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Abstract

We present a general approach for introducing specificity information
into nonmonotonic theories. Historically, many approaches to nonmonotonic
reasoning, including default logic, circumscription, and autoepistemic logic,
do not provide an account of specificity, and so fail to enforce specificity
among default sentences. In our approach, a default theory is initially given
as a set of strict and defeasible rules. By making use of a theory of default
conditionals, here given by System Z, we isolate minimal sets of defaults
with specificity conflicts. From the specificity information intrinsic in these
sets, a default theory in a target language is specified. For default logic the
end result is a semi-normal default theory; in circumscription the end result is
a set of abnormality propositions that, when circumscribed, yield a theory in
which specificity information is appropriately handled. We mainly deal with
default logic and circumscription although we also consider autoepistemic
logic, Theorist, and variants of default logic and circumscription. This ap-
proach differs from previous work in that specificity information is obtained
from information intrinsic in a set of conditionals, rather than assumed to
exist a priori. Moreover, we deal with the “standard” version of, for example
default logic and circumscription, and do not rely on prioritised versions, as



do other approaches. The approach is both uniform and general, so the choice
of the ultimate target language has little effect on the overall approach.
Keywords: Knowledge representation; Default logic; Circumscription; Speci-
ficity.

1 Introduction

A general problem in many approaches to nonmonotonic reasoning is that they
do not enforce specificity relations among default assertions as part of their basic
machinery. Consider for example where birds fly, birds have wings, penguins must
be birds, and penguins don’t fly. We can write this as:

B—F, B—W, P=B,P—-F. (1)

From this theory, given that P is true, one would want to conclude —F' by default.
Intuitively, being a penguin is a more specific notion than that of being a bird, and,
in the case of a conflict, we would want to use the more specific default. Also,
given that P is true one would want to conclude that W was true, and so penguins
have wings by virtue of being birds.

Default logic [Reiter, 1980], circumscription [McCarthy, 1980], and autoepis-
temic logic [Moore, 1985] are examples of approaches that do not take specificity
information into account. For example, in the naive representation of the above
theory in default logic, we obtain one extension (i.e. a set of default conclusions)
in which —F'is true and another in which F' is true. One is required to use so-called
semi-normal defaults! to eliminate the second extension. However, it is up to the
user to hand-code how specificity is dealt with. [Reiter and Criscuolo, 1981], for
example, gives a partial list of ways of transforming default theories so that un-
wanted extensions arising from specific “interactions” are eliminated.

There are more recent approaches to nonmonotonic reasoning, based generally
on intuitions from probability theory or conditional logics, that deal with specificity
in a very natural way. Moreover, in the past few years there has been some con-
sensus as to what should constitute a basic conditional system. This, arguably, is
illustrated by the convergence (or at least similarity among) systems such as those
developed in [Delgrande, 1987, Kraus et al., 1990, Pearl, 1990, Boutilier, 1992a,
Geftner and Pearl, 1992], yet which are derived according to seemingly disparate
intuitions. A general problem with these accounts however is that they are too
weak. Thus in a conditional logic, even though a bird may be assumed to fly by
default, a green bird cannot be assumed to fly by default (since it is conceivable

'See Section 4.1 for a definition of semi-normal defaults and the way they deal with unwanted
extensions.



that greenness is relevant to flight). In these systems some mechanism is required
to assert that properties not known to be relevant are irrelevant. This is done in
conditional logics by meta-theoretic assumptions, and in probabilistic accounts by
independence assumptions. In other approaches there are problems concerning
property inheritance, and so one may not obtain the inference that a penguin has
wings. While various solutions have been proposed, none are entirely satisfactory.

Our approach is to use the specificity information determined by a conditional
system to generate a default theory in a nonmonotonic reasoning system, such as
default logic, so that specificity is appropriately handled in the latter approach.
Hence we address two related but essentially independent questions:

1. How can a conditional system be used to isolate interacting defaults with
differing specificity?

2. How can this information be uniformly incorporated in a theory expressed
in a nonmonotonic reasoning system where specificity is not directly ad-
dressed?

For the first part, we consider System Z [Pearl, 1990] as an example of a con-
ditional system of defeasible reasoning. For the second part, we consider first
consistency-based approaches, as exemplified by default logic [Reiter, 1980]; sub-
sequently we consider variants of default logic and other related approaches. Sec-
ond we consider minimization-based approaches, as exemplified by circumscrip-
tion [McCarthy, 1980], and again variants and related systems.

We begin with a background theory made up of a set of strict rules Ry = {r |
a, = [,} assumed to be true in every setting, together with a set of defeasible
rules Rp = {r | a, — (3, }, where each «, and (3, are arbitrary propositional for-
mulas. By means of System Z we isolate minimally conflicting sets of defaults with
differing specificities; the defaults in such a set should never be simultaneously ap-
plicable. Notably we do not use the full ordering given by System Z (which has
difficulties of its own, as described in Section 3.1), but rather appeal to the tech-
niques of this approach to isolate conflicting subsets of defaults. In a second step,
we use the derived specificity information to produce, for instance, a set of default
rules in default logic, or a classical theory that can be circumscribed, in such a way
that specificity is suitably handled. The framework described then is a general ap-
proach to “compiling” default theories, using a conditional approach to determine
specificity conflicts, into an approach to nonmonotonic reasoning where specificity
is not “automatically” handled.

This framework offers several advantages over earlier work. First, it is more
general, in that it is applicable to broad classes of systems, rather than to a spe-
cific system. In addition, within a specific system, the class of specificity conflicts



handled is broader than previous work, addressing for example the situation of a
set of less-specific defaults with a more-specific default. Second, specificity infor-
mation is obtained by appeal to an extant theory of defaults, and not simply some
external user-specified ordering of defaults. So the present approach provides a
justification for these modifications. Third, specificity is added to default logic (or
autoepistemic logic, circumscription, etc.) without changing the machinery of de-
fault logic. That is, the resultant default theory is a theory in default logic, and not
for example a set of ordered default rules requiring modifications to default logic.
Hence we effectively remain within the original formalism, and so can take advan-
tage of previous work (including implementations) concerning these approaches.
In addition, we prove that specificity conflicts are indeed resolved in a general
fashion, leaving unchanged other conflicts (as are found for example in a “Nixon
diamond”).

In the next subsection we briefly cover background material, while Section 2
introduces our approach. Section 3 shows how specificity conflicts are determined.
Section 4 shows how specificity is compiled into consistency-based approaches to
nonmonotonic reasoning, while Section 5 does the same for minimization-based
approaches. Section 6 gives a brief summary. Portions of this work appeared
earlier in [Delgrande and Schaub, 1994a, Delgrande and Schaub, 1994b].

1.1 Default Theories

Knowledge about the world, given in a knowledge base A, is assumed to be divided
into two sets:

R : Background knowledge, or facts or rules which are assumed to be applicable
in every domain.

W : Contingent knowledge, or facts which are true in the case under consideration
and which may vary from case to case.

This is essentially the difference between necessary and contingent knowledge
in modal logics [Hughes and Cresswell, 1968], or between probabilistic knowl-
edge and conditioning knowledge in probabilistic reasoning systems [Pearl, 1989].
Background knowledge in turn consists of two sets:

Rp: Default implications, or rules that are usually true but allow exceptions.
Rpy: Necessary implications, or rules which must be true in any setting.

This division is found in the various conditional approaches to default reason-
ing in Artificial Intelligence, such as [Delgrande, 1987, Geftner and Pearl, 1992,



Boutilier, 1992a, Goldszmidt, 1992] and less directly in [Kraus et al., 1990].2 The
background knowledge provides a generic world description. Elements of W are
formulas of classical logic. Elements of Rp are formulas of the form o« — 3 while
elements of Ry are formulas of the form o = 3, where « and (3 are propositional
formulas. The expression of elements of Ry as rules is a convenience only since
an arbitrary strict formula a can be expressed by T = «. Note too that we reserve
D for classical (material) implication.

So a knowledge base is of the form A = ((Rp, Rn), W), where (Rp, Ry)
represents generic world knowledge and W represents case-specific knowledge.
Our initial example is represented as:

R={({B—F, B—W,P—~F},{P= B}). )

It should be obvious how these sets would be mapped into a particular approach
to nonmonotonic reasoning. In default logic, for example, elements of Rp would
be mapped into default rules, and everything else would be considered as world
knowledge; in circumscription, elements of Rp would be mapped to implications
with ab propositions, while again everything else would be considered as world
knowledge. However, as the previous section pointed out, the “obvious” mappings
are problematic in that specificity is not properly handled. The purpose of this
paper then might be seen as developing a general, provably correct “compilation”
scheme to address specificity for those approaches to nonmonotonic reasoning that,
as part of their formalism, do not.

1.2 Related Work

Arguably, specificity per se was first specifically addressed in default reasoning in
[Poole, 1985], although it has of course appeared earlier. As mentioned, we could
have used a conditional system other than System Z in our approach; however, Sys-
tem Z is particularly straightforwardly describable. Some approaches though are
too weak to be useful here. For example conditional entailment [Geffner and Pearl, 1992]
does not support full inheritance reasoning, in that from {A — B, B — C, C —
D, A — —D} we cannot conclude C' by default from A. [Delgrande, 1988] is
unsatisfactory since it gives a syntactic, albeit general, approach in a conditional
logic.

Conditional approaches are founded, one way or another, on notions of pref-
erence or normality. Conditional logics for default conditionals [Delgrande, 1987,
Boutilier, 1992a], for example, are modal logics [Hughes and Cresswell, 1968, Chellas, 1980]

2The roots of such approaches however extend at least as far back as [Adams, 1975, Lewis, 1973,
Stalnaker, 1968].



where we can view possible worlds as being ordered by a metric of normality or un-
exceptionalness. A default conditional &« — (3 is true, roughly, if in the least worlds
where « is true, (3 is true also. For our example (1), at the least worlds where B is
true, F' is true also; at the least worlds where P is true, —F' is true. Since we also
have that P = B (we could as easily have P — B), it can be seen that the least
P worlds must be more exceptional than (or less normal than) the least B worlds.
If we now say that 3 follows as a default inference from « in default theory R just
when [ is true in the least o worlds, we obtain a form of default inference in which
specificity is obtained and, for example, penguins normally don’t fly whereas birds
do.

These approaches are quite weak: since it is conceivable that green birds do not
fly (i.e. there are models where in the least green-bird worlds these birds do not fly),
it does not follow by default that a green bird flys, even though a bird does. While
various approaches have been proposed to strengthen such basic systems, including
rational closure [Kraus et al., 1990], System Z, CO* [Boutilier, 1992a], possibilis-
tic entailment [Benferhat et al., 1992], and conditional objects [Dubois and Prade, 1991]
none is entirely satisfactory. In this regard, System Z is examined as an exemplar
of these approaches in Section 3.1.

In default logic, [Reiter and Criscuolo, 1981] considers various patterns of speci-
ficity in interacting defaults, and describes how specificity may be obtained via
semi-normal defaults. However these patterns are just commonly-occurring con-
figurations of defaults, and there is no notion of this being a complete character-
isation. This work may be regarded as a pre-theoretic forerunner to the present
approach, since the situations addressed therein all constitute instances of what we
call (in Section 3) minimal conflicting sets. [Etherington and Reiter, 1983] also
considers a problem that fits within the (overall) present framework: specificity
information is given by an inheritance network, and this network is compiled into
a default theory in default logic (see Section 4.3).

More recent work develops priority orderings on default theories, including
[Boutilier, 1992b, Baader and Hollunder, 1993a, Brewka, 1993]. However these
approaches obtain specificity by requiring modifications to how default logic is
used. In contrast, we describe transformations that yield classical default logic
theories. Since these approaches are described in Section 4, they are introduced
only briefly here. [Boutilier, 1992b] uses the correspondence between a conditional
oy — [y of System Z and defaults of the form %Dﬁﬁ: to produce partitioned sets
of prerequisite-free normal default rules. One reasons in this approach by applying
the rules in the highest set, and working down. [Baader and Hollunder, 1993a] ad-
dresses specificity in terminological reasoners. This approach does not rely on
conflicts between “levels”; rather a subsumption relation between terminologi-
cal concepts is mapped onto a set of partially ordered defaults in default logic.



[Brewka, 1993] has adopted the idea of minimal conflicting sets described here,
but in a more restricted setting. In common with [Baader and Hollunder, 1993a],
partially ordered defaults in default logic are used; however, for inferencing all
consistent strict total orders of defaults must be considered.

Similar remarks apply to circumscription, and to other related approaches. Cir-
cumscription was introduced in [McCarthy, 1980], and the use of ab predicates in
prioritised, parameterised circumscription to address specificity was addressed in
[McCarthy, 1986] and [Lifschitz, 1985]. [Grosof, 1991] extended prioritised cir-
cumscription to deal with partial orders. These approaches are discussed more
fully in Section 5.3.

Lastly there are direct or path-based approaches to nonmonotonic inheritance,
as expressed using inheritance networks [Horty, 1994]. It is difficult to compare
such approaches with our own for two reasons. First, inheritance networks are
concerned, broadly, with general notions having to do with arguments or nonmono-
tonic inheritance. Our interests are narrower, being limited to specificity. Second,
the account of meaning for such networks is most often given in terms of paths
in the network, and so tend not to rely on more standard model-theoretic notions.
Nonetheless, in Section 4.3 we compare our approach with probably the best-know
translation of an inheritance network, where the network is translated into a theory
in default logic, that of [Etherington and Reiter, 1983].

2 Opverview of the Approach

There are two major steps in the approach. First, given a default theory expressed as
a generic world description, we locate default rules that conflict and have differing
specificity; this is accomplished by using (part of) the mechanism of System Z. So
for our initial example (1) it is clear that the defaults B — F'and P — —F conflict
and that the second default is more specific than the first. Secondly, we compile
the default theory into a nonmonotonic reasoning system such as default logic or
circumscription, so that if both defaults are potentially applicable—say, B and P
are true—then only the second default is applied. In outline, this is carried out as
follows.

In System Z defaults are partitioned into sets Ry, Iy, ..., where, roughly, the
defaults in a lower-ranked partition are less specific than those in a higher-ranked
partition. The resulting partition is called a Z-ordering. For our initial example,
treating the strict implication as a default for the moment, we would obtain the
partition:

Ry = {B—F, B—W}
Ry, = {P— B, P—~F}.



The key point in determining the partition is that, if we treat — as classical impli-
cation, then for « — 3 € R; we have that

{aANBYUR;UR;11 U...
is satisfiable, whereas
{Oé/\ﬁ}URl;lURiURiJrlU...

is unsatisfiable. So the Z-ordering provides specificity information; however, we
do not use the full Z-ordering since it may introduce unwanted specificities (Sec-
tion 3.1). Rather we determine minimal sets of rules that conflict, and use these
sets to sort out specificity information. In the above example, {B — F, P —
B, P — —F'} would be such a set, since if we delete any of the three defaults we
would have a set with no conflict or with no difference in specificity.

There are numerous issues that need to be confronted, even with relatively
simple theories. Consider the following extended example, already expressed as
a Z-ordering; we will make reference to this example throughout the paper. For
simplicity we have expressed all rules as default rules.

Ry = {An — WB,An — —Fe, An — M}
Ry, = {B— An,B— F,B— Fe,B— W}
Ry = {P—B,P—~-F, E— B,E— —F, Pt » B,Pt —» —Fe, Pt

That is, in Ry, animals are warm-blooded, don’t have feathers, but are mobile. In
Ry, birds are animals that fly, have feathers, and have wings. In Ry, penguins and
emus are birds that don’t fly, and pterodactyls are birds that have no feathers and
are not warm-blooded.

First we locate the minimal (with respect to set inclusion) sets of rules that
differ in specificity and that conflict; this will be the minimal set of rules having a
non-trivial Z-ordering. In our example these consist of:

C® = {An — —Fe,B — An,B — Fe}

¢! = {(B—FP—B,P—-F} (3)
¢ = {B—FFE— B,E— —F} 4)
C® = {B— Fe,Pt — B,Pt — —Fe}

c* = {An — WB,B — An, Pt — B, Pt — -WB}

Any such set is called a minimal conflicting set of rules. For any such set, if all the
rules are jointly applicable then one way or another there will be a conflict.> Note

3If the rules were represented as normal default rules in default logic for example, one would
obtain multiple extensions.



that both of these notions are crucial. If we have a conflict without a specificity
difference, for example with the defaults,

Q— P, R—-P

then given @@ A R there is no reason to apply one rule over another. If we have a
specificity difference without a conflict, say birds fly and tropical birds are colour-
ful:

B—F BANT—C

Then given B A T there is again no reason to not apply both defaults.

We show below that the Z-ordering of a each such set C' consists of a binary
partition (Cp, C1) of rules. Furthermore the rules in the set Cj are less specific than
those in C. Consequently, if the rules in C are applicable, then we would want to
insure that some rule in Cy was blocked. For example, for the minimal conflicting
set C'! we obtain:

Cy = {B—F} S
cl = {P— B, P—~F}. (6)

There are now two important issues that need to be addressed:

1. What rules should be selected as candidates to be blocked, using minimal
conflicting sets?

2. How can the application of a rule be blocked in the target nonmonotonic
formalism?

For the first question, consider where we have a chain of rules, and where
transitivity is explicitly blocked, as in the minimal conflicting set C* above. We
have the Z-ordering:

Cy = {An — WB,B — An} (7)
ct = {Pt— B,Pt— -WB}.

Intuitively An is less specific than Pt. If we were given that An, Pt, =B were true,
then in a translation into default logic, we would want the default rule correspond-
ing to Pt — —WB to be applicable over An — WB, even though the “linking”
rule Pt — B is falsified. So we want more specific rules to be applicable over less
specific conflicting rules, independently of the other rules in the minimal conflict-
ing set. We do this by locating those rules whose joint applicability would lead to
an inconsistency. In our example, this consists of An — WB, and Pt — —=WB



(since (An A WB) A (Pt A =WB) is inconsistent). Since An — WB € Cf and
Pt — —=WB € Cf{, the rules have differing specificity. The rules selected in this
way from C and C{ are called the minimal conflicting rules and maximal conflict-
ing rules respectively. The minimal conflicting rules constitute the candidates to
be blocked. This selection criterion has the important property that it is context in-
dependent, in the following fashion. For default theories R and R’, where R C R/,
if r € R is selected, then r should also be selected in R'. Thus, if we wish to block
the default B — F' in the case of P in default theory Rz, then we will also want to
block this rule in any superset .

The second question, (“How can the application of a rule be blocked?”’) de-
pends on the target nonmonotonic formalism. However we argue that our approach
is broadly applicable to nonmonotonic formalisms that do not, in and of them-
selves, address specificity issues. In Section 4 we deal with the major consistency-
based formalisms; Section 5 addresses minimization-based formalisms. For default
logic* for example, we have the following translation of rules. The default theory
corresponding to our default rules Rp consists of normal defaults, except for those
defaults representing minimal conflicting rules, which are semi-normal. For these
latter default rules, the prerequisite is the antecedent of the original rule (as ex-
pected). The justification consists of the consequent together with an assertion to
the effect that the maximal conflicting rules in the minimal conflicting set cannot
be applicable.

Consider the set C§ in (7), along with its minimal conflicting rule An — WB.
We replace B — An, Pt — B, Pt — —-WDB with

B:An Pt:B Pt:-WB
An B -WB

respectively. For An — WB, we replace it with

An: WBA(PtD>-WB)
wB ’

: : : An:WBA-Pt
which can be simplified to ==~ .

So, for the minimal conflicting rules we obtain semi-normal defaults; all other
defaults are normal. Accordingly, we give below only the semi-normal default
rules constructed from the minimal conflicting sets C to C*:

0. An:=FeN(BOFe) An:-Fen-B
co . = or —Fe
olyC2 . B:F/\(PD}F)/\(ED—'F) or B:F/\;P/\ﬁE
3 B:FeN(Pto=Fe) B:FeA-Pt
C?: Fe or Fe
c4 An: WBA(PtD-WB) or An:WBA-Pt
: WB WB

* A formal introduction to default logic is given in Section 4.1.
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The conditional B — F occurs in C'! and C? as a minimal conflicting rule. In this
case we have two minimal conflicting sets sharing the same minimal conflicting
rule, and we combine the maximal conflicting rules of both sets.

So why does this approach work? The formal details are given in the following
sections. However, informally, consider where we have a minimal conflicting set
of defaults C' with a single minimal conflicting rule ag — [ and a single maximal
conflicting rule a; — (1. If we can prove that aj (and so in default logic can prove
the antecedent of the conditional), then 3y may be a default conclusion, provided
that no more specific rule applies. But what should constitute the justification?
Clearly, that 3y is consistent and that more specific, conflicting conditionals not be
applicable. Now, in our setting, oy — [ is such that {9 A By} is satisfiable, but
for the conditional oy — (1, {9 A Bo} U {1 A B1} is unsatisfiable. Hence it must
be that {ag A Bo} U{a1 D f1} = —ay for these conditionals. Thus if a minimal
conflicting rule is applicable, then the maximal rule cannot be applicable. Hence
we add these more specific conditionals as part of the justification.

We show too that this approach is applicable to general default theories and not,
as the preceding examples might indicate, just simple chains of defaults. Consider
the following example, in which we have two less-specific default rules, a situation
frequently found in multiple inheritance networks. We have the Z-ordering:

Ry = {A—-B,C— -D} 8)
Ry, = {ANC —- BV D} 9)

In this case we would want to ensure that if the default in R; were applicable, then
at most one default in Ry can be applied. One can also show that conflicts that
do not result from specificity (as found for example, in the “Nixon diamond”) are
handled correctly. These and other examples are discussed in detail following the
presentation of the formal details.

3 Determining Specificity Conflicts

3.1 System Z

In System Z a set of rules R representing default conditionals is partitioned into
an ordered list of mutually exclusive sets of rules Ry, . .., R,. Lower ranked rules
are considered more normal (or less specific) than higher ranked rules. Rules in
lower-ranked sets are compatible with those in higher-ranked sets, whereas rules
in higher-ranked sets conflict in some fashion with rules in lower-ranked sets.
[Pearl, 1990] deals only with default rules, whereas the extension described in
[Goldszmidt, 1992] deals with default and strict rules. For our use of System Z

11



we do not need to distinguish default and strict rules, 5 and so we describe the
original approach. We assume that we begin with a set of defeasible conditionals
R = {r | a, — (3.} where each «, and 3, are propositional formulas over a finite
alphabet. A central notion is that of foleration:

Definition 1 Let R be a set of defeasible conditionals.
A rule a — 3 is tolerated by R iff {o A 5} U {a, D B, | r € R} is satisfiable.

Note that this definition treats the connective — as D.

We assume in what follows that R is Z-consistent,® i.e. for every non-empty
R’ C R, some ' € R’ is tolerated by R’. Using this notion of tolerance, a Z-
ordering on the rules in R is defined:

1. Find all rules tolerated by IR, and call this subset Ry.
2. Next, find all rules tolerated by (R — Ry), and call this subset R;.
3. Continue in this fashion until all rules in R have been accounted for.
In this way, we obtain a partition (Ry, ..., R,) of R where
R; = {r | ristoleratedby (R — Ry — ... — Ri_1)}

for 1 < 4 < n. More generally, we write R; to denote the ¢th set of rules in the
partition of a set of conditionals R. A set of rules R, or its Z-ordering, respectively,
is called rrivial iff its partition consists only of a single set of rules.

The rank of rule r, written Z(r), is given by: Z(r) = iiffr € R;. Every
interpretation M of R is given a Z-rank, Z(M), according to the highest ranked
rule in R it falsifies:

Z(M)=min{n| M= ar DB, Z(r) > n}.

When interpreting all rules in our example (1) as defeasible, we obtain the
following Z-ordering:
Ry = {B—F, B—W}
Ry, = {P— —F, P— B}. (10)
So the Z rank of the model in which B, —=F, W, and P are true is 1, since the rule

B — F is falsified. The Z rank of the model in which B, F', W, and P are true is
2, since the rule P — —F is falsified. The rank of an arbitrary formula ¢ is defined

SEssentially we use System Z to isolate conflicting rules, independent of whether they are strict
or default. This distinction is important for us only when deciding on what rules to block.
6[Pearl, 1990] uses the term consistent.
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as the lowest Z-rank of all models satisfying ¢: Z() = min{Z(M) | M = ¢}.”
Finally we can define a form of default entailment, called [-entailment, as follows:
A formula ¢ is said to 1-entail ¢ in the context R, written ¢ 1 ¢, iff Z(p A ¢) <
Z(p N —¢). In the terminology of Section 1.1, the background theory R determines
a Z-ordering, and « follows from our contingent knowledge W iff W - «.

This gives a form of default inference that has some very nice properties. In
the preceding example, we obtain that P 1 —F, and P I-; B and so penguins
don’t fly, but are birds. Unlike default logic, we cannot infer that penguins fly, i.e.
P I/, F. Some irrelevant facts are handled well (unlike conditional logics), and for
example we have B A G b1 F, so green birds fly. There are two weaknesses with
this approach. First, one cannot inherit properties across exceptional subclasses.
So one cannot conclude that penguins have wings (even though penguins are birds
and birds have wings), i.e. P t/; W. Second, undesirable specificities are some-
times obtained. For example, if we add to the above example the default that large
animals are calm we get the Z-ordering:

Ry = {B—-F, B—-W, L—C} (11)
Ry, = {P— —F, P— B}. (12)

Intuitively . — C' is irrelevant to the other defaults, yet one obtains the default
conclusion that large animals aren’t normally penguins since Z(L A =P) < Z(L A
P).

[Goldszmidt and Pearl, 1990] has shown that 1-entailment is equivalent to ra-
tional closure [Kraus et al., 1990]; [Boutilier, 1992a] has shown that CO* is equiv-
alent to 1-entailment. [Pearl, 1990] notes that preferential entailment [Lehmann, 1989]
is equivalent to the more basic notion of O-entailment (also e-entailment [Pearl, 1988]
or p-entailment [Adams, 1975]), proposed in [Pearl, 1989] as a “conservative core”
for default reasoning. Consequently, given this “locus” of closely-related systems,
each based on distinct semantic intuitions, these systems (of which we have chosen
System Z as exemplar) would seem to agree on a principled minimal approach to
defaults.

3.1.1 Why System Z.?

The previous subsection described System Z, which we use to isolate minimal sets
of rules (strict and default) that conflict with respect to specificity. The natural
questions arise, why choose System Z when, as indicated previously, it is not un-
problematic? And, are there alternatives to the choice of System Z?

"If there is no model satisfying ¢ we set the rank of ¢ as co.
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First of all, we do not use System Z per se, but rather the notion of tolerance;
this we use to isolate minimal sets of rules with a nontrivial partition. In such (min-
imal) sets the problems of unwanted specificities do not arise (since there are no
“irrelevant” rules). Moreover, we are unconcerned about lack of property inheri-
tance since we obtain such inheritance in the target language, whether it be default
logic, circumscription, or some other.

In the second case, while there are approaches that could be used in place
of System Z, System Z (or the part that we use) is certainly the simplest. For
those familiar with conditional logics (or related approaches) we note that a system
corresponding to the conservative core is too weak for our purposes. In particular,
such a system allows the conditionals

{a =7, —(@nB—19), ~(arn-8—7)}

to be simultaneously and non-trivially satisfied. For a logic of defaults, this ap-
pears unreasonable: if v follows by default from «, then it would seem that it
should also follow from either & A 3 or o« A =3. Arguably the weakest logic
in whicha — v O (¢ ANf — 7) V(e A= — 7)) is a theorem, is N
[Delgrande, 1987]. If we do not consider negated conditionals, then this is equiva-
lent to VTA [Lewis, 1973] or CO [Boutilier, 1992a], and is the conditional equiv-
alent of S4.3 [Hughes and Cresswell, 1968]. While these latter systems could be
used as a basis from which specificity information could be determined, System Z
is markedly easier to describe than these other approaches; moreover determining
1-entailment is efficient (disregarding consistency tests).

3.2 Minimal Conflicting Sets

We consider Z-consistent generic world descriptions R = (Rp, Ry) where the
antecedents and consequents of rules in R are propositional formulas over a finite
alphabet. For simplicity, we sometimes identify R with Rp U R . For Z-orderings
of subsets of R, we treat the connective = as — (that is, we do not distinguish
strict and default rules in an ordering). We denote the set of classical implications
corresponding to a set R of strict and/or defeasible rules by R*. That is,

Rr={aD>f|la—pfeRptU{aDf|a=p<c Ry}
Moreover, we define

Prereq(R) = {a|a—pfe€Rp}U{a|a= € Ry} and

Conseq(R) = {f|a—p€Rp}U{f|a= (€ Rn}.

The set of minimal conflicting sets of a set of rules R represents conflicts
among the rules in R due to disparate specificity. Each minimal conflicting set
is a minimal set of conditionals having a non-trivial Z-ordering.
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Definition 2 Let R = (Rp, Ry) be a generic world description. A set of rules
C C R is a minimal conflicting set in R iff C' has a non-trivial Z-ordering and any
C'" C C has a trivial Z-ordering.

That is, the rules in C' make up a nontrivial Z-ordering and they form a least set for
which a nontrivial ordering is obtained. A minimal conflicting set then constitutes
a minimal theory in which there is a specificity conflict. Observe that adding new
rules to R cannot alter or destroy any existing minimal conflicting sets. That is,
for default theories R and R/, where C C R C R’, we have that if C' is a minimal
conflicting set in R then C' is a minimal conflicting set in R’. This property is
of great practical relevance since it allows an incremental computation of minimal
conflicting sets, even in evolving knowledge bases.

The next theorem shows that any minimal conflicting set has a binary partition:

Theorem 1 Let C be a minimal conflicting set in some generic world description
(Rp, RN). Then, we have that the Z-ordering of C'is (Cy, Cy) for some non-empty
sets Cy and C1 with C = Cy U C4.

Moreover, a minimal conflicting set entails the negations of the antecedents of the
higher-level rules:

Theorem 2 Let C' be a minimal conflicting set in R. If « — [ € Cy then C* |=
o

Hence, given our initial generic world description in (2),
R=({B—F, B—W,P—-F}, {P= B})
there is one minimal conflicting set
C={B—F, P— —F, P= B}.

As shown in (5/6), the first rule constitutes C and the last two C'; in the Z-ordering
of C' (in fact, the last rule provides rather necessary linking knowledge, as expli-
cated in (13). If we discard the necessary knowledge provided by P = B, the set
{B — F, P — —F'} is not a minimal conflicting set since alone it has a trivial
Z-ordering. Replacing P = B by P — B yields obviously the same minimal
conflicting set. It is easy to see that C* }= —P.

Intuitively, a minimal conflicting set consists of three mutually exclusive sets
of rules: the least specific or minimal conflicting rules in C, min(C); the most
specific or maximal conflicting rules in C, maz(C'); and the remaining rules pro-
viding a minimal inferential relation between these two sets of rules, inf(C). The
following definition provides a general formal frame for these sets:
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Definition 3 Ler R be a generic world description and let C' be a minimal conflict-
ing set in R. We define maz(C), min(C), and inf(C') to be non-empty subsets of
C such that
min(C) Co
mazx(C') Cq
inf(C) = C— (min(C)U maz(C))

-
-

We observe that min, max, and inf are exclusive subsets of C' such that C' =
min(C) U inf(C) U maz(C). We show below that the rules in maz(C) and
min(C') are indeed conflicting due to their different specificity. Note however that
the following three theorems are independent of the choice of min(C), inf(C),
and maz(C). However following these theorems we argue in Definition 4 for a
specific choice for these sets that complies with the intuitions described in the pre-
vious section.

First, the antecedents of the most specific rules in min(C') imply the antecedents
of the least specific rules in max(C') modulo the “inferential rules” in inf (C):

Theorem 3 Let C' be a minimal conflicting set in a generic world description
(Rp, RN). Then, we have:

inf(C)* U maz(C)* | Prereq(maz(C)) D Prereq(min(C)).

In fact, inf(C)* U maz(C)* constitutes the weakest condition under which the
above entailment holds. Note that omitting max(C') would eliminate rules that
may belong to max(C), yet provide “inferential relations”. This is the case for the
rule P = B in (5/6): P = B isin C] and so is a potential candidate for maz(C),
even though this choice is not a reasonable one (since of course, P = B should be
a part of inf (C)). The same applies of course to a defeasible rule like P — B.

The next theorem shows that the converse of the previous does not hold in
general.

Theorem 4 Let C' be a minimal conflicting set in a generic world description
(Rp, RN). Then, for any set of rules R' such that C C R’ and any set of rules
R" C min(C) such that R' U Prereq(R") is satisfiable, we have:

(R')* ¥ Prereq(R") D Prereq(maz(C)).

The reason for considering consistent subsets of min(C) is that its entire set of pre-
requisites might be equivalent to those in max (C'). Then, however, CUPrereq(min(C))
and so R' U Prereq(min(C')) is inconsistent. This is, for instance, the case in (8/9).
In fact, (R’)* is the strongest condition under which the above theorem holds.

Finally, we demonstrate that these rules are indeed conflicting.

16



Theorem 5 Let C' be a minimal conflicting set in a generic world description
(Rp, RN). Then, for any a — (3 € max(C'), we have:

inf(C)* U{a} E —(Conseq(min(C)) A Conseq(maz(C))).

As above, inf (C)* U {a} is the weakest condition under which the last entailment
holds. In all, the last three theorems demonstrate that the general framework given
for minimal conflicting sets (already) provides a very expressive way of isolating
rule conflicts due to their specificity.

In the worst case the number of minimal conflicting sets grows exponentially
with the size of a default theory. This is an artifact of the problem in general, rather
than the specific approach at hand — there may simply be an exponential number of
ways in which a set of defaults conflict.

Theorem 6 There exist generic world descriptions R of size n such that the num-
ber of minimal conflicting sets is of size O(2™).

Consider for example the class of default theories where we have

a— B for ie{l,2}
ﬂ@j — /Bi’,j—i-l for 'i,’i/ S {1,2} and 1 < ] <n
Bin—~ for ie{l,2}

For a given n there are clearly 2" “i