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Abstract

We present a general approach for representing and reasoning with sets of defaults in de-
fault logic, focussing on reasoning about preferences among sets of defaults. First, we consider
how to control the application of a set of defaults so that either all apply (if possible) or none do
(if not). From this, an approach to dealing with preferences among sets of default rules is de-
veloped. We begin with anordered default theory, consisting of a standard default theory, but
with possible preferences on sets of rules. This theory is transformed into a second, standard
default theory wherein the preferences are respected. The approach differs from other work, in
that we obtain standard default theories and do not rely on prioritised versions of default logic.
In practical terms this means we can immediately use existing default logic theorem provers
for an implementation. As well, we directly generate just those extensions containing the most
preferred applied rules; in contrast, most previous approaches generate all extensions, then se-
lect the most preferred. In a major application of the approach, we show how semi-monotonic
default theories can be encoded so that reasoning can be carried out at the object level. With
this, we can reason about defaultextensionsfrom within the framework of standard default
logic. Hence one can encode notions such as skeptical and credulous conclusions, and can
reason about such conclusions within a single extension.

Keywords: Knowledge representation, nonmonotonic reasoning, default logic, reasoning with
preferences.

1 Introduction

In previous work [DS00a], we explored reasoning with preference among default rules in default
logic [Rei80]. In that approach, one could state and reason about preference information, for
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example that a car that is economical is preferred over one that is safe, and one that is safe is in
turn preferred over one that is powerful. In the present paper, we extend this work to deal with
preferences over sets of objects, represented by default rules. Thus, here one can state that a car
that is safe and efficient is preferred over one that is cheap, efficient, and stylish.

We begin by showing how one can reason with sets of defaults in default logic. In particular we
show how, for a set of defaultsDm, we can detect the case in which all defaults inDm apply. From
this, for a default theory(D∪Dm, W ) we show how to obtain a second theory wherein (informally)
either all of the defaults inDm are applied (if possible) or none of them are. This is done by naming
each of the defaults inDm, and then expressing in default logic the applicability conditions for the
defaults. These applicability conditions are then used to control the actual assertion of the default
rule conclusions. We develop this in Section 4, following a background section and a section on
motivation and intuitions.

Next, in Section 5 we develop a general methodology for reasoning with preferences among
sets of defaults. We begin with anordered default theory, a default theory with explicit preferences
given on sets of default rules. This theory is translated into a standard default theory, where prov-
ably defaults are applied in the appropriate fashion. Roughly, we provide an axiomatisation that
“considers” sets of defaults according to the given ordering. We employ a strongly prescriptive
approach to dealing with preferences: informally, in building an extension, the maximum set(s) of
default rules in the preference ordering are first considered, followed by the next-to-maximum, and
so on. In particular, we forbid lower ranked defaults from enabling the activation of higher-ranked
defaults, as is found in more descriptive approaches.

Last, in an application of the (general) approach, we show how the methodology for reasoning
with sets can be modified so that for a large class of default theories, we can encode the set of
extensions within a single extension. That is, in (standard) default logic, one typically obtains not
just a single set of default conclusions, but rather multiple sets of candidate default conclusions;
reasoning about these extensions is carried out at the meta-level. In Section 6, we show how such
reasoning can be carried out at the object level. For a semi-monotonic1 default theory∆ = (D, W ),
we translate∆ to obtain a second theory∆′ = (D′, W ′), such that∆′ has a single extension
that encodes every extension of∆. Given this, one can express in the theory what it means for
something to be a skeptical or credulous default conclusion. Hence one can reason about (skeptical
and credulous) conclusions within the framework of a single extension of a default theory. The
translation has several desirable properties. The translated theory∆′ is only a constant factor
larger than the original∆, with the exception of introduced unique names axioms. As well, here
as in the previous sections, weprovethat our translation behaves correctly. Only an outline of the
application is described here; see [DS02] for the full development.

While there is a significant body of work treating preferences among individual properties in
nonmonotonic approaches (see Section 2.2) this is, to the best of our knowledge, the first time
that groups or sets of preferences have been so addressed. We adopt a methodology in which we
remain within the framework of standard default logic, rather than building a scheme on top of
default logic, as is found in other approaches. This methodology has several advantages. First,
our approach can be immediately implemented by making use of an existing default logic theorem
prover such as DeRes [CMT96]. As well, the approach allows the direct generation of extensions
containing the most preferred (sets of) applied rules. This is in contrast with most previous work,

1This and other terms are defined in Section 2.
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in which extensions are generated and the most preferred subsequently selected. Third, it is easier
to compare differing types of preference within a single framework. Moreover, in “compiling”
sets and preferences into default logic, and in using the standard machinery of default logic, we
obtain insight into the notion of preference orderings and reasoning with sets. Thus for example
we implicitly show that explicit priorities over sets provide no real increase in the expressibility of
default logic.

2 Background

2.1 Default Logic

We assume a basic familiarity with default logic [Rei80]; the following provides a précis of the
approach. Default logic augments classical logic bydefault rulesof the form α : β

γ
. A default

rule is normal if β is equivalent toγ; it is semi-normalif β implies γ. We sometimes denote
the prerequisiteα of a defaultδ by PRE(δ), its justification β by JUS(δ), and itsconsequent
γ by CON(δ). Accordingly, PRE(D) is the set of prerequisites of all defaults inD; JUS(D)
and CON(D) are defined analogously. Empty components, such as no prerequisite or even no
justifications, are assumed to be tautological. Semantically, defaults with unbound variables are
taken to stand for all corresponding instances. A set of default rulesD and a set of formulasW
form adefault theory(D, W ) that may induce zero, one, or multipleextensionsin the following
way [Rei80].

Definition 2.1 Let (D, W ) be a default theory and letE be a set of formulas. DefineE0 = W and
for i ≥ 0:

GDi =
{

α : β1,...,βn

γ
∈ D

∣∣∣ α ∈ Ei,¬β1 6∈ E, . . . ,¬βn 6∈ E
}

Ei+1 = Th(Ei) ∪ {CON(δ) | δ ∈ GDi}

ThenE is an extension for(D, W ) if E =
⋃∞

i=0 Ei.

Any such extension represents a possible set of beliefs about the world at hand. Further, define
for a set of formulasS and a set of defaultsD, theset of generating default rulesasGD(D, S) =
{δ ∈ D | PRE(δ) ∈ S and¬JUS(δ) 6∈ S} . An enumeration〈δi〉i∈I of default rules isgroundedin
a set of formulasW , if we have for everyi ∈ I that W ∪ CON({δ0, . . . , δi−1}) ` PRE(δi). A
default theory(D, W ) is said to besemi-monotonicif, for D′ ⊆ D′′ ⊆ D, if E ′ is an extension of
D′ then there is an extensionE ′′ of D′′ whereE ′ ⊆ E ′′.

2.2 Ordered Default Theories

In [DS00a], we addressed the problem of reasoning about preferences among properties using
default logic. This is part of a relatively large body of recent work dealing with preferences in
nonmonotonic reasoning. Representative work in default logic includes [BH93, Bre94a, Rin95,
BE00]. A distinguishing characteristic of [DS00a] is that it translates ordered default theories
into standard default theories, and doesn’t necessitate extending the machinery of default logic.
(However, see [GS97] for a related approach.) Preferences are first expressed in [DS00a] using
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an ordered default theory, (D, W, <), whereD is a finite set of default rules,W a finite set of
formulas, and< ⊆ D ×D a strict partial order on the default rules. That is,< is a binary
irreflexive and transitive relation onD. An ordered default theory is subsequently translated into a
second, standard default theory wherein the preferences are respected, in that defaults are applied in
the prescribed order. This translation is accomplished via the naming of defaults, so that reference
may be made to a default rule from within a theory. Since the ordering< is external to the theory
(D, W ) such a theory is said to havestaticpreferences. In this paper we will just deal with theories
having static preferences.

For example, consider where one prefers a car that is not expensive (E) over one with good
safety features (S) over one with a lot of power (P ). This might be expressed as:P

P
< :S

S
< :E

E
.2

Note that there is no syntactic relation between defaults in a preference relation. This is in contrast
with ordered defaults employed forinheritanceof properties, where the prerequisite of a more
preferred default is less specific than a less preferred default; see [DS00b].

From this, the approach is generalised to theories withdynamicpreferences, where preference
information is specified within a default theory. Thus a theory is of the form(D, W ) where the
relation< (effectively) can appear in elements ofD andW , as a binary relation in the object
language on (names of) default rules. In this extension, one can specify preferences that hold by
default, in a particular context, or give preferences among preferences.

3 Reasoning with Sets of Defaults

3.1 Why Reason with Sets of Defaults?

The discussion in the preceding subsection did not address the fact that some combinations of
properties may outweigh others. In our previous car-buying example, one may also have the pref-
erence that safety features together with power is ranked over price. We consider therefore ordered
default theories where the ordering is onsetsof defaults. We can write our example as follows:{

: P
P

}
<

{
: S
S

}
<

{
: E
E

}
<

{
: P
P

, : S
S

}
. (1)

If we were given only that not all desiderata can be satisfied (and soW = {¬(P ∧ S ∧ E)})
then intuitively we would want to apply the defaults in the set

{
: P
P

, : S
S

}
and conclude thatP and

S can be met. If instead we were given thatW = {¬P} then the highest ranked set would be
inapplicable, and we would want to apply the next ranked set, obtainingE, followed by the next
ranked set, obtainingS.3

Another application for preferences on sets of default rules comes from the domain of model-
based diagnosis [Rei87]. This approach appeals to theprinciple of parsimony, according to which a
diagnosis is a conjecture that some minimal set of components is faulty. Often this is strengthened
by preferring a single-fault diagnosis over a two-fault diagnosis, over a three-fault diagnosis, etc.

2See [BG94] for a more realistic, but analogous, encoding of such examples.
3This gives rise to the question of whether we want to considerall potentially applicable sets of defaults, in the

order specified by<, or just themaximumapplicable sets. As will become clear in Section 5, either possibility is
easily representable.
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Assume one has three such components whose normal behaviour is modeled by means of rule
:¬abi

¬abi
for i = 1..3. We can model the strengthened principle of parsimony by{

:¬abi

¬abi

}
<

{
:¬abj

¬abj
, :¬abk

¬abk

}
<

{
:¬abi

¬abi
,

:¬abj

¬abj
, :¬abk

¬abk

}
for i, j, k = 1..3, where variables are local to a set and take distinct values.

Suppose our system description entailsab1 ∨ (ab2 ∧ ab3). In standard default logic, we ob-
tain two corresponding extensions, which would violate the strengthened principle of parsimony.
With the given preferences, however, we obtain only the single-fault extension, containingab1

along with¬ab2 and¬ab3. In a similar fashion, in the realm of planning and in addressing the
qualification problem, [Thi01] proposes sets of preferences over abnormalities.

For a somewhat different application involving sets of defaults, consider an issue identified
and addressed by [BEFK99]. The claim made in that paper was that individuals that are indistin-
guishable in a (classical) theory should be treated uniformly by the set of defaults. In particular,
we can consider the case where we have two defaults with conflicting consequents. Arguably all
individuals who satisfy the prerequisite conditions for the (conflicting) defaults should be treated
identically. The authors give the following example involvingsimilar individuals:

• Students (S) who have had bad grades in the past (B) but unexpectedly obtain a good grade
on an exam (G) are normally suspected of cheating (C).

• Students who are not caught cheating (N ) are normally not suspected of cheating.

This can be represented using the defaults

D =
{

S(x)∧B(x)∧G(x) : C(x)
C(x)

, S(x)∧N(x) :¬C(x)
¬C(x)

}
.

Assume further that Mary and John both are students who have had bad grades in the past, have
received a good grade on an exam, and have not been caught cheating, viz:

W = {S(m), B(m), G(m), N(m), S(j), B(j), G(j), N(j)}.

The theory(D, W ) has four extensions. Two extensions are arguably problematic, one con-
taining C(m), ¬C(j) and another containing¬C(m), C(j). Arguably, since John and
Mary are indistinguishable according to the facts at hand, they should be treated the same –
that is to say, we should just obtain extensions withC(m), C(j) or with ¬C(m), ¬C(j).
In this case we could group instances of the defaults, so that our theory would contain{

S(m)∧B(m)∧G(m) : C(m)
C(m)

, S(j)∧B(j)∧G(j) : C(j)
C(j)

}
and

{
S(m)∧N(m) :¬C(m)

¬C(m)
, S(j)∧N(j) :¬C(j)

¬C(j)

}
. Intuitively,

we would want all defaults in a set to apply, or none. These sets would then be asserted to be pre-
ferred over their constituent elements.

3.2 How to Reason with Sets of Defaults

There are a number of issues that arise in considering sets of defaults and preferences among these
sets. First, as described, we need some way of ensuring that all defaults in a set apply, or none do.
Thus for the set

{
: P
P

, R : S
S

}
, we do not want to apply the first default, unless the second default is
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applicable. This could happen if, for example, we had the default: R
R

elsewhere in the theory. It
may also be that the defaults within a set depend on each other. So if we had the set

{
: P
P

, P : S
S

}
,

then the application of the first default would enable application of the second, thus enabling both
defaults in the set to be applied.

There are also some subtleties as to how sets of defaults may interact once preferences are
introduced. Consider the set-based default theory({{

: P
P

, : R
R

}
,
{

P : S
S

, : T
T

}}
, ∅

)
(2)

The first set of defaults can be jointly applied. The second set cannot be applied in isolation;
however once the first set of defaults has been applied, the conclusion ofP allows the second set
to be jointly applied. Hence we would expect to obtain an extension containingP , R, S, andT .

Thus, if we added the preference{
P : S

S
, : T

T

}
<

{
: P
P

, : R
R

}
,

then we would expect precisely the same outcome: the most preferred set is applicable and, once
applied, the second set can be applied.

The situation is not so clear for the reverse preference:{
: P
P

, : R
R

}
<

{
P : S

S
, : T

T

}
. (3)

One could argue that the less-preferred set is applicable, and that the application of this set would
then enable the application of the more preferred set. Hence, so the argument might run, we should
obtain an extension containingP , R, S, andT . In contrast to such adescriptiveinterpretation of
preferences, one can take aa prescriptiveapproach, and assert that the<-greatest set should be
determined to be applicable (or not), followed in order by less preferred sets. Under this interpre-
tation, one might expect to obtain an extension containingP andR only.

Here (as in [DS00a]) we adopt a prescriptive approach. First, there is reason to believe that
a prescriptive approach will generally be more efficient than a descriptive approach (even though
the respective complexity classes may be the same). Second, it seems that a descriptive approach
requires (at least in its obvious implementation) a meta-level approach, whereby extensions are
generated and filtered according to the preference criteria. As we have noted, a prescriptive ap-
proach allows preferred extensions to be generated directly. Lastly, a prescriptive interpretation
arguably comes with more representational force and allows a tighter characterisation of a domain.
That is, a prescriptive approach forces a knowledge base designer to be explicit about what things
should be applied in what order. For the example (3), if the more preferred set is intended to be
applied in light of the applicability of the less preferred set, then this should be explicitly encoded
in the domain theory, something that a prescriptive interpretation requires. A descriptive inter-
pretation on the other hand simply gives a “wish list” of preferences which may or may not be
meaningful. See [DS00b] for more details.

3.3 The Approach

The general approach is similar to that in [DS00a, DS00b]; the present paper can be seen as an
extension of the methodology proposed and developed in this previous work. Essentially, we
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have proposed a general methodology for using default logic, involving the naming of default
rules and the introduction of special-purpose predicates, for detecting default rule applicability
and controlling a rule’s application. This allows the encoding of specific strategies and policies
governing the set of default rules.

The general framework is quite straightforward. We begin with a language for expressing some
phenomenon in which we are interested, along with an informal notion of what inferences should
obtain in this language. For the present paper, we deal withset-ordered default theories, consisting
of a default theory along with possible preferences on subsets of the defaults. A translation is
given, such that the original theory is mapped into a (standard, Reiter) default theory, wherein the
obtained extensions contain just the applicable, preferred (sets of) conclusions. The translation
takes a default theory, augmented by a preference relation among sets of defaults, and maps this
onto a standard, Reiter default theory, where mention of sets and explicit preferences is eliminated
and replaced by special-purpose tags (predicates) that play the same role as the grouping of defaults
into sets.

This translation serves several purposes. In a sense it provides a semantics for (orformalises)
the original theory, in that it demonstrates how the original theory is expressible in default logic.
That is, the desiderata sketched in the previous subsection are quite informal; part of the intent of
the approach then is to formalise these intuitions. In particular, we are able to prove that our ap-
proach has the desired properties. Second, the translation provides a direction for implementation:
given an efficient translation into default logic and a default logic theorem prove (e.g. [CMT96]),
it is straightforward to implement the desired inferences of the original theory.

To illustrate the general idea of our methodology, consider a default ruleα : β
γ

. Assume that

constantn is associated with this rule as its name in the object theory. Then the rule¬β :
bl(n)

will be
applied just when the original rule cannot be applied due to its justification being not consistent
with the set of beliefs.bl(·) is a newly-introduced predicate; the concluding ofbl(n) signals in the
object theory that the original rule is not applied. Similarly, if we replace the ruleα : β

γ
by ok(n)∧α : β

γ
,

whereok(·) is a newly-introduced predicate, then application of this rule can be controlled in
the object theory, in that the rule cannot be applied unlessok(n) has been asserted. This notion
of adding “tags” to detect and control rule application yields surprisingly powerful results. As
described, we have shown in [DS00a] how an ordered default theory, consisting of a theory with
a partial order on the default rules, can be translated into a “standard” default theory in which the
rule ordering is adhered to.

In order to be able to reason with preferences among sets of defaults, there are two issues that
need to be addressed. The first concerns being able to “control” an individual set of rules so that all
of the defaults in the set apply, or none do. This is covered as a separate topic in the next section.
Second, once we can deal with a set of defaults in isolation, this is extended to reasoning with
other sets of defaults where there may be a preference ordering on these sets. This is the subject
of Section 5. There we modify the techniques used in [DS00a], so as to be able to deal with sets
of defaults. Lastly, we describe an application of the approach, that of encoding semi-monotonic
default theories, discussed in the next subsection and developed formally in Section 6.
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3.4 Encoding (Some) Default Theories in Default Logic

In nonmonotonic reasoning, in so-calledconsistency-basedapproaches such as default logic
[Rei80] and autoepistemic logic [Moo85], one typically obtains not just a single set of default
conclusions, but rather multiple sets of candidate default conclusions. Consider the (hackneyed)
example wherein Quakers are normally pacifist, republicans are normally not, and where adults are
normally employed. Assume as well that someone is a Quaker, republican, and an adult. In default
logic this can be encoded by:({Q : P

P
, R :¬P

¬P
, A : E

E
}, {Q, R,A}). This theory has twoextensionsor

sets of default conclusions, one containing{Q,R,A, E, P} and the other{Q,R,A, E,¬P}. In
autoepistemic logic the same example appropriately encoded yields two analogousexpansionsor
possible belief sets.

Reasoning about these extensions (resp. expansions) is carried out at the meta-level: a default
conclusion that appears in some extension is called acredulous(or brave) default conclusion, while
one that appears in every extension is called askepticalconclusion. In the preceding example,P
is a credulous default conclusion, whileE is a skeptical conclusion. Intuitively it might seem
that skeptical inference is the more useful notion. However, this is not necessarily the case. In
diagnosis from first principles [Rei87] for example, in one encoding there is a 1-1 correspondence
between diagnoses and extensions of the (encoding) normal default theory. Hence one may want
to carry out further reasoning to determine which diagnosis to pursue. More generally there may
be reasons to somehow synthesise the information found in several extensions.

In Section 6, we show how such reasoning can be carried out at the object level. For a default
theory ∆ = (D, W ), we translate∆, by adapting the methodology of Section 5, to obtain a
second theory∆′ = (D′, W ′), such that∆′ has a single extension that encodes every extension
of ∆. Given this, one can express in the theory what it means for something to be a skeptical
or credulous default conclusion. This result isn’t completely general; however it applies tosemi-
monotonicdefault theories.

So in this approach we can encode the notion of “extension” within the framework of standard
default logic. Hence one can reason about (skeptical and credulous) conclusions within the frame-
work of a single extension of a default theory. Thus for example, in a diagnosis setting one could
go on and axiomatise notions of preference among diagnoses having to do with, perhaps, number
of faulty components, or based on components expected to fail first. This result has some theoreti-
cal interest, in that it shows (for theories that we consider) how multiple extensions are encodable
in a single extension, with no significant overhead.

4 Applying All, or None, of a Set of Defaults

In this section we consider the problem of how to uniformly apply all defaults in some set. That
is, if all defaults in the set can be simultaneously applied, then we want to apply all the defaults;
otherwise (if some default cannot be applied in the context of the other defaults), we wishnodefault
in the set to be applied. We will work with default theories(D, W ) having some distinguished finite
subsetDm ⊆ D. For making the setDm explicit, we denote such theories by(D ∪Dm, W ). The
idea is that we wish to obtain extensions of(D ∪Dm, W ) subject to the constraint thatall defaults
in Dm are applied, ornoneare. For example, in the theory

({
: A
A

}
∪

{
: B
B

, C : D
D

}
, ∅

)
we would

want to obtain an extension containingA, but notB (since the defaults in
{

: B
B

, C : D
D

}
cannot both
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be applied). For
({

: A
A

}
∪

{
: B
B

, B : D
D

}
, ∅

)
we would want to obtain an extension containingA, B,

andD.
Each default is associated with a unique name. This is done by extending the original language

by a set of constants4 N such that there is a bijective mappingn : D → N . We writenδ instead of
n(δ) (and we often abbreviatenδi

by ni to ease notation). Also, for defaultδ along with its name
n, we sometimes writen : δ to render naming explicit. To encode the fact that we deal with a
finite set of distinct default rules, we adopt a unique names assertion (UNAN ) and domain closure
assertion (DCAN ) with respect toN . So, for a name setN = {n1, . . . , nk}, we add axioms

UNAN : ¬(ni = nj) for all ni, nj ∈ N with i 6= j
DCAN : ∀x. name(x) ≡ (x = n1 ∨ . . . ∨ x = nk) .

We write∀x ∈ N. P (x) for ∀x. name(x) ⊃ P (x).
Further, we introduce a new constantm as the name of the designated rule setDm. The name,

m, of this rule set is related with the names of its members by a new binary predicatein where
in(x, y) is true just if the default named byx is a member of the set named byy. In this section,
instances ofin will be of the formin(·, m). While we could get away with not usingin (andm)
here, this additional machinery is required in Sections 5 and 6, and it is most straightforward to in-
troduce it here. Note that we do not need a full axiomatisation ofin, representing set membership,
since we use it in a very restricted fashion.

For applying all, or none, of the defaults inDm, we need to be able to, first, detect when a rule is
blocked and, second, control the application of a rule based on other prerequisite conditions. There
are two cases for a defaultα : β

γ
to be blocked: the prerequisite is not known to be true (and so its

negation¬α is consistent), or the justification is not consistent (and so its negation¬β is derivable).
For detecting these cases, we introduce a new, special-purpose predicatebl(·). For controlling
application of a rule we introduce predicatesok(·) andko(·). Similarly we introduce a special-
purpose predicateap(·) to detect when a rule has been applied. This last predicate isn’t required
here, but it is needed in later sections; as well it allows a compact and transparent statement of
results in Theorem 4.1.

Definition 4.1 Given a default theory(D ∪ Dm, W ) over languageL and its set of associated
default namesN ∪̇{m},5 defineSm((D ∪Dm, W )) = (D′, W ′) overL∗ by

D′ = D ∪DN ∪DM

W ′ = W ∪WD ∪WM ∪ {DCAN , UNAN}

where

DN =
{

α∧ok(n) : β
γ∧ap(n)

∣∣∣ n : α : β
γ

∈ Dm

}
(4)

DM =
{

:¬ko(m)
ok(n1)∧...∧ok(nk)

∣∣∣ ni : αi : βi

γi
∈ Dm, i = 1..k

}
(5)

∪
{

:¬α
bl(m)

, ([∀y∈N. in(y,m)⊃c(y,m)])⊃¬β :
bl(m)

∣∣∣ n : α : β
γ

∈ Dm,
}

(6)

WD = {c(nδ, m) ≡ CON(δ) | δ ∈ Dm} (7)

4[McC86] first suggested naming defaults using a set ofaspectfunctions. See also [Poo88, Bre94b].
5We let∪̇ stand for disjoint union.
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WM = {∀x ∈ N.in(x, m) ≡ (x = n1 ∨...∨ x = nk)} (8)

∪ {bl(m) ⊃ ko(m)} (9)

∪ {(∀x ∈ N. in(x, m) ⊃ ap(x)) ⊃ ap(m)} (10)

DN contains the images of the original rules inDm. Each ruleδj ∈ DN is applicable, ifok(nj) is
derivable. In fact, we assertok(nj) for everyδj ∈ Dm, unlesswe cannot jointly apply all rules of
Dm. That is, before activating the constituent rules, we have to make sure that none of them will
be blocked. This is accomplished through the justification¬ko(m) in (5) together with Axiom (9).
We block the rule in (5) (and with it the derivability of allok(nj)) when we detect that one of
δ1, . . . , δk is blocked (sinceko(m) is an immediate consequence ofbl(m)).

Now, we have thatDm is blocked (bl(m)) just if some rule inDm is blocked. However, since
we must control a set of defaults, we must check for the blocking of one of the constituent default
rules in the context of all other rules in the set applying. This motivates the prerequisite of the
second rule in (6). First, we express the consequents of the rules inDm by means of a function
(see (7)); this avoids a quadratic blowup in space in our translated theory.6 This context, effectively
(γ1 ∧ . . . ∧ γk), is not needed for detecting the failure of derivability via the first rule in (6), since
this test is with respect to the final extensionE via¬αj 6∈ E.

This also brings up the relationship betweenbl(m) andko(m). ko is used generally to eliminate
a set of rules from consideration. In this and the next section,ko of a set is asserted precisely when
bl is asserted – i.e. a set is flagged asko’ed just when it is known that all defaults in the set cannot
be jointly applied. However in Section 6 there will be other reasons to eliminate a set of rules from
consideration. Consequently we have separate predicates to indicate that a set isbl’ed, and the
more generalko.

Finally, as given in (10),Dm is applied (ap(m)) just if every rule inDm is applied; it is only
in this last case that the consequents of the constituent rules inDm are asserted. (Note that the
consequents of the constituent rules may be in an extension, even ifap(m) hasn’t been asserted,
for example if the consequents were originally in the setW .)

Consider theory(D ∪Dm, W ), where

D =
{

: E
E

}
, Dm =

{
n1 : : P

P
, n2 : : S

S

}
. (11)

ForDN andDM , we obtain (after simplifying and removing redundant defaults):

ok(n1) : P
P∧ap(n1)

, ok(n2) : S
S∧ap(n2)

, :¬ko(m)
ok(n1)∧ok(n2)

, ¬P∨¬S :
bl(m)

.

Thein predicate has instances:in(n1, m) andin(n2, m).
Let W = {¬(P ∧ E ∧ S)}. We obtain two extensions, one containingP, S,¬E and the other

containingE,¬(P ∧ S). For the first extension, we obtainok(n1) andok(n2). If both δ1 andδ2

are applicable (which they are) then we concludeP andS and so¬E. For the other extension, if
the default : E

E
is applied, then¬P ∨ ¬S is derivable, and so¬P∨¬S :

bl(m)
is applicable, from which we

obtainbl(m), and soko(m), blocking application of :¬ko(m)
ok(n1)∧ok(n2)

. Consequently neitherok(n1) : P
P∧ap(n1)

nor ok(n2) : S
S∧ap(n2)

can be applied.

6As well, this anticipates the more intricate encodings in the next two sections.
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In the next example, defaults inside a set depend upon each other. Consider(∅ ∪Dm, ∅) with

Dm =
{

n1 : : Q
Q

, n2 : Q : R
R

}
.

We get forDN andDM , after simplifying, the following rules.

ok(n1) : Q
Q∧ap(n1)

, Q∧ok(n2) : R
R∧ap(n2)

, :¬ko(m)
ok(n1)∧ok(n2)

, ¬Q∨¬R :
bl(m)

, :¬Q
bl(m)

.

We obtainok(n1), andok(n2), which allow us to apply defaultδ1, yielding in turnQ ∧ ap(n1).
Given Q, we can now apply defaultδ2, yielding R ∧ ap(n2). We thus get an extension contain-
ing Q and R. This example shows why we cannot avoid the translation by replacingDm by∧

δ∈Dm
PRE(δ) :

∧
δ∈Dm

JUS(δ)∧
δ∈Dm

CON(δ)
.

The next theorem summarises properties of our approach, and shows that the rules inDm are
applied either en masse, or not at all.

Theorem 4.1 Let E be a consistent extension ofSm((D ∪ Dm, W )) for default theory(D ∪
Dm, W ). We have that:

1. ap(m) ∈ E iff {ap(nδ) | δ ∈ Dm} ∪ CON(Dm) ⊆ E

2. bl(m) ∈ E iff {ap(nδ) | δ ∈ Dm} 6⊆ E

3. ok(nδ) ∈ E iff ap(nδ) ∈ E

4. ok(nδ) ∈ E for all δ ∈ Dm iff ko(m) 6∈ E

5. ap(nδ) ∈ E for δ ∈ Dm iff {ap(nδ) | δ ∈ Dm} ⊆ E.

The first part of the theorem states that the set is applied exactly when every rule in the set is
applied, while the second part states that the set is blocked exactly when some rule is not applied.
From Part 3 of the theorem we get that a rule is flagged asok precisely if it can be applied. The
last two parts assert that all rules are flagged asok precisely if the set isn’t blocked, and if one rule
is applied inDm then all rules are applied.

Theorem 4.2 For default theory(∅∪D, W ), we have thatSm((∅∪D, W )) has extensionE where
eitherE ∩ L = Th(W ∪ CON(D)) or elseE ∩ L = Th(W ).

The above theorem implies that, regardless of the form of the defaults in our set, we are guaranteed
that the theory has an extension. For example, the default theory

(
∅ ∪

{
: B
¬B

}
, ∅

)
has an extension

E whereE ∩ L = Th(∅).

Theorem 4.3 Let (D, W ) be a (standard) default theory overL with extensionE and (respective)
set of generating defaultsGD(D, E). ThenSm((∅ ∪ GD(D, E), W )) has extensionE ′ where
E = E ′ ∩ L.
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5 Preferences on Sets of Defaults

In this section we consider default theories in which there may be preferences among subsets of
the defaults. Consider again example (1), where in buying a car one ranks the price (E) over safety
features (S) over power (P ), but safety features together with power is ranked over price. Using
named defaults and sets, we can write this as:

m1 :
{

: P
P

}
< m2 :

{
: S
S

}
< m3 :

{
: E
E

}
< m1,2 :

{
: P
P

, : S
S

}
(12)

wherem1, m2, m3, andm1,2 are names of sets of defaults; we describe their use later. Intuitively,
if we were given only that not all desiderata can be satisfied (i.e.W = {¬(P ∧ E ∧ S)}) then we
could apply the defaults in the set namedm1,2 and conclude thatP andS can be met. This should
be the only extension.

So now a default theory has an ordering given on sets of defaults. Consider a general assertion
D′ < D′′ whereD′, D′′ ⊆ D. Informally we prefer the application of the setD′′ to that ofD′. We
can say thatD′′ is applicable if all its member defaults are, and inapplicable if one of its members
is inapplicable. Consequently we considerD′ afterall defaults inD′′ are found to be applicable,
or somedefault inD′′ is found to be inapplicable.

Definition 5.1 A set–ordered default theory is a triple(D, W, <), whereD is a finite set of default
rules,W is a finite set of formulas, and< ⊆ 2D × 2D is a strict partial order.

In order to refer to the sets involved in<, we define2D
∣∣
<

= {D′, D′′ | (D′, D′′) ∈<}.
The notation of the previous section is extended as follows. Names are introduced for each

subset ofD, and for each instance of a rule in each subset ofD. As well, new predicate symbols
are introduced to further control the application of sets of rules. We then give a translation that
yields a second default theory(D′, W ′). Viewed algorithmically, this second theory carries out
the following: If a maximal set of defaultsD is applicable, then the default’s consequents are
asserted. These consequents are “propagated” to all sets that are not<-greater than the set at
hand. Following this, the next<-maximal sets are considered, and the process continues through
the partial order. Crucially, default conclusions are “tagged” with the name of the set in which
they appear so as to eliminate possible side effects. However, at the same time, we want the
consequences of one set to be available to another set, provided the second set is not<-greater
than the first. Consider setsm1 : { : A

A
} andm2 : {A : B

B
} with no preference relation between

them. The rules are mapped into set-indexed rules, say, for the purposes of illustration,7 : A(m1)
A(m1)

and A(m2) : B(m2)
B(m2)

. We can apply the default of the first set, obtainingA(m1). Since we do not have
m1 < m2 we also assertA(m2) allowing the second set to be applied.

To name sets of defaults, we take some fixed enumeration〈n1, . . . , nk〉 of N , and definem as
ak-ary function symbol. Then, forn⊥ 6∈ N and~x = x1..xk, define

DCAM : ∀~x. set-name(m(~x)) ≡ (x1 = n1 ∨ x1 = n⊥) ∧ . . . ∧ (xk = nk ∨ xk = n⊥).

Intuitively, xi = n⊥ tells us thatni does not belong to the set at hand.

7The actual mapping given in Definition 5.3 is more complex.
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Accordingly, for~x = x1..xk and~x′ = x′1..x
′
k define

UNAM : ∀~x, ~x′. set-name(m(~x)) = set-name(m(~x′)) ≡ x1 = x′1 ∧ . . . ∧ xk = x′k.

The advantage of this “vector-oriented” representation over a dynamic one including a binary func-
tion symbol (as with lists) is that each set has a unique representation.8 We write∀x ∈ M. P (x)
instead of∀x. set-name(x) ⊃ P (x). Further, we useM for denoting the set of all valid set-names,
that is,

M = {m | DCAM |= set-name(m)} .

In order to ease notation, we writem1,3 as the name of the set{δ1, δ3} instead of
m(n1, n⊥, n3, n⊥, . . . , n⊥). Also, we abbreviatem(n⊥, . . . , n⊥) by m∅ andm(n1, . . . , nk) by mD.
Note the difference between namesni andmi, induced by our notational convention.

We now use the “vector-oriented” representation for capturing set membership, denoted by
in(·, ·). Consider for instanceN = {n1, n2}. Membership is axiomatised through the formulas

∀x1, x2. in(n1, m(x1, x2)) ≡ (n1 = x1)

∀x1, x2. in(n2, m(x1, x2)) ≡ (n2 = x2).

While this validatesin(n1, m1,2), it falsifiesin(n1, m2). See (22) for the general case.
We need to be able to refer to separate instances of the same default appearing in different sets.

For this we introduce a binary, infix function-symbol “·”. For δj ∈ Di we writenδj
·mi or nj·mi to

name the instance ofδj appearing inDi. This results in name setN ·M = {n·m | n ∈ N, m ∈ M}.
Corresponding axioms, as DCAN ·M and UNAN ·M , are obtained in a straightforward way. In what
follows, we refer to the various domain closure and unique names axioms pertaining toN , M , and
N ·M asAx(N).9

Given languageL, we define a family of languagesL(m) for m ∈ M as follows. IfP is ani-ary
predicate symbol thenP (·) is a distinct (i + 1)-ary predicate symbol. Ifγ ∈ L thenγ(m) ∈ L(m)
is the formula obtained by replacing all predicate symbols inγ with predicate symbols extended
as described, and with termm as the(i + 1)st argument. This extra argument is used to index
formulas by the (names of) sets in which they are used.

Lastly, we introduce special-purpose predicates for controlling the application of sets of de-
faults. ok, bl, andko are the same as in Section 4. We introduce≺ ⊆ M × M as the object
language counterpart of the meta-level symbol<. The predicateap(·) is used to indicate that a rule
instance or a set of rules has been applied. These are summarised in the following table:

Name Use/meaning
m ≺ m′ Dm < Dm′

ok(e) It is ok to try to apply set/rulee.
ap(e) Set/rulee is applied.
bl(m) Not all rules in setm can be applied.
ko(m) For setm, bl(m) is true.

8We could restrict the set of names to just the sets appearing in2D
∣∣
<

. The present scheme however is more general
and anticipates the application developed in Section 6.

9Note that names inM andN ·M are obtained from those inN .

13



Lastly, for simplicity, if D 6∈ 2D
∣∣
<

we assume the existence of a trivial, maximally preferred

defaultδ↑ =
ok(n↑·mD) :

ap(n↑·mD)
. As well we assume the existence of a minimally-preferred defaultδ↓ =

ok(n↓·m∅) :

ap(n↓·m∅)
. In these cases we have:

Di < {δ↑} for everyDi 6= {δ↑} (13)

and

{δ↓} < Di for everyDi 6= {δ↓}. (14)

This gives us (if needed) a trivial maximally preferred default that is always applicable, and a trivial
minimally preferred default that can be used to “collect” results.

We letL+ be the language obtained by unioning all languagesL(m) for m ∈ M and using the
aforementioned names and introduced predicates and functions. For a set of formulasS ⊆ L+, we
let ↓(S) be the projection of formulas indexed bym∅ onto the languageL.

Definition 5.2 For S ⊆ L+, let ↓(S) = {γ ∈ L | γ(m∅) ∈ S}.

Taking all this into account, we obtain the following translation, mapping default theories in lan-
guageL onto default theories in the languageL+.

Definition 5.3 Given a set–ordered default theory(D, W, <) overL and its set of associated de-
fault namesN ∪̇M , defineS((D, W, <)) = (D′, W ′) overL+ by

D′ = DN ∪DM ∪D¬

W ′ = WW ∪WD ∪WM ∪W≺ ∪ Ax(N)

where

DN =
{

α(x)∧in(n,x)∧ok(n·x) : β(x)
γ(x)∧ap(n·x)

∣∣∣ n : α : β
γ

∈ D
}

(15)

DM =
{

ok(x) :¬ko(x)
∀y∈N. in(y,x)⊃ok(y·x)

}
(16)

∪
{

in(n,x)∧ok(x) :¬α(x)
bl(x)

∣∣∣ n : α : β
γ

∈ D
}

(17)

∪
{

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬β(x))∧ok(x) :
bl(x)

∣∣∣ n : α : β
γ

∈ D
}

(18)

D¬ =
{

:¬(x≺y)
¬(x≺y)

, :¬in(x,y)
¬in(x,y)

}
(19)

WW = {∀x ∈ M. α(x) | α ∈ W} (20)

WD = {∀x ∈ M. c(nδ, x) ≡ CON(δ)(x) | δ ∈ D} (21)

WM = {∀x1, . . . , xk. in(ni, m(x1, . . . , xk)) ≡ (ni = xi) | ni in 〈n1, . . . , nk〉} (22)

W≺ = {ok(mD)} (23)

∪ {mi ≺ mj | (Di, Dj) ∈<} (24)

∪ {∀x ∈ M. [∀y ∈ M. (x ≺ y) ⊃ (ko(y) ∨ ap(y))] ⊃ ok(x)} (25)

∪ {∀x ∈ M. bl(x) ⊃ ko(x)} (26)

∪ {∀x ∈ M. [∀y ∈ N. in(y, x) ⊃ ap(y·x)] ⊃ ap(x)} (27)

∪ {∀x, x′ ∈ M. ap(x) ⊃ (¬(x ≺ x′) ⊃ (∀y.c(y, x) ⊃ c(y, x′))} (28)
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Definition 5.4 Let (D, W, <) be a set–ordered default theory overL and letE be an extension
of S((D, W, <)). Thenγ is a set-ordered default conclusion of(D, W, <) with respect toE iff
γ ∈ ↓(E).

The rules inDN andDM directly generalise those in (4–6), from treating a single set namedm
to an arbitrary set referenced by variablex. The specific consequents used in the second rule in (6)
are dealt with via the axioms in (WD/21) that allow us to quantify over default consequents (via
predicatec). This trick avoids the blowup that would occur in (18) if we were to explicitly give the
consequents of the rules. In Section 6 this would amount to an exponential blowup.

The rules in (D¬/19) provide us with complete knowledge on predicates≺ andin. The axioms
in (WW /20) propagate the information inW to all possible contexts.

WM takes care of what we need with respect to set operations; that is, (22) formalises set
membership.W≺ axiomatises the control flow along the partial order induced by≺. Axiom (24)
translates the (external) order< on sets into a predicate≺ in the language. Axioms (23) and (25)
tell us when it isok to consider a certain set: we always consider the maximum setD; otherwise,
via (25), we consider a set just when every<-greater-set is known to be blocked or has been
applied. (26) tells us when the consideration of a set is cancelled; this happens because a set is
inapplicable (given bybl). (27) asserts that a set is applied just if all of its member rules are. Once
we have found an applicable set of rules the consequences are propagated to all sets not explicitly
<-greater than that set; (28) propagates the consequences.

Example 1:
Consider again our initial car example:

n1 : : P
P

, n2 : : S
S

, n3 : : E
E

.

m∅ : {δ↓} < m1 :
{

: P
P

}
< m2 :

{
: S
S

}
< m3 :

{
: E
E

}
< m1,2 :

{
: P
P

, : S
S

}
< mD : {δ↑}(29)

Let W = {¬(P ∧E ∧S)}. We obtain a single extension containingP (m∅) andS(m∅) as well
as¬E(m∅). Informally the extension is constructed as follows.10

• We have initiallyok(mD) (23) and then alsoap(mD), from which we deriveok(m1,2) (25).

Thus in this last case, it isok to consider the application of the<-greatest nontrivial set,
(named)m1,2.

• From this we obtainok(n1·m1,2) andok(n2·m1,2) (16).

That is, it isok to consider the application of the individual default instances in setm1,2;
these are the defaults with namesn1·m1,2 andn2·m1,2.

• If both δ1 andδ2 are applicable (which they are), then we concludeP (m1,2) ∧ ap(n1·m1,2)
andS(m1,2) ∧ ap(n1·m1,2) (15) as well asap(m1,2) (27).

So we obtain the conclusions from the defaults, together with an assertion that the defaults
have been applied (viaap). As well, we assert that the set has been applied viaap(m1,2).

10More formally, the extension is verified with respect to the grounded enumeration, according to Definition 2.1.
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• From this we get (among other things)P (m∅) andS(m∅), andP (m3) andS(m3) (28). We
also getok(m3) (25).

So the results are propagated to (among other sets) the minimum setm∅ and the next<-
greatest setm3.

• Hence (since we derive¬E(m3)) alsobl(m3) (18) andko(m3) (26).

Thus we fail to be able to applym3.

We thus fail to deriveok(n3·m3) since the instance of (14) doesn’t apply. To see that there are
no other extensions, it suffices to observe that there is no way of derivingbl(m1,2).

Second, consider whereW = {¬(P ∧ S)}, and so we cannot satisfy our topmost (nontrivial)
preference. Fromok(mD) we deriveok(m1,2) In view of¬(P (m1,2)∧S(m1,2)), we cannot have an
extension in which bothδ1 andδ2 apply, which is mirrored by the fact that we obtainbl(m1,2) and
soko(m1,2). We fail to deriveok(n1·m1,2) andok(n2·m1,2). We subsequently obtainok(m3) from
which we (eventually) getE(m3), andE(m∅) andap(m3). From this we getok(m2), (eventually)
S(m2) andS(m∅) andap(m2). Finally we getok(m1), and eventuallybl(m1) andko(m1). We
obtain a single extension, containingS(m∅), E(m∅), as desired.

Example 2:
The next example deals with the situation where defaults inside a set depend upon each other.

We are given

n1 : : S
S

, n2 : : T
T

, n3 : : Q
Q

, n4 : Q : R
R

m∅ : {δ↓} < m1 :
{

: S
S

}
< m2 :

{
: T
T

}
< m3,4 :

{
: Q
Q

, Q : R
R

}
< mD : {δ↑}

Assume that we have an assertion to the effect that no more than two ofQ, R, S, T can hold.
Having derivedap(mD), we obtain fromW≺ that ok(m3,4). We then obtainok(n3·m3,4), and
ok(n4·m3,4), which allow us to apply defaultδ3, yielding in turnQ(m3,4) ∧ ap(n3·m3,4). With
Q(m3,4) at hand, we can now apply defaultδ4, yieldingR(m3,4) ∧ ap(n4·m3,4). This allows us to
deduceap(m3,4). Thus, we obtain an extension containingQ(m3,4) andR(m3,4), and soQ(m∅)
andR(m∅).

It is instructive to see how an extension withS(m∅) andT (m∅) is denied. Assume there is an
extensionE ′ containingS(m∅) andT (m∅). Then,E ′ contains also¬Q(m∅) and¬R(m∅), since
it is deductively closed. However, we haveok(m3,4) and bothok(n3·m3,4) andok(n4·m3,4) in
E ′. Since there is no way to derive¬Q(m3,4), we have thatQ(m3,4) is consistent withE ′ and so
the rule ok(n3·m3,4)∧in(n3,m3,4) : Q(m3,4)

Q(m3,4)∧ap(n3·m3,4)
in the image of the translation (15) is applicable. Similarly,

the rule Q(m3,4)∧ok(n4·m3,4)∧in(n4,m3,4) : R(m3,4)

R(m3,4)∧ap(n4·m3,4)
is applicable, and we obtainap(m3,4) and soQ(m∅)

andR(m∅), destroying the purported extension. Hence,E ′ is not an extension of the set-ordered
theory.
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Example 3:

m1 :
{

: C
C

}
< m2 :

{
: B∧¬C

B

}
(30)

We get an extension containingB(m∅) andC(m∅). This is due to the fact that we have a
highly prescriptive approach, in that we attempt to apply the highest ranked set(s) independently
of lower-ranked defaults. Given the result of applying (or not) the highest ranked set, we attempt
to apply the next highest ranked set(s), and so on. Similarly, for the following theory:

m1 :
{

: B
B

}
< m2 :

{
B : C

C

}
(31)

we obtain an extension containingB(m∅) but notC(m∅).
Theorem 4.2 showed that any single set of defaults, treated as a set, has an extension. However,

with multiple sets, as in the original approach, we are not guaranteed the existence of an extension.
For example the following theory, where there are no preferences except involvingmD andm∅,
lacks an extension:

Example 4:

m1 :
{

: A∧¬B
A

}
, m2 :

{
: B∧¬C

B

}
, m3 :

{
: C∧¬A

C

}
. (32)

The following theorem summarises the major properties of our approach, and demonstrates
that rules are applied in the desired order. DefineS = {¬α | α ∈ S}.

Theorem 5.1 Let E be a consistent extension ofS((D, W, <)) for set–ordered default theory
(D, W, <). We have for allδ ∈ D and for allDm, Dm′ ∈ 2D

∣∣
<

that:

1. ok(m) ∈ E

2. ap(m) ∈ E iff ko(m) 6∈ E

3. ko(m) ∈ E iff bl(m) ∈ E

4. ok(m) ∈ Ei and PRE(Dm) ⊆ Ej andJUS(Dm)∩E = ∅ implies CON(Dm) ⊂ Emax(i+2,j)+3

andap(m) ∈ Emax(i+2,j)+3

5. ok(m) ∈ Ei and PRE(Dm) 6⊆ E impliesko(m) ∈ Ei+2

6. ok(m) ∈ Ei andJUS(Dm) ∩ E 6= ∅ impliesko(m) ∈ Ej for somej > i + 2

If preferences are expressed among sets with a single element only then the extensions obtained
by the approach of [DS00a] are also obtained here. For this, letT be the translation of ordered
default theories into standard default logic given in Section 4 in [DS00a].

Theorem 5.2 Let (D, W, <) be an ordered semi-normal default theory overL and let(D, W, <′)
be the set–ordered default theory, where<′ = { ({δ}, {δ′}) | (δ, δ′) ∈ < }.

If E is an extension ofT ((D, W, <)) there is an extensionE ′ of S((D, W, <′)) such that
E ∩ L = ↓(E ′).
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Note that the restriction to semi-normal default theories does not limit the scope of the theorems,
since any default theory is expressible as a semi-normal default theory yielding the same extension
[Jan99] (cf. Section 2).

For semi-normal default theories, the approach can be made equivalent (modulo the original
language) to standard default logic if there are no preferences:

Theorem 5.3 Let (D, W ) be a semi-normal default theory overL. Define< by: for everyδ ∈ D
we have{δ↓} < {δ} < {δ↑}.

If E is an extension of(D, W ) then there is some extensionE ′ of S((D, W, <)) such that
E = ↓(E ′).

If E ′ is an extension ofS((D, W, <)) thenE = ↓(E ′) is an extension of(D, W ).

The reason why our approach has a tight relationship with its predecessors in the case of semi-
normal default theories dealing only with singleton sets is that this case annuls the contextual
information in the rule

([∀y ∈ N. in(y, x) ⊃ c(y, x)] ⊃ ¬β(x)) ∧ ok(x) :

bl(x)

That is, given a singleton set containing a semi-normal default rule, viz.

m :

{
α : β ∧ γ

γ

}
the translated rule is equivalent to

[γ(m) ⊃ ¬(β(m) ∧ γ(m))] ∧ ok(m) :

bl(m)
which reduces to

¬(β(m) ∧ γ(m)) ∧ ok(m) :

bl(m)
,

which is the rule obtained in our original approach, except for the fact that it uses a set name instead
of a rule name.

6 Encoding extensions using sets

In this section we use the machinery developed in the previous sections to encode the extensions
of a semi-monotonic default theory(D, W ).11 We modify the definitions of the last section so
that, viewed algorithmically, the translated theory carries out the following: If the original set of
defaultsD constitutes the set of generating defaults of an extension, then a corresponding “ap”-
literal is derived, all default consequences are obtained, and all subsets of the set of defaults are
rendered inapplicable. If this isn’t the case (andD isn’t a set of generating defaults), we proceed
along the partial order induced by set inclusion and consider every setD \ {δ} for everyδ ∈ D
to see whether it is a set of generating defaults. Any time a set of generating defaults is found, all
subsets of that set are rendered inapplicable.

Our naming conventions are unchanged; in particular we use the same “vector-oriented” rep-
resentation for naming sets and for capturing set membership. As before, given languageL, we

11This section is a pŕecis of results in [DS02].
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define a family of languagesL(m) for m ∈ M , and the languageL+ by unioning all languages
L(m) for m ∈ M .

Our central definition is much the same as Definition 5.3. Differences are noted by underlining
the appropriate part of an equation.

Definition 6.1 Given a finite default theory(D, W ) overL and its set of associated default names
N , defineE((D, W )) = (D′, W ′) overL+ by

D′ = DN ∪DM ∪D¬

W ′ = WW ∪WD ∪WM ∪W≺ ∪ Ax(N)

where

DN =
{

α(x)∧in(n,x)∧ok(n·x) : β(x)
γ(x)∧ap(n·x)

∣∣∣ n : α : β
γ

∈ D
}

(33)

DM =
{

ok(x) :¬ko(x)
∀y∈N. in(y,x)⊃ok(y·x)

}
(34)

∪
{

in(n,x)∧ok(x) :¬α(x)
bl(x)

∣∣∣ n : α : β
γ

∈ D
}

(35)

∪
{

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬β(x))∧ok(x) :
bl(x)

∣∣∣ n : α : β
γ

∈ D
}

(36)

D¬ =
{

:¬(x≺y)
¬(x≺y)

, :¬in(x,y)
¬in(x,y)

}
(37)

WW = {∀x ∈ M. α(x) | α ∈ W} (38)

WD = {∀x ∈ M. c(nδ, x) ≡ CON(δ)(x) | δ ∈ D} (39)

WM = {∀x1, . . . , xk. in(ni, m(x1, . . . , xk)) ≡ (ni = xi) | ni in 〈n1, . . . , nk〉} (40)

∪ {∀x, x′∈ M.([∃y ∈ N.¬in(y, x) ∧ in(y, x′)] (41)

∧ [∀y. in(y, x) ⊃ in(y, x′)]) ⊃ x ≺ x′ }
W≺ = {ok(mD)} (42)

∪ {∀x ∈ M. (∀y ∈ M. x ≺ y ⊃ bl(y)) ⊃ ok(x)} (43)

∪ {∀x ∈ M. bl(x) ⊃ ko(x)} (44)

∪ {∀x ∈ M. (∀y ∈ N. in(y, x) ⊃ ap(y·x)) ⊃ ap(x)} (45)

∪
{
∀x, x′ ∈ M. ap(x) ⊃ (x′ ≺ x ⊃ ko(x′))

}
(46)

WM is augmented so that as well as formalising set membership, (41) formalises strict set inclu-
sion. W≺ axiomatises the control flow along the partial order induced by≺, but now implicitly
specified via set containment. For (43), we consider a set to see whether it is applicable just when
every superset is determined to be inapplicable. (44) tells us one case when we don’t consider a
set: when it is found to be blocked. Once we have found an applicable set of rules (and hence a set
of generating defaults) we need not consider any subset; (46) cancels the consideration of all such
subsets and so constitutes a second case in which a set is not considered.

For example, consider the following normal default theory:

∆ =
({

n1 : : A
A

, n2 : : B
B

, n3 : :¬B
¬B

, n4 : B : D
D

}
, ∅

)
. (47)

From our translated theory, we get an extension where the only “ap-literals” applied to set names
areap(m1,2,4) andap(m1,3). That is,∆ has two extensions, the first with generating defaultsδ1,
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δ2, δ4, and the second withδ1, δ3. Among formulas in the extension of the translated theory are
A(m1,2,4), A(m1,3), B(m1,2,4), ¬B(m1,3), andD(m1,2,4).

The next results show that our default theories resulting fromE have appropriate properties.

Theorem 6.1 Let E be a consistent extension ofE((D, W )) for semi-monotonic default theory
(D, W ). We have for allδ ∈ D and for allDm, Dm′ ⊆ D that:

1. ok(m) ∈ E iff (ap(m) ∈ E or bl(m) ∈ E)

2. ap(m) ∈ E iff ko(m) 6∈ E

3. If ap(m) ∈ E thenbl(m′) ∈ E for all m′ ∈ M with m ≺ m′ ∈ E

4. If ap(m) ∈ E thenko(m′) ∈ E for all m′ ∈ M with m′ ≺ m ∈ E

5. If ap(m), ap(m′) ∈ E then¬(m ≺ m′) ∈ E

6. ok(m) ∈ Ei and PRE(Dm) ∪ CON(Dm) ⊆ Ej and JUS(Dm) ∩ E = ∅ impliesap(m) ∈
Emax(i+2,j)+3

7. ok(m) ∈ Ei and PRE(Dm) 6⊆ E impliesbl(m) ∈ Ei+1

8. ok(m) ∈ Ei andJUS(Dm) ∩ E 6= ∅ impliesbl(m) ∈ Ej for somej > i + 1

Thus, for example, in parts 3 and 4 of the theorem, if a set of defaults with namem is applied (and
so is a set of generating defaults), then every superset has been determined to be blocked, and every
subset is explicitly eliminated. The only sets explicitly considered (part 1) are those determined to
be blocked or applied.

The next two theorems show that our translation captures an encoding of extensions of a semi-
monotonic default theory.

Theorem 6.2 Let (D, W ) be a semi-monotonic default theory with extensionsE1, ..., En and let
E be an extension ofE((D, W )).

Then, for anyi ∈ {1, . . . , n}, there is somem ∈ M namingGD(D, Ei) such thatap(m) ∈ E.

As a consequence we obtain:

Corollary 6.1 If (D, W ) is a semi-monotonic default theory thenE((D, W )) has a unique exten-
sion.

The next theorem provides a converse to the preceding.

Theorem 6.3 Let (D, W ) be a semi-monotonic default theory and letE be the extension of
E((D, W )).

Then for anyap(m) ∈ E with m ∈ M , we have thatTh({γ | γ(m) ∈ E}) is an extension of
(D, W ).
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Lastly, our claim that a translated theory is “almost” a constant factor larger than the original
requires elaboration. UNAN yields a quadratic number of unique names assertions. In practice
this is no problem, since any sensible implementation would not explicitly list such axioms. With
the exception of unique names assertions, a translated theory is a constant factor larger than the
original. To see this, it suffices to examine Definition 6.1. Each of (33, 35, 36, 39, 40) introduce
|D| axioms/rules; (38) introduces|W | axioms. All remaining terms introduce a single axiom.
Moreover, the size of individual axioms is similarly bounded. (For example, each instance of (33)
is a constant factor larger than the original default.)

6.1 Discussion

The fact that we can encode all extensions of a semi-monotonic theory within a single extension
means that we can now encode phenomena of interest, usually dealt with at the metalevel, at the
object level. Specifically we can now encode the notions of skeptical and credulous inference
within a theory. In order to do this, we introduce two new constantsskep andcred, for “skeptical”
and “credulous” respectively.

A formula is a skeptical inference if it is a member of every extension. In our approach, this
means that it follows in every “ap-set”. Hence we define skeptical inference within a theory, for a
given formulaγ, by

(∀x ∈ M. ap(x) ⊃ γ(x)) ⊃ γ(skep).

For credulous inference there are a number of possibilities. The simplest is to assert that a formula
is a credulous inference if it is a member of some extension:

(∃x ∈ M. ap(x) ∧ γ(x)) ⊃ γ(cred).

With this definition, a formula and its negation may be credulous inferences; hence it is not a very
useful definition, since it can lead to an inconsistent extension. While there are ways to get around
this (for instance by makingcred a predicate applied to quoted formulas) one can also employ a
stronger definition. One stronger definition is to assert that a formula is a credulous inference if it
is a member of some extension, and its negation is a member of no extension. We can define this
notion of credulous inference (indicated bycred′) for a formulaγ by means of the default:

∃x ∈ M. ap(x) ∧ γ(x) : ∀x ∈ M. ap(x) ⊃ γ(x)

γ(cred′)
.

Hence in Example (47), we obtain thatA is a skep inference, whileD is a cred′ inference. B
and¬B arecred inferences. There are other possibilities for defining credulous inference. The
point here isn’t to evaluate possibilities per se; rather it is to suggest that such possibilitiescanbe
encoded within a theory.

Although our results are restricted to semi-monotonic theories, such theories nonetheless can
be used to capture an interesting set of problems. We have already suggested that the approach may
be applicable in diagnosis programs, such as found in [Rei87]. Similarly, the approach can be used
to directly encode applications expressible in Theorist [Poo88]. That is, there is a correspondence
between so-calledPoole-typetheories and Theorist with constraints [Dix92]. Since Poole-type
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theories are semi-monotonic, this means that our approach can encode any application encodable
in Theorist.

Our approach relies on a first-order language. Despite this, the image of a theory over a finite
language remains finite. Concerning a possible implementation, however, it is not advisable to use
a bottom-up grounding approach, as done in many implementations of extended logic program-
ming [ELM+97, NS97]. Instead, a query-oriented approach seems to be preferable, since it may
rely on unification rather than ground instantiation.

7 Conclusion

We have presented a general approach for representing and reasoning about preferences among sets
of defaults in default logic. To begin with, we first considered how to control the application of a
set of defaults so that either all rules apply (if possible) or none do (if not). From this we showed
how we could deal with preferences among sets of defaults, and subsequently how the approach
could be used to encode extensions of semi-monotonic default theories in the object language.

The main approach begins with an ordered theory, consisting of a set of world knowledge,
a set of defaults, and a set of preference relations among subsets of the defaults. This theory is
translated into a second, standard default theory wherein the preferences are respected: sets of
defaults are “applied” according to the given order; for a set of order-equivalent defaults, either all
are applied, or none are. Using constants and functions for naming, we can refer to default rules,
sets of defaults, and instances of a rule in a set. Via these names we can, first, determine whether
a set of defaults is its own set of generating defaults and, second, consider the application of sets
of defaults ordered by set containment. The translated theory requires a modest increase in space:
except for unique names axioms, only a constant-factor increase is needed. The translated theory
is a (regular, Reiter) default theory. Hence we essentially axiomatise the notion of “extensions” for
a class of default theories in a single extension. Further, we are able to prove that our translation
behaves correctly.

Although a specific approach is described for reasoning with preferences over sets, we don’t
suggest that this is the only approach. Rather we are also interested in also proposing a general
methodology for dealing with (here) preferences among sets of defaults, but that is also more gen-
erally applicable [DS00a, DS00b]. That is, one has some informal intuitions concerning some
phenomenon of interest. Given this, these intuitions are formalised by providing a translation
of one theory (encoding said phenomenon) into a second, such that properties of the target phe-
nomenon provably hold. Clearly, one could use this methodology to develop other mechanisms for
dealing, for example, with preferences over sets.

To the best of our knowledge, our approach is the first approach to deal with preferences among
sets of defaults. Unlike most previous approaches to dealing with preferences, we do not generate
extensions and select those with the most preferred applied rules; rather extensions containing the
most preferred applied rules are directly generated. Another major point of contrast with previous
work concerning preferences is that we remain within the framework of standard default logic
(rather than building a scheme on top of default logic). This has several advantages. First, our
approach can be immediately implemented by making use of an existing default logic theorem
prover such as DeRes [CMT96]. Second, in “compiling” preferences into default logic, and in
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using the standard machinery of default logic, we obtain insight into the notion of preference
orderings. In a sense the translation provides an “axiomatisation” of the sense of preference that we
wish to capture. Last, it is easier to compare differing approaches to handling such orderings, since
we remain within the same “base” framework. Thus, by examining the respective definitions, it is
clear how the main definitions of Sections 5 and 6 differ. As a point of theoretical interest, we show
that incorporating explicit prescriptive priorities among sets of rules in default logic provides no
real increase in the expressibility of default logic. Using the approach for encoding extensions, we
can now express notions such as skeptical and credulous inference within a theory. Arguably this
will prove beneficial in expressing at the object level problems and approaches generally expressed
at the metalevel. Areas of application range from specific areas such as diagnosis, to broadly-
applicable approaches such as Theorist.
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A Proofs for Section 4

The following definition is used in the proofs.

Definition A.1 ([Rei80]) Let (D, W ) be a default theory. For any set of formulasS, let Γ(S) be
the smallest set of formulasS ′ such that

1. W ⊆ S ′,

2. Th(S ′) = S ′,

3. For anyα : β
γ

∈ D, if α ∈ S ′ and¬β 6∈ S thenγ ∈ S ′.

A set of formulasE is an extension of(D, W ) if Γ(E) = E.

With respect to the translations in Definitions 4.1, 5.3, and 6.1, we adopt the following notation:
For a set of defaults with namem and one of its members with namen, let δm

a , δm,n
b1

, andδm,n
b2

be
the corresponding default rules inDM . Let δm,n

a denote the transform of the individual default
namedn with x instantiated tom in DN .
Proof 4.1

1. if part Supposeap(nδ) ∈ E for all δ ∈ Dm. SinceE is deductively closed and sinceE
contains Formula (10), we deduce thatap(m) ∈ E.

only-if part Supposeap(m) ∈ E. By construction, this impliesap(nδ) ∈ E for all δ such
that in(nδ, m) ∈ E, or δ ∈ Dm. By the definition ofDN andWD, however, we have
ap(nδ) ∈ E only if CON(δ) ∧ ap(nδ) ∈ E. Since this holds for allδ ∈ Dm, we obtain
{ap(nδ) | δ ∈ Dm} ∪ CON(Dm) ⊆ E.
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2. if part Suppose{ap(nδ) | δ ∈ Dm} 6⊆ E. Thus, there is someδ ∈ Dm such thatδm,nδ
a 6∈

GD(D′, E). Then, one of the following cases must be true.

• If ¬JUS(δ) ∈ E, then clearly fromWD we getCON(δ1) ∧ . . . ∧ CON(δk) ⊃
¬JUS(δ) ∈ E, where{δ1, . . . , δk} = Dm. By Theorem 4.1.3 and the fact thatE
is deductively closed, we get that

[CON(δ1) ∧ . . . ∧ CON(δk) ⊃ ¬JUS(δ)] ∧ ok(m) ∈ E.

Henceδm,nδ

b2
∈ GD(D′, E), that is,bl(m) ∈ E.

• SupposePRE(δ)∧ok(nδ) 6∈ E. SinceE is deductively closed, we may distinguish
the following cases.

– AssumePRE(δ) 6∈ E. Consequently,δm,nδ

b1
∈ GD(D′, E), that is,bl(m) ∈ E.

– If ok(nδ) 6∈ E, thenδm
a 6∈ GD(D′, E), since this is the only means by which

we can fail to obtainok(nδ) ∈ E. Henceko(m) ∈ E; hence from (9) we get
bl(m) ∈ E.

Thus, in all cases we obtain thatbl(m) ∈ E.

only-if part Supposebl(m) ∈ E. We distinguish the following two cases.

• If δ
m,nj

b1
∈ GD(D′, E), then we have thatPRE(δj) 6∈ E for someδj ∈ Dm.

Therefore,(δj)
m,nj
a 6∈ GD(D′, E) and clearlyap(nj) 6∈ E.

• If δ
m,nj

b2
∈ GD(D′, E), then we have for someδj ∈ {δ1, . . . , δk} = Dm that

CON(δ1) ∧ . . . ∧ CON(δk) ⊃ ¬JUS(δj) ∈ E. (48)

Assume{ap(nδ) | δ ∈ Dm} ⊆ E, that is, by definition ofDN that{CON(δ) ∧
ap(nδ) | δ ∈ Dm} ⊆ E. SinceE is deductively closed we get from (48) that
¬JUS(δj) ∈ E and therefore(δj)

m,nj
a 6∈ GD(D′, E) and clearlyap(nj) 6∈ E, a

contradiction.

In both cases we thus obtain{ap(nδ) | δ ∈ Dm} 6⊆ E.

3. if part Supposeap(nδ) ∈ E. Then we have necessarily thatδm,nδ
a ∈ GD(D′, E), and

therefore thatPRE(δ) ∧ ok(nδ) ∈ E, and sook(nδ) ∈ E.

only-if part Supposeok(nδ) ∈ E. Then, we have by definition ofDM that

:¬ko(m)
ok(n1)∧...∧ok(nδ)∧...∧ok(nk)

∈ GD(D′, E).

Clearly, we thus haveko(m) 6∈ E; this impliesbl(m) 6∈ E. As a consequence, we get
δm,nδ

b1
6∈ GD(D′, E) andδm,nδ

b2
6∈ GD(D′, E). We obtain for eachδ ∈ {δ1, . . . , δk} =

Dm that

PRE(δ) ∈ E and CON(δ1) ∧ . . . ∧ CON(δk) ⊃ ¬JUS(δ) 6∈ E.

Furthermore, the latter gives¬JUS(δ) 6∈ E. With ok(n1)∧ . . .∧ok(nδ)∧ . . .∧ok(nk) ∈
E and the fact thatE is deductively closed, we get thatδm,nδ

a ∈ GD(D′, E) for all
δ ∈ Dm. That is, sinceE is deductively closed,ap(nδ) ∈ E for all δ ∈ Dm.

4. if part Supposeko(m) 6∈ E, and sobl(m) 6∈ E. As a consequence, we getδm,nδ

b1
6∈

GD(D′, E) and δm,nδ

b2
6∈ GD(D′, E) for someδ ∈ Dm. As a corollary of Theo-

rem 4.1.1-2, we obtain that:δm
a ∈ GD(D′, E) iff (δm,nδ

b1
6∈ GD(D′, E) andδm,nδ

b2
6∈
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GD(D′, E) for all δ ∈ Dm). This implies thatδm
a ∈ GD(D′, E). Thereforeok(nδ) ∈

E.

only-if part If ok(nδ) ∈ E, thenδm
a ∈ GD(D′, E), that is,ko(m) 6∈ E.

5. The if-part is trivial.

For the only-if part, assume thatap(nδ) ∈ E for someδ ∈ Dm. Thenδm,nδ
a ∈ GD(D′, E)

and thereforeδm
a ∈ GD(D′, E).

We also havein(nδ, m) ∈ E for all δ ∈ Dm. Further,δm
a ∈ GD(D′, E) impliesok(nδ) ∈ E

for all δ ∈ Dm. By Theorem 4.1.3, this impliesap(nδ) ∈ E for all δ ∈ Dm.

Proof 4.2

1. First, assume that default theory(∅ ∪D, W ) has an extensionE whereGD(D, E) = D.

From Definition 2.1 we have thatE =
⋃∞

i=0 Ei where

E0 = W

Ei+1 = Th(Ei) ∪
{

γ
∣∣∣ α : β

γ
∈ D, α ∈ Ei,¬β 6∈ E

}
.

Obviously thenE =
⋃∞

i=0 Ei where

E0 = W ∪ {ok(n1) ∧ . . . ∧ ok(nk)}

Ei+1 = Th(Ei) ∪
{

γ
∣∣∣ α : β

γ
∈ D, α ∈ Ei,¬β 6∈ E

}
.

defines an extension of(DN , W ∪ {ok(n1) ∧ . . . ∧ ok(nk)}).
ReplacingW with W ′ in the above defines an extension of(DN , W ′∪{ok(n1)∧. . .∧ok(nk)})
as well as of(DN ∪DM , W ′∪{ok(n1)∧ . . .∧ok(nk)}) or (D′, W ′∪{ok(n1)∧ . . .∧ok(nk)})
From this it follows that

E ′
−1 = W ′

E ′
0 = Th(W ′) ∪ {ok(n1) ∧ . . . ∧ ok(nk)}

= Th(E−1) ∪
{

γ
∣∣∣ α : β

γ
∈ D′, α ∈ E−1,¬β 6∈ E ′

}
E ′

i+1 = Th(E ′
i) ∪

{
γ

∣∣∣ α : β
γ

∈ D′, α ∈ E ′
i,¬β 6∈ E ′

}
for i > 1.

andE ′ =
⋃∞

i=−1 E ′
i defines an extension of(D′, W ′).

Thus for this case we have thatSm((∅ ∪ D, W )) has extensionE where E ∩ L =
Th(W ∪ CON(D)).

(Note for this case that havingbl(m) in our purported extensionE ′ would contradict the
assumption thatD is a set of generating defaults for(∅ ∪D, W ).
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2. Assume thatD is not a set of generating defaults for default theory(∅ ∪D, W ).

Thus for any setE and for

E0 = W

Ei+1 = Th(Ei) ∪
{

γ
∣∣∣ α : β

γ
∈ D, α ∈ Ei,¬β 6∈ E

}
.

we have thatE 6=
⋃∞

i=0 Ei.

In particular this holds forE = Th(W ∪ CON(D)).

Since
⋃∞

i=0 Ei = Th(W ∪ C) for someC ⊂ CON(D), this means that some defaultδj ∈ D
fails to apply. There are two possibilities:

(a) αj 6∈ Ei for everyi ≥ 0.

(b) ¬βj ∈ E.

For the first case, assume that there is an extensionE ′ of Sm((∅ ∪ D, W )) containingαj.
Sinceαj 6∈ W ′ \W we have thatW ∪ C ′ ` αj for someC ′ ⊂ CON(D).

SinceW ` αj contradictsαj 6∈ Ei above, we have thatC ′ 6= ∅ and henceap(n) ∈ E ′ for
some defaultn : δ.

From Theorem 4.1.5 we obtain that{ap(nδ) | δ ∈ D} ⊆ E ′, hence in particularap(nj) ∈ E ′

and soαj ∈ GDi, a contradiction.

Hence there is no extensionE ′ of Sm((∅ ∪D, W )) containingαj.

It follows thatTh({W ′, bl(m), ok(n1) ∧ . . . ∧ ok(nk)}) is an extension ofSm((∅ ∪D, W )):
we have shown thatαj ∈ E ′ is not possible for any purported extension. Henceδ

m,nj

b1
does

apply, yieldingbl(m), andko(m). This then preventsδm
a and any ofδm,n

a from applying.

In the second case, where¬βj ∈ E, sinceE = Th(W ∪ CON(D)) we get thatW ∪
CON(D) ` ¬βj which, by the previous argument, gives an extensionSm((∅ ∪ D, W ))
by virtue of the applicability ofδm,nj

b2

Proof 4.3
This follows immediately from the first part of the proof of Theorem 4.2.

B Proofs for Section 5

We first show the following results:

Lemma 1 Let E be a consistent extension ofS((D, W, <)) = (D′, W ′) for set–ordered default
theory(D, W, <).

1. (m ≺ m′) ∈ E iff ¬(m ≺ m′) 6∈ E
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2. in(nδ, m) ∈ E iff ¬in(nδ, m) 6∈ E

Proof 1

1. By the consistency ofE, we cannot have bothm ≺ m′ ∈ E and¬(m ≺ m′) ∈ E.

Assume that for someDm, Dm′ ⊆ D, we have neitherm ≺ m′ ∈ E nor¬(m ≺ m′) ∈ E.
Then, however, the default rule:¬(m≺m′)

¬(m≺m′)
in D¬ is applicable and we obtain¬(m ≺ m′) ∈ E,

which contradicts our assumption.

We have thus shown thatm ≺ m′ ∈ E iff ¬(m ≺ m′) 6∈ E.

2. Analogous to Proof 1.1.

For further proofs, we observe moreover the following complementary propositions.

Lemma 2 Let E be a consistent extension ofS((D, W, <)) = (D′, W ′) for set–ordered default
theory(D, W, <).

1. We have for allD1, D2 ⊆ D that (m1 ≺ m2) ∈ E iff (m1 ≺ m2) ∈ W ′.

2. We have for allDm ⊆ D andδ ∈ D that in(nδ, m) ∈ E iff in(nδ, m) ∈ W ′.

Proof 2

1. Clearly, we have(m1 ≺ m2) ∈ E if (m1 ≺ m2) ∈ W ′.

Assume we have(m1 ≺ m2) ∈ E and(m1 ≺ m2) 6∈ W ′. Since(m1 ≺ m2) 6∈ W ′ = E0,
there must exist (according to Definition 2.1) somei ≥ 0 with (m1 ≺ m2) 6∈ Ei but
(m1 ≺ m2) ∈ Ei+1. Since there are no default rules with consequents containing positive
occurrences of≺-literals, we must have(m1 ≺ m2) ∈ Th(Ei) . For the same reason, all
positive occurrences inEi must stem fromW≺. In fact, all positive occurrences of≺-literals
in W≺ (in clause form) come from (24) or (25) inW≺. For (24), we obtain(m1 ≺ m2) ∈ W ′,
a contradiction. (25) can be written in the form((m1 ≺ m2) ∧ φ) ∨ ϕ ∨ ok(m1) for some
formulasφ, ϕ. A proof forEi ` (m1 ≺ m2) must thus contain the negativeok-literalok(m1).
There are however no negative occurrences ofok-literals inS((D, W, <)), neither inD′ nor
in W ′, a contraction.

2. Analogous to proof of Lemma 2.1.

Proof 5.1

3. For (3) we observe that ifbl(m) ∈ E thenko(m) ∈ E via (26). Since there are no positive
occurrences ofko in S((D, W, <)) we concludebl(m) ∈ E iff ko(m) ∈ E.

1+2. We show for allDm ∈ 2D
∣∣
<

by induction on< thatok(m) ∈ E and eitherap(m) ∈ E or
bl(m) ∈ E
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Base By definition,ok(mD) ∈ W≺ ⊆ E. Also,⊥ 6∈ E, sinceE is consistent. Therefore, we
have (>⊃⊥)∧ok(mD) :

bl(mD)
6∈ GD(D′, E) and ok(mD) :⊥

bl(mD)
6∈ GD(D′, E). That is,bl(mD) 6∈ E.

As a consequence, we haveko(mD) 6∈ E, as shown above.

Sinceok(mD) ∈ E andko(mD) 6∈ E, we haveok(mD) :¬ko(mD)
ok(n↑·mD)

∈ GD(D′, E). Clearly,

then we also have>∧in(n↑,mD)∧ok(n↑·mD) :>
>∧ap(n↑·mD)

∈ GD(D′, E).

By definition,in(n↑, mD) ∈ E. By Lemma 2,¬in(nδ, mD) ∈ E for all δ ∈ D \ {δ>}.
SinceE is deductively closed and sinceE contains the formula (27), we deduce that
ap(mD) ∈ E.

Step ConsiderDm ∈ 2D
∣∣
<

and assume that for allDm′ with Dm < Dm′ we haveok(m′) ∈
E andap(m′) ∈ E iff ko(m′) 6∈ E – that is iffbl(m′) 6∈ E.
First, we have the following lemma.

Lemma 3 Given the induction hypothesis, we haveok(m) ∈ E.
Proof 3 By the induction hypothesis, we haveap(m′) ∈ E iff bl(m′) 6∈ E
for all Dm′ with Dm < Dm′.
By definition ofW≺ and Lemma 1, we havem ≺ m′ ∈ E for all Dm, Dm′

with Dm < Dm′.
Analogously, we get(m ≺ m′) 6∈ E for all Dm, Dm′ with Dm 6< Dm′. From
this, we get by means ofD¬ that¬(m ≺ m′) ∈ E for all Dm, Dm′ with
Dm 6< Dm′.
BecauseE is deductively closed and contains (25), and becausebl(y) ∈ E iff
ko(y) ∈ E, we deduce thatok(m) ∈ E.

ForDm = {δj | j = 1..k} ∈ 2D
∣∣
<

, we distinguish the following cases.

• If ok(m) :¬ko(m)
ok(n1·m)∧...∧ok(nk·m)

∈ GD(D′, E), thenok(m) ∈ E andko(m) 6∈ E. The latter

implies bl(m) 6∈ E. As a consequence, we getδ
m,nj

b1
6∈ GD(D′, E) andδ

m,nj

b2
6∈

GD(D′, E) for j = 1..k. Sinceok(n1·m) ∧ . . . ∧ ok(nk·m) ∈ E, we thus have for
eachδj ∈ {δ1, . . . , δk} = Dm that

PRE(δj) ∈ E

and CON(δ1) ∧ . . . ∧ CON(δk) ⊃ ¬JUS(δj) 6∈ E. (49)
Furthermore, (49) implies¬JUS(δj) 6∈ E. With ok(n1·m) ∧ . . . ∧ ok(nk·m) ∈ E
and the fact thatE is deductively closed, we get that(δj)

m,n
a ∈ GD(D′, E) for

j = 1..k. That is, sinceE is deductively closed,ap(nj·m) ∈ E for j = 1..k. And
sinceE is deductively closed and sinceE contains the formula (27), we deduce
thatap(mD) ∈ E.

• If ok(m) :¬ko(m)
ok(n1·m)∧...∧ok(nk·m)

6∈ GD(D′, E), then ko(m) ∈ E, sinceok(m) ∈ E by
Lemma 3. The former implies thatbl(m) ∈ E.
Finally we haveap(m) 6∈ E: If ap(m) ∈ E, this can only be derived via For-
mula (27). But this means thatap(nj·m) ∈ E for every δj ∈ Dm; hence
ok(nj·m) ∈ E for every δj ∈ Dm. But ok(nj·m) is obtainable only from ap-
plication of the default ok(mi) :¬ko(mi)

ok(n1·mi)∧...∧ok(nk·mi)
, contradiction.

This demonstrates thatap(m) ∈ E iff bl(m) ∈ E for all Dm ∈ 2D
∣∣
<

.
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4. Supposeok(m) ∈ Ei andPRE(Dm) ∪ CON(Dm) ⊆ Ej andJUS(Dm) ∩ E = ∅.
According to the two last statements, we have for allδ ∈ Dm that PRE(δ) ∈ Ej and
¬JUS(δ) 6∈ E. While the former implies immediately thatδm,nδ

b1
6∈ GD(D′, E), the latter

impliesδm,nδ

b2
6∈ GD(D′, E). Hence,bl(m) 6∈ E and furthermoreko(m) 6∈ E, sinceko(m)

is only derivable frombl(m).

Together,ok(m) ∈ Ei and ko(m) 6∈ E imply that ok(m) :¬ko(m)
ok(n1·m)∧...∧ok(nk·m)

∈ GDi, that is,
ok(n1·m) ∧ . . . ∧ ok(nk·m) ∈ Ei+1, and thusok(nl·m) ∈ Ei+2 for all l = 1..k. Since
PRE(δl) ∈ Ej, we getPRE(δl) ∧ ok(nl·m) ∈ Emax(i+2,j)+1. This implies together with
¬JUS(δl) 6∈ E that (δl)

m,nl
a ∈ GDmax(i+2,j)+1, henceCON(δl) ∧ ap(nl·m) ∈ Emax(i+2,j)+2.

Accordingly,ap(nl·m) ∈ Emax(i+2,j)+3 for all l = 1..k.

Sincein(δl, m) ∈ E0 for all l = 1..k and¬in(δ,m) ∈ E1 for δ ∈ D \ Dm according to
Lemma 2, we obtain by means of Formula (27), also inE0, thatap(m) ∈ Emax(i+2,j)+3.

5. We are givenok(m) ∈ Ei andPRE(Dm) 6⊆ E, that is,PRE(δ) 6∈ E for someδ ∈ Dm.
Thereforeδm,nδ

b1
∈ GDi and thereforebl(m) ∈ Ei+1 andko(m) ∈ Ei+2.

6. Supposeok(m) ∈ Ei andJUS(Dm) ∩ E 6= ∅, that is,¬JUS(δ) ∈ E for someδ ∈ Dm.
Assume¬JUS(δ) ∈ Ek−1 for some minimalk. Consequently, we have

CON(δ1) ∧ . . . ∧ CON(δk) ⊃ ¬JUS(δ) ∈ Ek whereDm = {δ1, . . . , δk} .

Then, we getPRE
(
δm,nδ

b2

)
∈ Emax(i,k)+1. This impliesδm,nδ

b2
∈ GDmax(i,k)+1, and furthermore

bl(m) ∈ Emax(i,k)+2 andko(m) ∈ Emax(i,k)+3. That is,ko(m) ∈ Ej for somej > i + 2.

Proof 5.2 We start by fixing the components of the different default theories:
DefineT ((D, W, <)) = (Dt, W t),

Dt = {δa, δb1 , δb2 | δ ∈ D} ∪Dt
≺ (50)

W t = W ∪W t
≺ ∪ {DCAN , UNAN} (51)

whereW t
≺ andDt

≺ are defined as their unindexed counterpartsW≺ andD≺, respectively, in Def-
inition 4.1 of [DS00a]. Because of the fact thatD is a set of semi-normal default rules and
<′ = { ({δ}, {δ′}) | (δ, δ′) ∈ < }, we have that

δa = α∧ok(nδ) : γ∧β
γ∧ap(nδ)

, δb1 = ok(nδ) :¬α
bl(nδ)

, δb2 = ¬(γ∧β)∧ok(nδ) :
bl(nδ)

.

Similarly, defineS((D, W, <′)) = (Ds, W s),

Ds = {δm,nδ
a | δ ∈ D} ∪ {δm

a , δm,nδ

b1
, δm,nδ

b2
| {δ} = Dm ∈ 2D

∣∣
<
} ∪Ds

¬ (52)

W s = W s
D ∪W s

W ∪W s
M ∪W s

≺ ∪ Axs(N) (53)

whereW s
D, W s

W , W s
M , W s

≺, Axs(N), andDs
¬ are defined as their unindexed counterpartsWD,

WW , WM , W≺, Ax(N), andD¬, respectively, in Definition 5.3.

29



We simplify the rules inDs as follows. We omit the first superscriptm for δm,nδ
a , δm,nδ

b1
and

δm,nδ

b2
since we deal with singleton sets. We thus writeδnδ

a , δnδ
b1

andδnδ
b2

. We takenδ : Dδ = {δ}.
Similarly for naming: rather than write the name of the rule instance in{δ} asnδ·mδ we can use,
with no ambiguity,nδ. Finally, we replacec(m,n) by CON(n). For the rules inDs we obtain:12

δnδ
a = α(mδ)∧in(nδ ,mδ)∧ok(nδ) : γ(mδ)∧β(mδ)

γ(mδ)∧ap(nδ)
, δm

a = ok(mδ) :¬ko(mδ)
ok(nδ)

,

δnδ
b1

= ok(mδ) :¬α(mδ)
bl(mδ)

, δnδ
b2

= ¬(γ(mδ)∧β(mδ))∧ok(mδ) :
bl(mδ)

.

Let E be an extension ofT ((D, W, <)). Define

E ′ = Th(W s ∪ {ok(mδ) | δ ∈ D}
∪ {ok(nδ) | δa ∈ GD(Dt, E)}
∪ {CON(δ)(mδ) ∧ ap(nδ), ap(mδ) | δa ∈ GD(Dt, E)}
∪ {bl(mδ), ko(mδ) | δbi

∈ GD(Dt, E), i = 1, 2}
∪ {¬in(nδ, mδ′) | Dδ′ 6= {δ}}
∪

{
¬(mδ ≺ mδ′) | :¬(nδ≺nδ′ )

¬(nδ≺nδ′ )
∈ GD(D, E)

} )
First, we show thatE ∩ L = ↓(E ′). We distinguish three cases.

• Considerv ∈ W .

SinceW ⊆ E∩L andW ⊆ ↓(E ′) (sinceW s ⊆ E ′ andW s
W ⊆ W s), this impliesv ∈ E∩L

iff v ∈ E ′ ∩ L.

• Considerv ∈ CON(GD(Dt, E)).

We haveCON(GD(Dt, E)) ⊆ E ∩ L andCON(GD(Dt, E)) ⊆ ↓(E ′); thusv ∈ E ∩ L iff
v ∈ E ′ ∩ L.

• Considerv ∈ Th(W ∪ CON(GD(Dt, E))).

We haveW ∪ CON(GD(Dt, E)) ⊆ E ∩ L andW ∪ CON(GD(Dt, E)) ⊆ ↓(E ′). The fact
thatE andE ′ are deductively closed imply thatv ∈ Th(W ∪ CON(GD(Dt, E))) ⊆ E ∩ L
iff v ∈ Th(W ∪ CON(GD(Dt, E))) ⊆ ↓(E ′).

We have thus shown that for allv ∈ L that

v ∈ E ∩ L iff v ∈ ↓(E ′). (54)

We draw on this fact in the sequel.
If E is an inconsistent extension thenE ′ is an inconsistent extension too, since such an incon-

sistency is rooted inW [Rei80]. We thus assume thatE is consistent.
We show thatE ′ is an extension ofS((D, W, <′)).
For this, we first show the following three propositions:

1. W s ⊆ E ′, by definition.

2. Th(E ′) = E ′, by definition.

12Note thatδm
a andδnδ

b2
are simplified, in conformity with the preceding abbreviations.
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3. For anyδ ∈ Ds, if PRE(δ) ∈ E ′ and¬JUS(δ) 6∈ E ′ thenCON(δ) ∈ E ′.

To show this, supposePRE(δ) ∈ E ′ and¬JUS(δ) 6∈ E ′.

• If δ = :¬in(n,m)
¬in(n,m)

thenCON(δ) ∈ E ′, for n 6= m by definition ofE ′.

• If δ =
:¬(mδ≺mδ′ )
¬(mδ≺mδ′ )

thenCON(δ) ∈ E ′, by definition ofE ′.

• If δ = δnδ
a = α(mδ)∧in(nδ ,mδ)∧ok(nδ) : β(mδ)

γ(mδ)∧ap(nδ)
, thenα(mδ) ∧ in(nδ, mδ) ∧ ok(nδ) ∈ E ′. and

¬β(mδ) 6∈ E ′.

Claim: ¬β(m∅) 6∈ E ′.

Proof of Claim: Assume to the contrary that¬β(m∅) ∈ E ′. So¬β ∈ E using (54).
SinceE is an extension ofT ((D, W, <)), we have thatE ∩ L is a<-preserving
extension of(D, W ) (Theorem 4.4 and Definition 4.2 of [DS00a]).
Let δ−1 ∈ D have imageδ in S((D, W, <′)). Thenβ = JUS(δ−1).
We have (Definition 4.2 of [DS00a]) that there exists a grounded enumeration
〈δi〉i∈I of GD(D, E ∩ L) such that for alli, j ∈ I andδ−1 ∈ D \GD(D, E ∩ L),
we have that

(a) if δi < δj thenj < i and

(b) if δi < δ−1 thenPRE(δ−1) 6∈ E or W ∪ CON({δ0, . . . , δi−1}) ` ¬JUS(δ−1).

Clearly δ−1 6∈ GD(D, E ∩ L) since¬β ∈ E. As well, sinceα(mδ) ∈ E ′, so
α(m∅) ∈ E ′, thus via (54)α ∈ E, i.e. PRE(δ−1) ∈ E. This means thatW ∪
CON({δ0, . . . , δi−1}) ` ¬JUS(δ−1) whereδk 6< δ−1 for 0 ≤ k < i.
Now W ∪ CON({δ0, . . . , δi−1}) ⊆ E ∩ L. Thus¬JUS(δ−1) ∈ E ∩ L sinceE
is deductively closed. Via (54) we get that¬JUS(δ−1)(m∅) ∈ ↓(E ′). But this
means that¬JUS(δ−1)(m∅) = ¬JUS(δ) ∈ E ′, contradiction. This establishes that
¬β(m∅) 6∈ E ′.

With (54), we obtainα ∈ E and¬β 6∈ E. SinceE is an extension ofT ((D, W, <)), we
obtain by Theorem 4.1.2 of [DS00a] thatok(nδ) ∈ E. SinceE is deductively closed,
we have moreoverα ∧ ok(nδ) ∈ E. We thus getδa ∈ GD(Dt, E), which implies
γ(mδ) ∧ ap(nδ) ∈ E ′ by definition ofE ′; and soCON(δ) ∈ E ′.

• If δ = δm
a , thenok(mδ) ∈ E ′ andko(mδ) 6∈ E ′; the latter impliesδb1 6∈ GD(Dt, E)

andδb2 6∈ GD(Dt, E). By Theorem 4.1.8 of [DS00a], this impliesδa ∈ GD(Dt, E).
Hence,ok(nδ) ∈ E ′ by definition ofE ′. That is,CON(δ) ∈ E ′.

• If δ = δnδ
b1

= ok(mδ) :¬α(mδ)
bl(mδ)

thenok(mδ) ∈ E ′ andα(mδ) 6∈ E ′.

We have thatα(m∅) 6∈ E ′ by an argument analogous to that in the precedingClaim: If
instead we hadα(m∅) ∈ E ′ then by (54) we would haveα ∈ E. Thus via Theorem 4.4
of [DS00a] we haveW ∪{CON(δ′) | δ′ 6< δn} ` α. But then via the last formula inW≺
we obtainW s ∪ {CON(δ′)(m′

∅) | δ′ 6< δn} ` α(m′
∅), contradiction. Soα(m∅) 6∈ E ′.

With (54), we obtainα 6∈ E. SinceE is an extension ofT ((D, W, <)), we obtain by
Theorem 4.1.2 of [DS00a] thatok(nδ) ∈ E. We thus getδb1 ∈ GD(Dt, E), which
impliesbl(mδ) ∈ E ′ by definition ofE ′. That is,CON(δ) ∈ E ′.
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• If δ = δnδ
b2

= ¬(γ(mδ)∧β(mδ))∧ok(mδ) :
bl(mδ)

then¬(γ(mδ) ∧ β(mδ)) ∧ ok(mδ) ∈ E ′. SinceE ′

is deductively closed we have¬(γ(mδ)∧β(mδ)) ∈ E ′ and so¬(γ(m∅)∧β(m∅)) ∈ E ′.

With (54) and since we have a semi-normal theory, we obtain¬β ∈ E. SinceE is an
extension ofT ((D, W, <)), we obtain by Theorem 4.1.2 of [DS00a] thatok(nδ) ∈ E.
SinceE is deductively closed we have moreover¬β ∧ ok(nδ) ∈ E. We thus getδb2 ∈
GD(Dt, E), which impliesbl(mδ) ∈ E ′ by definition ofE ′. That is,CON(δ) ∈ E ′.

The preceding covers all defaultsδ ∈ Ds and so we have shown thatCON(δ) ∈ E ′.

According to Definition A.1, we getΓ(E ′) ⊆ E ′ by minimality ofΓ(E ′).
To show the reverse, assume thatE ′ 6⊆ Γ(E ′). Considerv ∈ E ′ and assumev 6∈ Γ(E ′). We

distinguish the following cases.

• If v ∈ W s, thenv ∈ Γ(E ′), sinceW s ⊆ Γ(E ′), a contradiction.

• If v ∈
{
¬(mδ ≺ mδ′)

∣∣∣ :¬(nδ≺nδ′ )
¬(nδ≺nδ′ )

∈ GD(Dt, E)
}

, then we have(nδ ≺ nδ′) 6∈ E. Accord-

ingly, (mδ ≺ mδ′) 6∈ E ′ by definition of<′ andE ′. Hence, we infer from:¬(mδ≺mδ′ )
¬(mδ≺mδ′ )

∈ Ds

that¬(mδ ≺ mδ′) ∈ Γ(E ′), a contradiction.

• If v ∈ {¬in(nδ, m1) | D1 6= {δ}}, then we havein(nδ, m1) 6∈ E ′ by the construction ofE ′.
Hence, we infer from:¬in(nδ ,m1)

¬in(nδ ,m1)
∈ Ds that¬in(nδ, m1) ∈ Γ(E ′), a contradiction.

• We proceed by induction on the grounded enumeration〈δi〉i∈I of GD(Dt, E) for

v ∈ {bl(mδ), ko(mδ) | δbi
∈ GD(Dt, E), i = 1, 2}

∪ {ok(nδ), CON(δ) ∧ ap(nδ), ap(mδ) | δa ∈ GD(Dt, E)}.

We show that for allδi, i ∈ I such thatδi = (δ)a or δi = (δ)bj
for somej = 1, 2 and someδ ∈

D implies that either{ok(nδ), CON(δ) ∧ ap(nδ), ap(mδ)} ⊆ Γ(E ′) or {bl(mδ), ko(mδ)} ⊆
Γ(E ′) respectively.

First, we have the following lemma.

Lemma 4 Given the induction hypothesis, we haveok(mδ) ∈ Γ(E ′).

Proof 4 Analogous to Proof of Lemma A.2 in [DS00a].

Base Clearly,δ0 = (δ↑)a.
13

By definition,ok(mD) ∈ Γ(E ′); alsoko(mD) 6∈ E ′ by definition ofE ′, which together
implies thatok(n↑) ∈ Γ(E ′), which implies thatCON(δ↑) ∧ ap(n↑) ∈ Γ(E ′).

Further, we havein(n↑, mD) ∈ W s ⊆ Γ(E ′), and by construction ofE ′ that
in(n↑, mk) 6∈ E ′ for k 6= ↑. Hence, we infer from:¬in(n↑,mk)

¬in(n↑,mk)
∈ Ds that¬in(n↑, mk) ∈

Γ(E ′) for k 6= ↑.
SinceΓ(E ′) is deductively closed and sinceΓ(E ′) contains Formula (27), we deduce
thatap(mD) ∈ Γ(E ′).

13δ↑ was calledδ> in [DS00a].
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Step Considerδi and assume the appropriate induction hypothesis for allδj with j < i.
Since〈δi〉i∈I is grounded inW t, we haveW t ∪ CON({δ0, . . . , δi−1}) ` PRE(δi). Let
PRE(δi) = φ ∧ ok(n) for someφ ∈ L and somen ∈ N and where we have name
mδ : {δn}. Then, we clearly haveW ∪ CON({δ0, . . . , δi−1}) ` φ and by monotonicity
W s ∪ CON({δ(mδ)0, . . . , δ(mδ)i−1}) ` φ(mδ).

By definition, W s ⊆ Γ(E ′). Furthermore, we haveCON(δj)(mδ) ∈ Γ(E ′) for j <
i by the induction hypothesis. This implies thatφ(mδ) ∈ Γ(E ′), becauseΓ(E ′) is
deductively closed.

– If δi = (δ)a, then letφ = PRE(δ).

∗ First, consider(δ)m
a : By Lemma 4, we haveok(mδ) ∈ Γ(E ′). By The-

orem 4.1.8 of [DS00a], we conclude thatδb1 6∈ GD(Dt, E) and δb2 6∈
GD(Dt, E); thereforeko(mδ) 6∈ E ′. Hence,ok(nδ) ∈ Γ(E).

∗ Next, consider(δ)nδ
a : SinceΓ(E ′) is deductively closed, we getPRE(δ)(mδ)∧

in(nδ, mδ)∧ ok(nδ) ∈ Γ(E ′). Sinceδa ∈ GD(Dt, E), we have¬JUS(δ) 6∈ E.
By (54), this implies¬JUS(δ)(m∅) 6∈ E ′ and so¬JUS(δ)(mδ) 6∈ E ′. Hence,
CON(δ)(mδ) ∧ ap(nδ) ∈ Γ(E).

∗ Finally, we havein(nδ, mδ) ∈ W s ⊆ Γ(E ′) and by construction ofE ′ that
in(nδ, mk) 6∈ E ′ for k 6= δ. Hence, we infer from:¬in(nδ ,mk)

¬in(nδ ,mk)
∈ Ds that

¬in(nδ, mk) ∈ Γ(E ′) for k 6= δ. SinceΓ(E ′) is deductively closed and since
Γ(E ′) contains Formula (27), we deduce thatap(mδ) ∈ Γ(E ′).

– If δi = (δ)b1, then we havePRE(δ) 6∈ E. By (54), this impliesPRE(δ)(m∅) 6∈
E ′ and soPRE(δ)(mδ) 6∈ E ′. By Lemma 4, we haveok(mδ) ∈ Γ(E ′). Hence,
bl(mδ) ∈ Γ(E).

– If δi = (δ)b2, then we have already shown that¬(CON(δ)(mδ) ∧ JUS(δ)(mδ)) ∈
Γ(E ′). By Lemma 4, we haveok(mδ) ∈ Γ(E ′). SinceΓ(E ′) is deductively closed,
we get¬(CON(δ)(mδ)∧JUS(δ)(mδ))∧ok(nδ) ∈ Γ(E ′). Hence,bl(mδ) ∈ Γ(E ′).

In all, we obtainv ∈ Γ(E ′), the desired contradiction.

Since bothE ′ andΓ(E ′) are deductively closed, we get thatE ′ ⊆ Γ(E ′).
This completes the proof showing thatE ′ is an extension ofS((D, W, <′)).

Proof 5.3 Let (D, W ) be a semi-normal default theory overL and define< by: for everyδ ∈ D
let {δ↓} < {δ} < {δ↑}.

if part According to Corollary 4.2 of [DS00a], we have thatE ′ is an extension ofT ((D, W, ∅))
iff E ′ ∩ L is an extension of(D, W ).

According to Theorem 5.2, ifE ′ is an extension ofT ((D, W, <)) thenE is an extension of
S((D, W, <)) whereE ′ ∩ L = ↓(E). Hence, we have that↓(E) is an extension of(D, W ).

only-if part (Outline)
Given the assumptions in the statement of the theorem, we make the following simplifications

to Definition 5.3.
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1. Occurrences ofko can be replaced bybl (sinceko is used for readability; see also Theo-
rem 5.1.3). Then line (26) of Definition 5.3 can be deleted.

2. c(m,n) can be replaced byCON(n)(x) (sincec(·, ·) was introduced only to avoid a space
blowup in the translation).

Thus (21) can be deleted and (18) simplified.

3. The family of languagesL(m) for m ∈ M can be replaced by the languageL. That is,
formulas don’t need to be indexed by the set in which they appear since now all results (i.e.
consequents of rule applications) are propagated to all sets (with the exception of the trivial
set{δ↑}) via (20) and (28). So the added argument to formulas can be dropped, as can (20)
and (28).

4. We can unambiguously use the namen to refer to both a default, and the set containing that
default.

5. ap(y·x) can be replaced byap(x) (sinceap(x) can be derived only viaap(y·x) using (27)).

As well, (27) can be deleted.

6. Names inM are redundant. Consequently, occurrences ofin can be deleted. As well, the
second default in (19) can be deleted, as can (22).

This leaves the following simplified translation for Definition 5.3.

DN =
{

α∧ok(n·n) : β
γ∧ap(n)

∣∣∣ n : α : β
γ

∈ D
}

DM =
{

ok(n) :¬bl(n)
ok(n·n)

∣∣∣ n : α : β
γ

∈ D
}

∪
{

ok(n) :¬α
bl(n)

∣∣∣ n : α : β
γ

∈ D
}

∪
{
¬β∧ok(n) :

bl(n)

∣∣∣ n : α : β
γ

∈ D
}

D¬ =
{

:¬(x≺y)
¬(x≺y)

}
W≺ = {ok(mD)}

∪ {ni ≺ nj | ({δi}, {δj}) ∈<}
∪ {∀x ∈ N. [∀y ∈ N. (x ≺ y) ⊃ (bl(y) ∨ ap(y))] ⊃ ok(n)}

But this is just the translationT ((D, W, ∅)) of [DS00a] except that the rule

α ∧ ok(n) : β

γ ∧ ap(n)

in [DS00a] is replaced by the pair of rules

α ∧ ok(n·n) : β

γ ∧ ap(n)
,

ok(n) : ¬bl(n)

ok(n·n)
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in DN and the first rule inDM above. However, modulo the languageL, the pair of rules above
can be shown to have the same effect as the rule from [DS00a].

Thus, under the premisses of the theorem, Definition 5.3 is essentially the same as the
translationT ((D, W, ∅)). From Corollary 4.2 of [DS00a], we have thatE ′ is an extension of
T ((D, W, ∅)) iff E ′ ∩ L is an extension of(D, W ), from which our result obtains.

C Proofs for Section 6

Proofs for this section are found in [DS02].
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