
Compiling Specificity into Approaches to
Nonmonotonic Reasoning

James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
jim@cs.sfu.ca

Torsten H. Schaub
LERIA
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2, boulevard Lavoisier

F-49045 Angers Cedex 01
torsten.schaub@univ-angers.fr

Abstract

We present a general approach for introducing specificity information
into nonmonotonic theories. Historically, many approaches to nonmonotonic
reasoning, including default logic, circumscription, and autoepistemic logic,
do not provide an account of specificity, and so fail to enforce specificity
among default sentences. In our approach, a default theory is initially given
as a set of strict and defeasible rules. By making use of a theory of default
conditionals, here given by System Z, we isolate minimal sets of defaults
with specificity conflicts. From the specificity information intrinsic in these
sets, a default theory in a target language is specified. For default logic the
end result is a semi-normal default theory; in circumscription the end result is
a set of abnormality propositions that, when circumscribed, yield a theory in
which specificity information is appropriately handled. We mainly deal with
default logic and circumscription although we also consider autoepistemic
logic, Theorist, and variants of default logic and circumscription. This ap-
proach differs from previous work in that specificity information is obtained
from information intrinsic in a set of conditionals, rather than assumed to
exist a priori. Moreover, we deal with the “standard” version of, for example
default logic and circumscription, and do not rely on prioritised versions, as
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do other approaches. The approach is both uniform and general, so the choice
of the ultimate target language has little effect on the overall approach.
Keywords: Knowledge representation; Default logic; Circumscription; Speci-
ficity.

1 Introduction

A general problem in many approaches to nonmonotonic reasoning is that they
do not enforce specificity relations among default assertions as part of their basic
machinery. Consider for example where birds fly, birds have wings, penguins must
be birds, and penguins don’t fly. We can write this as:

B → F, B → W, P ⇒ B, P → ¬F. (1)

From this theory, given that P is true, one would want to conclude ¬F by default.
Intuitively, being a penguin is a more specific notion than that of being a bird, and,
in the case of a conflict, we would want to use the more specific default. Also,
given that P is true one would want to conclude that W was true, and so penguins
have wings by virtue of being birds.

Default logic [Reiter, 1980], circumscription [McCarthy, 1980], and autoepis-
temic logic [Moore, 1985] are examples of approaches that do not take specificity
information into account. For example, in the naı̈ve representation of the above
theory in default logic, we obtain one extension (i.e. a set of default conclusions)
in which ¬F is true and another in which F is true. One is required to use so-called
semi-normal defaults1 to eliminate the second extension. However, it is up to the
user to hand-code how specificity is dealt with. [Reiter and Criscuolo, 1981], for
example, gives a partial list of ways of transforming default theories so that un-
wanted extensions arising from specific “interactions” are eliminated.

There are more recent approaches to nonmonotonic reasoning, based generally
on intuitions from probability theory or conditional logics, that deal with specificity
in a very natural way. Moreover, in the past few years there has been some con-
sensus as to what should constitute a basic conditional system. This, arguably, is
illustrated by the convergence (or at least similarity among) systems such as those
developed in [Delgrande, 1987, Kraus et al., 1990, Pearl, 1990, Boutilier, 1992a,
Geffner and Pearl, 1992], yet which are derived according to seemingly disparate
intuitions. A general problem with these accounts however is that they are too
weak. Thus in a conditional logic, even though a bird may be assumed to fly by
default, a green bird cannot be assumed to fly by default (since it is conceivable

1See Section 4.1 for a definition of semi-normal defaults and the way they deal with unwanted
extensions.
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that greenness is relevant to flight). In these systems some mechanism is required
to assert that properties not known to be relevant are irrelevant. This is done in
conditional logics by meta-theoretic assumptions, and in probabilistic accounts by
independence assumptions. In other approaches there are problems concerning
property inheritance, and so one may not obtain the inference that a penguin has
wings. While various solutions have been proposed, none are entirely satisfactory.

Our approach is to use the specificity information determined by a conditional
system to generate a default theory in a nonmonotonic reasoning system, such as
default logic, so that specificity is appropriately handled in the latter approach.
Hence we address two related but essentially independent questions:

1. How can a conditional system be used to isolate interacting defaults with
differing specificity?

2. How can this information be uniformly incorporated in a theory expressed
in a nonmonotonic reasoning system where specificity is not directly ad-
dressed?

For the first part, we consider System Z [Pearl, 1990] as an example of a con-
ditional system of defeasible reasoning. For the second part, we consider first
consistency-based approaches, as exemplified by default logic [Reiter, 1980]; sub-
sequently we consider variants of default logic and other related approaches. Sec-
ond we consider minimization-based approaches, as exemplified by circumscrip-
tion [McCarthy, 1980], and again variants and related systems.

We begin with a background theory made up of a set of strict rules RN = {r |
αr ⇒ βr} assumed to be true in every setting, together with a set of defeasible
rules RD = {r | αr → βr}, where each αr and βr are arbitrary propositional for-
mulas. By means of System Z we isolate minimally conflicting sets of defaults with
differing specificities; the defaults in such a set should never be simultaneously ap-
plicable. Notably we do not use the full ordering given by System Z (which has
difficulties of its own, as described in Section 3.1), but rather appeal to the tech-
niques of this approach to isolate conflicting subsets of defaults. In a second step,
we use the derived specificity information to produce, for instance, a set of default
rules in default logic, or a classical theory that can be circumscribed, in such a way
that specificity is suitably handled. The framework described then is a general ap-
proach to “compiling” default theories, using a conditional approach to determine
specificity conflicts, into an approach to nonmonotonic reasoning where specificity
is not “automatically” handled.

This framework offers several advantages over earlier work. First, it is more
general, in that it is applicable to broad classes of systems, rather than to a spe-
cific system. In addition, within a specific system, the class of specificity conflicts
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handled is broader than previous work, addressing for example the situation of a
set of less-specific defaults with a more-specific default. Second, specificity infor-
mation is obtained by appeal to an extant theory of defaults, and not simply some
external user-specified ordering of defaults. So the present approach provides a
justification for these modifications. Third, specificity is added to default logic (or
autoepistemic logic, circumscription, etc.) without changing the machinery of de-
fault logic. That is, the resultant default theory is a theory in default logic, and not
for example a set of ordered default rules requiring modifications to default logic.
Hence we effectively remain within the original formalism, and so can take advan-
tage of previous work (including implementations) concerning these approaches.
In addition, we prove that specificity conflicts are indeed resolved in a general
fashion, leaving unchanged other conflicts (as are found for example in a “Nixon
diamond”).

In the next subsection we briefly cover background material, while Section 2
introduces our approach. Section 3 shows how specificity conflicts are determined.
Section 4 shows how specificity is compiled into consistency-based approaches to
nonmonotonic reasoning, while Section 5 does the same for minimization-based
approaches. Section 6 gives a brief summary. Portions of this work appeared
earlier in [Delgrande and Schaub, 1994a, Delgrande and Schaub, 1994b].

1.1 Default Theories

Knowledge about the world, given in a knowledge base ∆, is assumed to be divided
into two sets:

R : Background knowledge, or facts or rules which are assumed to be applicable
in every domain.

W : Contingent knowledge, or facts which are true in the case under consideration
and which may vary from case to case.

This is essentially the difference between necessary and contingent knowledge
in modal logics [Hughes and Cresswell, 1968], or between probabilistic knowl-
edge and conditioning knowledge in probabilistic reasoning systems [Pearl, 1989].
Background knowledge in turn consists of two sets:

RD: Default implications, or rules that are usually true but allow exceptions.

RN : Necessary implications, or rules which must be true in any setting.

This division is found in the various conditional approaches to default reason-
ing in Artificial Intelligence, such as [Delgrande, 1987, Geffner and Pearl, 1992,
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Boutilier, 1992a, Goldszmidt, 1992] and less directly in [Kraus et al., 1990].2 The
background knowledge provides a generic world description. Elements of W are
formulas of classical logic. Elements of RD are formulas of the form α → β while
elements of RN are formulas of the form α ⇒ β, where α and β are propositional
formulas. The expression of elements of RN as rules is a convenience only since
an arbitrary strict formula α can be expressed by > ⇒ α. Note too that we reserve
⊃ for classical (material) implication.

So a knowledge base is of the form ∆ = 〈〈RD, RN 〉,W 〉, where 〈RD, RN 〉
represents generic world knowledge and W represents case-specific knowledge.
Our initial example is represented as:

R = 〈{B → F, B → W, P → ¬F}, {P ⇒ B}〉. (2)

It should be obvious how these sets would be mapped into a particular approach
to nonmonotonic reasoning. In default logic, for example, elements of RD would
be mapped into default rules, and everything else would be considered as world
knowledge; in circumscription, elements of RD would be mapped to implications
with ab propositions, while again everything else would be considered as world
knowledge. However, as the previous section pointed out, the “obvious” mappings
are problematic in that specificity is not properly handled. The purpose of this
paper then might be seen as developing a general, provably correct “compilation”
scheme to address specificity for those approaches to nonmonotonic reasoning that,
as part of their formalism, do not.

1.2 Related Work

Arguably, specificity per se was first specifically addressed in default reasoning in
[Poole, 1985], although it has of course appeared earlier. As mentioned, we could
have used a conditional system other than System Z in our approach; however, Sys-
tem Z is particularly straightforwardly describable. Some approaches though are
too weak to be useful here. For example conditional entailment [Geffner and Pearl, 1992]
does not support full inheritance reasoning, in that from {A → B, B → C, C →
D, A → ¬D} we cannot conclude C by default from A. [Delgrande, 1988] is
unsatisfactory since it gives a syntactic, albeit general, approach in a conditional
logic.

Conditional approaches are founded, one way or another, on notions of pref-
erence or normality. Conditional logics for default conditionals [Delgrande, 1987,
Boutilier, 1992a], for example, are modal logics [Hughes and Cresswell, 1968, Chellas, 1980]

2The roots of such approaches however extend at least as far back as [Adams, 1975, Lewis, 1973,
Stalnaker, 1968].
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where we can view possible worlds as being ordered by a metric of normality or un-
exceptionalness. A default conditional α → β is true, roughly, if in the least worlds
where α is true, β is true also. For our example (1), at the least worlds where B is
true, F is true also; at the least worlds where P is true, ¬F is true. Since we also
have that P ⇒ B (we could as easily have P → B), it can be seen that the least
P worlds must be more exceptional than (or less normal than) the least B worlds.
If we now say that β follows as a default inference from α in default theory R just
when β is true in the least α worlds, we obtain a form of default inference in which
specificity is obtained and, for example, penguins normally don’t fly whereas birds
do.

These approaches are quite weak: since it is conceivable that green birds do not
fly (i.e. there are models where in the least green-bird worlds these birds do not fly),
it does not follow by default that a green bird flys, even though a bird does. While
various approaches have been proposed to strengthen such basic systems, including
rational closure [Kraus et al., 1990], System Z, CO∗ [Boutilier, 1992a], possibilis-
tic entailment [Benferhat et al., 1992], and conditional objects [Dubois and Prade, 1991]
none is entirely satisfactory. In this regard, System Z is examined as an exemplar
of these approaches in Section 3.1.

In default logic, [Reiter and Criscuolo, 1981] considers various patterns of speci-
ficity in interacting defaults, and describes how specificity may be obtained via
semi-normal defaults. However these patterns are just commonly-occurring con-
figurations of defaults, and there is no notion of this being a complete character-
isation. This work may be regarded as a pre-theoretic forerunner to the present
approach, since the situations addressed therein all constitute instances of what we
call (in Section 3) minimal conflicting sets. [Etherington and Reiter, 1983] also
considers a problem that fits within the (overall) present framework: specificity
information is given by an inheritance network, and this network is compiled into
a default theory in default logic (see Section 4.3).

More recent work develops priority orderings on default theories, including
[Boutilier, 1992b, Baader and Hollunder, 1993a, Brewka, 1993]. However these
approaches obtain specificity by requiring modifications to how default logic is
used. In contrast, we describe transformations that yield classical default logic
theories. Since these approaches are described in Section 4, they are introduced
only briefly here. [Boutilier, 1992b] uses the correspondence between a conditional
αr → βr of System Z and defaults of the form : αr⊃βr

αr⊃βr
to produce partitioned sets

of prerequisite-free normal default rules. One reasons in this approach by applying
the rules in the highest set, and working down. [Baader and Hollunder, 1993a] ad-
dresses specificity in terminological reasoners. This approach does not rely on
conflicts between “levels”; rather a subsumption relation between terminologi-
cal concepts is mapped onto a set of partially ordered defaults in default logic.
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[Brewka, 1993] has adopted the idea of minimal conflicting sets described here,
but in a more restricted setting. In common with [Baader and Hollunder, 1993a],
partially ordered defaults in default logic are used; however, for inferencing all
consistent strict total orders of defaults must be considered.

Similar remarks apply to circumscription, and to other related approaches. Cir-
cumscription was introduced in [McCarthy, 1980], and the use of ab predicates in
prioritised, parameterised circumscription to address specificity was addressed in
[McCarthy, 1986] and [Lifschitz, 1985]. [Grosof, 1991] extended prioritised cir-
cumscription to deal with partial orders. These approaches are discussed more
fully in Section 5.3.

Lastly there are direct or path-based approaches to nonmonotonic inheritance,
as expressed using inheritance networks [Horty, 1994]. It is difficult to compare
such approaches with our own for two reasons. First, inheritance networks are
concerned, broadly, with general notions having to do with arguments or nonmono-
tonic inheritance. Our interests are narrower, being limited to specificity. Second,
the account of meaning for such networks is most often given in terms of paths
in the network, and so tend not to rely on more standard model-theoretic notions.
Nonetheless, in Section 4.3 we compare our approach with probably the best-know
translation of an inheritance network, where the network is translated into a theory
in default logic, that of [Etherington and Reiter, 1983].

2 Overview of the Approach

There are two major steps in the approach. First, given a default theory expressed as
a generic world description, we locate default rules that conflict and have differing
specificity; this is accomplished by using (part of) the mechanism of System Z. So
for our initial example (1) it is clear that the defaults B → F and P → ¬F conflict
and that the second default is more specific than the first. Secondly, we compile
the default theory into a nonmonotonic reasoning system such as default logic or
circumscription, so that if both defaults are potentially applicable—say, B and P
are true—then only the second default is applied. In outline, this is carried out as
follows.

In System Z defaults are partitioned into sets R0, R1, . . . , where, roughly, the
defaults in a lower-ranked partition are less specific than those in a higher-ranked
partition. The resulting partition is called a Z-ordering. For our initial example,
treating the strict implication as a default for the moment, we would obtain the
partition:

R0 = {B → F, B → W}
R1 = {P → B, P → ¬F}.
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The key point in determining the partition is that, if we treat → as classical impli-
cation, then for α → β ∈ Ri we have that

{α ∧ β} ∪Ri ∪Ri+1 ∪ . . .

is satisfiable, whereas

{α ∧ β} ∪Ri−1 ∪Ri ∪Ri+1 ∪ . . .

is unsatisfiable. So the Z-ordering provides specificity information; however, we
do not use the full Z-ordering since it may introduce unwanted specificities (Sec-
tion 3.1). Rather we determine minimal sets of rules that conflict, and use these
sets to sort out specificity information. In the above example, {B → F, P →
B, P → ¬F} would be such a set, since if we delete any of the three defaults we
would have a set with no conflict or with no difference in specificity.

There are numerous issues that need to be confronted, even with relatively
simple theories. Consider the following extended example, already expressed as
a Z-ordering; we will make reference to this example throughout the paper. For
simplicity we have expressed all rules as default rules.

R0 = {An → WB, An → ¬Fe,An → M}
R1 = {B → An, B → F,B → Fe,B → W}
R2 = {P → B,P → ¬F, E → B,E → ¬F, P t → B,Pt → ¬Fe, P t → ¬WB}

That is, in R0, animals are warm-blooded, don’t have feathers, but are mobile. In
R1, birds are animals that fly, have feathers, and have wings. In R2, penguins and
emus are birds that don’t fly, and pterodactyls are birds that have no feathers and
are not warm-blooded.

First we locate the minimal (with respect to set inclusion) sets of rules that
differ in specificity and that conflict; this will be the minimal set of rules having a
non-trivial Z-ordering. In our example these consist of:

C0 = {An → ¬Fe,B → An, B → Fe}
C1 = {B → F, P → B,P → ¬F} (3)

C2 = {B → F,E → B,E → ¬F} (4)

C3 = {B → Fe, P t → B,Pt → ¬Fe}
C4 = {An → WB, B → An, P t → B,Pt → ¬WB}

Any such set is called a minimal conflicting set of rules. For any such set, if all the
rules are jointly applicable then one way or another there will be a conflict.3 Note

3If the rules were represented as normal default rules in default logic for example, one would
obtain multiple extensions.
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that both of these notions are crucial. If we have a conflict without a specificity
difference, for example with the defaults,

Q → P, R → ¬P

then given Q ∧ R there is no reason to apply one rule over another. If we have a
specificity difference without a conflict, say birds fly and tropical birds are colour-
ful:

B → F, B ∧ T → C

Then given B ∧ T there is again no reason to not apply both defaults.
We show below that the Z-ordering of a each such set C consists of a binary

partition (C0, C1) of rules. Furthermore the rules in the set C0 are less specific than
those in C1. Consequently, if the rules in C1 are applicable, then we would want to
insure that some rule in C0 was blocked. For example, for the minimal conflicting
set C1 we obtain:

C1
0 = {B → F} (5)

C1
1 = {P → B, P → ¬F}. (6)

There are now two important issues that need to be addressed:

1. What rules should be selected as candidates to be blocked, using minimal
conflicting sets?

2. How can the application of a rule be blocked in the target nonmonotonic
formalism?

For the first question, consider where we have a chain of rules, and where
transitivity is explicitly blocked, as in the minimal conflicting set C4 above. We
have the Z-ordering:

C4
0 = {An → WB, B → An} (7)

C4
1 = {Pt → B,Pt → ¬WB}.

Intuitively An is less specific than Pt. If we were given that An, Pt, ¬B were true,
then in a translation into default logic, we would want the default rule correspond-
ing to Pt → ¬WB to be applicable over An → WB, even though the “linking”
rule Pt → B is falsified. So we want more specific rules to be applicable over less
specific conflicting rules, independently of the other rules in the minimal conflict-
ing set. We do this by locating those rules whose joint applicability would lead to
an inconsistency. In our example, this consists of An → WB, and Pt → ¬WB
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(since (An ∧WB) ∧ (Pt ∧ ¬WB) is inconsistent). Since An → WB ∈ C4
0 and

Pt → ¬WB ∈ C4
1 , the rules have differing specificity. The rules selected in this

way from C4
0 and C4

1 are called the minimal conflicting rules and maximal conflict-
ing rules respectively. The minimal conflicting rules constitute the candidates to
be blocked. This selection criterion has the important property that it is context in-
dependent, in the following fashion. For default theories R and R′, where R ⊆ R′,
if r ∈ R is selected, then r should also be selected in R′. Thus, if we wish to block
the default B → F in the case of P in default theory R, then we will also want to
block this rule in any superset R′.

The second question, (“How can the application of a rule be blocked?”) de-
pends on the target nonmonotonic formalism. However we argue that our approach
is broadly applicable to nonmonotonic formalisms that do not, in and of them-
selves, address specificity issues. In Section 4 we deal with the major consistency-
based formalisms; Section 5 addresses minimization-based formalisms. For default
logic4 for example, we have the following translation of rules. The default theory
corresponding to our default rules RD consists of normal defaults, except for those
defaults representing minimal conflicting rules, which are semi-normal. For these
latter default rules, the prerequisite is the antecedent of the original rule (as ex-
pected). The justification consists of the consequent together with an assertion to
the effect that the maximal conflicting rules in the minimal conflicting set cannot
be applicable.

Consider the set C4
0 in (7), along with its minimal conflicting rule An → WB.

We replace B → An, Pt → B, Pt → ¬WB with

B : An
An , Pt : B

B , Pt :¬WB
¬WB

respectively. For An → WB, we replace it with

An : WB∧(Pt⊃¬WB)
WB , which can be simplified to An : WB∧¬Pt

WB .

So, for the minimal conflicting rules we obtain semi-normal defaults; all other
defaults are normal. Accordingly, we give below only the semi-normal default
rules constructed from the minimal conflicting sets C0 to C4:

C0 : An :¬Fe∧(B⊃Fe)
¬Fe or An :¬Fe∧¬B

¬Fe

C1+C2 : B : F∧(P⊃¬F )∧(E⊃¬F )
F or B : F∧¬P∧¬E

F

C3 : B : Fe∧(Pt⊃¬Fe)
Fe or B : Fe∧¬Pt

Fe

C4 : An : WB∧(Pt⊃¬WB)
WB or An : WB∧¬Pt

WB

4A formal introduction to default logic is given in Section 4.1.
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The conditional B → F occurs in C1 and C2 as a minimal conflicting rule. In this
case we have two minimal conflicting sets sharing the same minimal conflicting
rule, and we combine the maximal conflicting rules of both sets.

So why does this approach work? The formal details are given in the following
sections. However, informally, consider where we have a minimal conflicting set
of defaults C with a single minimal conflicting rule α0 → β0 and a single maximal
conflicting rule α1 → β1. If we can prove that α0 (and so in default logic can prove
the antecedent of the conditional), then β0 may be a default conclusion, provided
that no more specific rule applies. But what should constitute the justification?
Clearly, that β0 is consistent and that more specific, conflicting conditionals not be
applicable. Now, in our setting, α0 → β0 is such that {α0 ∧ β0} is satisfiable, but
for the conditional α1 → β1, {α0∧β0}∪{α1∧β1} is unsatisfiable. Hence it must
be that {α0 ∧ β0} ∪ {α1 ⊃ β1} |= ¬α1 for these conditionals. Thus if a minimal
conflicting rule is applicable, then the maximal rule cannot be applicable. Hence
we add these more specific conditionals as part of the justification.

We show too that this approach is applicable to general default theories and not,
as the preceding examples might indicate, just simple chains of defaults. Consider
the following example, in which we have two less-specific default rules, a situation
frequently found in multiple inheritance networks. We have the Z-ordering:

R0 = {A → ¬B,C → ¬D} (8)

R1 = {A ∧ C → B ∨D} (9)

In this case we would want to ensure that if the default in R1 were applicable, then
at most one default in R0 can be applied. One can also show that conflicts that
do not result from specificity (as found for example, in the “Nixon diamond”) are
handled correctly. These and other examples are discussed in detail following the
presentation of the formal details.

3 Determining Specificity Conflicts

3.1 System Z

In System Z a set of rules R representing default conditionals is partitioned into
an ordered list of mutually exclusive sets of rules R0, . . . , Rn. Lower ranked rules
are considered more normal (or less specific) than higher ranked rules. Rules in
lower-ranked sets are compatible with those in higher-ranked sets, whereas rules
in higher-ranked sets conflict in some fashion with rules in lower-ranked sets.
[Pearl, 1990] deals only with default rules, whereas the extension described in
[Goldszmidt, 1992] deals with default and strict rules. For our use of System Z
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we do not need to distinguish default and strict rules, 5 and so we describe the
original approach. We assume that we begin with a set of defeasible conditionals
R = {r | αr → βr} where each αr and βr are propositional formulas over a finite
alphabet. A central notion is that of toleration:

Definition 1 Let R be a set of defeasible conditionals.
A rule α → β is tolerated by R iff {α ∧ β} ∪ {αr ⊃ βr | r ∈ R} is satisfiable.

Note that this definition treats the connective → as ⊃.
We assume in what follows that R is Z-consistent,6 i.e. for every non-empty

R′ ⊆ R, some r′ ∈ R′ is tolerated by R′. Using this notion of tolerance, a Z-
ordering on the rules in R is defined:

1. Find all rules tolerated by R, and call this subset R0.

2. Next, find all rules tolerated by (R−R0), and call this subset R1.

3. Continue in this fashion until all rules in R have been accounted for.

In this way, we obtain a partition (R0, . . . , Rn) of R where

Ri = {r | r is tolerated by (R−R0 − . . .−Ri−1)}

for 1 ≤ i ≤ n. More generally, we write Ri to denote the ith set of rules in the
partition of a set of conditionals R. A set of rules R, or its Z-ordering, respectively,
is called trivial iff its partition consists only of a single set of rules.

The rank of rule r, written Z(r), is given by: Z(r) = i iff r ∈ Ri. Every
interpretation M of R is given a Z-rank, Z(M), according to the highest ranked
rule in R it falsifies:

Z(M) = min{ n | M |= αr ⊃ βr, Z(r) ≥ n}.

When interpreting all rules in our example (1) as defeasible, we obtain the
following Z-ordering:

R0 = {B → F, B → W}
R1 = {P → ¬F, P → B}. (10)

So the Z rank of the model in which B, ¬F , W , and P are true is 1, since the rule
B → F is falsified. The Z rank of the model in which B, F , W , and P are true is
2, since the rule P → ¬F is falsified. The rank of an arbitrary formula ϕ is defined

5Essentially we use System Z to isolate conflicting rules, independent of whether they are strict
or default. This distinction is important for us only when deciding on what rules to block.

6[Pearl, 1990] uses the term consistent.
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as the lowest Z-rank of all models satisfying ϕ: Z(ϕ) = min{Z(M) | M |= ϕ}.7
Finally we can define a form of default entailment, called 1-entailment, as follows:
A formula ϕ is said to 1-entail φ in the context R, written ϕ `1 φ, iff Z(ϕ ∧ φ) <
Z(ϕ∧¬φ). In the terminology of Section 1.1, the background theory R determines
a Z-ordering, and α follows from our contingent knowledge W iff W `1 α.

This gives a form of default inference that has some very nice properties. In
the preceding example, we obtain that P `1 ¬F , and P `1 B and so penguins
don’t fly, but are birds. Unlike default logic, we cannot infer that penguins fly, i.e.
P 6`1 F . Some irrelevant facts are handled well (unlike conditional logics), and for
example we have B ∧G `1 F , so green birds fly. There are two weaknesses with
this approach. First, one cannot inherit properties across exceptional subclasses.
So one cannot conclude that penguins have wings (even though penguins are birds
and birds have wings), i.e. P 6`1 W . Second, undesirable specificities are some-
times obtained. For example, if we add to the above example the default that large
animals are calm we get the Z-ordering:

R0 = {B → F, B → W, L → C} (11)

R1 = {P → ¬F, P → B}. (12)

Intuitively L → C is irrelevant to the other defaults, yet one obtains the default
conclusion that large animals aren’t normally penguins since Z(L∧¬P ) < Z(L∧
P ).

[Goldszmidt and Pearl, 1990] has shown that 1-entailment is equivalent to ra-
tional closure [Kraus et al., 1990]; [Boutilier, 1992a] has shown that CO∗ is equiv-
alent to 1-entailment. [Pearl, 1990] notes that preferential entailment [Lehmann, 1989]
is equivalent to the more basic notion of 0-entailment (also ε-entailment [Pearl, 1988]
or p-entailment [Adams, 1975]), proposed in [Pearl, 1989] as a “conservative core”
for default reasoning. Consequently, given this “locus” of closely-related systems,
each based on distinct semantic intuitions, these systems (of which we have chosen
System Z as exemplar) would seem to agree on a principled minimal approach to
defaults.

3.1.1 Why System Z?

The previous subsection described System Z, which we use to isolate minimal sets
of rules (strict and default) that conflict with respect to specificity. The natural
questions arise, why choose System Z when, as indicated previously, it is not un-
problematic? And, are there alternatives to the choice of System Z?

7If there is no model satisfying φ we set the rank of φ as∞.
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First of all, we do not use System Z per se, but rather the notion of tolerance;
this we use to isolate minimal sets of rules with a nontrivial partition. In such (min-
imal) sets the problems of unwanted specificities do not arise (since there are no
“irrelevant” rules). Moreover, we are unconcerned about lack of property inheri-
tance since we obtain such inheritance in the target language, whether it be default
logic, circumscription, or some other.

In the second case, while there are approaches that could be used in place
of System Z, System Z (or the part that we use) is certainly the simplest. For
those familiar with conditional logics (or related approaches) we note that a system
corresponding to the conservative core is too weak for our purposes. In particular,
such a system allows the conditionals

{α → γ, ¬(α ∧ β → γ), ¬(α ∧ ¬β → γ)}
to be simultaneously and non-trivially satisfied. For a logic of defaults, this ap-
pears unreasonable: if γ follows by default from α, then it would seem that it
should also follow from either α ∧ β or α ∧ ¬β. Arguably the weakest logic
in which α → γ ⊃ ((α ∧ β → γ) ∨ (α ∧ ¬β → γ)) is a theorem, is N
[Delgrande, 1987]. If we do not consider negated conditionals, then this is equiva-
lent to VTA [Lewis, 1973] or CO [Boutilier, 1992a], and is the conditional equiv-
alent of S4.3 [Hughes and Cresswell, 1968]. While these latter systems could be
used as a basis from which specificity information could be determined, System Z
is markedly easier to describe than these other approaches; moreover determining
1-entailment is efficient (disregarding consistency tests).

3.2 Minimal Conflicting Sets

We consider Z-consistent generic world descriptions R = 〈RD, RN 〉 where the
antecedents and consequents of rules in R are propositional formulas over a finite
alphabet. For simplicity, we sometimes identify R with RD∪RN . For Z-orderings
of subsets of R, we treat the connective ⇒ as → (that is, we do not distinguish
strict and default rules in an ordering). We denote the set of classical implications
corresponding to a set R of strict and/or defeasible rules by R∗. That is,

R∗ = {α ⊃ β | α → β ∈ RD} ∪ {α ⊃ β | α ⇒ β ∈ RN}.
Moreover, we define

Prereq(R) = {α | α → β ∈ RD} ∪ {α | α ⇒ β ∈ RN} and

Conseq(R) = {β | α → β ∈ RD} ∪ {β | α ⇒ β ∈ RN}.
The set of minimal conflicting sets of a set of rules R represents conflicts

among the rules in R due to disparate specificity. Each minimal conflicting set
is a minimal set of conditionals having a non-trivial Z-ordering.
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Definition 2 Let R = 〈RD, RN 〉 be a generic world description. A set of rules
C ⊆ R is a minimal conflicting set in R iff C has a non-trivial Z-ordering and any
C ′ ⊂ C has a trivial Z-ordering.

That is, the rules in C make up a nontrivial Z-ordering and they form a least set for
which a nontrivial ordering is obtained. A minimal conflicting set then constitutes
a minimal theory in which there is a specificity conflict. Observe that adding new
rules to R cannot alter or destroy any existing minimal conflicting sets. That is,
for default theories R and R′, where C ⊆ R ⊆ R′, we have that if C is a minimal
conflicting set in R then C is a minimal conflicting set in R′. This property is
of great practical relevance since it allows an incremental computation of minimal
conflicting sets, even in evolving knowledge bases.

The next theorem shows that any minimal conflicting set has a binary partition:

Theorem 1 Let C be a minimal conflicting set in some generic world description
〈RD, RN 〉. Then, we have that the Z-ordering of C is (C0, C1) for some non-empty
sets C0 and C1 with C = C0 ∪ C1.

Moreover, a minimal conflicting set entails the negations of the antecedents of the
higher-level rules:

Theorem 2 Let C be a minimal conflicting set in R. If α → β ∈ C1 then C∗ |=
¬α.

Hence, given our initial generic world description in (2),

R = 〈 {B → F, B → W, P → ¬F} , {P ⇒ B} 〉

there is one minimal conflicting set

C = {B → F, P → ¬F, P ⇒ B}.

As shown in (5/6), the first rule constitutes C0 and the last two C1 in the Z-ordering
of C (in fact, the last rule provides rather necessary linking knowledge, as expli-
cated in (13). If we discard the necessary knowledge provided by P ⇒ B, the set
{B → F, P → ¬F} is not a minimal conflicting set since alone it has a trivial
Z-ordering. Replacing P ⇒ B by P → B yields obviously the same minimal
conflicting set. It is easy to see that C∗ |= ¬P .

Intuitively, a minimal conflicting set consists of three mutually exclusive sets
of rules: the least specific or minimal conflicting rules in C, min(C); the most
specific or maximal conflicting rules in C, max (C); and the remaining rules pro-
viding a minimal inferential relation between these two sets of rules, inf (C). The
following definition provides a general formal frame for these sets:
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Definition 3 Let R be a generic world description and let C be a minimal conflict-
ing set in R. We define max (C), min(C), and inf (C) to be non-empty subsets of
C such that

min(C) ⊆ C0

max (C) ⊆ C1

inf (C) = C − (min(C) ∪max (C))

We observe that min, max, and inf are exclusive subsets of C such that C =
min(C) ∪ inf (C) ∪ max (C). We show below that the rules in max (C) and
min(C) are indeed conflicting due to their different specificity. Note however that
the following three theorems are independent of the choice of min(C), inf (C),
and max (C). However following these theorems we argue in Definition 4 for a
specific choice for these sets that complies with the intuitions described in the pre-
vious section.

First, the antecedents of the most specific rules in min(C) imply the antecedents
of the least specific rules in max (C) modulo the “inferential rules” in inf (C):

Theorem 3 Let C be a minimal conflicting set in a generic world description
〈RD, RN 〉. Then, we have:

inf (C)∗ ∪max (C)∗ |= Prereq(max (C)) ⊃ Prereq(min(C)).

In fact, inf (C)∗ ∪ max (C)∗ constitutes the weakest condition under which the
above entailment holds. Note that omitting max (C) would eliminate rules that
may belong to max (C), yet provide “inferential relations”. This is the case for the
rule P ⇒ B in (5/6): P ⇒ B is in C1 and so is a potential candidate for max (C),
even though this choice is not a reasonable one (since of course, P ⇒ B should be
a part of inf (C)). The same applies of course to a defeasible rule like P → B.

The next theorem shows that the converse of the previous does not hold in
general.

Theorem 4 Let C be a minimal conflicting set in a generic world description
〈RD, RN 〉. Then, for any set of rules R′ such that C ⊆ R′ and any set of rules
R′′ ⊆ min(C) such that R′ ∪ Prereq(R′′) is satisfiable, we have:

(R′)∗ 6|= Prereq(R′′) ⊃ Prereq(max (C)).

The reason for considering consistent subsets of min(C) is that its entire set of pre-
requisites might be equivalent to those in max (C). Then, however, C∪Prereq(min(C))
and so R′∪Prereq(min(C)) is inconsistent. This is, for instance, the case in (8/9).
In fact, (R′)∗ is the strongest condition under which the above theorem holds.

Finally, we demonstrate that these rules are indeed conflicting.
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Theorem 5 Let C be a minimal conflicting set in a generic world description
〈RD, RN 〉. Then, for any α → β ∈ max (C), we have:

inf (C)∗ ∪ {α} |= ¬(Conseq(min(C)) ∧ Conseq(max (C))).

As above, inf (C)∗ ∪ {α} is the weakest condition under which the last entailment
holds. In all, the last three theorems demonstrate that the general framework given
for minimal conflicting sets (already) provides a very expressive way of isolating
rule conflicts due to their specificity.

In the worst case the number of minimal conflicting sets grows exponentially
with the size of a default theory. This is an artifact of the problem in general, rather
than the specific approach at hand – there may simply be an exponential number of
ways in which a set of defaults conflict.

Theorem 6 There exist generic world descriptions R of size n such that the num-
ber of minimal conflicting sets is of size O(2n).

Consider for example the class of default theories where we have

α → βi,1 for i ∈ {1, 2}
βi,j → βi′,j+1 for i, i′ ∈ {1, 2} and 1 ≤ j < n

βi,n → γ for i ∈ {1, 2}

For a given n there are clearly 2n “inferential paths” between α and γ. If we add
the default α → ¬γ, then clearly for given n there are 2n minimal conflicting sets.
While this characterises the worst case, in general we might expect the number of
minimal conflicting sets to be more manageable. For example, in an inheritance
hierarchy where a different “exception” type accounts for each level in the hierar-
chy, we would have a set of minimal conflicting sets that is linear in the size of the
hierarchy.

3.3 Specific Minimal and Maximal Conflicting Rules

A minimal conflicting set C = (C0, C1), is a minimal set of rules that contains a
specificity conflict. However we need to isolate a minimal subset C ′

0 ⊆ C0 whose
application would conflict with a minimal subset of rules in C ′

1 ⊆ C1. We do this
in the following definition of a conflicting core of a minimal conflicting set:

Definition 4 Let C = (C0, C1) be a minimal conflicting set. A conflicting core of
C is a pair of least sets (min(C),max (C)) where

1. min(C) ⊆ C0 ∩RD,
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2. max (C) ⊆ C1 ∩RD,

3. {αr ∧ βr | r ∈ max (C) ∪min(C)} |= ⊥,

provided that min(C) and max (C) are non-empty.

This definition specialises the general setting of Definition 3. So, αr → βr is in
min(C) if its application conflicts with that of a rule (or rules) in C1. By isolat-
ing the actually conflicting rules in C0 and C1, a conflicting core imposes a strict
structure on a given minimal conflicting set.

It is only with Definition 4 that we distinguish default from strict rules, in
that we eliminate members of RD from min(C) and max (C). In Section 4.2
we show that this is a convenience only, in that if we included members of RD

in min(C) and max (C) we would simply introduce redundant elements into our
default theory. However, consider informally the effect of strict rules in Defini-
tion 4. For example, the rules B → F and P → ¬F yield the conflicting core
({B → F}, {P → ¬F}) in our example (1). This induces the following structure
on the minimal conflicting set C given in (5/6):

min(C) = {B → F} max (C) = {P → ¬F} inf (C) = {P ⇒ B}(13)

Observe that we obtain the same conflicting core for C1 in (3), where P ⇒ B is
treated defeasibly by means of P → B. That is, the applicability of P → B (or
P ⇒ B) is irrelevant to the conflict between B → F and P → ¬F , and so can be
applied independently of these last two defaults. However things are quite different
if we replace B → F or P → ¬F by their strict counterpart. In the theory

{B → F, P → B,P ⇒ ¬F}

for example, there is no conflict. If P is true or if P ∧B is true, then it logically fol-
lows that ¬F is true, and so we cannot “apply” the default rule B → F , regardless
of the “target” formalism. On the other hand, in the theory

{B ⇒ F, P → B,P → ¬F}

we lose our specificity difference. If P is true, then application of P → B (regard-
less of how this is done) immediately blocks P → ¬F and application of P → ¬F
immediately blocks P → B.

In the extended example of Section 2 the conflicting cores are

C0 : ({An → ¬Fe}, {B → Fe})
C1 : ({B → F}, {P → ¬F})
C2 : ({B → F}, {E → ¬F})
C3 : ({B → Fe}, {Pt → ¬Fe})
C4 : ({An → WB}, {Pt → ¬WB})
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respectively. As anticipated in Section 2, we thus obtain the following structure for
minimal conflicting set C4 (given as a Z-ordering in (7)):

min(C4) = {An → WB} max (C4) = {Pt → ¬WB} inf (C4) = {B → An, P t → B}

The remaining sets max (Ci),min(Ci), and inf (Ci) are constructed in the obvious
way.

For a complement consider the example given in (8/9), where the conflicting
core contains two minimal and one maximal conflicting rules:

({A → ¬B,C → ¬D}, {A ∧ C → B ∨D}).

That is, min(C) = {A → ¬B,C → ¬D}, max (C) = {A ∧ C → B ∨D}, and
inf (C) = ∅.

A conflicting core need not necessarily exist for a specific minimal conflicting
set. For example, consider the minimal conflicting set (expressed as a Z-order):

C0 = {Q → P,R → ¬P}
C1 = {Q ∧R → PA}

Thus Quakers are pacifists while republicans are not; Quakers that are republicans
are politically active. Here the conflict is between two defaults at the same level
(viz. Q → P and R → ¬P ) that manifests itself when a more specific default is
given. In such a case, according to Definition 4, there is no conflicting core. We do
have the following result however.

Theorem 7 For minimal conflicting set C in a set of rules R, if {αr ∧ βr | r ∈
min(C)} 6|= ⊥ and {αr ∧ βr | r ∈ max (C)} 6|= ⊥ then C has a conflicting core.

Note that while in “normal” cases a minimal conflicting set (apparently) has a
unique conflicting core, this is not always the case. Consider the following minimal
conflicting set:

C0 = {¬α1 ∨ ¬α2 → β1}
C1 = {α1 → ¬β1 ∧ β2, α2 → ¬β1 ∧ ¬β2}.

We have two conflicting cores, since

{¬α1 ∨ ¬α2, β1} ∪ {α1,¬β1 ∧ β2} |= ⊥ and

{¬α1 ∨ ¬α2, β1} ∪ {α2,¬β1 ∧ ¬β2} |= ⊥.

This example is the only one that we have been able to construct in which there is a
non-unique conflicting core. In the sequel, for simplicity we restrict our attention to
minimal conflicting sets having a unique conflicting core. Non-unique conflicting
cores are easily handled in Definition 6 by considering each minimal conflicting
set/conflicting core pair separately.
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4 Compiling Specificity into Consistency-Based Approaches

In the previous section, we described how to isolate minimal sets of rules that
contain conflicting rules with differing specificity. We also showed how to isolate
specific minimal and maximal conflicting rules. In this section, we use this in-
formation for specifying blocking conditions or, more generally, priorities among
conflicting defaults in default logic.

There are two obvious approaches. First, we could determine a strict partial
order on a set of rules RD from the minimal conflicting sets in R. That is, for two
rules r, r′ ∈ RD, we can define r < r′ iff r ∈ min(C) and r′ ∈ max (C) for some
minimal conflicting set C in R. In this way, r < r′ is interpreted as “r is less spe-
cific than r′”. Then, one could interpret each rule α → β in RD as a normal default
α : β
β and use one of the approaches developed in [Baader and Hollunder, 1993a] or

[Brewka, 1993] for computing the extensions of ordered normal default theories,
i.e. default theories enriched by a strict partial order on rules. Such an approach has
the disadvantage that it steps outside the machinery of default logic for computing
extensions.

This motivates our primary approach, one that remains inside the framework of
classical default logic, where we transform rules with specificity information into
semi-normal default theories. After an introduction to default logic we develop this
latter approach and explore its properties. Following this we compare our approach
with that of related approaches in default logic. Lastly, we show how this approach
can be applied to other consistency-based approaches to nonmonotonic reasoning.

4.1 Default Logic

In default logic, classical logic is augmented by default rules of the form α : β
ω . Even

though almost all “naturally occurring” default rules are normal, i.e. of the form
α : β
β , semi-normal default rules of the form α : β∧ω

β are required for establishing
precedence in the case of “interacting” defaults [Reiter and Criscuolo, 1981] (see
below). Default rules induce one or more extensions of an initial set of facts. Given
a set of facts W and a set of default rules D, any such extension E is a deductively
closed set of formulas containing W such that, for any α : β

ω ∈ D, if α ∈ E and
¬β 6∈ E then ω ∈ E. One of the simplest definitions of an extension, due to
[Reiter, 1980], is the following:

Definition 5 Let (D,W ) be a default theory and let E be a set of formulas. Define
E0 = W and for i ≥ 0

Ei+1 = Th(Ei) ∪
{

ω
∣∣∣ α : β

ω ∈ D,α ∈ Ei,¬β 6∈ E
}

.

Then E is an extension for (D,W ) if E =
⋃∞

i=0 Ei.
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The above procedure is not constructive since E appears in the specification of
Ei+1.

In terms of our specification of default theories, we assume that a default theory
is given by 〈〈RD, RN 〉,W 〉 whereas in default logic it is given by a pair (D′,W ′).
The naı̈ve translation for default logic is to identify the set of defeasible rules RD

with the set of normal default rules{
α : β
β

∣∣∣ α → β ∈ RD

}
,

while the strict rules in RN are interpreted as material implications

R∗
N = {α ⊃ β | α ⇒ β ∈ RN}.

In this way, a world description 〈〈RD, RN 〉,W 〉 may be transformed into a default
theory({

α : β
β

∣∣∣ α → β ∈ RD

}
,W ∪R∗

N

)
.

Consider our example (1) along with the fact that P is true; this can be ex-
pressed as:({

B : F
F , B : W

W , P :¬F
¬F

}
, {P} ∪ {P ⊃ B}

)
. (14)

We obtain two extensions: one in which P,B,W, and F are true and another in
which P,B,W, and ¬F are true. Intuitively we want only the last extension, since
the more specific default P :¬F

¬F should take precedence over the less specific de-
fault B : F

F . The usual solution, originally proposed in [Reiter and Criscuolo, 1981],
is to establish a precedence among these two interacting defaults by adding the
negation of the exception, P , to the justification of the less specific default rule.
This amounts to replacing B : F

F by B : F∧¬P
F which yields the desired result, a sin-

gle extension containing P,B,W, and ¬F .

4.2 Z-Default Theories

This section describes translation for producing a standard semi-normal default
theory that provably maintains specificity. The transformation is succinctly de-
fined:

Definition 6 Let R = 〈RD, RN 〉 be a generic world description and let (Ci)i∈I

be the family of all minimal conflicting sets in R. For each r ∈ RD, we define

δr =
αr : βr ∧

∧
r′∈Rr

(αr′ ⊃ βr′)
βr

(15)

where Rr = {r′ ∈ max (Ci) | r ∈ min(Ci) for i ∈ I}.
We define DR = {δr | r ∈ RD}.
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In what follows, we write DR′ = {δr | r ∈ R′} for any subset R′ of RD. Any
default theory obtained according to the above transformation will be referred to
as a Z-default theory.

The most interesting point in the preceding definition is the formation of the
justifications of the (sometimes) semi-normal defaults. Given a rule r, the justi-
fication of δr is built by looking at all minimal conflicting sets, Ci, in which r
occurs as a least specific rule (i.e. r ∈ min(Ci)). Then, the consequent of r is
conjoined with the strict counterparts of the most specific rules in the same sets
(viz. (αr′ ⊃ βr′) for r′ ∈ max (Ci)). These rules are put together in Rr. In this
way, Rr contains all rules that conflict with r while being more specific than r.
Hence, for the minimal conflicting rules we obtain semi-normal defaults; all other
defaults are normal (since then Rr = ∅). So for any minimal conflicting set C in
R, we transform the rules in min(C) into semi-normal defaults, whereas we trans-
form the rules in inf (C)∪max (C) into normal defaults, provided that they do not
occur elsewhere as a minimal conflicting rule.

Consider our initial example in (1). There, we obtain a single minimal conflict-
ing set C given in (5/6), having a unique conflicting core. As shown in (13), the
latter induces the minimal and maximal conflicting rules: min(C) = {B → F}
and max (C) = {P → ¬F}. According to Definition 6, we obtain for the defeasi-
ble rules in (1):

RB→F = {P → ¬F}, RB→W = ∅ and RP→¬F = ∅.

In turn, these sets induce the following default rules:

δB→F = B : F∧(P⊃¬F )
F , δB→W = B : W

W and δP→¬F = P :¬F
¬F .

The first rule can be simplified to B : F∧¬P
F .

Given an entire world description 〈〈RD, RN 〉,W 〉, we can apply Definition 6
in order to obtain Z-default theory (DR,W ∪R∗

N ). Our initial example along with
the contingent fact that P is true is then translated into the following Z-default
theory:({

B : F∧¬P
F , B : W

W , P :¬F
¬F

}
, {P} ∪ {P ⊃ B}

)
.

As opposed to the naı̈ve translation given in (14), this theory yields only the single,
specificity-preserving extension, in which P,B,W, and ¬F are true.

In the extended example of Section 2 the conflicting cores for (3) and (4) are

({B → F}, {P → ¬F}) and ({B → F}, {E → ¬F})

respectively. According to Definition 6, we get

RB→F = {P → ¬F,E → ¬F}, RP→B = ∅ and RP→¬F = ∅.
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The first set expresses the fact that the rule B → F conflicts with the two more
specific rules in {P → ¬F,E → ¬F}. This results in a single semi-normal default
rule

B : F∧(P⊃¬F )∧(E⊃¬F )
F , or B : F∧¬P∧¬E

F .

Observe that we obtain P : B
B and P :¬F

¬F for P → B and P → ¬F since these rules
do not occur elsewhere as minimal rules in a conflicting core.

These examples suggest that we might simply add the negation of the an-
tecedent of the higher-level conflicting conditional. However this strategy does not
work whenever a minimal conflicting set has more than one minimal conflicting
rule. We defer the discussion to Section 4.3.

For a more general example, consider the case where, given a rule r, Rr is a
singleton set containing a rule r′. Thus r is less specific than r′. This results in the
default rules

αr : βr∧(αr′⊃βr′ )
βr

and αr′ : βr′
βr′

.

Our intended interpretation is that r and r′ conflict, and that r′ is preferable over
r (because of specificity). Thus, assume that βr and βr′ are not jointly satisfi-
able. Then, the second default takes precedence over the first one whenever both
prerequisites are derivable (i.e. αr ∈ E and αr′ ∈ E) and both βr and βr′ are
individually consistent with the final extension E (i.e. ¬βr 6∈ E and ¬βr′ 6∈ E).
That is, while the justification of the second default is satisfiable, the justification
of the first default, βr ∧ (αr′ ⊃ βr′), is unsatisfiable.

In general, we obtain the following results. GD(E,D) stands for the generating
defaults of E with respect to D, i.e. GD(E,D) = {α : β

ω ∈ D | α ∈ E,¬β 6∈ E}.
Note that Theorem 8 is with respect to the general theory of minimal conflicting
sets while Theorem 9 is with respect to the specific development involving con-
flicting cores.

Theorem 8 Let 〈〈RD, RN 〉,W 〉 be a world description with R = 〈RD, RN 〉. Let
C be a minimal conflicting set in R. Let E be a consistent extension of (DR,W ∪
R∗

N ). Then,

1. if Dmax(C) ∪Dinf (C)∩RD
⊆ GD(E,D) then Dmin(C) 6⊆ GD(E,D),

2. if Dmin(C) ∪Dinf (C)∩RD
⊆ GD(E,D) then Dmax(C) 6⊆ GD(E,D).

As with Theorems 3, 4, and 5, the last result refers to the more abstract conception
of minimal conflicting sets, as described in Definition 3. The above theorem then
can be seen as naturally extending these results to default logic. Observe that only
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the defeasible rules in inf (C) are transformed into default rules; the strict rules in
inf (C) are dealt with via R∗

N .
Let us relate this theorem to the underlying idea of specificity. Observe that in

the first case, where Dmax(C) ∪Dinf (C)∩RD
⊆ GD(E,D), we also have

Prereq(min(C)) ⊆ E

by Theorem 3. That is, even though the prerequisites of the minimal conflict-
ing defaults are derivable, they do not contribute to the extension at hand. This
is so because some of the justifications of the minimal conflicting defaults are
not satisfied. In this way, the more specific defaults in Dmax(C) take precedence
over the less specific defaults in Dmin(C). Conversely, in the second case, where
Dmin(C) ∪ Dinf (C)∩RD

⊆ GD(E,D), the less specific defaults apply only if the
more specific defaults do not contribute to the given extension.

As regards the specific type of minimal conflicting sets induced by the notion
of a conflicting core, we obtain the following result.

Theorem 9 Let 〈〈RD, RN 〉,W 〉 be a world description with R = 〈RD, RN 〉. Let
(min(C),max (C)) be the conflicting core of some minimal conflicting set C in R.
Let E be a consistent extension of (DR,W ∪R∗

N ). Then,

1. if Dmax(C) ⊆ GD(E,D) then Dmin(C) 6⊆ GD(E,D),

2. if Dmin(C) ⊆ GD(E,D) then Dmax(C) 6⊆ GD(E,D).

Thus in this case we obtain that the defaults in a conflicting core are not applicable,
independent of the “linking defaults” in Dinf (C)∩RD

and inf (C) ∩RN .
The following theorem gives an alternative characterization for extensions of

Z-default theories. In particular, it clarifies further the effect of the set of rules Rr

associated with each rule r. Recall that in general, however, such extensions are
computed in the classical framework of default logic.

Theorem 10 Let 〈〈RD, RN 〉,W 〉 be a world description and let E be a set of
formulas. Let

Dn
R =

{
αr : βr

βr

∣∣∣ αr → βr ∈ RD

}
(and Rr and DR as in Definition 6).

Define E0 = W ∪R∗
N and for i ≥ 0

Ei+1 = Th(Ei) ∪
{

βr

∣∣∣ αr : βr

βr
∈ Dn

R , αr ∈ Ei, E ∪ {βr} ∪
⋃

r′∈Rr
(αr′ ⊃ βr′) 6` ⊥

}
Then, E is an extension of (DR,W ∪R∗

N ) iff E =
⋃∞

i=0 Ei.
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It is interesting to note that in determining minimal conflicting sets and conflict-
ing cores, the only place where we distinguish elements of RN from RD is in the
formation of a conflicting core. We claimed in Section 3.3 that, for the definition
of a conflicting core, the reference to RD is present only to eliminate redundant
terms; otherwise we obtain the same default theory. Now that we have the final
translation into default logic we can formalise this claim: A mixed conflicting core
has the same definition as a conflicting core, except that we replace conditions 1.
and 2. in Definition 4 by

1. min(C) ⊆ C0,

2. max (C) ⊆ C1.

Then, we have the following result.

Theorem 11 Let 〈〈RD, RN 〉,W 〉 be a world description with R = 〈RD, RN 〉.
Then E is an extension of the corresponding Z-default theory iff E is an extension
of the default theory obtained in transformation (15) but making appeal to mixed
conflicting cores.

4.3 Discussion of Z-Default Theories

We illustrate the approach further first with an example from [Fahlman et al., 1981],
studied in detail by Etherington and Reiter in [1983], and second, with an example
involving two minimal conflicting rules. First, we have the following rules (repre-
sented by the figure on the right):

Molluscs are normally shell-bearers. M → S
⇑

Cephalopods must be Molluscs but normally are not shell-bearers. C → ¬S
⇑

Nautili must be Cephalopods and must be shell-bearers. N ⇒ S

This results in the following generic world description:

RD = {M → S, C → ¬S}
RN = {C ⇒ M, N ⇒ C, N ⇒ S}

We obtain a single minimal conflicting set C, here expressed as a Z-order:

C0 = {M → S}
C1 = {C → ¬S, C ⇒ M}
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The minimal conflicting set contains the conflicting core:

({M → S}, {C → ¬S}).

As a result, we get: RM→S = {C → ¬S}.
Now, given the contingent fact N , we obtain the following default theory:({

M : S∧(C⊃¬S)
S , C :¬S

¬S

}
, {N} ∪ {C ⊃ M, N ⊃ C, N ⊃ S}

)
(16)

The semi-normal default can be simplified to: M : S∧¬C
S . The default theory in (16)

has a unique extension in which a Nautilus N is also a Cephalopod C, a Mollusc
M , and a shell-bearer S.

Interestingly, default theory (16) is not equivalent to that obtained in [Etherington and Reiter, 1983].
Where they have the semi-normal default C :¬S∧(N⊃S)

¬S we have the normal default
C :¬S
¬S . However, due to the necessary knowledge N ⊃ S, which is present in

all initial sets of facts W , these defaults are equivalent in that one is applicable
whenever the other is. Hence our approach avoids the introduction of a redundant
semi-normal default. Of course if we replaced the necessary implication N ⇒ S
with its default counterpart N → S we would obtain a second minimal conflicting
set and a second conflicting core, and so in this case obtain the semi-normal de-
fault. Observe too that there is a second minimal conflicting set, given by the rules
C → ¬S, N ⇒ C, and N ⇒ S, which is ruled out, however, due to its lack of a
conflicting core.

Etherington and Reiter start from a network representation comprising “hard”,
“default” and “exception links”. That is, while their network contains “default
links” corresponding to M → S and C → ¬S, both require so-called “excep-
tion links” indicating that Cephalopods, C, are exceptions to the first default while
Nautili, N , are exceptions to the second. These “default links” along with their
“exception links” are translated into semi-normal default rules. In this way, the ex-
ceptional cases are encoded in the network representation “by hand” in advance. In
contrast, we start from a rule-based representation distinguishing strict and defea-
sible rules; no exceptions are specified. Conflicting default rules are automatically
detected by the techniques developed in Section 3 and then mapped onto a semi-
normal default theory.

Consider next example (8/9), where we have a minimal conflicting set with
more than one minimal conflicting rule.

R0 = {A → ¬B,C → ¬D} (17)

R1 = {A ∧ C → B ∨D} (18)

If we were to represent this as a normal default theory, as described in Section 4.1,
then with W = {A,C} we would obtain three extensions, containing {¬B,D},
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{B,¬D}, {¬B,¬D}. The last extension is unintuitive since it prefers the two less
specific rules over the more specific one in R1.

The rules in R0∪R1 form a minimal conflicting set with two minimal conflict-
ing rules. This minimal conflicting set comprises two less specific conflicting rules,
a situation frequently encountered in multiple inheritance networks. Our approach
yields two semi-normal defaults

A :¬B∧(A∧C⊃B∨D)
¬B or A :¬B∧(C⊃D)

¬B and
C :¬D∧(A∧C⊃B∨D)

¬D or C :¬D∧(A⊃B)
¬D

along with the normal default rule A∧C : B∨D
B∨D . Given {A,C}, we obtain only the

two more specific extensions, containing {¬B,D} and {B,¬D}. In both cases,
we apply the most specific rule, along with one of the less specific rules.

Note that if we add either only the negated antecedent of the maximal conflict-
ing rule (viz. ¬A∨¬C) or all remaining rules (e.g. C ⊃ ¬D and A∧C ⊃ B ∨D
in the case of the first default) to the justification of the two semi-normal defaults,
then in both cases we obtain justifications that are too strong. For instance, for
A → ¬B we would obtain either

A :¬B∧(¬A∨¬C)
¬B or A :¬B∧(A∧C⊃B∨D)∧(C⊃¬D)

¬B ,

both of which simplify to A :¬B∧¬C
¬B . Given {A,C, D} there is, however, no reason

why the rule A → ¬B should not apply. In contrast, our construction yields the
default

A :¬B∧(C⊃D)
¬B ,

which blocks the second semi-normal default rule in a more subtle way, and addi-
tionally allows us to conclude ¬B from {A,C, D}.

We now examine the formal properties of Z-default theories. In regular de-
fault logic, many appealing properties are only enjoyed by restricted subclasses.
For instance, normal default theories guarantee the existence of extensions and en-
joy the property of semi-monotonicity whereas semi-normal default theories do
not. Transposed to our case, semi-monotonicity stipulates that if R′ ⊆ R for two
sets of rules, then if E′ is an extension of (DR′ ,W ) then there is an extension E
of (DR,W ) where E′ ⊆ E. Arguably, this property is not desirable if we want
to block less specific defaults in the presence of more specific defaults. In fact,
this property does not hold for Z-default theories. For instance, from the rules
B → F, P → B, we obtain the defaults B : F

F , P : B
B . Given P, we conclude B

and F . However, adding the rule P → ¬F makes us add default P :¬F
¬F and re-

place default B : F
F by B : F∧¬P

F . Obviously, the resulting theory does not support
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our initial conclusions. Rather we conclude now B and ¬F , which violates the
aforementioned notion of semi-monotonicity.8

The existence of extensions is not guaranteed for Z-default theories. Consider
the rules:

A ∧Q → ¬P, B ∧R → ¬Q, C ∧ P → ¬R,
A → P, B → Q, C → R.

Each column gives a minimal conflicting set in which the upper rule is more spe-
cific than the lower rule. We obtain the rules

A∧Q :¬P
¬P , B∧R :¬Q

¬Q , C∧P :¬R
¬R ,

A : P∧¬Q
P , B : Q∧¬R

Q , C : R∧¬P
R .

Given A,B, C, we get no extension.
Arguably, the non-existence of extensions indicates certain problems in the un-

derlying set of rules. [Zhang and Marek, 1990] shows that a default theory has no
extension iff it contains certain “abnormal” defaults; these can be detected automat-
ically. However, we can also avoid the non-existence of extensions by translating
rules into variants of default logic that guarantee the existence of extensions, as
discussed in Section 4.5.2.

Another important property is cumulativity. The intuitive idea is that if a the-
orem is added to the premises from which it was derived, then the set of derivable
formulas should remain unchanged. This property is only enjoyed by prerequisite-
free normal default theories in regular default logic. It does not hold for Z-default
theories, as the next example illustrates. Consider the rules {D → A,A →
B,B → ¬A}. The last two rules form a minimal conflicting set. Transform-
ing these rules into defaults, yields D : A

A , A : B
B , B :¬A∧(A⊃B)

¬A , or in the last case
B :¬A
¬A . Given D, there is one extension containing {D,A, B}. Hence this exten-

sion contains B. Now, given D and B, we obtain a second extension containing
{D,¬A,B}. This violates cumulativity. (Note in passing that in this case we ob-
tained a normal default theory from the original set of rules. This is intuitively
plausible, since the two conflicting defaults are mutually canceling, i.e. if one ap-
plies then the other does not.)

Lastly we show that the translation to obtain Z-default theories does not sim-
ply reduce the number of extensions obtained in the corresponding normal default
theory but may also provide different conclusions. Consider the following world
description, where P → S stands for “penguins swim”.

∆ = 〈〈{B → F, B → W, P → S}, {P ⇒ B, F ⇒ ¬S}〉, {P ∧ ¬S}〉.
8This differs from the notion of semi-monotonicity described in [Reiter, 1980]. The latter is

obtained by replacing R and DR by D and R′ and DR′ by D′.
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While naı̈ve transformation (14) yields normal default theory({
B : F

F , B : W
W , P : S

S

}
, {P ⊃ B, F ⊃ ¬S} ∪ {P ∧ ¬S}

)
,

transformation (15) results in Z-default theory:({
B : F∧(P⊃S)

F , B : W
W , P : S

S

}
, {P ⊃ B, F ⊃ ¬S} ∪ {P ∧ ¬S}

)
.

From the naı̈ve theory, we get an extension containing P,B,W and ¬S, F . In con-
trast, our translation yields an extension including P,B,W and ¬S only; no men-
tion is made of F . This shows that Z-theories do not simply eliminate extensions
obtained through the naı̈ve transformation; they may even supply us with different
conclusions. Intuitively, our Z-theories have a conservative attitude towards inher-
itance over conflicting properties. While there is inheritance of the uncontroversial
property W , this is not the case for the controversial property F , which is usually
not enjoyed by penguins regardless of swimming ability.

4.4 An Alternative Translation into Default Logic

In Reiter’s default logic, a default rule α → β is informally interpreted as “if α then
by default β”. However we can also interpret a rule as “by default, if α then β”. In
this case it is the conditional that is concluded by default, and not the consequent
in the presence of the antecedent. In this second interpretation, we turn rules like
α → β into prerequisite-free default rules: For translating rules along with their
specificity into prerequisite-free default theories, we replace the definition of δr in
Definition 6 by

ζr =
: (αr ⊃ βr) ∧

∧
r′∈Rr

(αr′ ⊃ βr′)
(αr ⊃ βr)

(19)

With this transformation, our birds example in (1) together with the knowledge that
P is true yields default theory:({

: (B⊃F )∧(P⊃¬F )
B⊃F , : B⊃W

B⊃W , : P⊃¬F
P⊃¬F .

}
, {P} ∪ {P ⊃ B}

)
From this theory, we obtain a single extension containing {P,¬F,B,W}.

As discussed in [Delgrande et al., 1994], the problem of controlling interac-
tions among such prerequisite-free default rules is more acute than in the regular
case. Consider our initial example (1) and turn the implication P ⇒ B into its de-
fault counterpart P → B. The usual translation, ignoring specificity information,
translates this into the following prerequisite-free default rules:

: B⊃F
B⊃F , : B⊃W

B⊃W , : P⊃B
P⊃B , : P⊃¬F

P⊃¬F (20)
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Given P , we obtain three extensions, containing {P,¬F,B,W}, {P, F, B, W},
and {P,¬F,¬B}.9 In the regular default theory (with prerequisites) we obtain just
the first two extensions. Clearly, transformation (19) eliminates the second exten-
sion. The third extension however remains; moreover this extension hinders prop-
erty inheritance, since we cannot conclude that birds have wings. This is caused
by the contrapositive of B → F. That is, once we have derived ¬F , we derive ¬B
by contraposition, which prevents us from concluding W .

This problem can be addressed in two ways: by strengthening the blocking
conditions for minimal conflicting rules or by blocking the contrapositive of mini-
mal conflicting rules. In the first case, we could turn B → F into : (B⊃F )∧¬P

B⊃F by
adding the negated antecedents of the maximal conflicting rules, here ¬P . While
this looks appealing, we have already seen in Section 4.3 that this is too strong in
the presence of multiple minimal conflicting rules. To see this, consider the rules
given in (8/9). For A → ¬B, we obtain : (A⊃¬B)∧(¬A∨¬C)

A⊃¬B or : A⊃(¬B∧¬C)
A⊃¬B . As

argued in Section 4.3, there is no reason why A → ¬B should not be applied given
the facts {A,C, D}. Also, in general it does not make sense to address a problem
stemming from contrapositives by altering the way specificity is enforced. Rather
we should address an independent problem by means of other measures.

So, in the second case, we turn B → F into : (B⊃F )∧F∧(P⊃¬F )
B⊃F or : F∧¬P

B⊃F .
That is, we add the consequent of B → F in order to block its contraposition.
As before, we add the strict counterparts of the maximal conflicting rules, here
P ⊃ ¬F . In the birds example, the resulting justification is strengthened as
above. In particular, we block the contribution of the rule B ⊃ F to the final
extension if either ¬F or P is derivable. For A → ¬B in (8/9), we now obtain,
: (A⊃¬B)∧¬B∧(A∧C⊃B∨D))

A⊃¬B or :¬B∧(A∧C⊃D)
A⊃¬B . In contrast to the previous proposal,

this rule is applicable to the facts {A,C, D}. Moreover, this approach is in accord
with System Z, where rules are classified according to their “forward chaining”
behaviour.

So for translating rules along with their specificity into prerequisite-free default
theories, we can alternatively replace the definition of δr in Definition 6 by10

ζ ′r =
: (αr ⊃ βr) ∧ βr ∧

∧
r′∈Rr

(αr′ ⊃ βr′)
(αr ⊃ βr)

. (21)

Applying this transformation to the set of rules in (20), we obtain:

: F∧¬P
B⊃F , : B⊃W

B⊃W , : P⊃B
P⊃B , : P⊃¬F

P⊃¬F

Now, given P , we obtain a single extension containing {P,¬F,B,W}.
9The third extension would not be present if P → B were a strict rule.

10Observe that (αr ⊃ βr) ∧ βr is equivalent to βr.

30



Note that blocking the contrapositive of minimal conflicting rules is an option
outside the presented framework. The purpose of the above transformation is to
preserve inheritance over default statements such as P → B. Inheritance over strict
statements, like P ⇒ B, however can be done without blocking contrapositives.
In this case, of course, transformation (19) is sufficient.

Transformations (19/21) offer some interesting benefits, since prerequisite-free
defaults allow for reasoning by cases and reasoning by contraposition (apart from
minimal conflicting rules). That is, such defaults behave like classical conditionals
unless explicitly blocked. However, the counterexamples for semi-monotonicity,
cumulativity, and the existence of extensions carry over to prerequisite-free Z-
default theories.

4.5 Further Translations and Comparison with Related Approaches

In a manner similar to the approach described in the previous sections, we can com-
pile prioritised rules into variants of default logic, including those of [Baader and Hollunder, 1993a,
Brewka, 1993, Boutilier, 1992b], as well as Theorist [Poole, 1988] and autoepis-
temic logic [Moore, 1985]. This is described in the remainder of this section.

4.5.1 Ordered Variants of Default Logic

At the start of this section we described how to extract a strict partial order from a
family of minimal conflicting sets for using other approaches (such as [Baader and Hollunder, 1993a,
Brewka, 1993]) to compute extensions of ordered default theories, i.e. theories with
a strict partial order < on the defaults. In fact, one can view partial orders on rules
as a general interface between approaches, in that we can also use our approach for
compiling ordered normal default theories into semi-normal default theories. To
this end, we have to incorporate the order < into the specification of Rr in Defini-
tion 6. We do this by associating with each normal default α : β

β a rule α → β and
define for each such rule r that R<

r = {r′ | r < r′}, where < is a strict partial order
on the set of rules. Then, we can use transformation (15) to turn ordered normal
default theories into semi-normal theories.

We can now compare how priorities are dealt with in our and the aforemen-
tioned approaches. In both [Baader and Hollunder, 1993a] and [Brewka, 1993] the
iterative specification of an extension in default logic is modified. In brief, a de-
fault is only applicable at an iteration step (in the sense of Definition 5) if no more
specific (or <-greater) default is applicable.11 The difference between both ap-
proaches (roughly) rests on the number of defaults applicable at each step. While
Brewka allows only for applying a single default that is maximal with respect to

11In [Baader and Hollunder, 1993a, Brewka, 1993] < is used in the reverse order.
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a total extension of <, Baader and Hollunder allow for applying all <-maximal
defaults at each step.

As a first example, consider the normal default rules

: A
A , : B

B , B : C
C , A :¬C

¬C

(for short δ1, δ2, δ3, δ4), along with δ4 < δ3, taken from [Baader and Hollunder, 1993b].
With no facts Baader and Hollunder obtain in their approach one extension con-
taining {A,B, C}. Curiously, Brewka obtains an additional extension contain-
ing {A,B,¬C}. In our approach, we generate from < a single nonempty set
R<

δ4
= {δ3}; all other such sets are empty. Consequently we replace δ4 by

A :¬C∧(B⊃C)
¬C or A :¬C∧¬B

¬C .

In regular default logic, the resultant default theory yields only the first extension
containing {A,B, C}. So here our approach yields the same result as Baader and
Hollunder’s approach.

As a second example, again from [Baader and Hollunder, 1993b], consider the
rules

: A
A , B :¬A

¬A , : B
B , A :¬B

¬B

(for short δ1, δ2, δ3, δ4), along with δ1 < δ2, δ3 < δ4. Baader and Hollunder show
that in Brewka’s approach two extensions are obtained, one containing {A,¬B}
and another containing {¬A,B}. However an additional extension is obtained in
Baader and Hollunder’s approach, containing {A,B}. In our approach, we produce
from < the nonempty sets R<

δ1
= {δ2}; and R<

δ3
= {δ4}; all other such sets are

empty. Then, we replace δ1 and δ3 by

: A∧(B⊃¬A)
A or : A∧¬B

A and : B∧(A⊃¬B)
B or : B∧¬A

B ,

which yields only the first two extensions in default logic. Thus, as opposed to the
previous example, our approach yields here the same result as Brewka’s approach.
Even though these examples appear to be artificial, they can be extended to ex-
press reasonable specificity orderings. In all, we observe that in both examples our
approach yields the fewer and, in terms of specificity, more intuitive extensions.

Our approach to compiling partial orders into semi-normal default theories as-
sumes that priorities are determined by specificity conflicts between rules. Con-
sider where we might extract priorities directly from subsumption relations, as is
done in [Baader and Hollunder, 1993a]. Consider terms stating that “birds fly”,
B → F, and “young birds need special care”, B ∧ Y → C, along with the sub-
sumption relation between “birds” and “young birds”. This subsumption amounts
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to a priority between the two rules even though there is no conflict: (B → F ) <
(B ∧ Y → C). This priority would not be detected in our approach, since we rely
on there being a conflict between rules to determine priorities. In this example
there is no minimal conflicting set and so in our approach we would obtain the two
normal rules B : F

F and B∧Y : C
C .

The preceding exposition assumed that a rule α → β was associated with a de-
fault having prerequisite α and consequent β. This view underlies [Baader and Hollunder, 1993a]
and [Brewka, 1993], in that they rely on the existence of prerequisites. In con-
trast, we can treat rules also as strict implications, and so compile them into a
prerequisite-free defaults, as we showed in the last subsection. [Boutilier, 1992b]
proposes an approach based on these intuitions, where a ranking on defaults is
obtained from the Z-ordering of the defaults. Boutilier uses the correspondence
between a conditional αr → βr of System Z and defaults of the form : αr⊃βr

αr⊃βr
to

produce partitioned sets of default rules. For rules in System Z, there is a cor-
responding set of prerequisite-free normal defaults. One can reason in default
logic by applying the rules in the highest set, and working down. However this
means that for reasoning, one again steps outside the machinery of default logic.
Moreover, since the order in which defaults are applied depends on the original
Z-ordering, this order may be “upset” by the addition of irrelevant conditionals.
This in turn may introduce unwanted priorities. For this last point, consider again
example (8/9), but where we also have that A is exceptional with respect to E for
some property A′. We had originally

(R0, R1) = ({A → ¬B,C → ¬D}, {A ∧ C → B ∨D}) and to this we add

{A → ¬E, A → A′, A′ → E}.

This yields the Z-ordering, expressed as a union of sets to clarify the structure:

R0 = {C → ¬D} ∪ {A′ → E}
R1 = {A ∧ C → B ∨D, A → ¬B} ∪ {A → ¬E, A → A′}

Intuitively A′ and E have nothing to do with the original theory, yet their ad-
dition has “moved” A → ¬B from R0 to R1. In Boutilier’s approach we would
conclude ¬B and D from {A,C}, and would not get the second extension as in
the original case. Hence adding irrelevant defaults leads to different extensions
wrt applying the original three defaults. This phenomenon clearly is avoided in
the present approach, due to our use of minimal conflicting set and not the full
Z-ordering.
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4.5.2 Other Variants of Default Logic

Another alternative is the translation into variants of default logic that guarantee the
existence of extensions [Łukaszewicz, 1988, Brewka, 1991, Delgrande et al., 1994].
This can be accomplished by means of both translation (15) and (19/21). More-
over, the resulting Z-default theories enjoy cumulativity when applying translation
(15) and (19/21) in the case of cumulative default logic and when applying transla-
tion (19/21) in the case of constrained default logic. The corresponding results can
be found in [Brewka, 1991, Delgrande et al., 1994]. Although none of these vari-
ants enjoys semi-monotonicity with respect to the underlying conditionals, they all
enjoy this property with respect to the default rules. As shown in [Brewka, 1991],
this may lead to problems in blocking a rule, like B : F∧¬P

F , in the case ¬P is a
default conclusion. For details see [Brewka, 1991].

For the translation into Theorist, we refer the reader to [Delgrande et al., 1994],
where it is shown that Theorist systems correspond to prerequisite-free default the-
ories in constrained default logic and vice versa. Accordingly, we may obtain
a Theorist system from a set of prioritised rules by first applying transformation
(19/21) and then that given in [Delgrande et al., 1994] for translating prerequisite-
free default theories in constrained default logic into Theorist.

4.5.3 Autoepistemic Logic

Autoepistemic logic [Moore, 1985] aims at formalizing an agent’s reasoning about
her own beliefs. To this end, the logical language is augmented by a modal operator
L where a formula Lα is read as “α is believed”. For a set W of such formulas, an
autoepistemic extension E is defined as

Th(W ∪ {Lα | α ∈ E} ∪ {¬Lα | α 6∈ E}).

As discussed in [Konolige, 1988], we can express “birds fly” either as B∧¬L¬F ⊃
F or LB ∧ ¬L¬F ⊃ F. Given B and one of these rules, we obtain in both cases
an extension containing F . Roughly speaking, the former sentence corresponds to
the default : B⊃F

B⊃F while the latter is close to B : F
F .

This motivates the following translations into autoepistemic logic. Let R be a
set of rules and let Rr ⊆ R (as given in Definition 6); for each r ∈ R we define:

ρr = αr ∧ ¬L¬
(
βr ∧

∧
r′∈Rr

(αr′ ⊃ βr′)
)
⊃ βr,

%r = Lαr ∧ ¬L¬
(
βr ∧

∧
r′∈Rr

(αr′ ⊃ βr′)
)
⊃ βr.

Applying the first transformation to our initial example, we obtain for B → F the
modal sentence

B ∧ ¬L¬(F ∧ (P ⊃ ¬F )) ⊃ F or B ∧ ¬L¬(F ∧ ¬P ) ⊃ F,
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along with B ∧ ¬L¬W ⊃ W,P ∧ ¬L¬B ⊃ B, and P ∧ ¬LF ⊃ ¬F for B →
W,P → B, and P → ¬F. Now, given P along with the four modal defaults, we
obtain a single autoepistemic extension containing ¬F and W . In this way, we
have added specificity to autoepistemic logic while preserving inheritance.

5 Compiling Specificity into Minimization-Based Approaches

5.1 Circumscription

Circumscription was introduced by John McCarthy in [1980, 1986] as an approach
to formalizing diverse nonmonotonic aspects of commonsense reasoning. The idea
behind circumscription is that of “logical minimization”. A formula α follows from
a theory W by circumscription if α is true in all models of W that are minimal
in a certain sense. In applications to default reasoning, circumscription is used
to minimise “abnormalities” of default rules. For this purpose, the language is
enriched by abnormality propositions designated ab1, ab2, . . . These propositions
address cases exceptional to a default rule at hand. In this way, a default statement
like “birds fly” is represented as a classical implication of the form B ∧ ¬ab ⊃ F.
Following this general principle, we transform a set of default rules into a set of
implications. For a generic world description 〈RD, RN 〉, we define

Rab
D = {αr ∧ ¬abr ⊃ βr | αr → βr ∈ RD}; (22)

R∗
N = {αr ⊃ βr | αr ⇒ βr ∈ RN}. (23)

As an example, consider the following simplification of our initial example in (2):

〈RD, RN 〉 = 〈{B → F, P → ¬F}, {P ⇒ B}〉. (24)

For RD, we obtain:

Rab
D = {B ∧ ¬ab1 ⊃ F, P ∧ ¬ab2 ⊃ ¬F}.

The strict rule in RN becomes R∗
N = {P ⊃ B}. Now, the set of rules in Rab

D ∪R∗
N

can be seen as a description of our birds scenario in (24) in standard propositional
logic. However, we also want to express that things are considered as normal as
possible—provided that there is no evidence to the contrary. This assumption is
formally accomplished by circumscribing a world description: Let W be a propo-
sitional formula, and P ∪̇Z a partition of all atoms in W . The circumscription of
P in W while varying Z is defined as (cf. [McCarthy, 1980, Lifschitz, 1985])

Circum(W ;P ;Z) = W ∧
(
∀P ′, Z ′

(
W [P/P ′, Z/Z ′] ∧ (P ′ ⊃ P ) ⊃ (P ⊃ P ′)

))
.
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In this formula, P ′ and Z ′ are disjoint sets of new propositional variables corre-
sponding to those in P and Z. That is, P ′ = {p′ | p ∈ P} and Z ′ = {z′ | z ∈ Z}.
The formula W [P/P ′, Z/Z ′] denotes the result obtained by replacing in W all oc-
currences of variables in P ∪ Z by their counterparts in P ′ ∪ Z ′. (P ′ ⊃ P ) and
(P ⊃ P ′) abbreviate

∧
p∈P (p′ ⊃ p) and

∧
p∈P (p ⊃ p′), respectively. The net

result is that the circumscription axiom asserts that the number of atoms in P that
are true is as small as possible. Furthermore, in achieving this minimisation, the
truth values of atoms in Z are allowed to vary. The semantical underpinnings for
circumscription are given by minimal models. For interpretations12 M and N, we
define M ≤(P ;Z) N if M ∩ P ⊆ N ∩ P. Then, according to [Lifschitz, 1985],
M is a model of Circum(W ;P ;Z) iff M is minimal among all models of W with
respect to ≤(P ;Z) .

Consider our birds example in (24) along with fact P . The models of {P},
R∗

N , and Rab
D , where we just list the positive literals, are the following:

{P,B, F, ab1, ab2}, {P,B, ab1, ab2}, {P,B, F, ab2}, {P,B, ab1} (25)

Circumscribing propositions ab1 and ab2 while varying B,F, P amounts to reason-
ing with respect to those models in (25) that have the fewest abnormality propo-
sitions. There are two such minimal models, {P,B, ab1} and {P,B, F, ab2}. As
a consequence, we cannot conclude much more than from the original world de-
scription in (24). That is, we have

Circum({P} ∪R∗
N ∪Rab

D ; {ab1, ab2} ; {B,F, P}) |= B ∧ P ∧ (ab1 ≡ ¬ab2).

In particular, we cannot derive ab1, ab2, or F , nor their negation. This shows that
circumscription does not respect the principle of specificity. This shortcoming was
observed in [McCarthy, 1986]. For fixing this problem, McCarthy introduced a
prioritised version of circumscription by assuming that abnormality propositions
are a priori assigned different priorities. However, in this approach specificity is
handled on the metalevel by iterating circumscription on certain priority layers (and
so by extrasystematic means). We examine this approach in Section 5.3.

5.2 Z-Circumscription Theories

We address the lack of specificity by providing axioms reflecting the precedence
of more specific rules over less specific rules. We accomplish this, again, by tak-
ing advantage of the specificity information provided by minimal conflicting sets.
This information is encoded by means of axioms that express precedences among
default rules conflicting because of differing specificity.13

12We represent interpretations as sets of atoms.
13Compare Definition 6.
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Definition 7 Let R = 〈RD, RN 〉 be a generic world description. Let (Ci)i∈I be
the family of all minimal conflicting sets in R. We define

Rsp
D = {¬

∧
r′∈Rr

(αr′ ⊃ βr′) ⊃ abr | r ∈ RD} (26)

where Rr = {r′ ∈ max (Ci) | r ∈ min(Ci) for i ∈ I }.

This definition provides a circumscription policy for specificity using standard cir-
cumscription, rather than prioritised circumscription [McCarthy, 1986]. Observe
that rules like ¬

∧
r′∈Rr

(αr′ ⊃ βr′) ⊃ abr have the form of inheritance cancella-
tion axioms as described in [McCarthy, 1986]. Note that necessary rules are dis-
carded in the formation of antecedents of specificity axioms, since they constitute
true sentences in the world description obtained by adding R∗

N . Consequently, a
specificity axiom is tautological if Rr consists of necessary rules only. We detail
the effect of specificity axioms below.

Consider our birds example in (24). As required in Definition 7, we associate
with each default rule a set of more specific, conflicting default rules extracted
from the minimal conflicting sets. For the default rules RD in (24), this yields the
following sets of default rules according to the specification of Rr in Definition 7:

RB→F = {P → ¬F} RP→¬F = ∅

Recall that the first set expresses the fact that P → ¬F is more specific than B →
F , while the second equation tells us that there is no more specific (conflicting)
default rule than P → ¬F. According to Definition 7, we obtain for the default
rules RD in (24) the following specificity axiom:

Rsp
D = {¬(P ⊃ ¬F ) ⊃ ab1}. (27)

We have omitted the tautology obtained in the case of r = P → ¬F .
Finally, our construction yields the following classical theory in propositional

logic when applied to our generic world description in (24):

Rab
D∪Rsp

D∪R∗
N = {B∧¬ab1 ⊃ F, P∧¬ab2 ⊃ ¬F}∪{¬(P ⊃ ¬F ) ⊃ ab1}∪{P ⊃ B}.(28)

Together with the contingent fact P , these rules have the following models:

{P,B, F, ab1, ab2}, {P,B, ab1, ab2}, {P,B, ab1} (29)

In contrast to the models in (25), we now have only a single minimal model,
namely {P,B, ab1}. Hence, circumscription allows for concluding P, B, ab1, and
¬F, ¬ab2 from the transformed world description. That is,

Circum({P} ∪Rab
D ∪Rsp

D ∪R∗
N ; {ab1, ab2} ; {B,F, P}) |= P ∧B ∧ ¬F.
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One might wonder why we compose specificity axioms by taking entire rules
and not merely their antecedents. This would amount to considering the rule
P ⊃ ab1 instead of the one given in (27). Interestingly, P ⊃ ab1 is the inheri-
tance cancellation axiom suggested in [McCarthy, 1986]. Let us illustrate this by
regarding again theory (8/9), constituting a minimal conflicting set with two less
specific conflicting rules:

C0 = {A → ¬B,C → ¬D} C1 = {A ∧ C → B ∨D}.

Applying the transformations in (22) and (26) yields:

Rab
D = {(A ∧ ¬ab1) ⊃ ¬B, (C ∧ ¬ab2) ⊃ ¬D, (A ∧ C ∧ ¬ab3) ⊃ B ∨D}

Rsp
D = {¬(A ∧ C ⊃ B ∨D) ⊃ ab1, ¬(A ∧ C ⊃ B ∨D) ⊃ ab2}. (30)

Given {A,C, D}, we observe a single “abnormality minimal” model of the result-
ing world description, namely {A,C, D, ab2}. In this way, circumscription allows
us to conclude ¬B. This amounts to applying the first default A → ¬B. Now, let
us replace the specificity axioms in (30) by

Ric
D = {A ∧ C ⊃ ab1, A ∧ C ⊃ ab2}

according to the putative recipe described above. We obtain for the world descrip-
tion built on the facts {A,C, D} two “abnormality minimal” models, {A,C, D, ab1, ab2}
and {A,B, C, D, ab1, ab2}. Consequently, we cannot derive¬B. Given {A,C, D}
there is, however, no reason why the default A → ¬B should not apply. This shows
that our approach is advantageous over plain blocking conditions. Another advan-
tage of our construction is that it allows for an elegant alternative formulation for
incorporating specificity, as we will see next.

Observe that the two implications involving P and ¬F in (28) can be put to-
gether to:

P ∧ (¬ab2 ∨ ¬ab1) ⊃ ¬F . (31)

This indicates that we can alternatively modify the more specific rules instead of
adding axioms referring to the least specific ones. As a general result, the next
definition provides us with an alternative but more compact translation of default
rules, along with their specificity information, into classical logic:

Definition 8 Let R = 〈RD, RN 〉 be a generic world description. Let (Ci)i∈I be
the family of all minimal conflicting sets in R. We define

R?
D = {αr ∧

(
¬abr ∨

∨
r′∈R′

r
¬abr′

)
⊃ βr | r ∈ RD}

where R′
r = {r′ ∈ min(Ci) | r ∈ max (Ci) for i ∈ I }.
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This transformation unifies those given in (22) and (26). This is accomplished
by slightly extending transformation (22) in the case of more specific conflicting
default rules. To this end, we extend the abnormality condition of more specific
default rules by disjoining the abnormality propositions of the less specific default
rules. This yields for our generic world description in (24) the following set of
strict rules:

R?
D ∪R∗

N = {B ∧ ¬ab1 ⊃ F, P ∧ (¬ab2 ∨ ¬ab1) ⊃ ¬F} ∪ {P ⊃ B}.

This result should be compared with that obtained in (28). Note furthermore that
R′

r reverses the roles of min(Ci) and max (Ci) in the specification of Rr in Defi-
nition 7.

The next theorem tells us that the constructions are in fact equivalent:

Theorem 12 Let 〈RD, RN 〉 be a generic world description. Then, Rab
D ∪Rsp

D ∪R∗
N

is logically equivalent to R?
D ∪R∗

N .

We further study the effect of our approach by means of a general but simple
example. Consider a generic world description comprising two conflicting rules r
and r′ and suppose that r is more specific than r′. Hence, we have R′

r = {r′} and
we obtain in turn

αr ∧ (¬abr ∨ ¬abr′) ⊃ βr and αr′ ∧ ¬abr′ ⊃ βr′ .

Our intended interpretation is that r is preferable over r′ (because of specificity)
whenever r and r′ are both potentially “applicable”. Assume that βr and βr′ are not
jointly satisfiable, since r and r′ conflict. Then, the first default takes precedence
over the second whenever both antecedents, αr and αr′ , are derivable. This is so
because of the following reasons: Clearly, {αr, αr′ , βr, βr′} is no “abnormality
minimal” model, since βr and βr′ are not jointly satisfiable. Also,

{αr, αr′ , abr, βr′}, {αr, αr′ , abr, βr}, {αr, αr′ , abr}, {αr, αr′ , abr′ , βr′}, {αr, αr′ , abr′}

are not “abnormality minimal” models, since they either falsify αr ∧ (¬abr ∨
¬abr′) ⊃ βr or αr′ ∧ ¬abr′ ⊃ βr′ . Finally, there remain three candidates sat-
isfying a single abnormality proposition:

{αr, αr′ , abr, βr, βr′}, {αr, αr′ , abr′ , βr, βr′}, {αr, αr′ , abr′ , βr}.

In fact, these three models are “abnormality minimal”. Since all of them satisfy
βr, they prefer the more specific default r over r′.

In analogy to Theorems 8 and 9, we have the following general results. The-
orem 13 is with respect to the general theory of minimal conflicting sets while
Theorem 14 is with respect to the specific development involving conflicting cores.

39



Theorem 13 Let 〈〈RD, RN 〉,W 〉 be a world description with R = 〈RD, RN 〉.
Let C be a minimal conflicting set in R. Then,

1. if Circum(W∪R?
D∪R∗

N ; {abr | r ∈ RD} ; Z) |= inf (C)∗∧
(∧

r∈max(C) αr ∧ ¬abr

)
then Circum(W ∪R?

D ∪R∗
N ; {abr | r ∈ RD} ; Z) 6|=

(∧
r∈min(C) βr

)
2. if Circum(W∪R?

D∪R∗
N ; {abr | r ∈ RD} ; Z) |= inf (C)∗∧

(∧
r∈min(C) βr

)
then Circum(W∪R?

D∪R∗
N ; {abr | r ∈ RD} ; Z) 6|=

(∧
r∈max(C) αr ∧ ¬abr

)
where Z is the set of all propositional variables in W,RD, RN .

In the first case, we have that

Circum(W ∪R?
D ∪R∗

N ; {abr | r ∈ RD} ; Z) |=
(∧

r∈min(C) αr

)
by Theorem 3. So though the prerequisites of the minimal conflicting defaults
are derivable, the corresponding rules do not apply. This is so because some of
the abnormality propositions ab corresponding to the minimal conflicting defaults
must hold. In this way, the more specific defaults from max (C) take precedence
over the less specific defaults in min(C). Conversely, in the second case, the less
specific defaults apply only if the more specific defaults do not contribute to the
given extension.

We also obtain the following result.

Theorem 14 Let 〈〈RD, RN 〉,W 〉 be a world description with R = 〈RD, RN 〉.
Let (min(C),max (C)) be the conflicting core of some minimal conflicting set C
in R. Then,

1. if Circum(W ∪R?
D∪R∗

N ; {abr | r ∈ RD} ; Z) |=
(∧

r∈max(C) αr ∧ ¬abr

)
then Circum(W ∪R?

D∪R∗
N ; {abr | r ∈ RD} ; Z) 6|=

(∧
r∈min(C) αr ∧ βr

)
2. if Circum(W ∪R?

D ∪R∗
N ; {abr | r ∈ RD} ; Z) |=

(∧
r∈min(C) αr ∧ βr

)
then Circum(W∪R?

D∪R∗
N ; {abr | r ∈ RD} ; Z) 6|=

(∧
r∈max(C) αr ∧ ¬abr

)
where Z is the set of all propositional variables in W,RD, RN .

Thus in this case we obtain that the defaults in a conflicting core are not simulta-
neously applicable, independent of the “linking defaults” from inf (C).

Importantly, both transformations are consistency-preserving.

Theorem 15 Let 〈RD, RN 〉 be a generic world description such that R∗
N ∪R∗

D is
satisfiable. Then, R?

D ∪R∗
N is satisfiable.
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Clearly, the same result applies to our initial approach using the rules in Rab
D ∪

Rsp
D ∪R∗

N . Moreover, consistency is also preserved when applying circumscription
to specificity-integrating world descriptions:

Theorem 16 Let 〈〈RD, RN 〉,W 〉 be a world description such that W ∪ R∗
N is

satisfiable. Then, Circum(W ∪ R?
D ∪ R∗

N ; {abr | r ∈ RD} ; Z) is satisfiable,
where Z is the set of all propositional variables in W,RD, RN .

Thus, unlike standard default logic (and autoepistemic logic; see Section 4.4) in
which one might obtain incoherent theories, the transformation given for circum-
scription cannot render an original theory incoherent.

Finally, Theorem 16 provides us with a compact summary of our approach.
That is, we start from knowledge bases of the form 〈〈RD, RN 〉,W 〉. Next, we treat
the generic part of such a world description by means of techniques developed
in Section 3 for isolating minimal sets of default rules with specificity conflicts.
Then, we take the initial world description along with the determined specificity
information obtained in the previous step and translate it into a classical theory
in propositional logic, namely W ∪ R?

D ∪ R∗
N . In a final step, we compute the

resulting conclusions by circumscribing the introduced abnormality propositions
while varying all propositions in the original world description.

5.3 Discussion and Related Work

McCarthy [1986] addressed the lack of specificity in circumscription by intro-
ducing prioritised circumscription. This approach has been further developed
in [Lifschitz, 1985]. The idea is to partition the circumscribed propositions into
priority layers. For this, a set of propositions P is partitioned into disjoint sub-
sets P1 ∪̇ . . . ∪̇Pn where the propositions in Pi should take priority over those
in Pi+1. For computing the result of prioritised circumscription, Lifschitz shows
in [1985] that any prioritised circumscription, written Circum(W ;P1 > . . . >
Pn;Z), can be expressed as a conjunction of ordinary circumscriptions. That is,
Circum(W ;P1 > . . . > Pn;Z) is equivalent to

∧n
i=1 Circum(W ;Pi ;Pi+1 ∪ . . . ∪

Pn ∪ Z). Thus a prioritised circumscription becomes a sequence of ordinary cir-
cumscriptions where propositions in a higher layer are “minimised” while propo-
sitions in a lower layer are varied. This process is iterated over all layers in the
partition of P .

In our simple birds example, we could give the abnormality proposition of the
more specific default rule ab2 priority over the one of the less specific rule ab1.
This yields

Circum({P} ∪Rab
D ∪R∗

N ; {ab2} > {ab1} ; {B,F, P}) =
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Circum({P} ∪Rab
D ∪R∗

N ; {ab2}; {ab1, B, F, P})
∧ Circum({P} ∪Rab

D ∪R∗
N ; {ab1} ; {B,F, P}) |= P ∧B ∧ ¬F.

Observe however that such an approach works only if the partial order induced by
specificity can be pressed into a “layered format” without introducing unwanted
preference relations. For instance, [Grosof, 1991] gives partial orders that cannot
be represented in a “layered format”. For similar reasons one usually refrains from
mapping a full Z-ordering onto “layered structures” in default reasoning systems
(see Section 4.5). Finally, the iterated format used for computing prioritised cir-
cumscription amounts to a treatment of specificity on the metalevel, rather than
producing an object level theory, as in our approach.

Grosof [1991] extends prioritised circumscription for dealing with partial or-
ders. In this way, his approach allows for formalizing partial orders representing
specificity information. There are however some important differences to our ap-
proach. First, [Grosof, 1991] describes default rules with specificity in terms of
an extended prioritised circumscription, while we deal with the basic approach to
circumscription. Second, it is (to our knowledge) yet unknown how and if Grosof’s
extended prioritised circumscription is reducible to iterated ordinary circumscrip-
tions. Hence his approach remains outside the basic circumscriptive machinery.
Consequently, it is impossible to apply, for instance, techniques for transforming
circumscription in first-order or even propositional logic (see [Lifschitz, 1985]).
Observe that, in contrast, we deal with a single basic circumscriptive theory that
allows for applying the aforementioned techniques along with existing implemen-
tations of circumscriptive theorem provers [Ginsberg, 1989].

The choice of circumscription as a target formalism rather than, say, default
logic or autoepistemic logic, has several benefits. Foremost, we work largely within
classical logic: a classical theory is generated; there is a circumscriptive step min-
imising ab sentences, after which one has a classical knowledge base. Circum-
scription itself has several rather nice features: we don’t have the notion of “exten-
sion” to be concerned with; also circumscription is cumulative and consistency-
preserving. Furthermore computational properties of circumscription are well-
studied [Lifschitz, 1985, Ginsberg, 1989].

Circumscription and its variants are by far the best known and best studied
minimization-based approach to nonmonotonic reasoning. Consequently we have
little to say about other approaches. Predicate completion [Clark, 1978] for one
has seen little application to areas of reasoning with default properties. For the
closed world assumptions, presumably the only appropriate variant of the original
approach is the careful closed world assumption [Eiter and Gottlob, 1993], which
is subsumed by parameterised circumscription. Hence here the compilation is the
same as that as given for parameterised circumscription. Shoham’s preferential
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entailment [Shoham, 1988], which is based on minimising certain models, in fact
it has been shown to have strong ties with the conditional logic corresponding to
S4 and, so in its most general conception, enforces specificity [Lamarre, 1991].

6 Discussion

This paper has addressed the issue of incorporating specificity information into
those approaches to nonmonotonic reasoning where specificity conflicts are not
handled as part of the basic machinery of the approach; these approaches have gen-
erally been characterised as either “consistency-based” or “minimization-based”.
We begin with a generic world description expressed as a set of strict and defeasi-
ble rules. The end result is a default theory expressed in some (consistency-based
or minimization-based) formalism, and where conflicts involving differing speci-
ficities are resolved. By appeal to a theory of defaults, here using the notion of
toleration from System Z, specificity conflicts are isolated into minimal conflicting
sets. From these minimal conflicting sets the conflicting rules are determined, and
from the specificity information intrinsic in these sets, a default theory in a target
language in turn is specified. For default logic the end result is a semi-normal de-
fault theory; in circumscription the end result is a set of abnormality propositions
that, when circumscribed, yield a theory in which specificity information is ap-
propriately handled. While we mainly deal with theories expressed (ultimately) in
default logic and circumscription, we also address variants of these approaches as
well as autoepistemic logic and Theorist. Arguably the approach is both uniform
and general, and so is applicable to any sufficiently rich approach to nonmonotonic
reasoning that does not “automatically” deal with specificity conflicts.

This approach is modular, in that we separate the determination of conflicts
from the resolution of conflicts among rules. The approach provides a broadly-
applicable framework, subsuming for example that of [Reiter and Criscuolo, 1981].
As well, it generalises related mappings as found for example in [Etherington and Reiter, 1983]
and, in circumscription, yields a more comprehensive form of an inheritance can-
cellation axiom. This work differs from previous work in specifying priorities
among default rules (in both default logic and circumscription) in that specificity
information is obtained from information intrinsic in the rules, rather than assumed
to exist a priori. In contrast to previous work, the approach avoids stepping out-
side the machinery of the underlying approach. Thus, we deal with the “standard”
version of default logic and circumscription, and do not need to rely on prioritised
versions, as do other approaches.

With respect to implementation, default reasoning is intractable in the worst
case in virtually all conceptions. For example there may be an exponential number
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of specificity conflicts in a default theory. Nonetheless our approach would appear
to be relatively amenable to implementation. First, the fact that we deal with the
standard versions of default logic and circumscription means that one can make use
of existing theorem provers in implementing this approach. Second, we have that if
a default theory contains a minimal conflicting set, then so does any superset of the
theory; this then would allow an incremental computation of minimal conflicting
sets, even in evolving knowledge bases.

7 Proofs of theorems

In what follows, we use the following function providing the set of negated ele-
ments. Define for a set of formulas S,

S = {¬α | α ∈ S}.

Let us moreover adopt the convention of using interchangeably a finite set of for-
mulas S and the conjunction of its elements

∧
α∈S α on both sides of the entailment

relation |=.
Proof 1 Consider a minimal conflicting set C and assume the converse, that is that
C has more than a binary Z-ordering. Then, there is a rule r ∈ C \ (C0 ∪C1) such
that

C∗
1 ∪ {αr ∧ βr}

is unsatisfiable. Consider C0∪C1. Obviously, this set has a non-trivial Z-ordering.
This is a contradiction to the minimality of C.

Proof 2 We have

{α1 ∧ β1} ∪ C∗

is unsatisfiable for all α1 → β1 ∈ C1.
This implies

C∗ |= α1 ⊃ ¬β1

for all α1 → β1 ∈ C1; since (trivially)

C∗ |= α1 ⊃ β1

we obtain by reductio ad absurdum that

C∗ |= ¬α1

for all α1 → β1 ∈ C1.
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Proof 3 We have

inf (C)∗ ∪max (C)∗ |= Prereq(max (C)) ⊃ Prereq(min(C))

iff

inf (C)∗ ∪max (C)∗ ∪ Prereq(max (C)) ∪ Prereq(min(C))

is unsatisfiable.
Let us assume the latter set is satisfiable.
We have (trivially)

Prereq(min(C)) |= min(C)∗.

This implies

inf (C)∗ ∪max (C)∗ ∪ Prereq(max (C)) ∪ Prereq(min(C)) |= C∗.

But according to Theorem 2

C∗ |= Prereq(max (C)),

a contradiction!

Proof 4 Let us assume the opposite. That is,

(R′)∗ |= Prereq(R′′) ⊃ Prereq(max (C)).

Or, equivalently,

(R′)∗ ∪ Prereq(R′′) |= Prereq(max (C)).

According to Theorem 2,

C∗ |= Prereq(max (C)).

By monotonicity,

(R′)∗ ∪ Prereq(R′′) |= Prereq(max (C)).

Consequently,

(R′)∗ ∪ Prereq(R′′)

is unsatisfiable, a contradiction!

Proof 5 We have

inf (C)∗ ∪ {αr} |= ¬(Conseq(min(C)) ∧ Conseq(max (C)))
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iff

inf (C)∗ ∪ {αr} ∪ Conseq(min(C)) ∪ Conseq(max (C))

is unsatisfiable.
Let us assume the last set is satisfiable.
Clearly,

Conseq(min(C)) |= min(C)∗

and

Conseq(max (C)) |= max (C)∗.

This implies

inf (C)∗ ∪ {αr} ∪ Conseq(min(C)) ∪ Conseq(max (C)) |= C∗.

But according to Theorem 2

C∗ |= Prereq(max (C)),

a contradiction (since αr ∈ Prereq(max (C)))!

Proof 6 Given immediately after Theorem 6.

Proof 7 Let (C0, C1) = C be a minimal conflicting set.
Since

C ∪ {αr ∧ βr} |= ⊥

for r ∈ C1, it must be that

{αr′ ∧ βr′ | r′ ∈ C0 ∪ C1} ∪ {αr ∧ βr} |= ⊥

or, since r ∈ C1, {αr′ ∧ βr′ | r′ ∈ C0 ∪ C1} |= ⊥.
Since by assumption

{αr ∧ βr | r ∈ C0} 6|= ⊥,

we can essentially begin with {αr ∧ βr | r ∈ C0} and add rules from C1 until
inconsistency is obtained.

Proof 8 Let R be a set of rules and let W be a set of formulas. Let C be a minimal
conflicting set in R. Let E be a consistent extension of (DR,W ).
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1. Let Dmax(C) ∪Dinf (C)∩RD
⊆ GD(E,D). By definition of GD(E,D), this

implies that

Prereq
(
Dmax(C) ∪Dinf (C)∩RD

)
∪ Conseq

(
Dmax(C) ∪Dinf (C)∩RD

)
⊆ E.

Since E is deductively closed, we have that

inf (C)∗ ∪max (C)∗ ⊆ E.

Assume that Dmin(C) ⊆ GD(E,D). Then, we have that

Prereq
(
Dmin(C)

)
∪ Conseq

(
Dmin(C)

)
⊆ E and min(C)∗ ⊆ E

By Theorem 2, we have that

inf (C)∗ ∪max (C)∗ ∪min(C)∗ ∪ Prereq
(
Dmax(C)

)
is unsatisfiable. By monotonicity, this implies that E is unsatisfiable, a con-
tradiction.

2. Analogous to 1.

Proof 9 Let R be a set of rules and let W be a set of formulas. Let (min(C),max (C))
be a conflicting core of some minimal conflicting set C in R. Let E be a consistent
extension of (DR,W ).

1. Let Dmax(C) ⊆ GD(E,D). By the definition of GD(E,D), this means that

Prereq
(
Dmax(C)

)
∪ Conseq

(
Dmax(C)

)
⊆ E.

If Dmin(C) ⊆ GD(E,D) then we also have that

Prereq
(
Dmin(C)

)
∪ Conseq

(
Dmin(C)

)
⊆ E.

Since (min(C),max (C)) is a conflicting core, we have

Prereq
(
Dmax(C)

)
∪ Conseq

(
Dmax(C)

)
∪ Prereq

(
Dmin(C)

)
∪ Conseq

(
Dmin(C)

)
|= ⊥.

But this implies that E is unsatisfiable, a contradiction.
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2. Follows analogously to 1.

Proof 10 According to [Reiter, 1980], E is an extension of (D,W ) iff E =⋃∞
i=0 Ei, where

E0 = W

and for i ≥ 0

Ei+1 = Th(Ei) ∪
{

γ
∣∣∣ α : β

ω ∈ D,α ∈ Ei,¬β 6∈ E
}

.

Transposing these definitions to Z-default theories of the form (DR,W ∪ R∗
N )

yields

E0 = W ∪R∗
N

and (substituting general default rule α : β
ω by the one in Definition 6):

Ei+1 = Th(Ei) ∪
{

βr

∣∣∣∣∣ αr : βr ∧
∧

r′∈Rr
(αr′ ⊃ βr′)

βr
∈ DR,

αr ∈ Ei,¬(βr ∧
∧

r′∈Rr

(αr′ ⊃ βr′)) 6∈ E

 ,

where Rr is defined as in Definition 6). By relying on the fact that

Dn
R =

{
αr : βr

βr

∣∣∣ αr → βr ∈ RD

}
,

the last but one equation can be easily transformed into

Ei+1 = Th(Ei) ∪
{

βr

∣∣∣ αr : βr

βr
∈ Dn

R , αr ∈ Ei, E ∪ {βr} ∪
⋃

r′∈Rr
(αr′ ⊃ βr′) 6` ⊥

}
which completes our proof.

Proof 11 The proof relies on the following two observations:

1. For fixed world knowledge W , if ρ ∈ W , then adding ρ to the justification
of a default will not affect the resulting extensions.

That is, for any default theory (D,W ) if δ = α : β
ω and δ′ = α : β∧ρ

ω then:

E is an extension of (D ∪ {δ},W ) and δ ∈ GD(E,D) iff E is
an extension of (D ∪ {δ′},W ) and δ′ ∈ GD(E,D)
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2. For any αr ⇒ βr ∈ RN , αr ⊃ βr will be part of the world knowledge in the
Z-default theory.

There are two cases to consider:

1. αr ⇒ βr ∈ RN , and αr ⇒ βr ∈ max (C) for conflicting core C.

Let αm → βm ∈ min(C) (or αm ⇒ βm ∈ min(C)). So under the transla-
tion we will have a default of the form αm : βm∧φ∧(αr⊃βr)

βm
. But by the second

observation above, αr ⊃ βr is also in the world knowledge of the Z-default
theory; by the first observation then, the default has precisely the same effect
as αm : βm∧φ

βm
.

2. αr ⇒ βr ∈ RN , and αr ⇒ βr ∈ min(C) for conflicting core C.

So under the translation we will have a default of the form αr : βr∧φ
βr

. But by
the second observation above, αr ⊃ βr is also in the world knowledge of
the Z-default theory. Hence the default αr : βr∧φ

βr
is only trivially applicable

in any extension (in that, if αr is true, then since αr ⊃ βr is also true, we
obtain that βr is true, without reference to the default.)

The result follows by straightforward induction on |RN |.

Proof 12 Let 〈RD, RN 〉 be a generic world description. Let us start with Rab
D ∪

Rsp
D ∪R∗

N . Consider

Rsp
D = {¬

∧
r′∈Rr

(αr′ ⊃ βr′) ⊃ abr | r ∈ RD}

where Rr = {r′ ∈ max (Ci) | r ∈ min(Ci) for i ∈ I }.
Since (Ci)i∈I is the family of all minimal conflicting sets in R this is equivalent

to

Rsp
D = {¬

∧
r,r′(αr′ ⊃ βr′) ⊃ abr | r′ ∈ max (Ci) and r ∈ min(Ci) for i ∈ I}

More transformations yield in turn:

Rsp
D = {

∧
r,r′(αr′ ∧ ¬abr ⊃ βr′) | r′ ∈ max (Ci) and r ∈ min(Ci) for i ∈ I}

Rsp
D = {

∧
r∈Rr′

(αr′ ∧ ¬abr ⊃ βr′) | r′ ∈ RD}

where Rr′ = {r ∈ min(Ci) | r′ ∈ max (Ci) for i ∈ I }.
Switching r and r′ gives us:

Rsp
D = {αr ∧

(∨
r′∈R′

r
¬abr′

)
⊃ βr | r ∈ RD}
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where R′
r = {r′ ∈ min(Ci) | r ∈ max (Ci) for i ∈ I }.

Recall that

Rab
D = {αr ∧ ¬abr ⊃ βr | r ∈ RD}.

Consequently, we may combine all elements in Rab
D with those in the latest

equation describing Rsp
D , which gives us:

R?
D = {αr ∧

(
¬abr ∨

∨
r′∈R′

r
¬abr′

)
⊃ βr | r ∈ RD}

where R′
r = {r′ ∈ min(Ci) | r ∈ max (Ci) for i ∈ I }.

As a consequence, we have shown that Rab
D ∪ Rsp

D ∪ R∗
N is transformable into

R?
D ∪ R∗

N by consecutive application of logical and set-theoretic transformations.

Proof 13 Let R be a set of rules and let W be a set of formulas. Let C be a minimal
conflicting set in R.

1. Let M be a model of

Circum(W ∪R?
D ∪R∗

N ; {abr | r ∈ RD};Z) ∪ inf (C)∗ ∪ {αr ∧ ¬abr | r ∈ max (C)} .

Then, M is also a model of {βr | r ∈ max (C)}; and therefore it also entails
max (C)∗.

Now, assume M is also a model of

{βr | r ∈ min(C)}.

Then, M is also a model of min(C)∗.

By Theorem 2, we have however that

inf (C)∗ ∪max (C)∗ ∪min(C)∗ ∪ {αr | r ∈ max (C)}

is unsatisfiable, a contradiction to the fact that M is a model!

2. Analogous to 1.

Proof 14 Let R be a set of rules and let W be a set of formulas. Let C be a minimal
conflicting set in R.
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1. Let M be a model of

Circum(W ∪R?
D ∪R∗

N ; {abr | r ∈ RD};Z) ∪ {αr ∧ ¬abr | r ∈ max (C)} .

Then, M is also a model of {βr | r ∈ max (C)}; and therefore it also entails
{αr ∧ βr | r ∈ max (C)}.
Now, assume M is also a model of

{αr ∧ βr | r ∈ min(C)}.

Since (min(C),max (C)) is a conflicting core, we have

By Theorem 2, we have however that

{αr ∧ βr | r ∈ min(C)}. ∪ {αr ∧ βr | r ∈ max (C)}

is unsatisfiable, a contradiction to the fact that M is a model!

2. Analogous to 1.

Proof 15 Let M be a model of R∗
N ∪ R∗

D such that M ∩ {abr | r ∈ RD} = ∅.
That is, M is a model falsifying all abr. Clearly, such a model exists, since there is
no occurrence of any abr in R∗

N ∪R∗
D. By definition,

M |= αr ⊃ βr for all r ∈ RD.

This implies that

M |= αr ∧
(
¬abr ∨

∨
r′∈R′

r
¬abr′

)
⊃ βr for all r ∈ RD

because M |= ¬abr. Hence, M is also a model of R?
D. This extends clearly to

R∗
N ∪R?

D since M is a model of R∗
N by definition.

Proof 16 Let M be a model of W ∪ R∗
N . Consider M ′ = M ∪ {abr | r ∈ RD}.

Clearly, M ′ |= W ∪ R∗
N , since there is no occurrence of any abr in W ∪ R∗

N .
Moreover, we have

M ′ |= αr ∧
(
¬abr ∨

∨
r′∈R′

r
¬abr′

)
⊃ βr for all r ∈ R?

D

because M ′ |= abr for all r ∈ RD.
Since

M ′ |= W ∪R∗
N ∪R∗

D
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we can essentially begin with M ′ and eliminate (non-deterministically) one atom
abr after another as long as the resulting interpretation is a model of W ∪R∗

N ∪R∗
D.

While varying our initial model M , we obtain in this way all minimal models of
W ∪ R∗

N ∪ R∗
D. Such models exist since we deal with a propositional language

over a finite alphabet, so that there is only a finite number of atoms like abr. This
shows that the circumscription results in a satisfiable formula.
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