ← B \ I.
The third step is trivial. As well, the first step has been ad-
dressed, in the pinpointing algorithm introduced in (Baader,
Peñaloza, and Suntisrivaraporn 2007).

The pinpointing algorithm computes all kernels using a
modified version of the EL subsumption algorithm. It finds
a monotone Boolean formula called a pinpointing formula;
the propositions of the pinpointing formula are GCIs of the
TBox, and a propositional valuation represents the kernels.
The approach may take exponential time (w.r.t the size of
the TBox) to find all kernels, because there may be expo-
nentially many kernels. However, (Baader, Peñaloza, and
Suntisrivaraporn 2007) also gives a polynomial-time algo-
rithm that computes a single kernel.
Example 1 ((Baader, Peñaloza, and Suntisrivaraporn
2007)) Let the TBox, T , be:

ax1 : A v ∃r.A, ax2 : A v Y ,
ax3 : ∃r.Y v B, ax4 : Y v B.

We have that T |= A v B. Let φ = A v B. We obtain:
T ⊥ (A v B) = {{ax2, ax4}, {ax1, ax2, ax3}}

Since we can use the pinpointing algorithm to get the set
of all kernels, we just need to consider the issue of removing
an element from each kernel to perform a contraction. This
is the role of the incision function. We next look at some
basic incision functions to set the stage for later considera-
tions.

Incision Functions
We are given an EL TBox, T , and a formula for contraction
φ. We assume without loss of generality that T has been
normalized; this has the important consequence that for ψ ∈
T that T \ {ψ} 6|= ψ.

The main contraction algorithm is shown in Algorithm 1;
as discussed, the only issue is specifying the incision func-
tion CUT.

Algorithm 1 Contraction algorithm

1: procedure CONTRACT(T , A)
2: kernelset = PINPOINT(T , A)
3: giveUpSet = CUT(kernelset)
4: T = T / giveUpSet
5: end procedure

We next consider simple ways of implementing CUT. Due
to space considerations, here and elsewhere we omit the
pseudocode; see (Dawood 2017; Liao 2014). We first con-
sider non-optimal solutions, followed by optimal solutions.



Basic Incision Functions The first incision function is
overly simplistic, but serves to provide a base case. In this
case, one simply removes a formula from each kernel. The
time complexity is O(m), where m is the number of ker-
nels (size of the kernelset), assuming that a formula selec-
tion takes constant time. However, this is clearly a poor al-
gorithm. For example, given a kernel set {{a, c}, {b, c}},
one might remove a from the first set followed by c from the
second set. Then the result of giveUpSet = {a, c} is {b},
which unnecessarily removes a. Removing a is unnecessary
because removing c alone is enough for contraction. More
generally, removing more beliefs than needed is undesired,
as it violates the informational economy principle.

The second incision function improves on the previous by
selecting a formula from every kernel, as before. However
each time a formula is selected, every kernel that contains
that formula is excluded from consideration in the following
iterations. This algorithm has a worst-case time complex-
ity of O(m2): There are basically two loops, first scanning
through the kernels, and second, once a formula has been
selected, scanning the remaining kernels to see whether they
contain that formula.4

The third function implements a greedy approach: At
each step, the algorithm finds the formula that appears in
the most kernels and removes it; these kernels are not con-
sidered in the following steps. An sketch of the implemen-
tation in (Dawood 2017) is given as follows. First, for every
formula in a kernel, the number of kernels in which that for-
mula occurs is determined. Then the formula that has the
greatest number of occurrences is added to the set of incised
formulas; the kernels containing that formula are removed
from consideration; the count of formula occurrences in ker-
nels is updated and the process continued. If the number of
formulas in kernels is n, the number of kernels is m, and the
size of the largest kernel is k, then the time complexity is
O(m2 ·k ·n). This however could be significantly enhanced
by using more clever data structures.

Hitting Set Approach According to the principal of in-
formation economy (Gärdenfors 1988), in every change to
an agent’s beliefs, loss of information should be minimized.
To satisfy the requirement of minimum change we require
an algorithm that removes the fewest GCIs while hitting all
the kernels. This however is exactly the minimal hitting set
problem (Garey and Johnson 1979), which has already re-
ceived extensive study.

Consequently, another approach to cutting kernels in or-
der to perform contraction is the minimal hitting set algo-
rithm. The minimal hitting set problem is defined as follows
(Abreu and van Gemund 2009):

Definition 4 Given a set S = {s1, s2, ..., sn} of n non-
empty sets, a minimal hitting set d is a set such that:

∀si∈S [si ∩ d 6= ∅] ∧ @d′⊂d[∀si∈S(si ∩ d′ 6= ∅)]
Thus, d is a minimal hitting set if and only if it contains at
least one element from every set, and no proper subset of d

4This assumes that looking up a formula in a kernel takes con-
stant time, for example if kernels are stored as hash tables.

is a hitting set. In the context of kernel contraction in EL,
we can define the minimal hitting set contraction as:
Definition 5 (Minimal hitting set contraction) Given a ker-
nel set K = {k1, k2, ..., kn} of n kernels, a minimal hitting
set giveUpSet is a set such that:

∀ki∈K [ki ∩ giveUpSet 6= ∅] ∧

@giveUpSet′⊂giveUpSet[∀ki∈K(ki ∩ giveUpSet′ 6= ∅)]
Since kernels are subsets of the TBox, and our goal to find

a giveUpSet that hits all kernels, we can use approaches to
the minimal hitting set problem to solve it. The computation
of all such hitting sets is known to be NP-hard (Garey and
Johnson 1979); there are however known very good approxi-
mation algorithms, such as the one introduced in (Abreu and
van Gemund 2009), for the minimal hitting set problem, that
are feasible in terms of running time.

The following result shows that we obtain a well-behaved
contraction function:
Theorem 1 Let T be a normalized TBox, φ a (normalized)
set of GCIs, and with kernel set K and set giveUpSet de-
termined as in Definition 5. Then for− defined by: T −φ =
T \ giveUpSet, we have that T − φ satisfies the postulates
for smooth kernel contraction (B-1)-(B-5).

Heuristics for Contraction
In the last section, we discussed contraction algorithms
where the goal was to remove the least number of beliefs.
Here we consider heuristics based on the EL language and
subsumption hierarchy. The idea is to bring in commonsense
principles that may be expected to yield intuitive or “reason-
able” results for a contraction. With localization we choose
a hitting set that in some fashion affects a minimal region of
the TBox; with specificity we prefer hitting sets that refer to
more specific concepts.

Localization
The idea here is that change should be as local as possible in
a knowledge base. Intuitively, this will involve a lesser over-
all change to a KB; as well, pragmatically, it would seem that
if a belief is incorrect, then it may be expected to arise from
a specific part of the KB (much like in diagnosis where prag-
matically one would prefer a diagnosis with fewer faults).

Consider following EL example:
(1) A v B, (2) B v D, (3) A v C, (4) C v D.

These imply that (5) A v D. We see that there are two
(5)-kernels: {1, 2} and {3, 4}

So, to contract the knowledge base by (5), we need to re-
move a belief from each kernel. However, removing (1) and
(4) seems unreasonable because it means removing informa-
tion concerning all four concepts. Removing (1) and (3), on
the other hand, removes knowledge concerning only three
concepts: A, B, and C. Not only that, but pragmatically,
(1) and (3) together imply that perhaps our knowledge of
A is wrong; conceivably our knowledge of B and C is not
necessarily false. Similar considerations apply to removing
(2) and (4), which together would suggest that the source of
incorrectness lies with D.



Localization is implemented in (Liao 2014) using a graph-
based approach. The algorithm operates by defining a graph
based on a set of GCIs, where an edge connects GCIs shar-
ing a concept or role. Then notions involving graph connec-
tivity and graph clustering can be used to determine local-
ized change.

Definition 6 (Connected GCIs) Given a set of GCIs K, de-
fine an undirected graph G = (V,E) by: V is the set of
GCIs in K and for g1, g2 ∈ K, (g1, g2) ∈ E just if g1 and g2
share a concept or role name.

So, for a normalized TBox, given that the set of kernels
has been determined and a set of minimal hitting sets H =
{h1, . . . , hn} has also been found, localization can be used
to select the preferred hitting set(s), based on the structure
of each hitting set:

1. For each hi ∈ H , determine the underlying graph (Defini-
tion 6), and determine the number of strongly connected
components, ci, in the graph.

2. Select a hitting set hi whose number of strongly con-
nected components, ci, is minimum.

In the previous example, we find, the following candidate
sets to contract (5):

{1, 3} and {2, 4}.
Thus contraction is given by one of these alternatives, and
not the inferior possibilities {1, 4} or {2, 3}.

For time complexity, each hitting set must be considered;
and for a hitting set the number of strongly connected com-
ponents determined. This latter problem can be solved via
Tarjan’s (1972) algorithm, which isO(|V |+ |E|) for a graph
G = (V,E). Another pass through the hitting sets finds the
minimum, for overall time complexity O(m · (|V | + |E|)).
Since all we are doing is selecting a particular hitting set, as
given in Definition 5 the resulting contraction operator is a
smooth kernel contraction, as given in Theorem 1.

Clearly this procedure can be enhanced or modified.
A more sophisticated notion of localization could be em-
ployed, for example, or the localization heuristic could be
applied just to the hitting sets of minimum cardinality (and
so help serve as a tie-breaker).

Specificity
The assumption underlying this heuristic is that in choos-
ing which GCIs to remove, it is preferable to remove those
involving more specific concepts over those involving less
specific concepts: Arguably more general concepts are more
entrenched; as well, removing a more general concept sub-
sumption may be expected to be more disruptive to the TBox
as a whole.

The subsumption hierarchy implicit in a normalized EL
TBox categorizes concepts into different levels of generality.
Consider the relations:

A v B, B v C, C v D .

Suppose we would like to contract the TBox by the implied
relation A v D. We have three options, corresponding to
removing one of the three given subsumptions. Removing
any of the three GCIs would guarantee minimum change.

However, we can say that A is more specific than B and B
is more specific than C. Removing A v B, in this case, is
more reasonable than removing C v D, because A v B in-
volves concepts that are more specific than the ones involved
in C v D. This also means that removing C v D results
in all individuals that are Cs no longer believed to be Ds,
while removing A v B only affects the subset of the Cs
which are As.

To begin, for a GCI A v B, we say that A is a child con-
cept relative to B. Similarly, for A1 u A2 v B, we say that
A1 and A2 are both child concepts relative to B. Moreover,
we ignore the structure of a concept expression of the form
∃R.C, which is to say, we treat a concept expression ∃R.C
as if it were a primitive concept name.

The approach assigns weights to every GCI, where a
weight reflects its relative generality. Then we select the
kernels with minimum overall weight. A GCI A v B gets
weight 0 ifA has no children; and a GCIA v B gets weight
i+1 if the maximum weight of the GCIs of formX v A is i.
Similarly, a GCI A1 uA2 v B gets weight i+1 if the max-
imum weight of the GCIs of form X v Aj for j ∈ {1, 2}
is i. For simplicity, we assume that the TBox is acyclic – so
we avoid the problems that will be caused by loops.

In more detail, let A and B be concept expressions ap-
pearing in a normalized TBox.

1. If A has no children, assign A v B a weight of 0. If A1,
A2 have no children, assign A1 uA2 v B a weight of 0.

2. For GCI A v B (A1 uA2 v B), assign the GCI a weight
of i+1 if the maximum weight of GCIs of the form X v
A (resp. X v Aj j ∈ {1, 2}) is i.
Then, given that a set of hitting sets H = {h1, . . . , hn}

has been found, choose the preferred hitting set hi where the
sum of the weights of the GCIs in hi is a minimum.

As a simple example, consider the previous example:
• A v B has weight = 0
• B v C has weight = 1
• C v D has weight = 2
In this case, the hitting set consisting of the GCI A v B is
selected.

The time complexity of the underlying algorithm is poly-
nomial. Let m be the size of the normalized TBox T , and n
the number of hitting sets. Determining the depth labeling
of GCIs in T takes linear time, and determining the weights
of the hitting sets isO(n ·k) where k is the maximum size of
a hitting set. Hence the overall complexity isO(m+(n ·k)).
As with localization, the resulting operator is a smooth ker-
nel contraction.

Again, the basic approach to specificity can be enhanced
or modified. For example, one could just look at hitting
sets of minimum cardinality, and so the specificity heuristic
would be a tie-breaker for equal-sized hitting sets. As well,
there are other ways of determining overall specificity of a
set of GCIs. One appealing candidate is to choose the hitting
set hi whose maximally-weighted GCI is a minimum. That
is: rank the hitting sets by the maximum weight assigned
to a contained GCI, and then choose the minimum ranked
hitting set in the resulting ranking.



Last, it might be objected that since there may be an expo-
nential number of hitting sets, any approach is bound to be
intractable in the worst case. This difficulty can be pragmati-
cally addressed by employing an anytime algorithm for gen-
erating an acceptable candidate: simply run through hitting
sets, keeping track of the best candidate found so far, until
either a “good enough” candidate is found, a time bound is
hit, or some other stopping criterion is met.

Conclusion
In this paper we have studied belief contraction in the de-
scription logic EL. The overall goal is to apply the formal
theory of belief base change in a practical setting. To this
end, kernel contraction seems to most appropriate approach
for contraction. We chose to work with EL first, because
it used in large-scale knowledge bases and second, because
the EL constructs for structuring knowledge allow the spec-
ification of heuristics to choose intuitive, commonsense out-
comes for a contraction. We first examined ways of find-
ing (or approximating) hitting sets. We also proposed two
heuristics, based on localization and specificity, for deter-
mining suitable hitting sets for contraction. Our main con-
traction operators are shown to conform to Hansson’s postu-
lates for smooth base contraction. All of our algorithms are
efficient, being polynomial in (one or both) of the size of the
TBox or the number of hitting sets. The bottleneck then lies
in the number of hitting sets, which may be exponential in
the size of the TBox.

For future work there are two main ways to go. First,
the present heuristics can be further explored, elaborated on,
and variants developed; as well, these approaches should be
implemented to determine what works best in practice. Sec-
ond, is to explore belief change in a more expressive de-
scription logic. To this end, there are enhancements to EL
that preserve the polynomial-time features, but also bring
in a notion of consistency (by allowing the concept ⊥), for
which the present approach should apply without change.
This would allow a definition of revision in EL, in terms
of the Levi Identity. As well, belief change in significantly
more expressive DLs, such as in the ALC family, can also
be addressed.
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