
On the Role of Possibility in Action Execution
and Knowledge in the Situation Calculus

Vahid Vaezian(B) and James P. Delgrande

School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada
{vvaezian,jim}@cs.sfu.ca

Abstract. In the Situation Calculus the term do(a, s) denotes the suc-
cessor situation to s, resulting from performing (i.e. executing) the action
a. In other words, it is assumed that actions always succeed. If action a is
not possible in situation s, then the action still succeeds but the resulting
situation is not physically realizable. We will argue that consequences of
this definition of do(a, s) puts some limitations on applicability of the
Situation Calculus. In this paper, we view do(a, s) slightly differently
which results in a more general form for successor state axioms. The
new framework not only has all the benefits of the current version of the
Situation Calculus but also offers several advantages. We suggest that
it is more intuitive than the traditional account. As well, it leads to a
more general solution to the projection problem. Last, it leads to a more
general formalization of knowledge in the Situation Calculus.

1 Introduction

The Situation Calculus ([2,4]) is a formalism designed for reasoning about action.
In the axiomatization, do(a, s) denotes the result of executing action a in situ-
ation s, even if executing a is not possible in s. In other words, it is assumed
that actions always succeed. If action a is not possible in situation s, then a still
succeeds but the resulting situation is not physically realizable. Let’s call this
the success assumption. To take care of the case where a is not possible, the
tree of situations is “pruned” by a separate executability condition, which limits
things to only those situations which the actions “actually” succeed.

Although a great deal has been achieved with the current version of the
Situation Calculus (from now on we call it the traditional framework), we argue
that the success assumption leads to some limitations. In this paper, we define
do(a, s) differently by relaxing the success assumption and explore the impacts of
this change in the theory of the Situation Calculus. In the new definition actions
have no effect if their preconditions are not met. This leads to a more general
form of the successor state axioms which follows from reconsidering the frame
problem when unexecutable actions (i.e. those actions whose preconditions are
not met) are involved.

In Sect. 2 we review the main concepts of the Situation Calculus. In Sect. 3 we
make explicit the success assumption and discuss its consequences. In Sect. 4 we
c© Springer International Publishing AG 2017
M. Mouhoub and P. Langlais (Eds.): Canadian AI 2017, LNAI 10233, pp. 155–161, 2017.
DOI: 10.1007/978-3-319-57351-9 20



156 V. Vaezian and J.P. Delgrande

discuss the new definition of do(a, s), present a more general form for successor
state axioms and discuss the benefits of the proposed framework. In the last
section we conclude and present directions for future work.

2 Background

The language of the Situation Calculus is a many-sorted first order language.
There are three sorts: action for actions, situation for situations, and object
for everything else. A distinguished constant S0 represents the initial situation,
and a distinguished function symbol do represents the execution of an action.
A situation is a finite sequence of actions starting from the initial situation.
A binary predicate symbol � defines an ordering relation on situations. A fluent
is a fact whose truth value may vary from situation to situation; formally a
fluent is a predicate that takes a situation as the final argument. An action then
takes a situation to another situation in which the action has been executed.
A situation calculus action theory includes an action precondition axiom for each
action symbol, a successor state axiom for each fluent symbol, as well as unique
name axioms and the foundational axioms of the Situation Calculus. Action
precondition axioms are represented by the binary predicate Poss. Successor
state axiom for a (relational) fluent F has the form

F (x , do(a, s)) ≡ γ+
F (x , a, s) ∨ [(F (x , s) ∧ ¬γ−

F (x , a, s))] (1)

where γ+
F (x , a, s) and γ−

F (x , a, s) represent the conditions under which action a
affects the value of fluent F positively or negatively.

3 The Traditional Definition of do(a, s)

In the Situation Calculus, the term do(a, s) denotes “the successor situation
to s, resulting from performing the action a”[4]. In this definition, actions always
succeed. In other words, in the situation denoted by do(a, s) all the (conditional)
effects of action a hold, even if it is not possible to perform action a in s. If
performing a is not possible in situation s then do(a, s) and subsequent situations
are what Reiter calls “ghost” situations. In these cases the actions still succeed, in
that the action effects hold in the resulting situation, but the resulting situation
is not physically realizable. The focus is then put on the executable situations
(i.e. those action histories in which it is actually possible to perform the actions
one after the other). For example in planning in the Situation Calculus, where
we have a goal statement G and want to find a plan that satisfies G, we prove
Axioms � (∃s).executable(s)∧G(s) which only deals with executable situations.
As another example, in Golog, primitive and test actions are defined as
Primitive actions: Do(a, s, s′)

def
= Poss(a[s], s) ∧ s′ = do(a[s], s).

Test actions: Do(φ?, s, s′)
def
= φ[s] ∧ s′ = s.

Note that executability is included in the definition of primitive actions, and



On the Role of Possibility in Action Execution and Knowledge 157

test actions are always possible. More complex actions then are defined on top
of these two kinds of actions, and they inherit executability as well.

This definition of do(a, s), through Reiter’s solution to frame problem [4],
results in the successor state axiom (1) which in it truth or falsity of a fluent
after an action is independent of whether the action is executable or not. For
example if we have holding(x, do(a, s)) ≡ a = pickup(x) ∨ holding(x, s) then
holding(x, do(pickup(x), s)) is always true for all x and s no matter executing
the action pickup(x) is possible in s or not.

In the sequel we discuss some consequences of the success assumption.
1. Projection Problem. Consider the example where an agent intends to
execute a pickup action of some object followed by a move action to the next
room, but the pickup is not possible, say as a result of the object being glued to
the floor. In the traditional framework, following the pickup-and-move sequence,
in the resulting situation the agent is holding the object and is in the next
room. This is clearly impossible and the (separate) executability condition rules
out such a (ghost) situation. As a result we cannot formalize these scenarios in
the traditional framework. Clearly a more desirable outcome of this pickup-and-
move sequence is that the agent is in the next room and the object’s location is
unchanged. This will be the result in our proposed framework.
2. Representing Knowledge. Formalizing knowledge is an important aspect
of reasoning about change; there have been several variants of formalization
of knowledge in the Situation Calculus ([1,4,5]). The most recent of these has
been used as the standard representation in the literature; but as we will see
all these variants have some issues and can be used only in a restricted way.
These approaches differ on how they formalize the accessibility relation. We now
summarize how knowledge is formalized in Situation Calculus based on [5].

The accessibility relation is represented by a relational fluent K. K(s′, s)
denotes “situation s′ is accessible from situation s”. Knowledge is then defined
naturally using the K fluent: (Knows(φ, s)

def
= (∀s′).K(s′, s) ⊃ φ[s′]) where φ

is a situation suppressed expression and φ[s] denotes the formula obtained from
φ by restoring situation variable s into all fluent names mentioned in φ.

The successor state axiom for the fluent K is

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧ K(s′, s) (2)
∧ Poss(a, s′) ∧ sr(a, s) = sr(a, s′)

where sr is sensing result function, and formalizes the result of a sense action.
However there is a problem in formalizing knowledge in the traditional frame-

work, as illustrated in the following example in the blocks world domain.

Example 1. Consider a robot which can pickup objects. There are two blocks
A and B. Block A is known to be on the table, but the agent does not know
whether B is on A or on the table. Nonetheless in the Scherl-Levesque approach
[5], after a pickup(A) action the agent believes that it is holding A, even though
picking up A is not possible in one of the initial situations.



158 V. Vaezian and J.P. Delgrande

Formally, we have two initial situations S0 and S1. There are three fluents:

holding(x, s): The robot is holding object x, in situation s.
clear(x, s): There is no block on top of x, in situation s.
on(x, y, s): x is on (touching) y, in situation s.

We have only one action (pick up(x)). Its action precondition axiom is:

Poss(pickup(x), s) ≡ clear(x, s) ∧ (∀y)¬holding(y, s)

Successor state axioms:

holding(x, do(a, s)) ≡ a = pickup(x) ∨ holding(x, s)
clear(x, do(a, s)) ≡ [(∃y).on(y, x, s) ∧ a = pickup(y)] ∨ clear(x, s)
on(x, y, do(a, s)) ≡ on(x, y, s) ∧ a �= pickup(x)

S0: (∀x)¬holding(x, S0), on(B,A, S0), on(A, Table, S0), clear(B,S0).
S1: (∀x)¬holding(x, S1), on(A, Table, S1), on(B, Table, S1), clear(A,S1),

clear(B,S1).

The initial accessibility relations: K(S0, S0),K(S1, S0),K(S1, S1),K(S0, S1).
Note that pickup(A) is a physical action, so the accessibility relations are

preserved. Also note that it is possible to pick up A in S1 while it is not possible
in S0. Therefore we expect that in a “correct” formalization the accessibility
relations and possible worlds after pickup(A) be as shown in Fig. 1.

Fig. 1. Desired accessibility relations and possible worlds after action pickup(A)

But in the traditional framework, after a pickup(A) action the formulas
holding(A, do(pickup(A), S0)) and holding(A, do(pickup(A), S1)) hold; so no
matter how the accessibility relation gets updated (i.e. no matter which for-
mulation of K fluent we opt) the agent will believe that it is holding A after
pickup(A).

In addition to this general problem the Scherl-Levesque approach has also a
problem with updating the accessibility relation. Note that using (2) the only
accessibility relations we get are K(do(pickup(A), S1), do(pickup(A), S1)) and
K(do(pickup(A), S1), do(pickup(A), S0)) (because of ¬Poss(pickup(A), S0)).



On the Role of Possibility in Action Execution and Knowledge 159

Among other proposed successor state axioms for the K fluent, [1] has similar
problems. The one suggested in [4] which using the standard terminology is

K(s′′, do(a, s)) ≡ (∃s′).s′′ = do(a, s′) ∧ K(s′, s) ∧ sr(a, s) = sr(a, s′) (3)

returns the desired accessibility relations after pickup(A), but the general prob-
lem discussed above remains (the agent believes it is holding A after pickup(A)).

The main reason behind the general problem discussed above is that in the
traditional framework ghost situations cannot represent possible worlds. Note
that in the traditional framework, when action a is not possible in situation s,
do(a, s) is a ghost situation and can only represent an imaginary world where
action a was successfully executed (although it was not possible) in the world
represent by situation s. In our proposed framework we will not have ghost
situations and the problem with formalizing knowledge will be fixed.

Note that assuming there is no unexecutable action possible in the model is
often too restrictive. The reason is that when dealing with knowledge we have
multiple initial situations. Assuming that all actions are executable in every
situation starting from any of the initial situations is a very strong assumption.

4 An Alternative Definition of do(a, s)

Let do(a, s) denote “the successor situation to s, resulting from attempting the
action a”. An attempt to do an action is different from performing (i.e. executing)
an action in the sense that it is not assumed that it succeeds. If an action is
executable then it has its expected effects, otherwise nothing happens (i.e. a
null action is executed). This is reasonable because for example if pickup(x) is
unexecutable (say, because x is glued to the floor), after (attempting) this action,
it is reasonable to assume that nothing happens.

In [3], Reiter presented a solution to the frame problem building on the
previous works of Davis, Haas and Schubert. He then developed a form for
successor state axioms using this solution. If we follow a similar pattern in the
new framework we will obtain the following form for successor state axioms1:

F (x , do(a, s)) ≡ (Poss(a, s) ∧ γ+
F (x , a, s)) (4)

∨ [F (x , s) ∧ (¬γ−
F (x , a, s) ∨ ¬Poss(a, s))]

It is important to note that this successor state axiom gives Reiter’s successor
state axiom (1) as a special case when we have Poss(a, s) ≡ 	.

We now describe some advantages of the new framework and show that the
new framework does not suffer from the aforementioned limitations.

Projection Problem. In the new framework we can solve the more general form
of the problem where the sequence of actions does not have to be executable.
Reconsidering the example discussed before, using the new form of successor

1 The discussion and proof will be given in the full paper.



160 V. Vaezian and J.P. Delgrande

state axiom, after the sequence of pickup-and-move actions, the agent is in room
2 not holding any object, and the object is still in room 1, as desired.2

Representing Knowledge. The ability of our framework to formalize the
result of unexecutable actions (by means of the new form of successor state
axiom) enables it to regard situations as “states” of the world. In other words,
when action a is possible in situation s, the situation do(a, s) represents the world
resulting from executing action a in the world represented by situation s, and
when action a is not possible, the situation do(a, s) represents the world result-
ing from the failed attempt to execute action a (which as we assumed has the
same properties as s). This advantage will be useful for formalizing knowledge.

Reconsider Example 1. The new successor state axioms are

holding(x, do(a, s)) ≡ [a = pickup(x) ∧ Poss(a, s)] ∨ holding(x, s)
clear(x, do(a, s)) ≡ [(∃y).on(y, x, s) ∧ a = pickup(y)∧Poss(a, s)] ∨ clear(x, s)
on(x, y, do(a, s)) ≡ on(x, y, s) ∧ (a �= pickup(x) ∨ ¬Poss(a, s))

First note that the new axiomatization entails ¬holding(A, do(pickup(A), S0).
Determining the value of other fluents, we see that in our framework the possible
worlds after action pickup(A) are as shown in Fig. 1 (the desired results).

For accessibility relation we use (3). Note that the difference is that for
fluents other than K we are using the new form of successor state axiom. In our
framework possibility of actions has been considered in successor state axioms of
fluents (excluding the K fluent). These fluents characterize the possible worlds.
Therefore there is no need to mention Poss in the fluent K which characterizes
the accessibility relation between possible worlds. Using this formulation of K
and the new form of successor state axiom for other fluents, we will get the
expected results after actions pickup(A).3

5 Conclusion

We have provided a more nuanced and expressive version of the Situation Cal-
culus by presenting a more general form for successor state axioms which stems
from a different definition of do(a, s).

We described some advantages of the new framework. In the traditional
framework we can solve projection problem but only for executable situations.
We can regard situations as possible worlds but only when the situation is exe-
cutable. We showed that the current formalization of knowledge works only for
executable situations. In our framework we don’t have these limitations and
it allows us to utilize the power of the Situation Calculus in a broader area.
Studying other impacts of the new framework is subject of the future research.

2 A formal account of the problem will be given in the full paper.
3 The complete description will be given in the full paper.



On the Role of Possibility in Action Execution and Knowledge 161

References

1. Levesque, H., Pirri, F., Reiter, R.: Foundations for the situation calculus. Electron.
Trans. Artif. Intell. 2(3–4), 159–178 (1998)

2. McCarthy, J.: Situations, actions and causal laws. Technical report, Stanford Uni-
versity (1963)

3. Reiter, R.: The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In: Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy (1991)

4. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

5. Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artif. Intell.
144(1), 1–39 (2003)


	On the Role of Possibility in Action Execution and Knowledge in the Situation Calculus
	1 Introduction
	2 Background
	3 The Traditional Definition of do(a,s)
	4 An Alternative Definition of do(a,s)
	5 Conclusion
	References


