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Abstract

In this paper we present a theory of qualitative probability. The usual approach of earlier
work was to specify a binary operator � on formulas with φ � ψ having the intended in-
terpretation that the event expressed by φ is no more probable than that expressed by ψ. We
generalise these approaches by extending the domain of the operator � from the set of events
to the set of finite sequences of events. If Φ and Ψ are finite sequences of events, Φ � Ψ has
the intended interpretation that the combined probabilities of the elements of Φ are no greater
than those of Ψ. A sound and complete axiomatisation for this operator over finite outcome
sets is given. We argue that our approach is more perspicuous and intuitive than previous ac-
counts. As well, we show that the approach is sufficiently expressive to capture the results of
axiomatic probability theory and to encode rational linear inequalities. We also prove that our
approach generalises the two major accounts for finite outcome sets.

1 Introduction
Much of Artificial Intelligence (AI) in one fashion or another deals with uncertain information.
Classical probability theory provides the standard formal framework for expressing and reasoning
with uncertain information: propositions are assigned a probability, perhaps within a given context
or conditioned by given evidence; these numbers may then be related according to the familiar rules
of probability. As well, there has been interest in qualitative probabilistic reasoning, where one
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may assert that some event is more probable than another without specifying the exact numerical
probabilities of the events in question. In many cases this latter approach offers a pragmatic,
intuitive, and practical counterpoint to classical probability theory, both in commonsense reasoning
in particular, and in Artificial Intelligence in general.

Classical probability theory provides a quantitative framework for reasoning under uncertainty;
it has had many significant, notable applications across diverse areas of AI. However, in some cases
classical probability may be too fine-grained or demanding; and in many situations, determining
exact numerical probabilities may be difficult or impossible. This could be because a full theory
of a domain of application is lacking, as is the case, for example, in much of the biological and
medical sciences. Or it may simply be too difficult, or not worth the effort, to determine prob-
abilities when a comparative measure will do. For example, it is usually not worth expending a
great deal of energy in deciding whether or not to take an umbrella. Furthermore, reasoning with
exact probabilities can be complex, and typically relies on certain (in)dependence assumptions.
And often one simply wants to compare the likelihood of two events without having to give exact
probabilities. Thus for example, without using exact probabilities, someone might believe that her
second-choice candidate is more likely to win than her first-choice candidate, and cast her vote ac-
cordingly. A final, crucially-important, reason for being able to deal with qualitative information
in AI is that a general knowledge-based system will simply have no choice: a knowledge-based
system must be able to reason with the information that it is given, and such information will often
be qualitative rather than quantitative. This in turn reflects the fact that humans appear to most
often use qualitative rather than quantitative expressions of information.

In a qualitative approach, one can assert that some event is more probable than another without
specifying exact numerical probabilities. Such an approach avoids the above difficulties, in that
one is not obliged to determine specific probabilities. Moreover, particularly in conversation or in
commonsense reasoning, assertions of qualitative probability will often convey information at the
“right” level of detail. Thus, in saying that if it rains the picnic will probably be cancelled, the
essential information regarding the occurrence (or not) of the picnic is conveyed.

The division in AI (and perhaps science as a whole) between qualitative and quantitative ap-
proaches has been explored by, among others, Henry Kyburg (e.g. [Kyburg, 1994]) between what
he calls the probabilist and the logicist way of thinking about the world. The former might make
hedged claims, as with probabilistic reasoning, while the latter may make categorical claims made
in a hedged way, as developed in approaches to nonmonotonic reasoning. So a full account of
qualitative probability may shed light on the relation between quantitative notions of uncertainty
on the one hand, and categorical claims based on likelihood on the other.

Our goal in this paper is to develop and explore the foundations of qualitative probability the-
ory, beginning from first principles. We do this by generalizing from comparisons of likelihoods
of pairs of formulas to comparisons of the combination of likelihoods of pairs of sequences of
formulas; combinations are performed using an operator we call “summation” and comparison is
using a relation called “at most”.1 Qualitative probability assertions are of course not arbitrary,

1The terminology “summation” and “at most” do not necessarily presuppose numbers or quantities. For example,
the summation of non-numeric elements is common in group theory and ring theory, and a non-numeric element being
no greater than another is permitted by order theory. However, the formal semantics of our qualitative probability
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but rather certain entailment relations hold between assertions. For example, we assert that “at
most” is transitive: if the sum of likelihoods of events in Φ is no greater than those of Ψ, and the
sum of likelihoods of events in Ψ is no greater than those of Ξ, then the sum of likelihoods of
events in Φ is no greater than those of Ξ. Another example is that “sum” respects commutativity:
if the sum of the likelihoods of A and B is no greater than the likelihood of C, then the sum of
likelihoods of B and A is no greater than that of C. The central issue is to provide a satisfactory
formal characterisation of qualitative probability or, more precisely, to specify the principles that a
binary operator � must satisfy in order to exactly capture the intended interpretation “is no greater
than” and that the combination operator ⊕ satisfies “summation”. Specifically, the problem is to
give conditions on the operators � and ⊕ so that, for a given consistent set of assertions, there is
guaranteed to be a (quantitative) probability assignment that is compatible with� and⊕ in this set
of assertions. There has been substantial previous work on this topic, without the involvement of
summation. However, it has been a surprisingly difficult and subtle problem to provide a character-
isation of qualitative probability that is both complete (with respect to the quantitative probability
interpretation) and intuitive. We argue that previous work is not wholly satisfactory in this regard.

In Section 3 we give a detailed overview of previous work but, to set the stage, we briefly
summarise this work here. Work in qualitative probability goes back to de Finetti [1937; 1951]
who gave a number of principles that he conjectured were sufficient to capture this notion. Kraft et
al. [1959] showed that these principles were not sufficient, and added a condition to de Finetti’s to
obtain a necessary and sufficient set. A simpler version of their result was given by Scott [1964].
Building on Scott’s work, Segerberg [1971] provided an axiomatisation of an operator � that was
sound and complete for the probability interpretation. Gärdenfors [1975a] provided a simplified
account for finite outcome sets. A drawback to these approaches is that the condition identified by
Kraft et al. is unwieldy and non-finite. In the case of Segerberg’s and Gärdenfors’s axiomatisations,
this condition is represented by infinitely many axiom schemata whose size grows exponentially
and is, again, nonobvious. In a somewhat different vein, Fagin et al. [1990] provide a quantitative
(as opposed to qualitative) approach to reasoning about probability. Their approach is expressed at
a much higher level, and assumes the existence of integers, as well as addition and multiplication.

We address these problems and generalise previous approaches by extending the domain of the
operator � from the set of formulas to the set of finite sequences of formulas. If Φ and Ψ are finite
sequences of formulas, Φ � Ψ has the intended interpretation that the summed probabilities of
the elements of Φ is not greater than the summed probabilities of the elements of Ψ.2 Our goal
is to develop a theory of qualitative probability that is complete, foundational, and perspicuous.
That is, by complete we mean that the theory expresses the set of conditions identified in [Kraft

logic interprets such expressions quantitatively, and our axiomatization shows how this quantitative interpretation can
be captured qualitatively. This mirrors the way the formal semantics of earlier qualitative probability logics interprets
the language quantitatively. We return to this point at the end of Section 3.1 once relevant background material has
been presented.

2There is another way of viewing how we generalise earlier work. In Segerberg’s and Gärdenfors’s approaches,
the comparison of summations of likelihoods of pairwise inconsistent formulas can be expressed using disjunction;
this follows from the additivity condition of probability. In other words, the ⊕ operator coincides with disjunction

∨
(expressible in their language) when the formulas are pairwise inconsistent (our theory proves this: see Theorem 4.9.1),
and our ⊕ generalizes the summation of likelihoods to all sequences regardless of inconsistency.
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et al., 1959]; by foundational, the theory makes minimal assumptions in the axiomatic account;
and by perspicuous, the resulting axiomatisation is intuitive, clear, and readily understandable. We
provide a sound and complete axiomatisation for our notion of qualitative probabilistic comparison
over finite outcome sets. We argue that this approach is simpler, more perspicuous, and more
intuitive than previous accounts. Unlike Segerberg’s and Gärdenfors’s axiomatisations, ours is
schematically finite and it avoids the use of an exponentially-large scheme. Unlike Fagin et al., our
approach is qualitative and we do not employ the machinery of arithmetic in expressing our proof
theory. Further, our approach is sufficiently expressive to capture results of axiomatic probability
theory. For example, the relation P (φ)+P (ψ) = P (φ∨ψ)+P (φ∧ψ) is a theorem of our system,
expressed as φ⊕ψ ≈ (φ∨ψ)⊕ (φ∧ψ). Last, our framework generalises the approaches for finite
outcome sets due to Gärdenfors and Fagin et al., and captures a modest restriction of Segerberg’s
logic.

The next section introduces the concepts from modal logic and probability used in this paper,
while the third section reviews earlier work on qualitative probability and related notions. Sec-
tion 4 describes our logic LQP, including soundness and completeness results, and key derivations
obtained in the system; this also includes a discussion of expressing quantitative notions in what
is arguably a wholly qualitative theory, culminating in valid rational linear inequalities. Section 5
briefly compares our approach with other work, while the last section is a brief conclusion. There
are two appendices; the first contains further details on related work, while the second contains
proofs. This paper is a substantially expanded version of [Delgrande and Renne, 2015].

2 Mathematical Preliminaries
In the paper we make use of basic concepts from modal logic and probability theory. For back-
ground on modal logic, the reader may consult any one of the excellent textbooks such as [Chellas,
1980; Hughes and Cresswell, 1996; Blackburn et al., 2001]; the reader need only be acquainted
with the syntax and Kripke semantics of the modal logics KD and S5, although passing reference
will be made to classical systems of modal logic [Chellas, 1980] in Section 3.2. As for prob-
ability theory, most of the paper will be concerned with finite spaces; however, in a couple of
places the reader will need to have some basic understanding of how probabilities are defined over
infinite spaces using σ-algebras. For further information, we refer the reader to any basic text
on probability theory. We also refer the reader to [Halpern, 2003; Poole and Mackworth, 2010;
Russell and Norvig, 2010] for information both on probability theory and on its role in reasoning
about uncertainty in AI.

2.1 Modal Logic
In a modal logic, a proposition is true or false at a possible world. In the standard formula-
tion of a possible worlds semantics, often referred to as Kripke semantics, a model is a triple
M = 〈W,R, P 〉 where W is a set (of possible worlds); R is a binary relation between possible
worlds, specifying which worlds are accessible from which other worlds; and P is an assignment
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of truth values to atomic sentences at possible worlds. The language of a modal logic is that of
propositional logic augmented by a unary operator �.

More formally, let P be a non-empty set of propositional atoms. A model is a triple M =
〈W,R, P 〉 where:

1. W is a set (of possible worlds),

2. R ⊆ W ×W is an accessibility relation, and

3. P : W → 2P .

ThusR(w,w′) just if w′ is accessible from w or, according to w, w′ is a possible world. P specifies
for each world which propositional atoms are true at that world. The semantics is given in terms of
a pointed model, (M,w) where w is a possible world in M . Truth conditions are as follows, where
for convenience we drop the parentheses from a pointed model:

1. M,w |= p iff p ∈ P (w) where p ∈ P .

2. M,w |= ¬φ iff M,w 6|= φ.

3. M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ.

4. M,w |= �φ iff for every w′ ∈ W such that R(w,w′), we have M,w′ |= φ.

M,w |= φ asserts that φ is true at world w in model M while M,w |= �φ asserts that φ is true at
every world w′ such that Rw,w′.

The modal logic corresponding to the above semantics is called K; it is defined by the following
axiom schemes and rules of inference:

(PC) All tautologies of classical propositional logic
(K) �(φ ⊃ ψ) ⊃ (�φ ⊃ �ψ)
(MP) From φ ⊃ ψ and φ, infer ψ
(Nec) From φ, infer �φ

In the sequel, we will deal with the modal logic KD, in which the accessibility relation is serial,
that is, where for any w ∈ W , there is w′ such that R(w,w′). This is captured by the axiom:

(D) �φ ⊃ ¬�¬φ.
Last, for modal logic S5, the accessibility relation is an equivalence relation, that is, it is re-

flexive, symmetric, and transitive. S5 has been used to model introspective reasoners in which the
formula �φ has intended interpretation “the agent knows that φ is true”. The axiomatisation is that
of K augmented with the following axioms:

(T) �φ ⊃ φ
(4) �φ ⊃ ��φ
(5) ¬�φ ⊃ �¬�φ
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2.2 Probability
To define a basic probabilistic system, we begin with a nonempty set Ω called the sample space.
Each member of the sample space is called an outcome. The sample space represents all possi-
ble ways an experiment or occurrence might turn out. For example, the sample space might be
{1, 2, 3, . . . , 6}, with each outcome representing a possible throw of a six-sided die. We call a
set of outcomes an event or a proposition. A proposition is taken to be true if and only if, after
the experiment or occurrence, the actual outcome is among those that make up the proposition in
question. Thus, for the outcome set Ω = {1, 2, 3, . . . , 6} representing a throw of a six-sided die,
the proposition {2, 4, 6} represents the situation where the result of the throw is an even number.

Probability can be thought of as the expectation some agent has as to the likelihood of various
propositions. This likelihood is measured as a real number in the range [0, 1], with 0 indicating the
agent considers the proposition impossible and 1 indicating the agent considers the proposition a
certainty. Thus it is impossible for a throw of the six-sided die to show a seven (i.e., a throw of
seven has probability 0). But it is certain that a throw will yield a whole number between 1 and 6,
inclusive (i.e., a throw of 1 to 6 has probability 1, thereby excluding the possibility the die lands
on an edge, does not ever land, or some such other strange outcome).

In the simplest case, probabilities are given by a function, called a probability measure, P , that
assigns to a proposition E a real number P (E) ∈ [0, 1] subject to Kolmogorov’s axioms:

1. 0 ≤ P (E)

2. P (Ω) = 1

3. if E0, E1, E2, . . . is a pairwise disjoint collection of propositions, then

P (
⋃
i∈ω Ei) =

∑
i∈ω P (Ei) .

That is, propositions are assigned non-negative probabilities; the outcome must be among those in
the sample space; and the probability of a proposition can be obtained by partitioning the proposi-
tion in to non-overlapping pieces and adding up the probabilities of each piece.

Relating this to modal logics, a set of possible worlds can be thought of as the set of outcomes.
A proposition (or event) then can be specified by a subset of these possible worlds. In the finite case
every set of possible worlds can be characterised by a formula, and a probability can be assigned
to every set of possible worlds.

However, there may be cases where one does not want probabilities assigned to every set of
possible worlds, or indeed it may be that probabilities cannot be assigned (as in the infinite case)
so that other desirable properties hold. To this end, a probability measure can be more generally
defined with respect to a σ-algebra, where a σ-algebra of subsets of Ω is a set of subsets of Ω that
contains Ω and is closed under complement relative to Ω and under countable unions.3

Then, a probability measure on a σ-algebra F ⊆ 2Ω is a function of type F → [0, 1] satisfying
the following generalised axioms of Kolmogorov:

3Contrast this with the notion of an algebra which is a set of subset of Ω such that it first, contains Ω and, second,
is closed under complement and finite unions.
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1. 0 ≤ P (E) for each event E ∈ F

2. P (Ω) = 1

3. if 〈Ei〉i∈ω is a pairwise disjoint countable sequence of events in F , then

P (
⋃
i∈ω Ei) =

∑
i∈ω P (Ei) .

3 Background

3.1 Qualitative Probability
Consider the problem of specifying a relation� between formulas,4 where φ � ψ has the intended
interpretation that φ is not more probable than ψ. That is, the problem is to provide conditions on
� such that for a set of such assertions there is guaranteed to be a realizing probability measure
P (·) on formulas. This means that for all formulas φ and ψ,

φ � ψ iff P (φ) ≤ P (ψ).

De Finetti [1937; 1951] conjectured that the following conditions were necessary and sufficient,
where 0 is some inconsistent formula: For each φ, ψ, and γ,

1. 0 � ψ

2. φ � ψ and ψ � γ implies φ � γ

3. φ � ψ or ψ � φ

4. If φ ∧ γ and ψ ∧ γ are each inconsistent, then: φ � ψ iff φ ∨ γ � ψ ∨ γ.

While these conditions are clearly sound, Kraft et al. [1959] showed that they are not complete,
in that there are orderings on propositions that satisfy de Finetti’s conditions but for which there is
no realizing probability measure. For our purposes, their counterexample is most easily phrased in
terms of possible worlds. Consider the set of possible worlds

W = {w1, w2, w3, w4, w5}.

A subset of W can be thought of as representing a proposition. Consider the relations:

{w3} � {w1, w2} {w1, w5} � {w2, w3}
{w2, w4} � {w1, w3} {w1, w2, w3} � {w4, w5}.

[Kraft et al., 1959] show that these relations can be extended to an ordering on all subsets ofW that
satisfies de Finetti’s conditions but for which there is no corresponding probability measure. (In the
counterexample, an assignment of probability of .2 to each world is easily seen to be inconsistent.

4We henceforth talk of formulas rather than events when referring to sentences of some logic
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[Kraft et al., 1959] show that every such assignment of probabilities is inconsistent.) They also
provide a criterion so as to ensure a realizing probability measure always exists.

Scott [1964] reformulated and simplified these results in an algebraic form. Segerberg [1971]
developed a logic of qualitative probability that made use of Scott’s results; this logic had a binary
operator � and a unary modal operator � of necessitation. Gärdenfors [1975a] (also [1975b])
subsequently simplified Segerberg’s approach by restricting to finite sets and defining necessitation
as probabilistic certainty: �φ .

= (1 � φ).
Segerberg’s and Gärdenfors’s axiomatisations both use the following abbreviation schema:

φ1, . . . φmEψ1, . . . ψm
.
= �(C0 ∨ · · · ∨ Cm) (1)

where m ≥ 1 and for 0 ≤ i ≤ m, the formula Ci is the disjunction of all conjunctions

e1φ1 ∧ · · · ∧ emφm ∧ f1ψ1 ∧ · · · ∧ fmψm

where exactly i of the e’s and i of the f ’s are the negation sign, and the rest are the empty string.
The overall import is that a disjunct Ci in (1) asserts that exactly i of the φ’s and i of the ψ’s
are false; and so φ1, . . . φmEψ1, . . . ψm, which we write as (φi)

m
i=1E(ψi)

m
i=1, asserts that exactly

the same number of φ’s are true as are the ψ’s. Then each of their logics contains the following
schema, encoding the Kraft et al. [1959] condition:5

(A4) ((φi)
m
i=1E(ψi)

m
i=1 ∧

∧m−1
k=1 (φk � ψk)) ⊃ (ψm � φm) for all m ≥ 1

Gärdenfors gives an axiomatisation for his logic QP of qualitative probability that encodes the
de Finetti principles along with the schema (A4) in the context of propositional logic. Segerberg’s
logic PK is more general and his axiomatisation, while largely analogous to Gärdenfors’s, is more
elaborate. These logics are shown to be sound and complete with respect to a possible worlds
model in which a probability measure is associated with sets of possible worlds.

Gärdenfors’s and Segerberg’s axiomatisations are not ideal for several reasons. First, if an
axiomatisation is intended to clearly lay out underlying principles for deductions in a logic, the key
axiom schema (A4) would fail this criterion, in that it is opaque and non-perspicuous. (Segerberg
calls it “formidable”.) Second, the disjunction represented in the E definition grows exponentially
with m.6 Third, (A4) specifies infinitely many axiom schemas, one for each positive integer m;
consequently, the above axiomatisation for QP is not schematically finite.

A different (and quite separate) approach to reasoning about probability is the theory AXmeas of
quantitative probability of [Fagin et al., 1990]. Their language permits Boolean combinations of
linear inequalities of the form

c � a1w(φ1) + · · ·+ anw(φn),

where c and the ai’s are integers and the φi’s do not contain �’s or w(·)’s. That is, their language
does not allow nesting of inequalities. The expression w(φ) is mapped in the semantics to a real

5Gärdenfors calls the schema (A4(m)).
6More precisely, (φi)

m
i=1E(ψi)

m
i=1 contains

∑m
i=0

(
m
i

)
disjuncts, which is bounded below by 2m and above by

(2m)2.
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number called the “weight” of φ. This ends up being the probability of event φ. A generalisation
of this theory is presented in [Fagin and Halpern, 1994]. This latter formalism includes multiple
agents and an additional S5 modal operator for knowledge; as well nestings of the operator � are
admitted. Given that this system diverges from our interests at hand, in later discussions we focus
on the theory AXmeas of [Fagin et al., 1990].

In Section 5, we compare our approach with the logics QP, PK, and AXmeas.

Qualitative vs. Quantitative Probability What distinguishes qualitative from quantitative prob-
ability (truth valued) logics is that qualitative probability logics do not employ quantities or arith-
metic operations in the syntax, and the informal reading of the qualitative probability formulas do
not require a quantitative interpretation. For example, the quantitative probability logic of [Fagin
et al., 1990] makes numbers explicit in the language. On the other hand, the comparison op-
erator � of qualitative probability logic need not imply that the likelihoods being compared are
numeric. As well, while we use the suggestive term “summation”, it does not presuppose numbers
as operands; as we noted earlier, the summation of non-numeric elements is common in group the-
ory and ring theory. However, both qualitative and quantitative probability logics share a formal
semantics involving real (quantitative) probability. In the case of a qualitative probability logic,
the axiomatization thus is shown (via the soundness and completeness results) to faithfully re-
flect probabilistic principles, in that for a consistent set of assertions, there is guaranteed to be a
corresponding realising probability distribution.

3.2 Other Approaches
In this section we briefly summarise work that is not directly related to a general notion of qualita-
tive probability, but that nonetheless can be seen as addressing similar concerns.

To begin, there has been work addressing a modal notion of probable, where the formula Pφ
has the intended interpretation that φ is probably true. Probable in these cases could mean that the
probability of φ is at least .5, or is greater than .5, or is greater than some fixed parameter c > .5.
Herzig [2003] investigates such a modal operator along with other modal concepts for belief and
action. (As well [Herzig, 2003] contains a good overview of earlier work on modal probability.)
The P operator is not closed under conjunction, and so the semantics is described not in terms of
Kripke structures, but rather in terms of minimal models [Chellas, 1980]. The principles governing
the P operator alone are, following [Burgess, 1969], as follows:

(N) P>
(D) ¬(Pφ ∧ P¬φ)

(RM) From φ ⊃ ψ infer Pφ ⊃ Pψ.

Kyburg and Teng [2012] deal with a similar notion, where in their approach �εφ holds just if
the probability of ¬φ is no more than a fixed (small) parameter ε. The resulting logic is that of the
classical system of modal logic EMN [Chellas, 1980]. This logic can be axiomatised by (N) and
(RM), above.

van Eijck and Renne [2014] extend this analysis to a logic of knowledge and belief where an
agent knows a formula φ, expressed Kφ, just if φ has probability 1; and the agent believes φ, Bcφ,
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just if the probability of φ is at least some fixed value c > .5. The logic of K is S5 while the
logic of B is EMND45, which in turn is essentially Burgess’s logic (above) but with positive and
negative introspection. As noted by the authors, some of this work extends and elaborates on work
originally appearing in [Lenzen, 1980].

Other work examines approaches not necessarily based on an underlying probabilistic seman-
tics. Halpern and Rabin [1987] develop a modal logic of likelihood, where Lφ is interpreted as “L
is likely” but where the meaning of “likely” is relative to a user. Their rationale is that there are
situations where we want to reason about likelihood beyond probability theory or where probabil-
ity theory may not be applicable. In more detail, Lφ has interpretation “φ is reasonably likely to
be a consistent hypothesis” which, as the authors note, is much weaker than the statement “φ holds
with probability at least .5”. Iterations of L give weaker notions of likelihood, so if Lφ is taken to
mean that φ is reasonably likely then LLφ could be taken to mean that φ is somewhat likely. The
semantics is given in terms of a Kripke structure in which Lφ is true at a possible world w just if
there is an accessible possible world w′ where φ is true. Consequently, Lφ∧L¬φ is satisfiable and
Lφ∨L¬φ is a theorem. [Halpern and McAllester, 1989] examines this approach with regards to a
probabilistic interpretation.

Holliday and Icard [2013] (see also [Harrison-Trainor et al., 2017]) explore semantics for no-
tions of qualitative probability, including models based on a measure semantics (such as those of
the previous subsection), as well as those based on orderings over possible worlds and orderings
over events. Thus for example, for a semantics based on orderings over possible worlds, the po-
sition of a world in an ordering may represent its relative likelihood; this in turn can be lifted to
an ordering on sets of worlds, or events [Halpern, 1997]. While such (world- or event-) based
semantics can capture notions of preferential reasoning, arguably they are not suitable for a foun-
dational account of qualitative probability. That is, while orderings over worlds or sets of worlds
capture preferential reasoning, there is then another step to show that such semantics structures
are compatible with a probability interpretation. As well, it may not be straightforward to get
such event-ordered and world-ordered semantics to agree with a probabilistic interpretation. Last,
[Narens, 2007] presents a more general theory of probability than Kolmogorov’s, addressing in
particular questions of qualitative foundations.

4 A Logic of Qualitative Probability
In this section we present our approach to qualitative probability. The language is that of propo-
sitional logic augmented by a binary modal operator � on sequences of formulas. The goal is
to axiomatically provide conditions on � such that for a set of formulas over this language, this
set is consistent if and only if there is guaranteed to be a realizing probability measure P (·) that
satisfies these formulas. The approach then is purely qualitative in that the axiomatisation makes
no reference to numbers, arithmetic, etc., but refers only to formulas in this extended propositional
language; properties of�, such as transitivity, are explicitly given in the axiomatisation. While the
symbol 1 may appear in formulas, it simply stands for some specific tautology, such as p ∨ ¬p.

The next subsection covers the language and semantics. The semantic theory is not new, and
appears in many approaches to probability: given a set of possible worlds, each world is assigned
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a probability. The probability of a formula in a model then is just the sum of the probability
of those worlds at which the formula is true. Then, in our approach, Ψ � Φ is satisfied at a
world just if the summed probabilities of the formulas in Ψ is not greater than those of Φ. This is
followed in the second subsection by the axiomatisation, which specifies the (qualitative) principles
governing�. An extensive exploration of derivable formulas is given and we finish with soundness
and completeness results. The third subsection shows how qualitative notions can nonetheless be
encoded in the approach.

4.1 Language and Semantics
Definition 4.1 (Language LLQP) Fix a nonempty set P of propositional atoms. The language
LLQP consists of the formulas φ and the sequences Φ formed by the following recursion:

φ ::= p | ¬φ | (φ ∨ φ) | (Φ � Φ) p ∈ P
Φ ::= φ | φ⊕ Φ

Formulas occurring in sequences are called elements, and expressions Φ � Ψ are called in-
equalities. We use the symbols φ, ψ, and χ, possibly with subscripts or superscripts, as metavari-
ables for formulas. We use Φ, Ψ, and ∆ similarly for sequences. Sequences may be written using
indexed prefix notation so that, for example,

⊕3
i=1 φi denotes φ1 ⊕ φ2 ⊕ φ3. We use |Φ| to denote

the number of elements in Φ, or the length of Φ. Thus for example |φ ⊕ φ ⊕ ψ| = 3. Note that
the syntax excludes empty sequences, and so for any sequence Φ, we have |Φ| > 0. We may write
φ ∈ Φ to indicate that φ occurs as an element of Φ. We will often drop parentheses when no
ambiguity of meaning results; hence we might write simply φ1 ∨ φ2 ∨ φ3.

We use the standard definitions for the Boolean connectives ∧ (conjunction), ⊃ (material im-
plication), and ≡ (material equivalence). We define 1 to be some arbitrary fixed tautology in the
underlying propositional language (e.g., p ∨ ¬p), and we define 0 as ¬1. Φ ≈ Ψ abbreviates
(Φ � Ψ) ∧ (Ψ � Φ), and Φ ≺ Ψ abbreviates (Φ � Ψ) ∧ ¬(Ψ � Φ). We define �φ to be (1 � φ).

Our goal is to capture axiomatically the intended interpretation that, for formula Φ � Ψ, the
sum of the probability of the elements on the left of the inequality is less than or equal to that on
the right. For example, a theorem in our approach is 1 ≺ 1⊕ 1. Our theory will ensure that every
tautology has probability 1. Hence the symbolic expression 1, which in reality is simply some fixed
tautology, can be interpreted as having numerical probability 1. (Thus it ought not cause confusion
that we use the same symbol to denote both the number 1 and the symbolic abbreviation 1 for a
fixed tautology in the language.) Since the tautology 1 has probability 1, the expression �φ, itself
an abbreviation for 1 � φ, has the intuitive meaning that the probability of φ is 1 or, equivalently,
that φ is probabilistically certain.

We now turn to the semantic theory underlying our approach, beginning with our definition of
model. This definition is essentially the same as that of [Segerberg, 1971], [Gärdenfors, 1975a],
and others. It can be noted that this definition is quite general, and more general than what we
require. In particular, the axiomatic theory we will present is sound with respect to what are called
the class of simple models, below. However, to facilitate our comparisons with previous work, it
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is most convenient to have at hand the full class of models encompassed by Definition 4.2. We say
more about this later.

Definition 4.2 (Model) A model is a structure M = (W,Π, V ) such that:

1. W is a nonempty set of objects, or possible worlds.

2. Π maps each world w ∈ W to a tuple Πw = (Ωw, Fw, Pw) that satisfies the following
principles making it a probability space:

(a) Ωw ⊆ W is a nonempty set of outcomes;

(b) Fw ⊆ 2Ωw is a σ-algebra of subsets of Ωw. E ∈ Fw is called an event or measurable
set;

(c) Pw : Fw → [0, 1] is a probability measure on Fw.

3. V : W → 2P is a propositional valuation assigning to each world w ∈ W a set V (w) ⊆ P
of propositional atoms taken to be true at w.

A model is:

• finite iff W is finite;

• uniform iff Πw = Πv for each w, v ∈ W ;

• total iff Ωw = W for each w ∈ W ;

• powerset iff Fw = 2Ωw for each w ∈ W ;

• simple iff it is finite and powerset; and

• super-simple iff it is uniform, total, and simple.

A pointed model is a pair (M,w) consisting of a modelM and a world w (called the point) coming
from the set of worlds of M .

Our interests will mainly be with simple models, and also on occasion with super-simple mod-
els. For now, think of a model as specifying a number of possibilities as to what might come to
be—these are the possible outcomes of some experiment or occurrence. A proposition may be
identified with a set of outcomes: this proposition is true if and only if the outcome that comes to
pass is among those that make up the set.

We next discuss the various terms in Definition 4.2; those familiar with these notions can skip
to Definition 4.3. A probability space is used to assign probabilities to certain propositions. Propo-
sitions that are assigned probabilities are called measurable sets or events. Due to mathematical
difficulties that may arise when we work with infinite models (i.e., those having infinitely many
outcomes), it is not always possible for us to assign a probability to every proposition while guar-
anteeing that our probability function satisfies Kolmogorov’s axioms. So it is not always possible
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for every proposition to be measurable. However, in certain special cases, we do not run into this
difficulty. In particular, if a model is finite (i.e., there are finitely many outcomes), then it is always
possible to construct a probability space that assigns a probability to every proposition, and doing
so yields a situation in which every proposition is measurable (i.e., is an event).

We may think of a probability space as describing an agent’s beliefs as to the likelihood that
a given event will obtain. Then, a rough way of thinking of measurable sets is as follows: A
measurable set is a proposition for which the agent’s belief state permits her to make a judgment
as to the likelihood that the outcome will be among those that make up the set. This likelihood is
represented by the assignment of a real-number probability between 0 and 1, with 0 representing
perceived impossibility and 1 representing perceived certainty. Note that just because we can
construct a probability space in which every proposition is measurable, it does not follow that every
probability space on the same outcome set has this property. In particular, even within the class of
finite models, it is possible to construct a probability space in which some propositions are non-
measurable.7 Intuitively, in such models, the agent does not have a belief about every proposition.
However, powerset models disallow this possibility: in a powerset model, every proposition is
measurable, and therefore the agent indeed has a belief about (i.e., assigns a probability to) each
and every event.

Each world is associated with its own probability space, and the probability space used at one
world need not be the same as that used at another. If every world uses the same probability space,
then we say the model is uniform. Such models are those in which the agent is certain of what
she believes (in the sense that she cannot hypothesize another world in which she uses a different
probability space). Non-uniform models permit the agent to have uncertainty in her own beliefs
(as to which probability space she should use). Thus in non-uniform models there are two levels
of uncertainty: the first is the agent’s uncertainty as represented by the probability she assigns to
events, and the second is the agent’s uncertainty as to which probability space she should use to
assign probabilities to events. For example, an agent may entertain one outcome whose probability
function describes a fair coin (probability 0.5 for heads) and another whose probability function
describes a coin biased 3:1 in favour of heads (probability 0.75 heads). In such a situation, she
is uncertain both about whether the coin will land on heads and about what probability space she
ought to use in assessing the likelihood of heads.

Definition 4.2 makes a distinction between worlds and outcomes. Properly speaking, models
are made up of worlds. (Think of these as possible states-of-affairs.) Each world w gives rise
to a probability space Πw = (Ωw, Fw, Pw). The set Fw contains the measurable sets and the
function Pw assigns a probability to each measurable set. Measurable sets are made up of worlds;
however, these worlds must come from the set Ωw of outcomes, where Ωw need not contain every
world. Since the probability measure uses the set of outcomes, we might end up in a situation in
which a certain world v is not among the possible set of outcomes. This world v therefore plays
no direct role in probability considerations. However, v may be accounted for when considering
probabilities of probabilities or even deeper nestings of probabilities. We say that a model is total
to mean that every world is an outcome, and have Ωv = W for every world v ∈ W .

7For example, define M = (W,Π, V ) by setting W = {w1, w2}, F = {∅,W}, P (∅) = 0 and P (W ) = 1, and
Πw1

= Πw2
= (W,F, P ).
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A simple model is both finite and powerset. In such a model, the situation is indeed “simple”:
finiteness ensures we do not have difficulties in assigning probabilities to events, and powerset-
ness requires that every event is indeed assigned a probability. However different worlds can still
use different probability spaces, and we still might have non-outcome worlds. So even in simple
models, the agent can be “uncertain” about her beliefs (in the sense described above) and some
worlds need not be among the possible outcomes. Our most refined class of models, the super-
simple models, disallows both of these: a super-simple model is a simple model that is also uniform
and total (i.e., it is uniform, total, finite, and powerset). In a super-simple model, the agent’s beliefs
are not world-specific, every world is a possible outcome, there are finitely many worlds (and hence
finitely many outcomes), and the agent assigns a probability to every proposition.

We turn next to notions of truth and satisfaction in LQP.

Definition 4.3 (LLQP Satisfaction, Validity) The semantic function [[·]] : LLQP → 2W and the
satisfaction relation |= between pointed models and LLQP-formulas are defined as follows.

• [[φ]]M
.
= {w ∈ W |M,w |= φ}, where φ ∈ LLQP.

• [[φ]]wM
.
= [[φ]]M ∩ Ωw.

• M,w |= p iff p ∈ V (w), where p ∈ P .

• M,w |= ¬φ iff M,w 6|= φ.

• M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ.

• M,w |= Φ � Ψ iff we have [[χ]]wM ∈ Fw for each χ ∈ Φ or χ ∈ Ψ, and that∑
φ∈Φ

Pw([[φ]]wM) ≤
∑
ψ∈Ψ

Pw([[ψ]]wM) .

We say that φ is valid in M , written M |= φ, to mean that M,w |= φ for each world w in M . For
a class C of models, we write C |= φ and say that φ is valid with respect to C, to mean that M |= φ
for each M ∈ C. If the class C is not mentioned, it is assumed to be the full class of models.

Theorem 4.4 If M is a super-simple model, then for any world v in M , we have

M,w |= Φ � Ψ iff
∑

φ∈Φ Pv([[φ]]M) ≤
∑

ψ∈Ψ Pv([[ψ]]M) .

A Note on Possibility Observe that models permit two kinds of “possibility” with respect to a
world v: the probabilistic notion (i.e., the singleton event {v} has nonzero probability) and the
Kripke-style possible worlds notion captured by the modal logic S5 (i.e., the world v is among
the set W of all possible worlds).8 These two notions of possibility need not coincide: a world v

8Recall that S5 is sound and complete with respect to the class of Kripke models for which the accessibility relation
is total (i.e., each world is accessible from itself and any two worlds are accessible from each other in both directions)
[Blackburn et al., 2001].
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may be Kripke-possible (i.e., v ∈ W ) while being probabilistically impossible (i.e., the probability
of {v} is 0). The language LLQP is designed to address only the probabilistic notion. In order
to address the Kripke notion as well, one would need to include an additional modal necessity
operator. This is the approach of Segerberg [1971], who adds to the language LLQP a modal
necessity operator we denote here as �.9 In general the semantics then must be extended by taking
our models M = (W,Π, V ) and adding a binary operator R ⊆ W ×W , obtaining generalized
models M = (W,R,Π, V ). Defining R(w)

.
= {v ∈ W | (w, v) ∈ R}, we would then extend

Definition 4.3 so as to interpret formulas �φ at a pointed generalized model as follows: M,w |=
�φ means that M, v |= φ for all v ∈ R(w). Intuitively, v ∈ R(w) is a “(epistemically) possible
world,” whereas u ∈ Ω(w) is a “potential outcome” of a probabilistic process. One may then wish
to restrict attention to the models satisfying the following property: we have Ωw ⊆ R(w) for each
w ∈ W , which says that all potential outcomes are epistemically possible. The modal operator
� then allows us to refer to epistemic possibility whereas the defined operator � allows us to
refer to probabilistic possibility. It is useful to have separate operators for these concepts since
these concepts need not be the same in probabilistic measures on infinite spaces. For example, if
we denote the setting of a light dimmer using the real interval [0, 1] such that 0 denotes minimal
intensity, 1 denotes maximal intensity, and we take the probability of the switch falling in a given
interval to be the length of that interval, then it is probabilistically impossible that the switch will
be set to 0.5 (since a point has zero length), even though this particular setting is epistemically
possible.

From the perspective of generalized models, our approach amounts to assuming finite spaces
(i.e., W is finite), assuming that all potential outcomes are epistemically possible, and taking R
to be an equivalence relation (i.e., it is reflexive, transitive, and symmetric). Segerberg’s [1971]
approach assumes that all outcomes are possible but permits less restrictive assumptions on R
and does not require spaces to be finite (i.e., W can be infinite). This generality is interesting
and a full comparison of our work here with that of Segerberg [1971] would require us to work
with generalized models over infinite spaces and consider the epistemic possibility operator �.
However, our goal here is more modest, in that we wish to look at a basic theory for reasoning about
qualitative probability in finite spaces. As such, we set aside considerations of not-necessarily
finite generalized models and of the � operator for future work. In this way, our work is closer to
the more perspicuous approach of Gärdenfors [1975a] and has connections with the quantitative
probabilistic approach of [Fagin et al., 1990]. We comment more on our connections with these
and other works later.

4.2 Axiomatic Theory
The previous subsection described a probabilistic semantics for formulas of the form Ψ � Φ. This
semantics provides a means of determining the adequacy (via soundness and completeness results)
of our axiomatic theory of qualitative probability, given next.

Definition 4.5 (LQP) LQP is defined by the following axiom schemes and rules:
9Segerberg [1971] uses instead the symbol �. We have defined the latter symbol as �φ .

= 1 � φ already, and so
use instead � to denote Segerberg’s necessity operator.
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(PC) All tautologies of classical propositional logic
(Triv) 0 ≺ 1

(Tran) (Φ � Ψ) ⊃ ((Ψ � ∆) ⊃ (Φ � ∆))

(Tot) (Φ � Ψ) ∨ (Ψ � Φ)

(Sub) �(φ1 ≡ φ2) ∧�(ψ1 ≡ ψ2) ⊃ ((φ1 ⊕ Φ � ψ1 ⊕Ψ) ≡ (φ2 ⊕ Φ � ψ2 ⊕Ψ))

(Com) (Φ1 ⊕ Φ2 � Ψ) ≡ (Φ2 ⊕ Φ1 � Ψ)

(Φ � Ψ1 ⊕Ψ2) ≡ (Φ � Ψ2 ⊕Ψ1)

(Add) ((Φ1 � Ψ1) ∧ (Φ2 � Ψ2)) ⊃ (Φ1 ⊕ Φ2 � Ψ1 ⊕Ψ2)

(Succ) (1⊕ Φ � 1⊕Ψ) ⊃ (Φ � Ψ)

(K1) 0 � φ

(K3) �¬(φ ∧ ψ) ⊃ (φ⊕ ψ ≈ φ ∨ ψ)

(MP) From φ ⊃ ψ and φ, infer ψ
(Nec) From φ, infer �φ

The axiom (Triv) avoids triviality, while (Tran) and (Tot) specify that � is transitive and con-
nected, respectively. (Sub) is substitution of necessary equivalents with respect to initial elements
of a sequence. (Com) expresses that sequences are commutative. (Add) allows one to “combine”
two inequalities, while (Succ) allows one to “remove” initial 1 elements from both sides of �.
(K1) and (K3) correspond to the first and third Kolmogorov axioms; the second Kolmogorov ax-
iom, which essentially says that a valid proposition has probability 1, is expressed by (Nec) and the
abbreviation �φ

.
= (1 � φ). (PC) and (MP) are straightforward, giving that the resulting system

subsumes classical propositional logic. While this set of axioms may not be absolutely minimal,
we have endeavoured to be parsimonious in their specification.

We next explore derivations of this axiomatisation, showing inter alia that we can derive a rich
set of results in our theory. These results are presented in four groups, each given as a theorem.
They give results concerning properties of sequences, probability, modal logic, and some extended
principles, respectively. We conclude the subsection with soundness and completeness results.

Theorem 4.6 (Sequences)

1. (Ref): `LQP Φ � Φ

2. ≈ is an equivalence relation

3. `LQP (Φ � Ψ) ⊃ (∆⊕ Φ � ∆⊕Ψ)

4. Substitution for length-1 sequences:

`LQP �(φ1≡φ2) ∧�(ψ1≡ψ2) ⊃ ((φ1 � ψ1) ≡ (φ2 � ψ2))

5. General substitution of necessary equivalences:

Let φ1 ∈ Φ1 and ψ1 ∈ Ψ1. Let Φ2 be the same as Φ1 but with some instance of φ1 replaced
by φ2, and similarly for Ψ2. Then:

`LQP �(φ1≡φ2) ∧�(ψ1≡ψ2) ⊃ ((Φ1 � Ψ1) ≡ (Φ2 � Ψ2))
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6. Replacement principles:

`LQP (Φ1 ≈ Φ2) ⊃ ((Φ1 ⊕ Φ � Ψ) ≡ (Φ2 ⊕ Φ � Ψ))

`LQP (Ψ1 ≈ Ψ2) ⊃ ((Φ � Ψ1 ⊕Ψ) ≡ (Φ � Ψ2 ⊕Ψ))

7. Cancellation principle:

`LQP (∆⊕ Φ � ∆⊕Ψ) ⊃ (Φ � Ψ)

8. Ordering principle:

`LQP (Φ1 � Ψ1)⊃((Ψ1 ⊕Ψ2 � Φ1 ⊕ Φ2)⊃(Ψ2 � Φ2))

The first three parts of the theorem are straightforward. Part 4 is necessary since in (Sub) we
have that a sequence Φ is nonempty. Similarly, Part 5 shows, not unreasonably, that substitution
of necessary equivalents holds for arbitrary elements of a sequence. Part 6 extends substitution of
necessary equivalents to substitution under ≈. Part 7 extends (Succ) to arbitrary sequences. The
Ordering Principle, Part 8, which we will subsequently generalise, is a key for many later results.

The next theorem gives various results from classical probability.

Theorem 4.7 (Probability)

1. `LQP φ ≈ φ⊕ 0

2. `LQP (φ⊕ ψ ≈ 0) ⊃ (φ ≈ 0)

3. `LQP φ ≈ (φ ∧ ψ)⊕ (φ ∧ ¬ψ)

4. `LQP φ⊕ ψ ≈ (φ ∨ ψ)⊕ (φ ∧ ψ)

5. `LQP φ � 1

6. `LQP φ⊕ ¬φ ≈ 1

7. `LQP φ ∨ ψ � φ⊕ ψ

8. `LQP (φ � ψ) ⊃ (¬ψ � ¬φ)

All of these results are standard from elementary probability theory. Thus Part 3 expresses that

P (φ) = P (φ ∧ ψ) + P (φ ∧ ¬ψ),

while Part 4 expresses that

P (φ) + P (ψ) = P (φ ∨ ψ) + P (φ ∧ ψ),

which is usually expressed as

P (φ ∨ ψ) = P (φ) + P (ψ)− P (φ ∧ ψ).
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Other results may be read off analogously.
The next theorem concerns the necessitation operator. The first and last part relate � to �,

while the second and third items show that the underlying modal logic for � is KD.10 Since this
means that � is a normal modal operator, we henceforth use results regarding normal modal logics
freely.

Theorem 4.8 (Modal Logic)

1. `LQP �(φ ⊃ ψ) ⊃ (φ � ψ)

2. `LQP �(φ ⊃ ψ) ⊃ (�φ ⊃ �ψ)

3. `LQP ¬�0

4. `LQP �φ ⊃ ((φ ∧ ψ) ≈ ψ)

The following results generalise earlier results from the binary case to the general n-ary case.
While of limited interest as independent results, they are used in the completeness proof and for
relating the approach to other work. The first part extends Theorem 4.7.3 to an arbitrary number of
pairwise-inconsistent formulas. The second part is straightforward but useful. The third and fourth
parts generalise Theorem 4.6.8.

Theorem 4.9 (Extended Principles) For formulas φi and ψi for 1 ≤ i ≤ n, and sequences Φi

and Ψi for 1 ≤ i ≤ n, we have:

1. `LQP

∧
1≤i 6=j≤n�¬(φi ∧ φj) ⊃ (

⊕n
i=1 φi ≈

∨n
i=1 φi)

2. `LQP

∧n
i=1 �(φi ≡ ψi) ⊃ (

⊕n
i=1 φi ≈

⊕n
i=1 ψi)

3. `LQP ((
⊕n

i=1 Φi ≈
⊕n

i=1 Ψi) ∧
∧n
i=1(Φi � Ψi)) ⊃ (Ψk � Φk)

4. `LQP

(
(
⊕n

i=1 Φi ≈
⊕n

i=1 Ψi) ∧
∧n−1
i=1 (Φi � Ψi)

)
⊃ (Ψn � Φn)

The axiomatisation is sound and complete with respect to the class of simple models:

Theorem 4.10 (LQP Soundness) Let Cs be the class of simple models. For each φ ∈ LLQP, we
have the following:

if `LQP φ then Cs |= φ .

Corollary 4.10.1 (LQP Consistency) LQP is consistent: 0LQP 0.

Theorem 4.11 (LQP Completeness) Let Cs be the class of simple models. For each φ ∈ LLQP,
we have the following:

if Cs |= φ then `LQP φ .

Proof outline. We use the standard completeness proof method of showing that any consistent
formula is satisfiable. Specifically, given a consistent formula ¬θ, we use a modal filtration and
Theorem 1.211 of [Scott, 1964] to obtain a simple model (W,P, V ) that satisfies ¬θ.

10More accurately, these items show that the underlying logic is at least KD. Since we share the same definition of
model, the theorem in [Gärdenfors, 1975a][p. 183], showing that the logic is exactly KD, applies here.

11Interestingly, Gärdenfors and Segerberg instead use Theorem 4.1 from [Scott, 1964].
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The filtration is used to define the finite set of worlds W (as the set of maximal consistent
subsets of a finite set A generated from θ) and the valuation function V (mapping each world
w ∈ W to the set of proposition letters in w).

For each world w ∈ W , a probability space (Ωw, 2
Ωw , Pw) is constructed as follows. First, the

set Ωw ⊆ W is the collection of worlds that each contain the formulas inA that can be proved from
w to be probabilistically certain. We then define a probability function Pw from a linear functional
fw that we obtain by applying Scott’s [1964] Theorem as follows.

The basis S for the vector space L(S) is the set W of worlds. We identify vectors in L(W )
with functions from W to R. For X and N , we have local sets Xw and Nw defined as follows.

The set Nw is a collection of functions from W to Z, each defined by sums and differences of
characteristic functions ι([φ]w) of sets of worlds [φ]w that satisfy certain formulas φ; in particular, a
characteristic function ι([φ]w) is added each time φ is in an appropriate sequence Φ that is provable
from w to be at least as likely as an appropriate other sequence, and ι([φ]w) is subtracted each time
φ is in an appropriate sequence that is provable from w to be at most as likely as an appropriate
other sequence

The set Xw is defined to be Nw ∪ (−Nw), guaranteeing that it is symmetric in L(W ) and that
it inherits from Nw the properties of being finite and rational.

Then Scott’s Theorem guarantees the existence of a linear functional fw : L(W ) → R that
realizes Nw in Xw, from which we construct the desired probability function Pw on subsets E of
Ωw by normalizing fw to Ωw as follows: Pw(E)

.
= fw(ι(E))/fw(ι(Ωw)).

The linearity of fw guarantees that Pw is a probability function, and the fact that fw realizes
Nw in Xw helps to ensure that the constructed model M satisfies the original given formula ¬θ.

See Appendix B for details. �

4.3 Quantitative Aspects of the Theory
The results of the previous subsection are fundamentally qualitative in that, in the proof theory,
probabilities, numbers, and arithmetic operators are not mentioned. Although we have used the
symbols “1” and “0”, these are just abbreviations for some fixed tautology and its negation, re-
spectively. In this subsection we show how we can nonetheless encode seemingly quantitative
notions, culminating with rational linear inequalities.

We proceed incrementally, adding expressivity with each new step.

• Define k · φ (also written kφ) by the recurrence relation:

0 · φ .
= 0 and (k + 1) · φ .

= φ⊕ (k · φ).

Example: 2φ � 3ψ abbreviates φ ⊕ φ ⊕ 0 � ψ ⊕ ψ ⊕ ψ ⊕ 0, which is equivalent to
φ⊕ φ � ψ ⊕ ψ ⊕ ψ.

• Negation in sequences is introduced by replacing a sequence element kφ by 0, and appending
−kφ to the sequence on the other side of �.

Example: From 3ψ ⊕ 2φ � χ we obtain 0 ⊕ 2φ � −3ψ ⊕ χ, which is equivalent to
2φ � −3ψ ⊕ χ.
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• We introduce integer ratios p/q (where q 6= 0) for coefficients of sequence elements in an
inequality: In the binary case, (p/q) ·φ � (r/s) ·ψ abbreviates (p×s) ·φ � (r×q) ·ψ. (Note
that, in contrast with “·”, the symbol “×” is not a component of our encoding, but rather is a
meta-level symbol denoting the regular multiplication of its two arguments.) In general⊕

i≤n

(
pi
qi

)
· φi �

⊕
j≤m

(
rj
sj

)
· ψj

abbreviates⊕
i≤n

(
t× pi

qi

)
· φi �

⊕
j≤m

(
t× rj

sj

)
· ψj,

where the product t .=
∏

i,j qisj and the integer values t× pi/qi and t× rj/sj are computed
using the usual rules of arithmetic.

Example: 0 � 1
2
ψ ⊕−1

3
φ denotes 1

3
φ⊕ 0 � 1

2
ψ ⊕ 0.

The latter denotes 2 · φ⊕ 6 · 0 � 3 · ψ ⊕ 6 · 0, which is equivalent to 2φ � 3ψ. This in turn
is equivalent to φ⊕ φ � ψ ⊕ ψ ⊕ ψ.

• Last, we identify 0 ∈ Q with the formula 0 ∈ LLQP and each nonzero rational number x ∈ Q
with the formula (p/q) · 1, where p/q = x, q > 0, and gcd(p, q) = 1.

Example: Using the previous example, it can be shown that LQP derives (2/3) � 1 and
0 � (1/2)⊕−(1/3).

It follows that the language of LQP can express every inequality between finite, rational-
coefficient sums of rational numbers and formulas. In particular:

• for all non-negative integers na, nb, nc, and nd such that na + nb > 0 and nc + nd > 0;

• for all possibly empty sets {ai}na
i=1, {bi}nb

i=1, {ci}nc
i=1, and {di}nd

i=1 of rational numbers; and

• for all possibly empty sets {φi}nb
i=1 and {ψi}nd

i=1 of formulas,

it follows that the following is a well-defined formula of our language:⊕na

i=1 ai ⊕
⊕nb

i=1(bi · φi) �
⊕nc

i=1 ci ⊕
⊕nd

i=1(di · ψi). (2)

We refer to expressions of this form as rational linear inequalities. Based on the definition of our
language, at least one of the sides of the inequality (2) must be nonempty, although we could take
either side to be something as simple as 0.

Theorem 4.12 (Quantitative Probability Principle) For a1, . . . , an, b1, . . . , bm ∈ Q:∑n
i=1 ai ≤

∑m
i=1 bi ⇔ `LQP

⊕n
i=1 ai �

⊕m
i=1 bi.
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5 Related Work
In this section we compare our approach with that of other related work. In the first subsection
we discuss Gärdenfors’s logic QP of qualitative probability, after which we briefly consider Seger-
berg’s more general logic PK. In the next subsection, we look at the Fagin et al. logic of quantitative
probability AXmeas. The final subsection briefly discusses other work dealing with notions related
to qualitative probability. To focus the discussion, some details are deferred to Appendix A.

5.1 The Gärdenfors and Segerberg Logics of Qualitative Probability
The language of Gärdenfors’s QP is that of propositional logic augmented with a binary operator
of comparative probability �. As with our approach, the modal operator of probabilistic certainty
� is introduced by definition, �φ .

= (1 � φ), and nesting of� is allowed. Recall that Gärdenfors’s
approach, following [Segerberg, 1971], hinges on the abbreviation schema

(φi)
m
i=1E(ψi)

m
i=1

.
= �

∨m
i=0Ci

where Ci is the disjunction of all conjunctions

e1φ1 ∧ · · · ∧ emφm ∧ f1ψ1 ∧ · · · ∧ fmψm (3)

satisfying the property that exactly i of the ek’s are the negation symbol ¬, exactly i of the fk’s are
¬, and the rest of the ek’s and fk’s are the empty string ε.

Gärdenfors gives the following axiomatisation, and shows that it is sound and complete with
respect to the class of simple models.

Definition 5.1 (QP) QP is defined by the following:
(PC) All tautologies of classical propositional logic
(A0) �(φ1 ≡ φ2) ∧�(ψ1 ≡ ψ2) ⊃ ((φ1 � ψ1) ≡ (φ2 � ψ2))

(A1) 0 � φ

(A2) (φ � ψ) ∨ (ψ � φ)

(A3) 0 ≺ 1

(A4) ((φi)
m
i=1E(ψi)

m
i=1 ∧

∧m−1
k=1 (φk � ψk)) ⊃ (ψm � φm) for all m ≥ 1

(MP) From φ ⊃ ψ and φ, infer ψ
(Nec) From φ, infer �φ

With the exception of (A4), the above axioms and rules of inference are clearly contained in LQP.
The next result relates the Segerberg and Gärdenfors E notation to our sequences. The first part
gives the relation between the E schema and sequences, while the second part shows that the key
Segerberg/Gärdenfors axiom (A4) is derivable in our approach.

Theorem 5.2 (E-Schema and Sequences) For formulas φi and ψi, 1 ≤ i ≤ m, we have:

1. `LQP(φi)
m
i=1E(ψi)

m
i=1 ⊃ (

⊕m
i=1 φi ≈

⊕m
i=1 ψi)
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2. `LQP ((φi)
m
i=1E(ψi)

m
i=1 ∧

∧m−1
k=1 (φk � ψk)) ⊃ (ψm � φm)

Since the language of QP is that of LQP but where � is a binary relation on formulas only, it
is not surprising that QP is less expressive than LQP:

Theorem 5.3 (QP Expressivity) LQP is strictly more expressive than QP.

For example p ⊕ q � r denotes a satisfiable LLQP formula that is inexpressible in QP. Moreover,
noting that LQP ⊂ LLQP and making use of the fact that QP and LQP are both sound and complete
with respect to the class of simple models, we obtain:

Theorem 5.4 For any φ ∈ LQP, if `QP φ then `LQP φ.

Corollary 5.4.1 LQP is a conservative extension of QP.

We next consider the earlier logic PK of Segerberg [1971]. In contrast to QP and LQP, PK does
not allow nested occurrences of the� operator. On the other hand, also in contrast to QP and LQP,
PK has a distinct operator of modal necessity and allows formulas with non-measurable truth sets.
For those readers that may be interested, the Segerberg axiomatisation is given in Appendix A. We
have the following relations between PK, QP, and LQP.

Theorem 5.5 (LPK Expressivity) Let L−QP be the fragment of LQP obtained by deleting all formu-
las that contain nesting of �’s.

1. LPK is strictly more expressive than L−QP over the class of super-simple PK models.

2. LPK and LQP are expressively incomparable over the class of super-simple PK models.

3. LPK and LLQP are expressively incomparable over the class of super-simple PK models.

In the restriction of PK in which the modal operators of probabilistic and epistemic necessity
coincide and where all formulas have measurable truth sets, PK is the same logic as QP over the
language with unnested occurrences of�. Let PK′ be this restriction of PK (again, see Appendix A
for details). We obtain:

Theorem 5.6 For any φ ∈ L−QP we have: `QP φ iff `PK′ φ

Corollary 5.6.1 LQP is strictly more expressive than PK′.

Hence LQP is a conservative extension of PK′.
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5.2 The Fagin et al. Logic of Quantitative Probability
A different approach to reasoning about probability is the theory AXmeas of quantitative probability
of [Fagin et al., 1990]. Their language permits Boolean combinations of linear inequalities12 of
the form c � a1w(φ1) + · · · + anw(φn), where c and the ai’s are integers and the φi’s do not
contain �’s or w(χ)’s. The expression w(φ) is mapped in the semantics to a real number called
the “weight” of φ, where the weight ends up being the probability of the event φ.

The axiomatisation of AXmeas is given as follows:

Definition 5.7 (AXmeas) AXmeas is defined by the following:
(PC) All tautologies of classical propositional logic
(Ineq) All instances of valid formulas about linear inequalities
(W1) 0 � w(φ)

(W2) 1 ≈ w(1)

(W3) w(φ ∧ ψ) + w(φ ∧ ¬ψ) ≈ w(φ)

(W4) w(φ) ≈ w(ψ), where φ ≡ ψ is a tautology
(MP) From φ ⊃ ψ and φ, infer ψ

Fagin et al. also show that (Ineq) can be replaced by a set of explicit schemas that derive the
same theorems. In common with QP and PK but in contrast with LQP, this axiomatisation is not
schematically finite. LAXmeas does not allow nesting of �’s in formulas; for example, 1 � (1 �
w(p)) is not a formula in LAXmeas . To compare the expressivity of LAXmeas with LLQP, we consider
the fragment L−LQP of LLQP that excludes nesting of �’s. We obtain:

Theorem 5.8

1. LAXmeas and L−LQP are equally expressive over the class of simple models.13

2. LLQP is strictly more expressive than LAXmeas over the class of super-simple models.

Thus, although AXmeas is a logic of quantitative probability, we can express it in LQP. However, it
should be noted that AXmeas is significantly more succinct that LQP. Specifically, a number n can
be represented in AXmeas with ln(n) bits whereas it would take on the order of n bits in LQP.

An extension of AXmeas is studied by [Fagin and Halpern, 1994]. The language of this extension
is obtained by adding a set of S5 modalities, to give a multi-agent epistemic logic, and allowing
nesting of inequalities. While the single-agent, non-S5 fragment of their extended theory would
presumably correspond with LQP, we leave an exploration of this correspondence to future work.

12Fagin et al. use ≥; for uniformity we remain with �.
13That is, there are functions G : LAXmeas → L−LQP and H : L−LQP → LAXmeas that are satisfaction-preserving over the

class of simple models, and in which G ◦H and H ◦G are both the identity function.
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5.3 Likelihood
As discussed in Section 3, there has been considerable work addressing a notion of probably or
likely. The former is usually interpreted as having probability of at least (or, strictly greater than) .5.
The latter notion, of likelihood, may or may not be given a probabilistic interpretation. Our view is
that likelihood is best regarded as a probabilistic notion. It may be difficult to assign a probability
to a given event (say, that there is an accident involving two busses in Vancouver tomorrow in
which no-one is hurt) but that doesn’t mean that, given a sufficiently nuanced theory, that such a
probability cannot be determined in principle. As a result we can interpret “φ is likely” as ¬φ � φ
(or perhaps ¬φ ≺ φ, depending on one’s taste), that is, that the probability is at least (resp. greater
than) .5. Then “φ is very likely” can be expressed by ¬φ � c · φ for some fixed integer c > 0,
using the convention of Section 4.3.

5.4 Discussion
To recap the results of this section: Gärdenfors’s and Segerberg’s logics include an infinite number
of complex and (in our opinion) unintuitive counting schemes, as expressed in their E notation.
Fagin et al.’s logic seems simple at first glance—just classical logic, Kolmogorov’s axioms, and
an axiom (Ineq) concerning valid linear inequalities. However, (Ineq) hides a substantial amount
of logic about integers, inequalities and arithmetic (see Theorem A.7 in Appendix A). Our setting
has the advantage that there are finitely many schemes, and each scheme is arguably intuitive and
expresses a simple logical principle.
LLQP is expressively incomparable with Segerberg’s logic PK. Like Gärdenfors’s LQP, Seger-

berg’s LPK cannot express the LLQP-formula p ⊕ q � r. On the other hand, LPK includes a
Kripke-style necessity operator, which we expressed as �. The meaning of M,w |= �p is that
M, v |= p at all worlds v contained in some possibly strict superset R(w) ⊇ Ωw of the set Ωw

of outcomes at w. As a result, �p is not expressible in LLQP, even if we restrict to the class of
super-simple models. Therefore we must extend our language LLQP to a language containing the
� operator in order to regain expressive comparability. On doing this, we would find that the re-
sulting language is strictly more expressive than both LPK and LLQP over the class of super-simple
models (to which of course we add an accessibility function R : W → 2W satisfying Ωw ⊆ R(w)
for each w ∈ W ).

With regards to AXmeas and LQP, we have shown that there is a translation between these two
approaches. Therefore, except for the fact that we allow nesting of the operator�, the two theories
are in a sense “equivalent” from the point of view of derivability. However, the theories differ
in a key respect. Notably, AXmeas is a quantitative approach, in that integers, and the operations
of addition and multiplication, are assumed to be given a priori. In contrast, we have presented
a foundational, qualitative approach, beginning from first principles and adopting a minimal set
of underlying assumptions. An analogy might be made with the notion of computation: On the
one hand, Turing machines provide a formal model for studying fundamental notions involving
computation, what can and cannot be computed, and the like. On the other hand, a Turing machine
is an impractical model to actually get anything done; rather one would use some higher-level
(Turing-equivalent) programming language.
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6 Conclusion
In this paper we have addressed the foundations of qualitative probability. While work in this
area goes back many years, we have argued that no approach has provided a wholly satisfactory
characterisation of qualitative probability. In earlier work, a binary operator � on formulas (or
“events”) is given, describing the relation “is no more probable than”. The central intuition and
innovation of our approach is that � should be regarded as an operator on finite sequences of
formulas, with intended interpretation that the combined probabilities of the formulas on the left
hand side of � does not exceed that of the formulas on the right hand side.

The resulting logic, LQP, is a general, intuitive formalism for reasoning about the full gamut of
qualitative and axiomatic probability. The axiomatisation is finite and intuitive, where each axiom
captures a simple logical principle. Consequently, the approach provides a foundational theory of
qualitative probability, in that the proof theory adopts minimal assumptions, specifying properties
of sequences and the operator �. Nonetheless, the approach is expressive enough to encode ratio-
nal linear inequalities. By identifying 0 with an inconsistent formula and 1 with a tautology, we can
build other more complex concepts, ending with rational linear inequalities. Hence our approach
can be viewed as specifying a foundation for qualitative probability that nonetheless provides a
“bridge” to quantitative approaches.

We give a completeness result for the probability interpretation. Our construction is an adapta-
tion of one due to Lenzen [1980]. Overall, our work is part of a recent renewed interest in modal
logics for qualitative probability that includes [Holliday and Icard III, 2013; van Eijck and Renne,
2014; Harrison-Trainor et al., 2017], which in turn can be seen as contributing to ongoing work on
the combination of logic with probability [Russell, 2015; Belle, 2017].

We have compared this approach to previous work, and we have shown that ours subsumes
those theories for finite outcome sets. Our system captures qualitative probabilistic reasoning,
axiomatic probability, the major qualitative system due to Gärdenfors, and the major quantitative
system due to [Fagin et al., 1990]. A question as to the extension of LQP to the class of general
models is left for future work, as is extension to include a modal operator of epistemic belief.

Appendices

A Related Work

A.1 The Segerberg Logic of Qualitative Probability
We review here the details of Segerberg’s logic PK. The language of Segerberg [1971] is that of
propositional logic augmented with the binary operator of comparative probability � and a unary
operator of necessitation. The language does not allow nesting of �. We write the necessity
operator as �, where �φ asserts that φ is true in every accessible world. This notation is to
distinguish this operator and the modal operator � which is used to describe probabilistic certainty
(i.e., �φ .

= 1 � φ). We define the abbreviation (φi)
m
i=1Ė(ψi)

m
i=1 (notice the dot over the E) just as

we defined (φi)
m
i=1E(ψi)

m
i=1, except that � is used in place of �.
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Definition A.1 (PK; [Segerberg, 1971]) PK is defined by the following axiom schemes and rules:
(PC) All tautologies of classical propositional logic
(#0) �(φ ⊃ ψ) ⊃ (�φ ⊃ �ψ)

(#1) �(φ ≡ φ′) ∧�(ψ ≡ ψ′) ⊃ ((φ � ψ) ⊃ (φ′ � ψ′))

(#2) 0 � 0

(#3) (φ � φ) ∧ (ψ � ψ) ⊃ ((φ ⊃ ψ) � (φ ⊃ ψ))

(#4) (φ � ψ) ⊃ (φ � φ)

(#5) (φ � ψ) ⊃ (ψ � ψ)

(#6) (φ � φ) ∧ (ψ � ψ) ⊃ ((φ � ψ) ∨ (ψ � φ))

(#7) (φi)
m
i=1Ė(ψi)

m
i=1 ⊃ ((

∧m
i=1 φi � ψi) ⊃ (

∧m
i=1 ψi � φi)) for all m ≥ 1

(#8) 0 ≺ 1

(#9) (φ � φ) ⊃ (0 � φ)

(MP) From φ ⊃ ψ and φ, infer ψ
(Nec) From φ infer �φ

Definition A.2 (PK model) A PK model14 is a structure M = (W,Π, R, V ) such that

• (W,Π, V ) is a model (Definition 4.2); and

• R : W → 2W is an accessibility function satisfying Ωw ⊆ R(w) for each w ∈ W .

The function [[·]] : LPK → 2W and the relation |= between pointed PK models andLPK-formulas
is as expected; Definition 4.3 gives all cases except for epistemic necessity:

M,w |= �φ iff M, v |= φ for each v ∈ R(w).
Segerberg shows that PK is sound and complete with respect to the class CPK of PK-models. He
also suggests that the logic of the modal operator � is K; however as the next results show, the
logic in fact is KD.

Theorem A.3 (PK Seriality) For any PK model M = (W,Π, R, V ) the relation R is serial.

Theorem A.4 (D) `PK �φ ⊃ ¬�¬φ

The restriction PK′ of PK (used in Theorem 5.6) is defined as follows:

Definition A.5 Define PK′ to be the logic consisting of the axiom schemes and rules of PK together
with the axioms:

(PMN) (1 � φ) ⊃ �φ

(Symm) φ � φ
14Segerberg’s notation has been adapted to conform to our’s. The correspondence with [Segerberg, 1971] is as

follows. [Segerberg, 1971] defines a model to be a structure US = (US , RS , V S , BS ,MS) (where the superscript
S is added to remove ambiguity). For PK-model M = (W,Π, R, V ) where Πw = (Ωw, Fw, Pw) we have the
correspondences: M ↔ US , W ↔ US , V ↔ V S , R↔ RS , Ωw ↔ {w′ | wRSw′}, Fw ↔ BS

w, Pw ↔MS
w .
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A.2 The Fagin et al. Logic of Quantitative Probability
The language of [Fagin et al., 1990] is defined as follows:

Definition A.6 Let P be a nonempty set of propositional atoms. The language LAXmeas consists of
formulas φ and weight terms W given by the following recursion:

φ ::= p | ¬φ | (φ ∨ φ) | (a � W ) p ∈ P , a ∈ Z
W ::= w(ψ) | a · w(ψ) | W +W a ∈ Z
ψ ::= p | ¬φ | (φ ∨ φ) p ∈ P

The explicit specification of the axiom (Ineq) is given as follows:

Theorem A.7 ([Fagin et al., 1990]) Replacing (Ineq) in the theory AXmeas (from Definition 5.7)
with the following schemes yields a theory that derives the same theorems:

(I1) w(φ) � w(φ)

(I2) (c � a1w(φ1) + · · ·+ akw(φk)) ≡ (c � a1w(φ1) + · · ·+ akw(φk) + 0w(φk+1))

(I3) (c � a1w(φ1) + · · ·+ akw(φk)) ≡ (c � aj1w(φj1) + · · ·+ ajk(φjk)) with
j1, . . . , jk a permutation of 1, . . . , k

(I4) (c � a1w(φ1) + · · ·+ akw(φk)) ∧ (c′ � a′1w(φ1) + · · ·+ a′kw(φk)) ⊃
((c+ c′) � (a1 + a′1)w(φ1) + · · ·+ (ak + a′k)w(φk))

(I5) (c � a1w(φ1) + · · ·+ akw(φk)) ⊃ (dc � da1w(φ1) + · · ·+ dakw(φk)) with d > 0

(I6) (c � a1w(φ1) + · · ·+ akw(φk)) ∨ (a1w(φ1) + · · ·+ akw(φk) � c)

(I7) (c � a1w(φ1) + · · ·+ akw(φk)) ⊃ (d ≺ a1w(φ1) + · · ·+ akw(φk)) with d < c

B Proofs

B.1 Proofs of Section 4

Proof of Theorem 4.4.
Since M is total, we have Ωv = W . Hence we have for every formula χ that [[χ]]vM = [[χ]]M ∩

W = [[χ]]M . Further, since M is powerset, we have [[χ]]M ∈ Fv for every χ. Finally, since M is
uniform, we have Pw = Pv. Applying Definition 4.3, the result follows. �

Proof of Theorem 4.6.
For each item, we reason in LQP. We consider each item in turn.

1: An instance of (Tot) is (Φ � Φ) ∨ (Φ � Φ). Via propositional logic we obtain Φ � Φ.

2: Reflexivity of ≈ is an immediate consequence of the reflexivity of � and the definition of
≈. For symmetry we have that Φ ≈ Ψ iff (Φ � Ψ) ∧ (Ψ � Φ) iff (Ψ � Φ) ∧ (Φ � Ψ) iff
Ψ ≈ Φ. Transitivity is a simple consequence of (Tran).
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To ease proofs, we will freely make use of the symmetry of ≈ without further comment.

3: Assume that we have Φ � Ψ. An instance of (Ref) is ∆ � ∆, and applying (Add) to these
inequalities yields ∆⊕ Φ � ∆⊕Ψ.

4: Assume that �(φ1 ≡ φ2) and �(ψ1 ≡ ψ2); as well assume that we have φ1 � ψ1. An
instance of (Ref) is 1 � 1 and applying (Add) to φ1 � ψ1 and 1 � 1 yields 1⊕ φ1 � 1⊕ψ1.
Now using (Sub) yields 1 ⊕ φ2 � 1 ⊕ ψ2 and finally (Succ) gives φ2 � ψ2. The reverse
direction for the equivalence follows from the symmetry between (φ1 � ψ1) and (φ2 � ψ2)
in the statement of the theorem.

5: Assume that �(φ1 ≡ φ2) and �(ψ1 ≡ ψ2); and assume that we have (Φ1 � Ψ1). Φ1 can be
written as Φ′1 ⊕ φ1 ⊕ Φ′′1 and Ψ1 can be written as Ψ′1 ⊕ ψ1 ⊕Ψ′′1. (The case where φ1 or ψ1

are elements at the “end” of a sequence is handled by a trivial modification to the following
argument.) Since we have Φ′1⊕φ1⊕Φ′′1 � Ψ′1⊕ψ1⊕Ψ′′1, two applications of (Comm) yield
φ1 ⊕Φ′′1 ⊕Φ′1 � ψ1 ⊕Ψ′′1 ⊕Ψ′1. From (Sub) we obtain that φ2 ⊕Φ′′1 ⊕Φ′1 � ψ2 ⊕Ψ′′1 ⊕Ψ′1
and two further applications of (Comm) give Φ′1 ⊕ φ2 ⊕ Φ′′1 � Ψ′1 ⊕ ψ2 ⊕Ψ′′1, which was to
be shown.

6: For the first statement, assume Φ1 ≈ Φ2 and Φ1 ⊕ Φ � Ψ. By the definition of ≈ and
classical reasoning, it follows from Φ1 ≈ Φ2 that we have Φ2 � Φ1. Further, by (Ref) we
have Φ � Φ. Therefore, from Φ2 � Φ1 and Φ � Φ, we have by Part 3 of this theorem
that Φ2 ⊕ Φ � Φ1 ⊕ Φ. But then it follows from Φ2 ⊕ Φ � Φ1 ⊕ Φ and our assumption
Φ1 ⊕ Φ � Ψ by (Tran) and classical reasoning that we have Φ2 ⊕ Φ � Ψ. That is, we have
shown that Φ1 ≈ Φ2 and Φ1 ⊕ Φ � Ψ together imply Φ2 ⊕ Φ � Ψ. By a similar argument,
it follows that Φ1 ≈ Φ2 and Φ2 ⊕ Φ � Ψ together imply Φ1 ⊕ Φ � Ψ. Consequently, we
get that Φ1 ≈ Φ2 implies that Φ1 ⊕ Φ � Ψ ≡ Φ2 ⊕ Φ � Ψ, which is the first part of the
Replacement Principle. The second part is shown by a similar argument.

7: Assume that we have ∆⊕ Φ � ∆⊕Ψ; and assume further that |∆| = 1. We can then write
our initial assumption as φ ⊕ Φ � φ ⊕ Ψ where φ = ∆. By (Ref), we have ¬φ � ¬φ. It
follows by (Add) and classical reasoning that

¬φ⊕ φ⊕ Φ � ¬φ⊕ φ⊕Ψ. (4)

We have that ¬φ ∨ φ is a tautology and therefore that �(¬φ ∨ φ) by (Nec). It follows
from �(¬φ ∨ φ) by (K3) and classical reasoning that ¬φ ⊕ φ ≈ ¬φ ∨ φ. We also have
(¬φ ∨ φ) ≡ 1 by classical reasoning (recalling that 1 is just some fixed tautology) and
therefore that �((¬φ∨φ) ≡ 1) by (Nec). But from �((¬φ∨φ) ≡ 1) and ¬φ⊕φ ≈ ¬φ∨φ
it follows by (Sub) and classical reasoning that ¬φ⊕φ ≈ 1. It follows from ¬φ⊕φ ≈ 1 and
(4) by classical reasoning and Part 6 of this theorem that 1 ⊕ Φ � 1 ⊕ Ψ. Applying (Succ)
and classical reasoning, we obtain Φ � Ψ.

This shows our result for |∆| = 1; the result for arbitrary ∆ then follows by a straightforward
inductive argument.
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8: Assume that Φ1 � Ψ1 and Ψ1 ⊕ Ψ2 � Φ1 ⊕ Φ2. From Φ1 � Ψ1 and Part 3 it follows that
Φ1⊕Ψ2 � Ψ1⊕Ψ2. From this and our assumption Ψ1⊕Ψ2 � Φ1⊕Φ2 it follows by (Tran)
and classical reasoning that Φ1 ⊕ Ψ2 � Φ1 ⊕ Φ2. Applying Part 7 and classical reasoning,
we obtain Ψ2 � Φ2. �

Proof of Theorem 4.7.
For each item, we reason in LQP. We consider each item in turn.

1: We obtain by classical reasoning that¬(φ∧0) is a tautology (recalling that 0 is the negation of
some tautology), from which it follows by (Nec) that �¬(φ∧0). From this it follows by (K3)
and classical reasoning that φ⊕0 ≈ φ∨0. By classical reasoning, we have (φ∨0) ≡ φ, from
which it follows by (Nec) that �((φ∨ 0) ≡ φ). But from �((φ∨ 0) ≡ φ) and φ⊕ 0 ≈ φ∨ 0
it follows by (Sub) and classical reasoning that φ⊕ 0 ≈ φ.

2: Assume φ⊕ψ ≈ 0 and therefore that ψ⊕φ ≈ 0 by (Com) and classical reasoning. It follows
by Part 1 of this theorem (specifically, that 0 ≈ 0 ⊕ 0), (Tran), and classical reasoning that
ψ ⊕ φ ≈ 0 ⊕ 0, and consequently that ψ ⊕ φ � 0 ⊕ 0. We also have 0 � ψ by (K1). But
from ψ ⊕ φ � 0⊕ 0 and 0 � ψ we obtain by Theorem 4.6.8 that φ � 0. Since we also have
0 � φ by (K1), it follows by the meaning of ≈ and classical reasoning that φ ≈ 0.

3: We obtain by classical reasoning that ¬((φ ∧ ψ) ∧ (φ ∧ ¬ψ) is a tautology, from which it
follows by (Nec) that �¬((φ ∧ ψ) ∧ (φ ∧ ¬ψ). From this it follows by (K3) and classical
reasoning that

(φ ∧ ψ)⊕ (φ ∧ ¬ψ) ≈ (φ ∧ ψ) ∨ (φ ∧ ¬ψ). (5)

By classical reasoning, we also obtain that ((φ ∧ ψ) ∨ (φ ∧ ¬ψ)) ≡ φ; call this formula χ.
It follows from χ by (Nec) that �χ. But from �χ and (5), it follows by (Sub) and classical
reasoning that (φ ∧ ψ)⊕ (φ ∧ ¬ψ) ≈ φ and so φ ≈ (φ ∧ ψ)⊕ (φ ∧ ¬ψ), as desired.

4: A theorem of propositional logic is ¬(φ ∧ (¬φ ∧ ψ)), from which via (Nec) we obtain
�(¬(φ ∧ (¬φ ∧ ψ))). From the latter formula, (K3), and modus ponens we obtain that
φ ⊕ (¬φ ∧ ψ) ≈ φ ∨ (¬φ ∧ ψ). Since (φ ∨ (¬φ ∧ ψ)) ≡ (φ ∨ ψ), an application of
(Nec) together with substitution of necessary equivalents in the preceding formula gives
φ⊕ (¬φ ∧ ψ) ≈ (φ ∨ ψ).

An application of Theorem 4.6.3 to φ⊕ (¬φ∧ ψ) ≈ (φ∨ ψ) and using commutativity gives

φ⊕ (¬φ ∧ ψ)⊕ (φ ∧ ψ) ≈ (φ ∨ ψ)⊕ (φ ∧ ψ). (6)

We have from Part 3 that ψ ≈ (¬φ ∧ ψ) ⊕ (φ ∧ ψ) and so applying Theorem 4.6.5 to (6)
gives φ⊕ ψ ≈ (φ ∨ ψ)⊕ (φ ∧ ψ), which was to be shown.

5: We have φ ⊕ ¬φ ≈ (φ ∨ ¬φ) ⊕ (φ ∧ ¬φ) by Part 4. Since we have �((φ ∨ ¬φ) ≡ 1)
and �((φ ∧ ¬φ) ≡ 0) by classical reasoning and (Nec), it follows by (Sub) and classical
reasoning that φ ⊕ ¬φ ≈ 1 ⊕ 0. Since we also have 0 � ¬φ by (K1), it follows by the
definition of ≈, Theorem 4.6.8, and classical reasoning that φ � 1.
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6 We have by classical reasoning and (Nec) that �¬(φ ∧ ¬φ), from which it follows by (K3)
and classical reasoning that φ⊕¬φ ≈ φ∨¬φ. Further, by classical reasoning and (Nec) we
have �((φ ∨ ¬φ) ≡ 1), from which it follows by φ ⊕ ¬φ ≈ φ ∨ ¬φ, (Sub), and classical
reasoning that φ⊕ ¬φ ≈ 1.

7: From Part 4 we have that φ⊕ ψ ≈ (φ∨ ψ)⊕ (φ∧ ψ). From Part 1 we have that ψ ≈ ψ⊕ 0,
and via (Ref) and (Add) we obtain φ ⊕ ψ ≈ φ ⊕ ψ ⊕ 0. Applying (Tran) to this and our
original formula yields

φ⊕ ψ ⊕ 0 ≈ (φ ∨ ψ)⊕ (φ ∧ ψ).

We have 0 � (φ ∧ ψ) by (K1); from this and our previous formula, it follows by (Com), the
definition of ≈, Theorem 4.6.8, and classical reasoning that φ ∨ ψ � φ⊕ ψ.

8: An instance of Theorem 4.6.8 is (φ ⊕ ¬φ � ψ ⊕ ¬ψ) ⊃ (ψ � φ ⊃ ¬φ � ¬ψ). The
antecedent condition (φ ⊕ ¬φ � ψ ⊕ ¬ψ) is easily shown to be a theorem: from (K3) and
Theorem 4.6.6 we obtain that the antecedent is equivalent to (φ∨¬φ � ψ∨¬ψ) which again
from Theorem 4.6.6 is equivalent to 1 � 1, which is an instance of (Ref). Consequently,
applying modus ponens to the original formula, we obtain that ψ � φ ⊃ ¬φ � ¬ψ. �

Proof of Theorem 4.8.

1: Assume that �(φ ⊃ ψ) or, applying the definition of �, that 1 � (φ ⊃ ψ). We have by
classical reasoning and (Nec) that �((φ ⊃ ψ) ≡ (¬φ ∨ ψ)), from which it follows by 1 �
(φ ⊃ ψ), (Sub), and classical reasoning that 1 � (¬φ∨ψ). But we have (¬φ∨ψ) � ¬φ⊕ψ
by Theorem 4.7.7. As well, Theorem 4.7.6 is ¬φ⊕ φ ≈ 1. We therefore have

¬φ⊕ φ ≈ 1, 1 � (¬φ ∨ ψ), and (¬φ ∨ ψ) � ¬φ⊕ ψ.

It follows by the definition of ≈, (Tran), and classical reasoning that ¬φ ⊕ φ � ¬φ ⊕ ψ.
Applying Theorem 4.6.7, we obtain φ � ψ.

2: We assume �(φ ⊃ ψ) and �φ. It follows from �(φ ⊃ ψ) by Part 1 and modus ponens that
φ � ψ. From �φ we obtain by the definition of � that 1 � φ. Applying (Tran) to 1 � φ and
φ � ψ, we obtain that 1 � ψ; that is, �ψ.

3: We have ¬(1 � 0) by (Triv), the definition of ≺, and classical reasoning. But ¬(1 � 0) is
just ¬�0.

4: Assume that �φ. It follows by modal reasoning (using Parts 2 and 3) that �((ψ∧¬φ) ≡ 0).
From Theorem 4.7.3, we have that ψ ≈ (ψ∧φ)⊕(ψ∧¬φ) is a theorem. Applying (Sub) using
the above necessitation to this formula yields ψ ≈ (ψ∧φ)⊕0. An instance of Theorem 4.7.1
is (ψ ∧ φ) ≈ (ψ ∧ φ)⊕ 0. From (Tran) and classical reasoning we obtain that ψ ≈ ψ ∧ φ. �

Proof of Theorem 4.9.
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1: The proof is by induction on n. In the base case, with n = 2, the formula is �¬(φ1 ∧ φ2) ⊃
(φ1 ⊕ φ2 ≈ φ1 ∨ φ2) which is just Axiom (K3).

For the induction step, we assume the result holds for n − 1 and show that the result holds
for n. So assume that

∧
1≤i 6=j≤n�¬(φi ∧ φj). It follows that

∧
1≤i 6=j<n�¬(φi ∧ φj) and so

by the induction hypothesis we have
⊕n−1

i=1 φi ≈
∨n−1
i=1 φi.

Since we have φn � φn by (Ref), it follows by Theorem 4.6.3 that⊕n
i=1 φi ≈ (

∨n−1
i=1 φi)⊕ φn. (7)

We have noted that � is a normal modal operator; a consequence of our antecedent condi-
tions is that we have �¬((

∨n−1
i=1 φi) ∧ φn).

From (K3) and modus ponens we obtain that (
∨n−1
i=1 φi)⊕ φn ≈ (

∨n−1
i=1 φi) ∨ φn or

(
∨n−1
i=1 φi)⊕ φn ≈

∨n
i=1 φi (8)

We have that ≈ is an equivalence relation; consequently from (7) and (8) we obtain that⊕n
i=1 φi ≈

∨n
i=1 φi as desired. This satisfies the induction step and so our result follows by

induction.

2: The proof is by induction on n. For n = 1 the result is immediate from Theorem 4.8.1.

For the induction step, assume that the result holds for n = k, and assume that we are given∧k+1
i=1 �(φi ≡ ψi). By the induction hypothesis and classical reasoning, this implies that

�(φk+1 ≡ ψk+1) ∧
⊕k

i=1 φi ≈
⊕k

i=1 ψi.

An instance of Theorem 4.6.3 is
⊕k

i=1 φi ≈
⊕k

i=1 ψi ⊃
⊕k

i=1 φi⊕φk+1 ≈
⊕k

i=1 ψi⊕φk+1.

Since we also have �(φk+1 ≡ ψk+1) an application of Theorem 4.6.5 yields
⊕k+1

i=1 φi ≈⊕k+1
i=1 ψi, which was what was to be shown. Hence by induction our result obtains.

3: Assume that Φi � Ψi for each i ≤ n. Since it follows that Φi � Ψi for all i 6= k, it follows
by n− 1 applications of (Add) that⊕

i 6=k Φi �
⊕

i 6=k Ψi. (9)

If we assume that
⊕n

i=1 Φi ≈
⊕n

i=1 Ψi, it then follows by the definition of≈ and (Com) that(⊕
i 6=k Ψi

)
⊕Ψk �

(⊕
i 6=k Φi

)
⊕ Φk. (10)

But from (9) and (10) it follows by Theorem 4.6.8 and modus ponens that Ψk � Φk.

4 The proof is analogous to that of the previous part. �
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Proof of Theorem 4.10.
By induction on the length of derivation of a LQP-theorem φ, we prove we have M,w |= φ

for each simple pointed model (M,w). We omit the cases from propositional logic, which are
straightforward. In the base case, we must show that each axiom scheme of LQP is valid with
respect to the class of simple models. So let M be an arbitrary simple model and w a possible
world in M .

• (Triv) is valid: Since 0 is a contradiction and 1 is a tautology, we have 0 = Pw([[0]]wM) <
Pw([[1]]wM) = 1. But then we have by the definition of satisfaction and of the abbreviation
0 ≺ 1 that M,w |= 0 ≺ 1.

• (Tran) and (Tot) are valid: By the definition of satisfaction, and the transitivity and totality
of ≤ over the real numbers.

• (Sub) is valid: AssumeM,w |= �(φ1 ≡ φ2) andM,w |= �(ψ1 ≡ ψ2). This means we have
Pw([[φ1 ≡ φ2]]wM) = 1 and Pw([[ψ1 ≡ ψ2]]wM) = 1. It follows that Pw([[φ1]]wM) = Pw([[φ2]]wM)
and Pw([[ψ1]]wM) = Pw([[ψ2]]wM). By the definition of satisfaction, we obtain the consequent
of (Sub).

• (Com) is valid: By the definition of satisfaction and the commutativity of sum in arithmetic.

• (Add) is valid: By the definition of satisfaction and the truth of the analogous property for
the natural order ≤ over the reals.

• (Succ) is valid: Assume M,w |= 1⊕ Φ � 1⊕Ψ. This means we have

Pw([[1]]wM) +
∑

φ∈Φ Pw([[φ]]wM) ≤ Pw([[1]]wM) +
∑

ψ∈Ψ Pw([[ψ]]wM).

Cancelling the leftmost element on each side, we obtain a statement that is equivalent by the
definition of satisfaction to M,w |= Φ � Ψ.

• (K1) is valid: We have 0 ≤ Pw([[φ]]wM). Since [[0]]wM = ∅ and Pw(∅) = 0, it follows by the
definition of satisfaction that M,w |= 0 � φ.

• (K3) is valid: Suppose M,w |= �¬(φ ∧ ψ). This means

1 ≤ Pw([[¬(φ ∧ ψ)]]wM) = Pw([[¬(φ ∧ ψ)]]M ∩ Ωw),

from which it follows that

1 = Pw(Ωw − ([[φ]]M ∩ [[ψ]]M)) = 1− Pw([[φ]]M ∩ [[ψ]]M ∩ Ωw).

As a result, Pw([[φ]]M ∩ [[ψ]]M ∩ Ωw) = 0. Hence

Pw([[φ ∨ ψ]]M ∩ Ωw) = Pw(([[φ]]M ∪ [[ψ]]M) ∩ Ωw)

= Pw([[φ]]M ∩ Ωw) + Pw([[ψ]]M ∩ Ωw).

Applying the definition of satisfaction and the meaning of≈, we getM,w |= φ⊕ψ ≈ φ∨ψ.
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This completes the induction base. For the induction step, we assume that a derivable hypothesis
φ of (Nec) is valid (this is the induction hypothesis), and we prove that the (Nec)-derivable con-
sequence �φ is as well. It follows by the induction hypothesis that M ′, w′ |= φ for each pointed
model (M ′, w′). As a result, it follows that M |= φ and therefore Pw([[φ]]M ∩Ωw) = Pw(Ωw) = 1.
But then it follows by the definition of satisfaction and the meaning of � that M,w |= �φ. �

Proof of Corollary 4.10.1.
Let M be a one-world simple model. By Definition 4.3, M,w 6|= 0 and therefore Cs 6|= 0.

Applying Theorem 4.10 gives 6`LQP 0. �

Completeness makes use of Theorem 1.2 from [Scott, 1964]. We start with some preliminary
notions: For a finite nonempty set S, let L(S) be the real vector space with coordinates in S; this
is just like Rn but with coordinate set S instead of {1, . . . , n}. A linear functional on L(S) is a
function f : L(S)→ R that is linear, meaning f(ax+ by) = af(x) + bf(y) for all reals a, b ∈ R
and x, y ∈ L(S). A set X ⊆ L(S) is rational iff each x ∈ X has its range in the set Q of rational
numbers, and X is symmetric iff each x ∈ X implies −x ∈ X .

Theorem B.1 (Scott [1964, Theorem 1.2]) Let S be a finite nonempty set and let X be a finite,
rational, symmetric subset of L(S). For each N ⊆ X , there exists a linear functional f on L(S)
that realizes N in X , meaning N = {x ∈ X | f(x) ≥ 0}, if and only if the following conditions
are satisfied:

1. for each x ∈ X , we have x ∈ N or −x ∈ N ; and

2. for each n ≥ 1 and x1, . . . , xn ∈ N we have:
∑n

i=1 xi = 0 implies −x1 ∈ N .

We use Scott’s Theorem B.1 to prove completeness of LQP with respect to the class of simple
models. Scott’s result will be used to generate a probability function on a simple model we will
construct that satisfies a given non–LQP-provable formula θ. This requires a number of ideas that
we have developed based on an idea due to Lenzen [1980]. Though intricate, we attempt to provide
some intuition along the way.

Proof of Theorem 4.11.
For convenience, we write ` to mean `LQP. We make use of Corollary 4.10.1 without men-

tion. To prove completeness, assume 0LQP θ. It suffices to construct a pointed simple model for
¬θ. Since simple models are finite, we shall base the model on an initial finite set made up of
subformulas of θ, their negations, and finitely many other formulas whose role we explain shortly.
Worlds of the model will be maximal LQP-consistent subsets of this initial finite set, and the model
will be arranged so that a formula φ in this set is true at a world w if and only if w contains φ. The
difficulty will be in defining the probability function on such models, and for this we will turn to
Scott’s Theorem B.1. To do so, we will define, for each world, sets that play the role of N and X
in Scott’s Theorem. We explain how this works as the proof progresses.

For φ ∈ LLQP, let sub(φ) denote the set of subformulas of φ; this is the set consisting of
φ and all formulas that are constructed according to the grammar of LLQP along the way to the
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construction of φ.15 Lift our subformula function sub(−) so that it operates on sets of formulas by
joining together the subformulas of all formulas in the original set: for S ⊆ LLQP, let sub(S)

.
=⋃

φ∈S sub(φ). We now define some initial machinery we will use to include some of the formulas
we require: given S ⊆ LLQP and E ⊆ 2LLQP , define

±S .
= S ∪ {¬φ | φ ∈ S},

�S
.
= ± sub(S) ∪ ± sub{(Ψ � Φ) | (Φ � Ψ) ∈ ± sub(S)},

Ed .
=
∨
S′∈E

∧
S ′.

Note: ∅d .
= 1. The set ±S extends a set by adding in all negations of formulas in the set. The

set �S takes S, adds in the reversal of every inequality in S, and then closes the resulting set
under subformulas and negations. This makes sure we have both directions of each inequality in
the resultant set (along with one-step closure under subformulas and negations). Given a set E of
sets of formulas, Ed is the disjunction of the conjunction of every set in E. Later we will think of
worlds as certain sets of formulas and E as a set of worlds; Ed will then be a formula that defines
the set E of worlds (hence the “d” in “Ed”) in the sense that the formula Ed will be true at a world
w if and only if w ∈ E if and only if Ed ∈ w. For now, however, Ed is merely a disjunction of
conjunctions.

Given S ⊆ T ⊆ LLQP, to say that S is maxcons in T means S is consistent (i.e., for no finite
S ′ ⊆ S do we have ` (

∧
S ′) ⊃ 0) and adding to S any φ ∈ T not already present would produce

a set that is inconsistent (i.e., not consistent). Define

A
.
= �{θ};

W
.
= {w ⊆ A | w is maxcons in A};

w� .
= {φ ∈ A | ` (

∧
w) ⊃ �φ};

Ωw
.
= {v ∈ W | w� ⊆ v} for w ∈ W ;

V (w)
.
= w ∩ P for w ∈ W.

It is easy to see that A and W are finite and W is nonempty. By modal reasoning, we have for
each w ∈ W that w� is consistent and so may be extended to v ∈ W satisfying w� ⊆ v. Hence
Ωw 6= ∅. The set A is the basic set we need to construct our simple model for θ. It is the closure
under the operator � of the singleton consisting of our initial formula θ.

We then defined our set W of worlds: W is the collection of all subsets w made up of formulas
from A such that w is maxcons in A. That is, W contains all subsets of A that are as large
as possible but still consistent with LQP. In this way, any extraneous (and incorrect) formulas
coming from A will be ignored. Note that A is finite and therefore each world is also finite. The
conjunction

∧
w consisting of the formulas making up a world (i.e., set of formulas) w ∈ W is the

formula {w}d that defines that world.
Given a world w ∈ W , we defined the set w� to be the set of formulas φ ∈ A such that LQP

derives (
∧
w) ⊃ �φ. (Recall that �φ abbreviates (1 � φ).) Intuitively, w� is the set of formulas

15To be clear: sub(p) = {p} for each p ∈ P , sub(¬φ) = {¬φ}∪ sub(φ), sub(φ∨ψ) = {φ∨ψ}∪ sub(φ)∪ sub(ψ),
sub(Φ � Ψ) = {Φ � Ψ} ∪ sub(Φ) ∪ sub(Ψ), and sub(φ⊕Ψ) = sub(φ) ∪ sub(Ψ).
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in A that must have probability 1 according to world w. We then define the set Ωw of outcomes at
w to be the set of all worlds v ∈ W such that v makes true every formula that must have probability
1 according to w. This ensures that the outcome space Ωw contains just those outcomes w says
should be present. Finally, we defined the propositional valuation V in the usual way: a letter p is
true at a world w if and only if p is a member of w. This will be the base case of a forthcoming
Truth Lemma, which will shows a formula in A is true at a world w if and only if that formula
is a member of w. We now provide some more definitions and observations to help apply Scott’s
Theorem and define a probability function Pw on Ωw for each w ∈ W .

For χ ∈ LLQP, define [χ]
.
= {v ∈ W | ` (

∧
v) ⊃ χ} and [χ]w

.
= [χ] ∩ Ωw. Thus [χ] is the set

of worlds that derive χ; intuitively, this is the set of worlds at which χ may be thought of as “true.”
(Later the Truth Lemma will make it so for those in χ in A, but for now this is merely intuition.)
[χ]w is the restriction of [χ] to the set of worlds that are also outcomes of w.

We now make some observations about what can be derived from a world w. These will be
used later in this completeness proof, some of which will be used in multiple parts of the proof.
Our first observation is that from w, one has certainty of Ωd

w:

` (
∧

w) ⊃ �Ωd
w. (11)

To prove (11), first note that by the definition of Ωw and the fact that each v ∈ W is maxcons
in A that ` (

∧
w�) ≡ Ωd

w. Applying modal reasoning (i.e., using Theorem 4.8 and the rules
of LQP), we obtain ` (

∧
φ∈w� �φ) ≡ �Ωd

w. But for each φ ∈ w�, we have by definition that
` (
∧
w) ⊃ �φ. Therefore, we obtain ` (

∧
w) ⊃ �Ωd

w.
Applying Theorem 4.8.4 to (11), we obtain for any χ ∈ LLQP:

` (
∧

w) ⊃ (χ ∧ Ωd
w ≈ χ) . (12)

We finally observe that from w one can prove at least one v ∈ Ωw has non-zero probability:

` (
∧

w) ⊃ (0 ≺
∧

v) for some v ∈ Ωw. (13)

Otherwise, ` (
∧
w) ∧ ((

∧
v) � 0) for all v ∈ Ωw; hence ` (

∧
v) � 0 for all v ∈ Ωw, and by

repeated applications of (Add) and Theorem 4.7.1, we have that `
⊕

v∈Ωw
(
∧
v) � 0. Since worlds

in Ωw are pairwise inconsistent, we can apply (K3) to get ` Ωd
w � 0. But together with (11), which

states that ` (
∧
w) ⊃ (1 � Ωd

w), we obtain ` (
∧
w) ⊃ (1 � 0), which together with (Triv) implies

w is inconsistent, a contradiction. Thus we conclude that ` (
∧
w) ⊃ (0 ≺

∧
v) for some v ∈ Ωv.

ForE ⊆ W , let ι(E) be the characteristic function ofE: ι(E)(v)
.
= 1 if v ∈ E, and ι(E)(v)

.
=

0 if v ∈ W − E. Let

B
.
= A ∪ {0 � 1} ∪ {0 � {v}d | v ∈ W}.

Remark B.2 We observe that for any world w ∈ W and ψ ∈ B either ψ is provable from w or
inconsistent with w, that is either ` (

∧
w) ⊃ ψ or ` (

∧
w) ⊃ ¬ψ.

To see this, first observe that for any ψ ∈ A, this property holds, as w is a maximally consistent
subset of A. Any formula in B not in A is itself provable; for example ` 0 � {v}d by (K1). This
observation will be useful in proving (14) ahead.
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For each w ∈ W , define:

Nw
.
= {
∑

ψ∈Ψ ι([ψ]w)−
∑

φ∈Φ ι([φ]w) | Φ � Ψ ∈ B and ` (
∧
w) ⊃ (Φ � Ψ)},

Xw
.
= Nw ∪ (−Nw).

We view each real-valued function f on W (such as ι(E)) as a vector in the vector space L(W )
with basis W , by mapping each basis element v ∈ W to its weight f(v). Nw is our way of
expressing in L(W ) the inequalities (Φ � Ψ) ∈ B consistent with w. Recalling that L(W ) is
the real vector space with coordinates in our set of worlds W (similar to the vector space Rn
except that the coordinates come from W instead of from {1, 2, . . . , n}), we will represent a set
E ⊆ W of worlds by its characteristic function ι(E). For example, supposing for simplicity we
were to have W = {a, b, c} and E = {a, b} (with a, b, and c some symbols we use here for
worlds), then we would represent E by the function ι(E) : W → R such that ι(E)(a) = 1
(since a ∈ E), ι(E)(b) = 1 (since b ∈ E), and ι(E)(c) = 0 (since c /∈ E). But now instead of
writing an inequality as Φ � Ψ, we will use “subtraction” (in the vector space) to move all the
terms on the left-hand side of the inequality � to the right-hand side, writing the vector equivalent
of 0 � Ψ − Φ. However, we will be able to drop the “0 �” part of this expression because,
following the statement of Scott’s Theorem B.1, our set Nw will be the set “N” in the statement
of that theorem and the result of the theorem will guarantee that all of the members of this set Nw

will be mapped by the linear functional to a non-negative value. Thus simply including the vector
version of “Ψ − Φ” in the set Nw will suffice. So long as we can prove the conditions of Scott’s
Theorem B.1 hold, we will obtain a linear functional that ensures the vector space equivalent of
the statement 0 � Ψ−Φ. Finally, we define Xw to play the role of the set “X” from the statement
of Scott’s Theorem B.1. Xw is defined so as to be as small as possible so that it contains Nw and is
closed under vector negation (to ensure symmetry holds, as required by the theorem). This way of
choosing Nw and Xw is our adaptation of an idea due to Lenzen [1980], who used a similar kind of
definition to prove a result for a different theory. We have adapted his idea and extended it for our
own purposes here. Our task now will be to prove that Nw and Xw so chosen satisfy the conditions
of Scott’s Theorem B.1. From this we will obtain a linear functional from which we can construct
a probability function Pw enabling us to complete the proof.

We begin with an observation that will also be useful when proving the probability function is
well defined: for any χ ∈ B, we have

`
⊕

v∈[χ]w
{v}d ≈ χ ∧ Ωd

w . (14)

Equation ((14)) is proved as follows:
Take an arbitrary χ ∈ B. For v, v′ ∈ [χ]w with v 6= v′, we have ` ¬({v}d ∧ {v′}d) by classical

reasoning and hence ` �¬({v}d ∧ {v′}d) by (Nec). It therefore follows by Theorem 4.9.1 that

`
⊕

v∈[χ]w
{v}d ≈

∨
v∈[χ]w

{v}d . (15)

It remains to prove

`
∨
v∈[χ]w

{v}d ≡ χ ∧ Ωd
w . (16)
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The right-hand-side of the equivalence in (16) is equal to χ∧
∨
v∈Ωw

∧
v which, by distributivity of

∧ over ∨, is provably equivalent to
∨
v∈Ωw

(χ∧
∧
v). By Remark B.2, for each χ ∈ B and v ∈ W ,

either ` (
∧
v) ⊃ χ or ` (

∧
v) ⊃ ¬χ. Thus we observe for each disjunct that

` χ ∧
∧

v ≡
∧

v if ` (
∧

v) ⊃ χ ,

` χ ∧
∧

v ≡ 0 if ` (
∧

v) ⊃ ¬χ .

Hence by classical reasoning,
∨
v∈Ωw

(χ ∧
∧
v) is logically equivalent to

∨
v∈Ωw∩[χ]

∧
v, which is

equal to the left hand side of (16).
Apply (Nec) to (16) and combine the result with (15) using Theorem 4.6.4 to obtain (14).

Lemma B.3 For eachw, the setXw is a finite, rational, symmetric subset ofL(W ), andNw ⊆ Xw,
satisfying the conditions of Scott’s Theorem:

1. for each x ∈ Xw, either x ∈ Nw or −x ∈ Nw; and

2. for each n ≥ 1 and x1, . . . , xn ∈ Nw:
∑n

i=1 xi = 0 implies −x1 ∈ Nw.

Proof: We haveNw ⊆ Xw; also,Xw is a finite, rational, symmetric subset of L(W ). It is obvious
that Nw satisfies Item 1. We prove Nw also satisfies Item 2. So assume we have x1, . . . , xn ∈ Nw

satisfying
∑n

i=1 xi = 0. Each vector xi has the form
∑

ψ∈Ψi
ι([ψ]w) −

∑
φ∈Φi

ι([φ]w) for some
Φi � Ψi ∈ B where ` (

∧
w) ⊃ (Φi � Ψi).

For any χ ∈ LLQP (in particular χ ∈ B), we have by linearity, ι([χ]w) =
∑

v∈[χ]w
ι({v}), so

the assumption implies∑n
i=1

∑
φ∈Φi

∑
v∈[φ]w

ι({v}) =
∑n

i=1

∑
ψ∈Ψi

∑
v∈[ψ]w

ι({v}) .

So writing out the sums in full without combining any summands, the equation above says that a
coordinate v ∈ W has exactly the same number of appearances in a summand on the left as on the
right. So by (Ref) (from Theorem 4.6) and (Com), we obtain

`
⊕n

i=1

⊕
φ∈Φi

⊕
v∈[φ]w

{v}d ≈
⊕n

i=1

⊕
ψ∈Ψi

⊕
v∈[ψ]w

{v}d . (17)

It follows from (17), (14), and (12) by Theorem 4.6.6 and the equality
⊕

φ∈Φ φ = Φ that

` (
∧
w) ⊃ (

⊕n
i=1 Φi ≈

⊕n
i=1 Ψi) . (18)

Since ` (
∧
w) ⊃ (Φi � Ψi) for each i ∈ {1, . . . , n}, it follows from (18) by Theorem 4.9.3 that

` (
∧
w) ⊃ (Ψ1 � Φ1). That is, −x1 ∈ Nw. Therefore, Item 2 is also satisfied. �

Applying Scott’s Theorem B.1 yields a linear functional fw on L(W ) that realizes Nw in Xw.
It is this linear functional fw that we shall use to construct a probability function. As we will see,
essentially all we will need to do is define the probability of a setE ⊆ Ωw to be the value fw assigns
to our vector representation of E divided by the value fw assigns to our vector representation of
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the outcome set Ωw. But for the probability to be well-defined, the denominator must not be zero.
Proceeding, it will be helpful to recall that the vector representation of a set E ⊆ Ωw is given by
its characteristic function ι(E). Thus the denominator is fw(ι(Ωw)).

To show that fw(ι(Ωw)) 6= 0, first observe that ι(Ωw) = ι(1) − ι(0) ∈ Nw, since 0 � 1 ∈ B.
Let x = −ι(Ωw). As −x ∈ Nw, x ∈ Xw. We wish to show that x 6∈ Nw, and hence fw(x) < 0,
since fw realizes Nw.

Suppose that x =
∑

ψ∈Ψ ι([ψ]w) −
∑

φ∈Φ ι([φ]w) ∈ Nw for some Φ � Ψ ∈ B. We now
show that 0 (

∧
w) ⊃ (Φ � Ψ). For each v ∈ Ωw, we have x(v) = −1, and hence there are

more φ ∈ Φ such that v ∈ [φ]w than ψ ∈ Ψ such that v ∈ [ψ]w. Note that by (13), we have
that ` (

∧
w) ⊃ (0 ≺

∧
v) for some v ∈ Ωw. Then by repeated applications of Theorem 4.6.8

(which is provably equivalent to (Φ1 � Ψ1) ⊃ ((Φ2 ≺ Ψ2) ⊃ (Φ1 ⊕ Φ2 ≺ Ψ1 ⊕Ψ2))), (Tot), and
Theorem 4.7.1, we obtain

` (
∧
w) ⊃

(⊕
φ∈Φ

⊕
v∈[φ]w

{v}d �
⊕

ψ∈Ψ

⊕
v∈[ψ]w

{v}d
)
. (19)

Then by (14) and Theorem 4.6.6, we obtain ` (
∧
w) ⊃

(⊕
φ∈Φ(φ ∧ Ωd

w) �
⊕

ψ∈Ψ(ψ ∧ Ωd
w)
)
.

By (12) and Theorem 4.6.6, we have that ` (
∧
w) ⊃ (Φ � Ψ). As w is consistent, 0 (

∧
w) ⊃

(Φ � Ψ), and hence x 6∈ Nw. Hence fw(x) < 0, and fw(−x) = fw(ι(Ωw)) > 0. So we may define
Pw : 2Ωw → [0, 1] by

Pw(E)
.
= fw(ι(E)) / fw(ι(Ωw)) .

We prove that Pw is a probability measure on 2Ωw .

• Pw(
⋃n
i=1Ei) =

∑n
i=1 Pw(Ei) for pairwise disjoint E1, . . . , En ⊆ Ωw.

Characteristic functions are additive. Thus ι(
⋃n
i=1Ei) =

∑n
i=1 ι(Ei). Hence

Pw(
⋃n
i=1Ei) =

fw(ι(
⋃n
i=1Ei))

fw(ι(Ωw))

=
fw(
∑n

i=1 ι(Ei))

fw(ι(Ωw))
by additivity of ι

=
n∑
i=1

fw(ι(Ei))

fw(ι(Ωw))
by linearity of fw

=
n∑
i=1

Pw(Ei) .

• Pw(E) ≥ 0 for each E ⊆ Ωw.

Because of Ωw is finite and Pw is additive, it suffices to show that Pw({v}) ≥ 0 for each
v ∈ E. So let v ∈ E. We have (0 � {v}d) ∈ B and ` (0 � {v}d) by (K1); hence
` (
∧
w) ⊃ (0 � {v}d) by classical reasoning. Thus (0 � {v}d) ∈ Nw. Since fw realizes

Nw in Xw, it follows that

fw(ι([0]w)) ≤ fw(ι([{v}d]w)) . (20)
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We have [0]w = ∅ and it follows by linearity that fw(ι(∅)) = 0. Also, since v ∈ Ωw, we
have [{v}d]w = {v}. Applying these facts, the definition of Pw, and (20), it follows that
Pw({v}) ≥ 0.

• Pw(Ωw) = 1 by definition.

So Pw is a probability measure on 2Ωw , and therefore M .
= (W,P, V ) is a simple model. What

remains is for us to make good on our promise that a world will consist of the set of formulas in A
that are true at that world. This is the following lemma.

Lemma B.4 (Truth Lemma) For each w ∈ W and χ ∈ A, we have χ ∈ w iff M,w |= χ.

Proof: We prove this by induction onLLQP-formula construction. The induction base and Boolean
induction step cases are standard, so we only address the induction step case for formulas Φ � Ψ.

• Left to right: if w ∈ W and (Φ � Ψ) ∈ w, then M,w |= Φ � Ψ.

Assume w ∈ W and (Φ � Ψ) ∈ w. Since fw realizes Nw in Xw, we have∑
φ∈Φ fw(ι([φ]w)) ≤

∑
ψ∈Ψ fw(ι([ψ]w)) . (21)

Since (Φ � Ψ) ∈ w ⊆ A implies we have φ, ψ ∈ A for each φ ∈ Φ and each ψ ∈ Ψ, we may
apply the induction hypothesis to obtain [φ]w = [[φ]]wM for each φ ∈ Φ and [ψ]w = [[ψ]]wM for
each ψ ∈ Ψ. Therefore, we obtain from (21) by the definition of Pw that

∑
φ∈Φ Pw([[φ]]wM) ≤∑

ψ∈Ψ Pw([[ψ]]wM). Applying Definition 4.3, we have M,w |= Φ � Ψ.

• Right to left: if (Φ � Ψ) ∈ A and M,w |= Φ � Ψ, then (Φ � Ψ) ∈ w.

Assume (Φ � Ψ) ∈ A and M,w |= Φ � Ψ. Applying Definition 4.3, the definition of
Pw, and multiplying both sides of the resulting inequality by fw(ι(Ωw)), we obtain (21).
Since (Φ � Ψ) ∈ A implies (Ψ � Φ) ∈ A by the definition of A, it follows by (Tot)
that (Φ � Ψ) ∈ w or (Ψ � Φ) ∈ w. If we had (Φ � Ψ) /∈ w, then it would follow
that (Ψ � Φ ∈ w) and hence we would obtain

∑
ψ∈Ψ fw(ι([ψ]w)) ≤

∑
φ∈Φ fw(ι([φ]w))

by the fact that fw realizes Nw in Xw. This in turn would contradict (21). Conclusion:
(Φ � Ψ) ∈ w. �

Then, since 0LQP θ, there exists wθ ∈ W such that ¬θ ∈ wθ. Applying the Truth Lemma,
M,wθ 6|= θ. Completeness follows. Note: (Sub), (Add), and (Succ) are used in the proof of
Theorem 4.6.4; (Tran) and (K3) are used in the proof of Theorem 4.9.1. �

Proof of Theorem 4.12.
Without loss of generality, we may assume that each of the ai’s and bj’s is non-negative. By

the preceding definition of rational linear inequalities in our approach, and the soundness and
completeness of LQP (Theorems 4.10 and 4.11), we have the right side of the desired equivalence
iff
∑n

i=1 ai ·Pw([[1]]M ∩Ωw) ≤
∑m

i=1 bi ·Pw([[1]]M ∩Ωw). But this is itself equivalent to
∑n

i=1 ai ≤∑m
i=1 bi. �
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B.2 Proofs of Section 5
We introduce the following notation and terminology. Πn will denote the set of all permutations
of the integers 1, . . . , n. Thus for π ∈ Πn we have that for 1 ≤ i ≤ n, π(i) ∈ {1, . . . , n} and that
π(i) = π(j) iff i = j. We also extend our sequence notation to be used with the E abbreviation.
Thus we may write (φi)

m
i=1E(ψi)

m
i=1 as ΦEΨ, understanding Φ to stand for (φi)

m
i=1 and similarly for

Ψ.16 Φ′ ⊆ Φ indicates multiset containment; i.e. each element of Φ′ can be paired with a distinct
element of Φ. Then D(Φ, i) is defined to be the set of all sequences of size i with elements drawn
from Φ, expressed as a disjunction of conjunctions.

Definition B.5 For sequence Φ, and for 1 ≤ i ≤ |Φ|, define

D(Φ, i)
.
=
∨
{∧Φ′ | Φ′ ⊆ Φ and |Φ′| = i}.

Segerberg suggests that the E schema captures a generalisation of necessary equivalence, but
he doesn’t elaborate on this point. Part 1 shows that ΦEΨ holds just if, necessarily, elements of
Φ and Ψ can be “paired off” such that each such pair of formulas are equivalent. Part 2 of the
theorem asserts that ΦEΨ holds iff necessarily, for every i, Φ is true of at least i elements iff Ψ is.

Theorem B.6 (E-Schema) Let Φ =
⊕m

i=1 φi and let Ψ =
⊕m

i=1 ψi. Then:

1. `LQP ΦEΨ ≡ �
∨
π∈Π

∧m
i=1

(
φi ≡ ψπ(i)

)
2. `LQP ΦEΨ ≡ �

∧m
i=1 (D(Φ, i) ≡ D(Ψ, i))

3. `LQP

⊕m
i=1 φi ≈

⊕m
i=1D(Φ, i)

Proof of Theorem B.6.
In Theorem 4.8 we showed that the logic of � is that of the normal modal logic KD; thus

we can freely use results from this modal logic. So for both parts of the theorem we argue with
respect to a model M = 〈W,R, P 〉 over a set of atomic sentences P , where W is a set (of possible
worlds), R ⊆ W × W is a serial relation, and P : P 7→ 2W specifies the truth assignment of
atomic sentences at worlds. Truth of a formula at a world and other notions are defined in the
standard way; see any basic text on modal logic (e.g. [Chellas, 1980; Hughes and Cresswell, 1996]
for details).

1: Left to right: We argue via the model theory; hence assume that for model M and possible
world w that M,w |= ΦEΨ or M,w |= (φi)

m
i=1E(ψi)

m
i=1. That is, M,w |= �

∨m
i=0Ci where

Ci is specified according to Equation (3). Let w′ ∈ W be such that (w,w′) ∈ R; such a w′

exists since R is serial.

Then M,w′ |=
∨m
i=0 Ci, which is to say, for some j (0 ≤ j ≤ m), we have M,w′ |= Cj .

Expressing this in terms of (3) we have

M,w′ |= e1φ1 ∧ · · · ∧ emφm ∧ f1ψ1 ∧ · · · ∧ fmψm
16In ΦEΨ, Segerberg and Gärdenfors assume that |Φ| = |Ψ|, which we also adopt. This assumption is inessential

since if, say, |Φ| < |Ψ| the sequence Φ can always be “padded” to the length of Ψ by adding instances of 0.
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where each ek and fk is either the negation symbol ¬ or the empty string, and exactly j of
the e and f elements are the negation symbol.

Thus there is a permutation π ∈ Π such that M,w′ |= e1φ1 ∧ fπ(1)ψπ(1) ∧ · · · ∧ emφm ∧
fπ(m)ψπ(m) and where for each k, ek is the negation symbol iff fπ(k) is.

Hence M,w′ |= (φ1 ≡ ψπ(1)) ∧ · · · ∧ (φm ≡ ψπ(m)) which is to say M,w′ |=
∧m
i=1(φi ≡

ψπ(i)). This means that M,w′ |=
∨
π∈Π

∧m
i=1(φi ≡ ψπ(i)).

Sincew′ is an arbitrary world accessible fromw we haveM,w |= �
∨
π∈Π

∧m
i=1(φi ≡ ψπ(i)).

Right to left: For the other direction, it can be noted that the above argument can be equally
well reversed. We omit the details,

This shows that for any modelM and worldw thatM,w |= ΦEΨ ≡ �
∨
π∈Π

∧m
i=1

(
φi ≡ ψπ(i)

)
.

The result then follows from the completeness result for KD with respect to serial models.

2: Left to right: Assume that for model M and possible world w we have M,w |= ΦEΨ or
M,w |= (φi)

m
i=1E(ψi)

m
i=1. From the previous part this implies thatM,w |= �

∨
π∈Π

∧m
i=1(φi ≡

ψπ(i)), or for every w′ ∈ W where (w,w′) ∈ R that M,w′ |=
∨
π∈Π

∧m
i=1(φi ≡ ψπ(i)). So

for some π ∈ Π we have that M,w′ |=
∧m
i=1(φi ≡ ψπ(i)).

Let Φ′ = {φ ∈ Φ | M,w′ |= φ} and let Ψ′ = {ψ ∈ Ψ | M,w′ |= ψ}. Clearly |Φ′| = |Ψ′|,
and so for k = |Φ′| we have M,w′ |= D(Φ, k) and M,w′ |= D(Ψ, k). Moreover, for j > k
we have M,w′ 6|= D(Φ, j) and M,w′ 6|= D(Ψ, j), and for j < k we have M,w′ |= D(Φ, j)
and M,w′ |= D(Ψ, j).

Putting this together yields M,w′ |=
∧m
i=1D(Φ, i) ≡ D(Ψ, i). Since this holds for any w′

where (w,w′) ∈ R, we obtain M,w |= �
∧m
i=1D(Φ, i) ≡ D(Ψ, i).

Right to left: Assume that for model M and possible world w we have

M,w |= �
∧m
i=1 (D(Φ, i) ≡ D(Ψ, i)) . So for any w′ where (w,w′) ∈ R we have M,w′ |=∧m

i=1 (D(Φ, i) ≡ D(Ψ, i)) .

We show that M,w′ |=
∧m
i=1(φi ≡ ψπ(i)) for some π ∈ Πm.

Let k be the greatest index such that M,w |= D(Φ, k). (If there is no such k then we have
for every φ ∈ Φ that M,w′ |= ¬φ, and for every ψ ∈ Ψ that M,w′ |= ¬ψ, whence
M,w′ |=

∧m
i=1(φi ≡ ψi).) Consequently M,w |= D(Ψ, k) and moreover for every j > k

we have M,w 6|= D(Φ, j) and M,w 6|= D(Ψ, j).

Consider the fact that M,w |= D(Φ, k). This means that for some Φ′ ⊆ Φ where |Φ′| = k
that M,w′ |= ∧Φ′ and for any φ 6∈ Φ′ that M,w′ 6|= φ. Hence this defines a partition of
Φ into Φ′ and Φ \ Φ′ where elements of the former are true at w′ and elements of the latter
false. In the same fashion we can determine a partition of Ψ into Ψ′ (of size k) and Ψ \ Ψ′,
where elements of the former are true at w′ and elements of the latter false.

So take any bijection between elements of Φ′ and Ψ′ and between elements of Φ \ Φ′ and
Ψ\Ψ′; this bijection defines a permutation π ∈ ΠM of elements of Ψ with respect to elements
of Φ. This shows that M,w′ |=

∧m
i=1

(
φi ≡ ψπ(i)

)
, which we set out to show at the outset.
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From M,w′ |=
∧m
i=1

(
φi ≡ ψπ(i)

)
, we obtain that M,w′ |=

∨
π∈Π

∧m
i=1

(
φi ≡ ψπ(i)

)
. Since

this holds for anyw′ where (w,w′) ∈ R, this means thatM,w |= �
∨
π∈Π

∧m
i=1

(
φi ≡ ψπ(i)

)
;

from the previous part of the theorem we obtain that M,w |= ΦEΨ.

This shows for any modelM and possible worldw thatM,w |= ΦEΨ ≡ �
∧m
i=1 (D(Φ, i) ≡ D(Ψ, i))

From the completeness result for KD with respect to serial models we obtain that `LQP

ΦEΨ ≡ �
∧m
i=1 (D(Φ, i) ≡ D(Ψ, i))

3: The proof makes use of two lemmas.

Lemma B.7 D(φ⊕ Φ, i+ 1) ≈ (φ ∧D(Φ, i)) ∨D(Φ, i+ 1)

Proof: By Definition B.5, D(φ⊕ Φ, i+ 1) is
∨
{∧Φ′ | Φ′ ⊆ φ⊕ Φ and |Φ′| = i+ 1}.

This is equivalent to∨
{φ ∧ (∧Φ′) | Φ′ ⊆ Φ and |Φ′| = i} ∨

∨
{∧Φ′ | Φ′ ⊆ Φ and |Φ′| = i+ 1}

which is equivalent to

(φ ∧
∨
{∧Φ′ | Φ′ ⊆ Φ and |Φ′| = i}) ∨

∨
{∧Φ′ | Φ′ ⊆ Φ and |Φ′| = i+ 1}.

However this is just (φ ∧D(Φ, i)) ∨D(Φ, i+ 1). �

Lemma B.8 (φ ∧D(Φ, i))⊕D(Φ, i+ 1) ≈ (D(φ⊕ Φ, i+ 1))⊕ (φ ∧D(Φ, i+ 1)).

Proof: An instance of Theorem 4.7.4 is

(φ∧D(Φ, i))⊕D(Φ, i+1) ≈ ((φ∧D(Φ, i)∨D(Φ, i+1))) ⊕ (φ∧D(Φ, i)∧D(Φ, i+1)). (22)

Consider the two terms on the right side of ≈.

1. From Lemma B.7, we have that (φ∧D(Φ, i))∨D(Φ, i+ 1) ≈ D(φ⊕Φ, i+ 1). Hence
we can use Theorem 4.6.6 to simplify this term to D(φ⊕ Φ, i+ 1).

2. The second term is φ ∧D(Φ, i) ∧D(Φ, i + 1). An immediate consequence of Defini-
tion B.5 is that D(Ψ, i + 1) ⊃ D(Ψ, i) is a theorem of propositional logic. Hence this
term is equivalent to φ ∧D(Φ, i+ 1).

Substituting these two parts into (22) gives what was to be shown:

(φ ∧D(Φ, i)⊕D(Φ, i+ 1)) ≈ D(φ⊕ Φ, i)⊕ φ ∧D(Φ, i+ 1). �

The proof of the theorem is by induction on the length of the sequence Φ.

For m = 1, we have that φ ≈ D(φ, 1) is φ ≈ φ, which is a consequence of (Ref).

For m = 2, we are to show φ1 ⊕ φ2 ≈ D(Φ, 1)⊕D(Φ, 2). This is the same as φ1 ⊕ φ2 ≈
(φ1 ∨ φ2)⊕ (φ1 ∧ φ2) which is Theorem 4.7.4.
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For the induction hypothesis, assume that our result holds for m = k, that is for Φ =⊕k
i=1 φi, we have

⊕k
i=1 φi ≈

⊕k
i=1D(Φ, i). We show, for formula φ0, that

⊕k
i=0 φi ≈⊕k+1

i=1 D(φ0 ⊕ Φ, i). 17

Since
⊕k

i=0 φi is φ0⊕
⊕k

i=1 φi, we can apply the induction hypothesis and use the Principle
of Replacement to obtain⊕k

i=0 φi ≈ φ0 ⊕
⊕k

i=1D(Φ, i). (23)

Consider φ0 ⊕D(Φ, 1) from the right hand side of ≈ in (23): An instance of Theorem 4.7.4
is φ0 ⊕ D(Φ, 1) ≈ (φ0 ∨ D(Φ, 1)) ⊕ (φ0 ∧ D(Φ, 1)). The term φ0 ∨ D(Φ, 1) is just
D(φ0 ⊕ Φ, 1) and hence φ0 ⊕ D(Φ, 1) ≈ D(φ ⊕ Φ, 1) ⊕ (φ0 ∧ D(Φ, 1)) Then, via the
Replacement Principle, (23) is equivalent to⊕k

i=0 φi ≈ D(φ⊕ Φ, 1)⊕ (φ0 ∧D(Φ, 1))⊕
⊕k

i=2D(Φ, i). (24)

Let the sequence on the right hand side of ≈ be Φ1. We next iteratively obtain a sequence
of sequences Φ1, . . . ,Φk−1 where Φi ≈ Φi+1 for 1 ≤ i ≤ k − 1 and using Lemma B.8 as
follows.

– For step i, we have that Φi is of the form⊕i
j=1D(φ⊕ Φ, j)⊕ (φ0 ∧D(Φ, i))⊕

⊕k
j=i+1D(Φ, i).

– Using Lemma B.8 applied to (φ0∧D(Φ, i))⊕D(Φ, i+1), along with the Replacement
Principle yields Φi+1:⊕i+1

j=1D(φ⊕ Φ, j)⊕ (φ0 ∧D(Φ, i+ 1))⊕
⊕k

j=i+2D(Φ, i+ 1).

where clearly Φi ≈ Φi+1.

Continuing in this fashion we obtain Φk:
⊕k

j=1D(φ⊕ Φ, j)⊕ (φ0 ∧D(Φ, k))

Finally, it can be noted that since |Φ| = k, (φ0 ∧D(Φ, k)) ≡ D(φ0 ⊕ Φ, k + 1).

Thus Φk is equivalent to:
⊕k+1

j=1 D(φ⊕ Φ, j).

Summing up, Equation (24) can be written
⊕k

i=0 φi ≈ Φ1; we have Φi ≈ Φi+1 for 1 ≤ i ≤
k − 1; and Φk is equivalent to

⊕k+1
j=1 D(φ⊕ Φ, j). Thus by transitivity of ≈, we obtain⊕k

i=0 φi ≈
⊕k+1

i=1 D(φ⊕ Φ, i) which was to be shown. �

Proof of Theorem 5.2.

1: This result can be proven entirely within the proof theory of our logic. However, it is also an
easy consequence of previous results, some of which were shown by appealing to the model
theory of modal logic KD, For brevity, we take the latter alternative.

17Note that on the left side of ≈ we run our index from 0 to k, rather than 1 to k + 1 as would be more usual.
Beginning from 0 makes the argument (slightly) more straightforward.
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Let Φ be
⊕m

i=1 φi and let Ψ be
⊕m

i=1 ψi. From Theorem B.6.2 we have that ΦEΨ is logically
equivalent to �

∧m
i=1 (D(Φ, i) ≡ D(Ψ, i)) . Using Theorem 4.9.2 (along with repeated ap-

plication of the equivalence in modal logic K that �(γ1 ∧ γ2) ≡ (�γ1 ∧ �γ2)) we have
that �

∧m
i=1 (D(Φ, i) ≡ D(Ψ, i)) implies

⊕m
i=1 D(Φ, i) ≈

⊕m
i=1D(Ψ, i). But by Theo-

rem B.6.3 and the Replacement Principle, Theorem 4.6.6, we have that this last expression
is equivalent to

⊕m
i=1 φi ≈

⊕m
i=1 ψi, from which we obtain.

2: This follows by Part 1, Theorem 4.9.3, and classical reasoning. �

Proof of Theorem 5.3.
Since LQP ⊆ LLQP, it follows that LLQP is at least as expressive as is LQP over our class of

super simple models. We now show that this expressivity is strict. Define W = {w1, w2} and
V : W → 2P by V (w1) = {p} and V (w2) = ∅. Let P 1 be the probability measure on 2W

given by P 1({w1}) = 1
3

and P 2 be the probability measure on 2W given by P 2({w1}) = 1
4
.

Define Πi
x = (W, 2W , P i) for each i ∈ {1, 2} and x ∈ W . Define the super-simple models

M1 = (W,Π1, V ) and M2 = (W,Π2, V ). It is easy to verify that M1, w1 |= p ≈ 1
3

but that
M2, w1 6|= p ≈ 1

3
. The language LLQP therefore distinguishes (M1, w1) and (M2, w1).

By induction on the construction of formulas in LQP, we show that for each χ ∈ LQP, we
have [[χ]]M1 = [[χ]]M2 . The base and propositional Boolean cases are straightforward, so we
only consider the induction case for the formula φ � ψ. Proceeding, we observe that for each
P ∈ {P 1, P 2}, we have P (∅) < P ({w2}) < P ({w1}) < P ({w1, w2}). But then we have by
the induction hypothesis that [[χ]]M1 = [[χ]]M2 for each χ ∈ {φ, ψ}, from which it follows that
[[φ � ψ]]M1 = [[φ � ψ]]M2 . �

Proof of Theorem 5.4.
By Theorems 4.10, 4.11, and the completeness of QP. Also, we note that: the QP principles

(PC), (MP), and (Nec) are present in LQP; QP’s (A0) is an instance of LQP’s (Sub); QP’s (A1) is
the same as LQP’s (K1); QP’s (A2) is an instance of LQP’s (Tot); QP’s (A3) is LQP’s (Triv); and
LQP’s (A4) is LQP-derivable per Theorem 5.2.2. �

Proof of Theorem 5.5.

1. We have L−QP ⊆ LPK, so LPK is at least as expressive as L−QP over the class of super-simple
PK models. To show this expressive relationship is strict, define W = {w1, w2} and V :
W → 2P by V (w1) = {p} and V (w2) = ∅. Let P be the probability measure on 2W given
by P ({w1}) = 1. Define Πx = (W, 2W , P ) for each x ∈ W . Define R1 : W → 2W

by R1(x) = {x} for each x ∈ W and R2 : W → 2W by R2(x) = W for each x ∈ W .
Define the super-simple PK models M i = (W,Π, Ri, V ) for each i ∈ {1, 2}. We have
M1, w1 |= �p and M2, w1 6|= �p. However, by an easy induction on the construction of
L−QP-formulas, it follows that [[φ]]M1 = [[φ]]M2 for each φ ∈ L−QP. So LPK is strictly more
expressive than L−QP over the class of super-simple PK models.

2. Our argument in Part 1 can be extended to show that no LQP-formula distinguishes the
super-simple PK models (M1, w1) and (M2, w1) defined in that part. So LQP is not more
expressive than LPK over the class of super-simple PK models.
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To see that the languages are not comparable in the other direction over this class, define
W = {w1, w2} and V : W → 2P by V (w1) = {p} and V (w2) = ∅. Let P 1 and P 2 be the
probability measures on the finite σ-algebra 2W satisfying the following:

P 1({w1}) = P 1({w2}) = 1
2
, P 2({w1}) = 1

4
and P 2({w2}) = 3

4
.

For each i ∈ {1, 2}, define Πi
w = (W, 2W , P i) for each and w ∈ W and the super-simple

PK model Li = (W,Πi, RiV ), where Ri is immaterial. Last, fix the LQP-formula χ = p ≺
(¬p � p) . We note that [[¬p � p]]L1 = W and [[¬p � p]]L2 = ∅. Hence

P 1 ([[¬p � p]]L1) = 1 and P 2 ([[¬p � p]]L2) = 0 .

Since P 1([[p]]L1) = 1
2
< 1 and P 2([[p]]L2) = 1

4
� 0 , we obtain L1, w1 |= χ and L2, w1 6|=

χ. By an easy induction on the construction of LPK-formulas, it follows that [[φ]]L1 = [[φ]]L2

for each φ ∈ LPK. So LPK is not more expressive than LQP over the class of super-simple
PK models. Conclusion: these two languages are incomparable over this class of models.

3. We can extend the induction from Part 1 to show that we have [[φ]]M1 = [[φ]]M2 for each
φ ∈ LLQP. So LLQP is not more expressive than LPK over the class of super-simple PK
models.

To see the converse, now let the super-simple models M1 and M2 be defined as in the proof
of Theorem 5.3. Extend these to super-simple PK models by addingR : W → 2W satisfying
R(x) = W for each x ∈ W . By an easy induction on the construction of LPK-formulas, it
follows that [[φ]]M1 = [[φ]]M2 for each φ ∈ LPK. SoLPK is not more expressive thanLLQP over
the class of super-simple PK models. But then it follows that LPK and LLQP are expressively
incomparable over the class of super-simple PK models. �

Proof of Theorem A.3.
For any PK model M = (W,Π, R, V ), Πw = (Ωw, Fw, Pw), and possible world w ∈ W we

have M,w |= 0 ≺ 1 by Axiom (#8) and the PK soundness and completeness result. this implies
M,w |= ¬(1 � 0) or M,w 6|= 1 ≤ 0. From the definition of |= this means that it is not the case
that: Pw([[1]]wM) ≤ Pw([[0]]wM), which is to say, it is the case that

Pw([[0]]wM) < Pw([[1]]wM) . (25)

The definition of [[·]] is [[φ]]wM
.
= [[φ]]M ∩ Ωw or, in the case of PK models [[φ]]wM

.
= [[φ]]M ∩

{w′ | wRw′}. Hence (25) is the same as: Pw({w′ | wRw′ and M,w′ |= 0}) < Pw({w′ |
wRw′ and M,w′ |= 1}) or 0 < Pw({w′ | wRw′ and M,w′ |= 1}) . Assume that there is no
w′ ∈ W such that wRw′. Then in this case Pw({w′ | wRw′ and M,w′ |= 1}) = Pw({}) = 0,
which gives 0 < 0, contradiction.

Since w is an arbitrary possible world, this implies that for any w ∈ W there is w′ ∈ W such
that wRw′. �

Proof of Theorem A.4.
An instance of Axiom (#7) is φĖψ ⊃ ((φ � ψ) ⊃ (ψ � φ)). The contrapositive of this instance
is ((φ � ψ) ∧ ¬(ψ � φ)) ⊃ ¬(φĖψ) or ((φ � ψ) ∧ (φ ≺ ψ)) ⊃ ¬(φĖψ) which is logically
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equivalent to (φ ≺ ψ) ⊃ ¬(φĖψ). Taking φ as 0 and ψ as 1 yields (0 ≺ 1) ⊃ ¬(0Ė1). Now
0 ≺ 1 is just Axiom (#8) and so via modus ponens we obtain that ¬(0Ė1) is a theorem. ¬(0Ė1)
abbreviates ¬�((1∧0)∨ (0∧1)) which is equivalent to ¬�0. Finally, ¬�0 ≡ (�φ ⊃ ¬�¬φ) is a
theorem of the modal logic K, and so via modus ponens we obtain that �φ ⊃ ¬�¬φ is a theorem.
�

Proof of Theorem 5.6.
In the presence of (Symm), the axioms of PK simplify considerably: Axioms (#2) – (#5) are

redundant, as is the antecedent condition of (#6) and (#9). As a result PK′ is defined by (Symm)
and (PMN) together with the following:

(PC) All tautologies of classical propositional logic
(#0) �(φ ⊃ ψ) ⊃ (�φ ⊃ �ψ)

(#1) �(φ ≡ φ′) ∧�(ψ ≡ ψ′) ⊃ ((φ � ψ) ⊃ (φ′ � ψ′))

(#6’) (φ � ψ) ∨ (ψ � φ)

(#7) (φi)
m
i=1Ė(ψi)

m
i=1 ⊃ ((

∧m
i=1 φi � ψi) ⊃ (

∧m
i=1 ψi � φi)) for all m ≥ 1

(#8) 0 ≺ 1

(#9’) 0 � φ

(MP) From φ ⊃ ψ and φ, infer ψ
(Nec) From φ infer �φ

We have the following results:

1. In the presence of schema (#6’) (resp. (A2)), the schemas (#7) and (A4) are equivalent under
propositional reasoning.

To show that Gärdenfors’s schema (A4) implies Segerberg’s (#6’), observe that (A4) (for
assumed m) can be considered as a set of i instances ((φi)

m
i=1E(ψi)

m
i=1 ∧

∧m
k=1,k 6=j(φk �

ψk)) ⊃ (ψj � φj) for 1 ≤ j ≤ m. Strengthening of the antecedent gives ((φi)
m
i=1E(ψi)

m
i=1 ∧∧m

k=1(φk � ψk)) ⊃ (ψj � φj) for 1 ≤ j ≤ m; and these together imply ((φi)
m
i=1E(ψi)

m
i=1 ∧∧m

k=1(φk � ψk)) ⊃
∧m
k=1(ψk � φk)) which is (#7). For the other direction, (#7) can be

expressed as ((φi)
m
i=1Ė(ψi)

m
i=1 ∧ (

∧m
i=1 φi � ψi)) ⊃ (

∧m
i=1 ψi � φi)).

This entails ((φi)
m
i=1Ė(ψi)

m
i=1 ∧ (

∧m
i=1 φi � ψi)) ⊃ ψm � φm, which by propositional

reasoning is equivalent to ((φi)
m
i=1Ė(ψi)

m
i=1∧(

∧m−1
i=1 φi � ψi)) ⊃ (¬(φm � ψm)∨ψm � φm).

Axiom (#6’) is equivalent to ¬(φm � ψm) ⊃ (ψm � φm) and so the preceding expression
implies ((φi)

m
i=1Ė(ψi)

m
i=1 ∧ (

∧m−1
i=1 φi � ψi)) ⊃ ψm � φm which is (A4).

2. `PK′ (1 � φ) ≡ �φ

One direction is given by (PMN). For the other direction, note that �φ is equivalent to φĖ1
(= �((¬φ ∧ 0) ∨ (φ ∧ 1))). From the previous result, we can use (A4) in place of (#7). An
instance of (A4) is φĖ1 ⊃ 1 � φ) which is just �φ ⊃ 1 � φ), which was to be shown.

3. Schema (#0) is a consequence of the axiomatisation of PK′, excluding (#0). See [Gärdenfors,
1975a], where inter alia it is shown that (#0) is a theorem of QP.
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The proof of the theorem is now almost immediate: QP and PK′ share the same rules of
inference, (MP) and (Nec). As well, any axiom of QP is an axiom of PK′ (or derivable, in the
case of (A4)/(#7). Consequently for φ ∈ L−QP a proof of φ in QP is a proof in PK′. For the reverse
direction, the axioms of PK′ that aren’t axioms of QP are (PMN), (Symm) and (#0). However,
(PMN) is trivial in QP, since � is a defined operator; (Symm) is now a consequence of (#6’);
and (#0) is noted above to be redundant. It follows then that for φ ∈ L−QP a proof of φ in PK′ is
transformable to a proof of φ in QP. �

Proof of Theorem 5.8.

1 Define G : LAXmeas → L−LQP as follows:

G(p) = p , for p ∈ P
G(¬φ) = ¬G(φ)

G(φ ∨ ψ) = G(φ) ∨G(ψ)

G(a �
∑n

i=1 ai · w(ψi)) = a �
⊕n

i=1 ai ·G(ψi)

Notice that the last line defining G makes use of our definition of rational linear inequalities.
It is straightforward to verify that for each ψ ∈ LAXmeas , we have |= φ ≡ G(φ). So G is
satisfaction-preserving. It is also straightforward to see that H := G−1 is indeed a function
with domain L−LQP (by the fact that L−LQP is the non-nested fragment of LLQP) and that H is
also satisfaction-preserving. Hence LAXmeas and L−LQP are equally expressive over the class
of simple models. Further, it is easy to see that each of G ◦ H : LAXmeas → LAXmeas and
H ◦G : L−LQP → L

−
LQP is an identity function.

2 Let Li for i ∈ {1, 2} be the super-simple model obtained by deleting the relation Ri from
the PK model Li in the proof of Theorem 5.5(2). Take χ := p ≺ (¬p � p). This is an
LQP-formula and, as we saw in the proof of Theorem 5.5(2), we have L1, w1 |= χ but
L2, w1 6|= χ. We prove by induction on the construction of formulas φ ∈ LAXmeas that we
have [[φ]]L1 = [[φ]]L2 . All cases except for one induction step case are straightforward, so let
us consider this case. We wish to show that we have

[[d ≤
∑

i≤n di · w(ψi)]]L1 = [[d ≤
∑

i≤n di · w(ψi)]]L2 . (26)

But by the induction hypothesis, it follows that we have [[ψi]]L1 = [[ψi]]L2 for each i ≤ n.
So since P 1

w1
= P 2

w1
, it follows that we have P 1

w1
([[χ]]L1 ∩W ) = P 1

w1
([[χ]]L2 ∩W ) for each

i ≤ n. Applying the definition of satisfaction, (26) follows. �
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