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Abstract

The area of belief revision studies how a rational agent may incorporate new information
about a domain into its belief corpus. An agent is characterized by a belief stateK, and receives
a new item of information α which is to be included among its set of beliefs. Revision then
is a function from a belief state and a formula to a new belief state. We propose here a more
general framework for belief revision, in which revision is a function from a belief state and
a finite set of formulas to a new belief state. In particular, we distinguish revision by the set
{α, β} from the set {α ∧ β}. This seemingly innocuous change has significant ramifications
with respect to iterated belief revision. A problem in approaches to iterated belief revision is
that, after first revising by a formula and then by a formula that is inconsistent with the first
formula, all information in the original formula is lost. This problem is avoided here in that,
in revising by a set of formulas S, the resulting belief state contains not just the information
that members of S are believed to be true, but also the counterfactual supposition that if some
members of S were later believed to be false, then the remaining members would nonetheless
still be believed to be true. Thus if some members of S were in fact later believed to be
false, then the other elements of S would still be believed to be true. Hence, we provide a
more nuanced approach to belief revision. The general approach, which we call parallel belief
revision, is independent of extant approaches to iterated revision. We present first a basic
approach to parallel belief revision. Following this we combine the basic approach with an
approach due to Jin and Thielscher for iterated revision. Postulates and semantic conditions
characterizing these approaches are given, and representation results provided. We conclude
with a discussion of the possible ramifications of this approach in belief revision in general.

Keywords: Knowledge representation and reasoning, belief change, iterated belief revision,
epistemic states
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1 Introduction
An agent situated in a sufficiently complex domain will have only incomplete and possibly inac-
curate information about that domain. Consequently, such an agent would be expected to receive
new information about the domain which it would incorporate into its belief corpus. Since new in-
formation may conflict with the agent’s accepted beliefs, the agent may also have to discard some
of its beliefs before the new information can be consistently incorporated. Belief revision is the
area of knowledge representation that addresses how an agent may incorporate new information
about a domain into its belief corpus. It is generally accepted that there is no single best revision
operator, and different agents may have different revision functions. However, revision functions
are not arbitrary, but may be considered as being guided or characterised by various rationality
criteria, expressed formally as a set of postulates. The original and best-known set of postulates is
called the AGM postulates [Alchourrón et al., 1985; Gärdenfors, 1988] named after the developers
of this framework. As well, several formal constructions of revision functions have been proposed
based, for example, on an ordering on sentences of the language or on an ordering on possible
states of the world. Ideally, a set of postulates is linked with a formal construction by a representa-
tion result, showing that a revision function that satisfies a postulate set can be represented by the
formal construction, and vice versa.

The foundations of AGM revision are well studied and well understood.1 Subsequently, there
has been a great deal of attention paid to iterated belief revision, which addresses logical relations
among a sequence of revisions involving possibly-conflicting observations. While there has been
much progress in the area of iterated belief revision, virtually all such work suffers from the fol-
lowing problem: if one revises by a formula and then by a formula that is inconsistent with this
formula, then the agent’s beliefs are exactly the same as if only the second revision had taken place.

For example, consider the situation where there was a party, but where you have no knowledge
about whether Alice (a) or Bob (b) were there. You are subsequently informed by a reliable source
that both Alice and Bob went to the party. This would correspond to a revision by a ∧ b, and your
resulting belief state would be one in which you believe a ∧ b to be true. You later learn that Alice
in fact did not go to the party. Not only do you now accept ¬a, but in all major approaches to
iterated belief revision, including [Darwiche and Pearl, 1997; Boutilier, 1993; Nayak et al., 2003;
Jin and Thielscher, 2007], you no longer accept b either. While there may indeed be cases where it’s
reasonable to no longer believe Bob was at the party (for example perhaps Bob is Alice’s spouse),
this certainly shouldn’t be a required outcome.

This example can be exaggerated to emphasise the point: Consider where an agent initially
has no contingent beliefs, and so its beliefs are characterised by the set of tautologies. Next, a
substantial body of knowledge, given by the conjunction p1 ∧ . . .∧ p1012 , is loaded into the agent’s
knowledge base. If we subsequently revise by, say, the negation of p1, then all other knowledge
is lost. That is, if the agent’s original (tautological) beliefs were given by K and ∗ is the revision
function, we would obtain:

(K ∗ (p1 ∧ . . . ∧ p1012)) ∗ ¬p1 ≡ K ∗ ¬p1. (1)

Thus all other information is lost, except for the newly-negated item. Again, this is clearly too
strong a condition to impose on every revision function in all circumstances.

1See [Peppas, 2008] for a recent, comprehensive survey of revision in general.
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We suggest that this problem is appropriately addressed not by modifying the foundations
of belief revision, but rather by providing a more nuanced or expressive approach to revision.
Specifically, we propose that the second argument of a revision function be generalised to be a set
of formulas. This then distinguishes revision by a set of formulas from revision by the conjunction
of that set of formulas. Consider again our Alice/Bob example, where again at the outset you have
no beliefs about whether either of them attended a party or not, but you are subsequently informed
that they both went to the party. Consequently, if you were now asked “Do you believe that Alice
went to the party?”, clearly you would answer in the affirmative. Assume further that you have
no reason to believe that Alice and Bob know each other well, nor have been in contact; i.e. each
individual’s attendance is independent of the other’s. If you were asked “If it were in fact the case
that Alice did not go, would you still believe that Bob went?”, then again you would answer in the
affirmative. However, it can be noted that this last question is a counterfactual query, in that as far
as you know the antecedent is false. We are not going to be concerned with counterfactuals per se
in this paper; however, this does have implications for further revisions: If you were subsequently
informed that in fact Alice did not go, then you should in turn continue to believe that Bob went.
If, on the other hand, you had some reason to believe that Alice and Bob’s attendance were linked
– for example that they’re a couple – then this would no longer apply.

The key point here is that we are treating the propositions A and B as separate items of infor-
mation. Our central thesis is that revision by a conjunction and revision by the set of conjuncts
should be treated differently. If a formula is taken as representing some item of information, then
informally a conjunction represents a single item of information, while the corresponding set of
conjuncts represents a collection of items of information. To be sure, the conjunction α∧β and the
set {α, β} have the same logical content, in that they entail exactly the same formulas. Hence an
agent’s contingent beliefs should be the same regardless of whether a revision is by a conjunction
or a corresponding set of formulas. However, as argued above, in revising by a set {α, β} the
agent’s resulting belief state should be such that, if there is no known connection between α and
β, then if β were subsequently learned to be false, then α should still be believed to be true.

To this end, we develop an account of belief revision that we call parallel belief revision in
which the second argument to a revision function is a finite set of formulas. Thus, if the agent’s
belief state is given by K2 and ∗ is a revision function, then we distinguish K ∗ {α ∧ β} from
K ∗ {α, β}. In the former, revision is by a single formula that happens to be expressed as a
conjunction. If a subsequent revision contradicts this formula, then this formula is simply no
longer believed. On the other hand, if the agent views α and β as independent, then it makes sense
that α is believed in K ∗ {α, β} ∗ {¬β}, since if one element of the input set is contradicted, this
need not affect belief in other element. Essentially, for a revision K ∗ {α, β}, the agent comes
to believe not only that α and β are contingently true, but also counterfactual assertions such as
if β were false then α would (where “reasonable”) still be believed to be true. In terminology
introduced in the next section, the agent’s belief state or epistemic state is modified so that such
counterfactuals are implicitly believed. Hence, continuing the above example, if the agent were
told that in fact β were false then it would (again with a caveat, “where reasonable”) continue to
believe that α was true. That is, all other things being equal, we would have that α is believed in

2The distinction between the K of (1) and K is described more fully in the next section. Basically K is the agent’s
contingent beliefs concerning the domain; K is the agent’s full epistemic state, containing not just K but also, for
example, information about how the agent’s beliefs would change if it were to learn a new piece of information.
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K ∗ {α, β} ∗ {¬β}.
In this paper, we develop approaches to parallel belief revision and show how the aforemen-

tioned problems are resolved. Notably, in our approach we obtain that under reasonable assump-
tions (for example, that α and β are not logically equivalent) that α is believed inK∗{α, β}∗{¬β}.
As well, it proves to be the case that parallel belief revision is independent of other accounts of
iterated belief revision, in that it can be combined with extant approaches to belief revision. This
then supports the assertion that our approach provides a more fine-grained account of revision,
rather than providing an alternative to existing accounts. Consequently, we first describe the most
basic approach to parallel revision, and then show how this approach can be combined with the
approach to iterated revision of Jin and Thielscher [2007].

The next section reviews the area of belief revision and further motivates our approach. Fol-
lowing this, we give an account of the most basic approach to parallel revision. We then combine
this approach with that of Jin and Thielscher [2007]. In each case, postulates characterizing the
revision function are given, a semantic account is provided, and a representation result is provided
linking the postulates and semantic construction. We conclude with a discussion of wider implica-
tions of the approach to belief revision as a whole, and iterated revision in particular. Proofs of all
formal results are given in an appendix. An earlier version of this paper appeared in [Delgrande
and Jin, 2008].

2 Background

2.1 Formal Preliminaries
We assume a propositional language L generated from a finite set P of atomic propositions. The
language is that of classical propositional logic, and with the classical consequence relation `.
Formulas are denoted by lower-case Greek letters α, β, . . . , while sets of formulas are denoted by
upper case Roman letters, A, B, S, . . . . The symbol > stands for some arbitrary tautology and ⊥
stands for ¬>. Cn(A) is the set of logical consequences of A, that is Cn(A) = {α ∈ L | A ` α}.
For a (finite) set of formulas S, ∧S is the conjunction of members of S, ∨S is the corresponding
disjunction, and S = {¬α | α ∈ S}. Given two sets of formulas A and B, A + B denotes the
expansion of A by B, that is A+B = Cn(A∪B). Expansion of a set A by a formula β is defined
analogously. Two sentences α and β are logically equivalent, written α ≡ β, iff α ` β and β ` α.
This extends to sets of sentences by: S1 ≡ S2 iff S1 ` α for every α ∈ S2 and S2 ` β for every
β ∈ S1. Thus in particular for any finite set of formulas S, we have S ≡ ∧S.

A propositional interpretation (also referred to as a possible world) is a mapping from P to
{true, false}. The set of all interpretations is denoted by ΘP . A model of a sentence α is an
interpretation w that makes α true according to the usual definition of truth, and is denoted by
w |= α. ForW ⊆ ΘP , we also writeW |= α if w |= α for every w ∈ W . For a set of sentences
A, Mod(A) is the set of all models of A. For simplicity, Mod({α}) is also written as Mod(α).
Conversely, given a set of possible worlds W ⊆ ΘP , we denote by T (W) the set of sentences
which are true in all elements ofW , that is T (W) = {α ∈ L | w |= α for all w ∈ W}.

A total preorder� is a reflexive, transitive binary relation, such that eitherw1 � w2 or w2 � w1

for every w1, w2. The strict part of � is denoted by ≺, that is, w1 � w2 and w2 6� w1. We use
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w1 = w2 to abbreviate w1 � w2 and w2 � w1.3 Given a set S and total preorder � defined on
members of S, we denote by min(S,�) the set of minimal elements of S in �.

2.2 Belief Revision
In the original AGM theory, beliefs of an agent are represented by a belief set, that is, a set of
formulas K such that K = Cn(K). Belief revision is modeled as a function from a belief set K
and a formula α to a belief set K ′ such that α is believed in K ′, i.e. α ∈ K ′. Since α may be
inconsistent with K, and since it is desirable to maintain consistency if at all possible (i.e. if not
` ¬α), then some formulas may need to dropped from K before α can be consistently added.

The AGM approach also addressed two other operators. The expansion of a belief set K
by a formula α has already been defined in the previous subsection. In contrast to revision and
expansion, where an agent gains information, in belief contraction the reasoner loses information.
The contraction of a belief set K by a formula α, denoted K−̇α, is a belief set where K−̇α ⊆ K
and α 6∈ K−̇α. So in a contraction by α, the agent loses its belief in α while not necessarily
believing ¬α. Since our focus in this paper is on revision, we do not consider contraction further,
except briefly in Section 2.4, where we review set-based approaches to contraction that have been
proposed in the literature.

An important assumption concerning belief revision is that it takes place in an inertial (or static)
world, so that the input is with respect to the same, static world. However, various researchers have
argued that, in order to address iterated belief revision, it is more appropriate to consider belief
states (also called epistemic states) as objects of revision. A belief state K effectively encodes
information regarding how the revision function itself changes under a revision.4 The belief set
corresponding to belief state K is denoted Bel(K). Formally, a revision operator ∗ maps a belief
state K and formula α to a revised belief state K ∗ α. Then, in the spirit of [Darwiche and Pearl,
1997], the AGM postulates for revision can be reformulated as follows:

(K ∗ 1) Bel(K ∗ α) = Cn(Bel(K ∗ α))

(K ∗ 2) α ∈ Bel(K ∗ α)

(K ∗ 3) Bel(K ∗ α) ⊆ Bel(K) + α

(K ∗ 4) If ¬α /∈ Bel(K) then Bel(K) + α ⊆ Bel(K ∗ α)

(K ∗ 5) Bel(K ∗ α) is inconsistent, only if ` ¬α

(K ∗ 6) If α ≡ β then Bel(K ∗ α) ≡ Bel(K ∗ β)

(K ∗ 7) Bel(K ∗ (α ∧ β)) ⊆ Bel(K ∗ α) + β

(K ∗ 8) If ¬β /∈ Bel(K ∗ α) then Bel(K ∗ α) + β ⊆ Bel(K ∗ (α ∧ β))

3Relations in a total preorder will be subscripted with an epistemic state, described in the next subsection. In
particular, for the last relation we will write w1 =K w2. Thus there is no confusion with equality, written = as usual.

4This glosses over a number of issues on the nature of a revision function, which need not concern us here. See
[Rott, 2001; Nayak et al., 2003] for more on this issue.
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Thus, the result of revising K by α yields an epistemic state in which α is believed in the corre-
sponding belief set ((K∗1), (K∗2)); whenever the result is consistent, the revised belief set consists
of the expansion of Bel(K) by α ((K ∗ 3), (K ∗ 4)); the only time that Bel(K) is inconsistent is
when α is inconsistent ((K∗5)); and revision is independent of the syntactic form of the formula for
revision ((K ∗ 6)). The first six postulates are referred to as the basic revision postulates. The last
two postulates are called the supplementary postulates, and deal with the relation between revising
by a conjunction and expansion: whenever consistent, revision by a conjunction corresponds to
revision by one conjunct and expansion by the other. Motivation for these postulates can be found
in [Gärdenfors, 1988; Peppas, 2008]. The intent of these postulates is that they should hold for
any rational belief revision function. We will call a revision operator an AGM revision operator
if it satisfies the reformulated AGM postulates. Katsuno and Mendelzon [1991] have shown that
a necessary and sufficient condition for constructing an AGM revision operator is that any belief
state K can induce, as its preferential information, a total preorder on the set of possible worlds.

Definition 1 A faithful assignment is a function that maps each belief state K to a total preorder
�K on ΘP such that for any w1, w2 ∈ ΘP:

1. If w1, w2 |= Bel(K) then w1 =K w2

2. If w1 |= Bel(K) and w2 6|= Bel(K), then w1 ≺K w2

The resulting total preorder is referred to as the faithful ranking corresponding to, or induced by
K. Intuitively, w1 �K w2 if w1 is at least as plausible as w2, according to the agent. As enforced
by the first condition in Definition 1, an agent’s beliefs are characterised by the least worlds in the
ordering.

Katsuno and Mendelzon then provide the following representation result, where T (W ) is the
set of formulas of classical logic true in W :

Theorem 1 ([Katsuno and Mendelzon, 1991]) A revision operator * satisfies postulates (K∗1)–
(K∗8) iff there exists a faithful assignment that maps each belief setK to a total preorder�K such
that

K ∗ φ = T (min(Mod(φ),�K)).

Thus for a belief state K, the agent’s beliefs following revision by a formula α are characterised
by those possible worlds of φ that are most plausible according to the agent. A ranking func-
tion �K corresponding to belief state K can also be understood as specifying the (counterfactual)
information of what the agent would believe after coming to believe some formula φ.

2.3 Iterated Belief Revision
The AGM postulates do not address properties of iterated belief revision. This can be seen by
observing that, while Theorem 1 specifies what the agent’s beliefs will be following a revision by
formula φ, it has nothing to say about what the new ranking function �K∗φ should look like. As
noted by [Nayak et al., 2003], the only interesting result that follows from the AGM approach
concerning iterated belief revision is the following:

If ¬β 6∈ Bel(K ∗ α) then Bel((K ∗ α) ∗ β) = Bel(K ∗ (α ∧ β)).
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This has led to the development of extensions of the AGM approach to address iterated revision;
the best-known approach is that of Darwiche and Pearl [1997] (DP). They propose the following
postulates, adapted according to our notation:

(C1) If β ` α, then Bel((K ∗ α) ∗ β) = Bel(K ∗ β)

(C2) If β ` ¬α, then Bel((K ∗ α) ∗ β) = Bel(K ∗ β)

(C3) If α ∈ Bel(K ∗ β), then α ∈ Bel((K ∗ α) ∗ β)

(C4) If ¬α /∈ Bel(K ∗ β), then ¬α /∈ Bel((K ∗ α) ∗ β)

(C1) states that if an agent revises by a formula and then by a logically stronger formula then,
with respect to its belief set, this is no different than simply revising by the stronger formula. The
other postulates may be given similar informal readings. As with the AGM postulates, the intent
is that these postulates should hold for any rational belief revision function. Darwiche and Pearl
show that an AGM revision operator satisfies Postulates (C1)–(C4) iff the way it revises faithful
rankings satisfies the (respective) conditions:

(CR1) If w1, w2 |= α, then w1 �K w2 iff w1 �K∗α w2

(CR2) If w1, w2 6|= α, then w1 �K w2 iff w1 �K∗α w2

(CR3) If w1 |= α and w2 6|= α, then w1 ≺K w2 implies w1 ≺K∗α w2

(CR4) If w1 |= α and w2 6|= α, then w1 �K w2 implies w1 �K∗α w2

These conditions are natural and appealing; moreover they appear to be intuitively very reasonable:
When K is revised by α, Conditions (CR1) and (CR2) require that the relative ranking of any two
α-worlds (resp. ¬α-worlds) do not change. Conditions (CR3) and (CR4) require that if an α-world
w1 is (strictly) more plausible than a ¬α-world w2, then following revision by α, w1 continues to
be (strictly) more plausible than w2.

The DP postulates have been criticised in two respects. On one hand, it has been suggested that
they are too permissive, in that they support revision operators which allow arbitrary dependencies
among the items of information which an agent acquires along the way. Consequently, Jin and
Thielscher [2007] have proposed the so-called postulate of independence:5

(Ind) If ¬α /∈ Bel(K∗β) then α ∈ Bel((K∗α)∗β)

Thus, if a revision of K by β does not rule out α, then if K is first revised by α and then by β, α
is believed in the resulting belief set. Postulate (Ind) strengthens both (C3) and (C4). Thus, the
suggested set of postulates according to Jin and Thielscher [2007] consists of (C1), (C2), and (Ind).
They also give a necessary and sufficient condition for an AGM revision operator to satisfy (Ind):

(IndR) If w1 |= α and w2 |= ¬α, then w1 �K w2 implies w1 ≺K∗α w2.

5Essentially the same system is discussed in [Booth and Meyer, 2006], where it is called admissable revision.
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This condition is also natural: if α is true at w1 and false at w2, and if w1 and w2 are equally
plausible, then after revising by α, w1 is strictly more plausible than w2. If w1 ≺K w2 then we
simply have (CR3).

On the other hand, it can be argued that the DP postulates are too strong. In particular, Pos-
tulate (C2) has been noted by many researchers as producing the undesirable result described in
Section 1 [Lehmann, 1995b; Konieczny and Pino Pérez, 2000; Delgrande and Schaub, 2003]. As
a further example, consider a scenario proposed by Konieczny and Pino Pérez [2000]:

Example 1 Suppose an electric circuit contains an adder and a multiplier. The atomic proposi-
tions a and m denote respectively that the adder and the multiplier are working. Initially we have
no information about this circuit; and we then learn that the adder and the multiplier are working
(α = a ∧m). Thereafter, someone tells us that the adder is actually not working (β = ¬a).

As argued in [Konieczny and Pino Pérez, 2000], there is no reason to “forget” that the multiplier is
working; however by (C2) we must have (K ∗ α) ∗ β = K ∗ β, since β ` ¬α. Hence, in this case
(C2) appears to be too strong.

Intuitively, such examples are compelling. However, the case against (C2) isn’t clear cut.
First, it can be observed that many researchers (e.g., [Lehmann, 1995b; Konieczny and Pino Pérez,
2000]), who are against (C2) are nonetheless quite happy with Postulate (C1). However, the se-
mantic characterization of Postulate (C2) (viz. (CR2)) seems as reasonable as that of (C1) (viz.
(CR1)): If being informed about α does not change the relative plausibility of α-worlds, why
should the relative ordering of ¬α-worlds be changed? This idea is also articulated in [Spohn,
1988], which argues that in a belief change involving α, the relative ordering between α-worlds
remains unchanged, as it does between ¬α-worlds.

As an informal defense of (C2), it can be observed that in Example 1 it is implicitly assumed
that a and m are separate items of information. However, in the AGM approach, a simultaneous
revision by a and m can only be represented by a conjunction, viz. K ∗ (a ∧ b). What makes
Example 1 credible is the fact that there is no apparent relation between being informed of the
adder working and, at the same time, of the multiplier working. Hence learning ¬a would seem
to not influence belief in m. However, the example can be elaborated upon so that this isn’t
necessarily the case. Consider for example where we are told by someone that both the adder and
multiplier are working, and then determine ourselves that the adder is not working. One might
argue plausibly that the original source was suspect, and so it makes sense to give up in toto all
information provided by that source. Thus plausibly in this case one might want to not believe that
m was true.6

This discussion shows that a revision of a belief stateK by formulas α and β can be interpreted
in at least two different ways. In the first interpretation, the agent has been informed that α and β
are true; to revise simultaneously by α and β, the best that can be done is to revise by their con-
junction. In the second interpretation, the agent has been informed of an item of information, and

6Another support for (C2) is that it is in fact the only DP postulate which puts additional constraints on the retention
of propositional beliefs. To see this, let’s consider so-called amnesic revision ∗a:

K ∗a α =

{
K + α if K 0 ¬α
Cn(α) otherwise

Note that radical as it is, amnesic revision satisfies the AGM postulates, (C1), (C3) and (C4), but violates (C2).
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this item of information has been expressed as a conjunction. Under the first interpretation, α and
β are regarded as separate items of information; under this interpretation it is reasonable that (C2)
not necessarily hold. Under the second interpretation, α and β are seen as components of an item
of information; here it seems reasonable that (C2) does hold. Clearly, extant accounts of iterated
belief revision are not sufficiently expressive to deal with both situations. Thus, Example 1 doesn’t
provide a counterexample to (C2), so much as it highlights the limitations of the expressibility of
revision functions. What this suggests then is that AGM revision should be generalised so that
both above-mentioned situations can be handled.

2.4 Conjunctions of Formulas vs. Sets of Formulas
The preceding discussion suggests that K ∗ (α ∧ β) should be treated differently from K ∗ {α, β}.
The former case represents the situation in the AGM framework in which revision is by a formula,
here comprised of two conjuncts. In the latter case, revision is by a set of formulas. An immediate
effect of this distinction is that revision now becomes a function whose second argument is a set
of formulas, rather than a single formula. Hence the above distinction is appropriately expressed
as K ∗ {α ∧ β} vs. K ∗ {α, β}.

This distinction between a set of formulas and their conjunction has been noted and explored
elsewhere and under different guises. Perhaps the most direct recognition of this distinction is
in [Konieczny et al., 2005]. There the comma that appears in an expression of a set of objects
is referred to as “the forgotten connective”. Their interests however concern reasoning under in-
consistency, where one can plausibly make the argument that there are cases where a distinction
between {a ∧ b ∧ ¬b} and {a, b,¬b} is of value.

As well, the distinction between a set of formulas and their conjunction has cropped up in non-
monotonic reasoning, specifically with respect to nonmonotonic inference relations, conditional
logics, and related systems (see [Kraus et al., 1990; Lamarre, 1991; Boutilier, 1994a] for mono-
tonic systems of defaults, and [Pearl, 1990; Boutilier, 1994b; Benferhat et al., 1992; Lehmann and
Magidor, 1992] for nonmonotonic approaches). In these systems, a default “if α then normally β”
can be written α⇒ β in a conditional logic or α |∼β in a nonmonotonic inference relation. There
is a difficulty with such approaches, in that for defaults α ⇒ β1 and α ⇒ β2 if α is known to be
contingently true while β1 is false, one would still want to conclude β2 by default. Similarly, if α
is known to be contingently true, where |= α ⊃ γ and γ ⇒ β is a default, one would want to con-
clude β by default in general. However these results are difficult to obtain. These issues have been
addressed in several ways, but solutions in general have relied on how a default is represented. In
[Geffner and Pearl, 1992], possible worlds are ranked according to the defaults that they violate.
In the approach of [Goldszmidt et al., 1990], maximum entropy is used to essentially assert that
things are as normal as possible. The lexicographic closure of a set of defaults [Lehmann, 1995a;
Benferhat et al., 1993] formalises the idea that in applying defaults, one prefers to violate a smaller
number of defaults to violating a larger number. All these approaches are syntax dependent, in that
they depend on how a set of defaults is represented. In particular, one may obtain different answers
for the set of defaults {α ⇒ β1, α ⇒ β2} as opposed to {α ⇒ (β1 ∧ β2)}: if β1 is false, then in
the former case one may still conclude β2 whereas in the latter case the default as a whole is in-
applicable. So, roughly, the intuition underlying the lexicographic closure is that as many defaults
are applied as consistently possible, and the results of this notion of maximum applicability will
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vary depending on how the defaults are expressed. The focus in the approach presented here is
somewhat different: one revises by a set of formulas S, and this set is accepted. (In particular, if
S is inconsistent then the agent falls into an inconsistent belief state.) If the agent subsequently
learns that some elements of S are in fact false then, where consistent, the remaining elements of
S are still believed to be true. So for two sets of formuals S and S ′ where S ≡ S ′, the agent’s
beliefs will be the same in K ∗ S and K ∗ S ′, but may differ in subsequent revisions.

With respect to belief change, a belief base [Hansson, 1999] is a set of formulas representing
an agent’s beliefs. Since a belief base is in general not deductively closed, it may be seen as having
more structure than the corresponding belief set. Hence belief change with respect to a belief
base may have differing results, depending on how the agent’s beliefs are expressed. For example,
[Meyer, 2001] considers a scenario in which the agent’s beliefs are represented by an infobase
consisting of a finite sequence of formulas. Each formula in the infobase is assumed to be an
explicit piece of information, obtained independently from the other formulas. For contraction, an
ordering is specified over interpretations depending on the number of formulas in the infobase that
they satisfy. Hence if two formulas in an infobase were replaced by their conjunction, one would
expect quite different results. Somewhat similar intuitions are employed for disjunctive maxi-
adjustment [Benferhat et al., 2004]; see also [Williams, 1994]. An ordered knowledge base is
employed toward conflict resolution, for application to tasks such as belief change and information
integration. An ordered knowledge base places a ranking on formulas, which can be seen as
a compact representation of an ordinal conditional function [Spohn, 1988]. Interpretations are
ranked by the highest formula that they falsify (and given rank 0 if all formulas are satisfied). The
disjunctive maxi-adjustment is shown to satisfy a lexicographic strategy, which is to say, essentially
a maximal set of formulas for a given rank is selected. Since one is working at the level of formulas,
again results depend on how the formulas are represented.

The preceding approaches to belief change consider a knowledge base as being comprised of a
set of (possibly ranked) formulas. There has also been work in which the input for belief change
is a set of formulas, rather than a single formula. [Fuhrmann and Hansson, 1994] surveys multiple
contraction; in particular they propose package contraction, which is concerned with removing a
set of formulas from a belief set. In the AGM approach, a contraction K −α yields a belief set K ′

that is a subset of K in which α is not believed (except in the case where α is a tautology). The
standard construction for contraction is phrased in terms of remainder sets, or maximal subsets of
K that fail to imply α. In a package contraction such as K − {α, β}, the resulting belief set is one
in which neither α nor β is believed. The notion of remainder set extends naturally in this case to
maximal subsets of K that fail to imply either α or β. It can be noted that the package contraction
K−{α, β} is distinct from contractionK−(α∧β) orK−(α∨β). In the former case, it is possible
that α ∈ K − (α ∧ β) although this is not allowed in the corresponding package contraction. For
the latter case, it is possible that α ∨ β ∈ K − {α, β}, although clearly α ∨ β 6∈ K − (α ∨ β).
[Fuhrmann and Hansson, 1994] also give a set of postulates for package contraction analogous
to the set of basic postulates for AGM contraction, and they prove a representation result linking
these postulates to the semantic construction.

The multiple contraction in [Zhang et al., 1997] also studies how to contract a belief set so that
it is consistent with a set of formulas. In this work, the authors propose supplementary postulates
for multiple contraction and provide a representation result; they also consider the case where the
set for contraction may be infinite. In other work, [Fermé et al., 2003] examines a construction
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for multiple contraction in a (non-deductively-closed) belief base, while [Falappa et al., 2002]
addresses revision of an arbitrary set of formulas by a set of explanations, with application to argu-
mentation systems. Last, [Delgrande and Wassermann, 2010] consider package contraction where
the underlying logic is that governing Horn clauses. Here package contraction is of greater impor-
tance than in the case of classical logic, since in classical logic one has the option of contracting
by several formulas via contracting their disjunction. However, the disjunction of Horn clauses
in general is not Horn, and so one requires package contraction to concurrently remove several
formulas.

It can be noted that while these approaches to set-based contraction have a syntactic resem-
blance to the approach developed here, the emphasis is quite different. In a package or multiple
contraction K − S, the resulting belief set in general is different from a contraction made up of
some Boolean combination of members of S. On the other hand, none of these approaches address
iterated operations. In contrast, in our approach it will be seen that the belief set resulting from
K⊗ S and from K⊗ {∧S} will be the same. However the faithful rankings resulting from K⊗ S
and K ⊗ {∧S} will in general be quite different, and this will have significant ramifications for
iterated revision.

There has also been work in revision by sets of formulas, in particular the set revision of [Zhang
and Foo, 2001] and multiple revision of [Peppas, 2004]. There are two main differences between
these approaches and our’s. First, our focus is on iterated revision and, in particular, constraints that
need to be imposed on an agent’s underlying epistemic state in order to effect plausible revisions.
Second, [Zhang and Foo, 2001] and [Peppas, 2004] primarily study infinite sets. In our approach,
the focus is on the distinction between revising by a finite set of formulas and a corresponding
conjunction of those formulas. Therefore, while set revision or multiple revision might be useful
for investigating infinite non-monotonic reasoning, arguably our approach is more suitable for
modelling the evolution of an agent’s belief state where, at least in a practical setting, an agent will
not receive an infinite set as input. Finally, [Nayak, 1994] anticipates some of the properties of
parallel revision, in an approach where both the belief state and input are represented by epistemic
entrenchment relations.

3 Parallel Revision

3.1 Intuitions
We have argued thatK∗{α∧β} should be treated differently fromK∗{α, β}. Hence the epistemic
state resulting from K ∗ {α ∧ β} will in general be different from that resulting from K ∗ {α, β}.
However, the logical content of {α ∧ β} and {α, β} is the same, and so one might reasonably
expect that the agent’s beliefs following revision by either of these sets would be the same. Thus
one might reasonably expect that

Bel(K ∗ {α, β}) = Bel(K ∗ {α ∧ β}).

On the right hand side of the equality we revise by a single item of information, α∧ β. If β is later
shown to be false, then so too is α ∧ β, and it is reasonable that all original information (including
α) may be lost. Hence, possibly α 6∈ Bel(K ∗ {α ∧ β} ∗ {¬β}). This argument doesn’t apply to
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Bel(K∗ {α, β}), where we revise by a set consisting of two items of information. Thus if we later
revise by ¬β, then one would expect that α ∈ Bel(K ∗ {α, β} ∗ {¬β}) where “reasonable”.7

Semantically, this has the following ramifications. An agent’s belief state (at least as far as
revision is concerned) is modelled by a faithful ranking on possible worlds. In the faithful ranking
that results from the revision K∗{α, β}, we have that the least α∧β worlds are ranked lower than
the least ¬(α∧ β) worlds in �K∗{α,β}. (This is a trivial consequence of the fact that the least α∧ β
worlds are minimal in �K∗{α,β}). The key intuition in parallel revision is that these considerations
extend to subsets of the set of formulas for revision. Hence, in revising by {α, β}, α and β are
accepted as being true. However, implicit in the revision is the (counterfactual) notion that if β
were found to not be true then α would still be held to be true. Semantically, this means that,
among the ¬β worlds, the least α worlds are ranked below the least ¬α worlds. This then would
have the effect that if β were later determined to be false, thus necessitating a revision by ¬β, then
α would still be believed to be true. These considerations extend straightforwardly to arbitrary (but
finite) sets of formulas. Thus, for a set of formulas S, after the revision K ∗ S all elements of S
will be believed. Implicit in the resulting ranking function is the counterfactual notion that if the
members of some subset of S, say S ′, were found to be false, then S \S ′ would still be believed to
be true. This then has the effect that in K ∗ S ∗ S ′, members of S \ S ′ will continue to be believed.

Another way of thinking of the underlying procedure is that in a revision K ∗ S, subsets of S
implicitly define a context that provides additional structure in the resulting ranking function. That
is, inK∗S, the minimal S worlds are ranked below all ¬(∧S) worlds. For S ′ ⊂ S, in the “context”
of S ′ the same considerations apply. Thus, in the restriction of the ranking function to S ′ worlds,
the minimal S \ S ′ worlds are ranked below all ¬(∧(S \ S ′)) worlds.

Essentially then, for a revision K∗S, changes to the underlying ranking on worlds will depend
not just on the set S, but also on subsets of S. The intuition is that, in revising by S, all elements
of S are believed; if some members of S are subsequently disbelieved then, insofar as possible, the
remaining members of S are still believed. In the next subsection we formalise this intuition. The
approach is independent of previous approaches to iterated revision, in that it can be combined with
an existing approach to iterated revision to yield a “parallel” hybrid of that approach. Consequently,
in the following section we combine the basic approach with that of [Jin and Thielscher, 2007] to
yield what we suggest is the appropriate general model for iterated belief revision.

3.2 The Basic Approach
This section describes the basic approach to parallel revision, in which new information for revision
is represented by a finite set of formulas. The intuition is that each formula of the set represents an
undecomposable (with regards to revision) piece of information. To distinguish this from standard
belief revision, we denote a parallel revision operator by ⊗. Formally, ⊗ maps a belief state K
and finite set of formulas S to a revised belief state K ⊗ S. We assume henceforth that the second
argument to ⊗ is a finite, nonempty8 set of formulas.

7A case that is not “reasonable” is where β is of the form α ∨ γ. Then K ∗ {α, β} is the same as K ∗ {α, α ∨ γ},
and clearly one requires that α 6∈ Bel(K ∗ {α, α ∨ γ} ∗ {¬(α ∨ γ)}).

8This differs from [Delgrande and Jin, 2008], which allowed the empty set, but is in agreement with [Peppas,
2004]. There are several reasons for this change. Foremost, it is not clear that revision by the empty set is a mean-
ingful operation, since K ∗ ∅ would seem to have the informal interpretation of revising in the absence of a report of
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To begin, we adapt the AGM postulates for revision by a set of formulas. The following are
analogous to postulates given in [Peppas, 2004], adapted for belief states.

(K ⊗ 1) Cn(Bel(K ⊗ S)) = Bel(K ⊗ S)

(K ⊗ 2) S ⊆ Bel(K ⊗ S)

(K ⊗ 3) Bel(K ⊗ S) ⊆ Bel(K) + S

(K ⊗ 4) If Bel(K) ∪ S is consistent, then Bel(K) + S ⊆ Bel(K ⊗ S)

(K ⊗ 5) Bel(K ⊗ S) is inconsistent iff S is inconsistent.

(K ⊗ 6) If S1 ≡ S2, then Bel(K ⊗ S1) = Bel(K ⊗ S2)

(K ⊗ 7) Bel(K ⊗ (S1 ∪ S2)) ⊆ Bel(K ⊗ S1) + S2

(K ⊗ 8) If Bel(K ⊗ S1) ∪ S2 is consistent, then

Bel(K ⊗ S1) + S2 ⊆ Bel(K ⊗ (S1 ∪ S2))

Note that (K ⊗ 6) yields Bel(K ⊗ S) = Bel(K ⊗ {∧S}). With a slight abuse of terminology, we
will also refer to revision operators that satisfy the above postulates as AGM revision operators.

It has been shown in [Peppas, 2004] that the representation theorem of [Grove, 1988] can
be generalised to revision by a set of formulas. Given that we deal with a finite language, the
systems of spheres of Grove’s construction are interdefinable with faithful rankings, and so the
representation theorem of [Katsuno and Mendelzon, 1991] can also be generalised:

A revision operator ⊗ satisfies (K⊗ 1) – (K⊗ 8) iff there exists a faithful ranking �K
for an arbitrary belief state K, such that for any set of sentences S:

Bel(K ⊗ S) = T (min(Mod(S),�K)) (2)

For the basic approach to parallel revision, we give two postulates and semantic conditions that
characterise the approach.

The following postulates characterise the basic approach to parallel revision.

(P⊗) For S1 ⊂ S, where S1 ∪ (S \ S1) 6` ⊥,

S1 ⊆ Bel(K ⊗ S ⊗ (S \ S1))

(S⊗) For S1 ⊂ S,

Bel(K ⊗ (S1 ∪ (S \ S1))) = Bel(K ⊗ S ⊗ (S1 ∪ (S \ S1)))

information. Second, it eases the technical development. Last, while revision by ∅ could be equated most naturally
with revision by {>}, the resulting revision K ∗ {>} isn’t entirely trivial, since in the case that Bel(K) is inconsistent
(K*5) stipulates that the revision by the empty set is sufficient to extract an agent from the inconsistent belief state.
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(P⊗) is a postulate of success preservation. It asserts that for a revision of K by S, a subset
S1 ⊂ S is preserved in revising by the negations of members of S \ S1 whenever it is consistent
to do so. This reflects the intuition that, in revising by S and after which some members of S are
subsequently disbelieved, then insofar as possible the remaining members of S are still believed.
(S⊗) expresses the fact that for set S and subset S1 ⊂ S, revising by S1 ∪ (S \ S1) yields the
same beliefs as first revising by S and then by S1 ∪ (S \ S1). Thus it expresses a condition of
conservativism with respect to iterated belief.

These postulates can be combined as follows:

(PP⊗) Let S1 ⊂ S where S1 ∪ (S \ S1) 6` ⊥.

Then Bel(K ⊗ S ⊗ (S \ S1)) = Bel(K ⊗ (S1 ∪ (S \ S1))).

Thus revising by a set S and then the negations of some members of S yields the same belief set
as revising by the negations of these members in S together with the remaining members of S.

We obtain the following result:

Proposition 1 Suppose ⊗ is a revision operator satisfying Postulates (K ⊗ 1)–(K ⊗ 8). Then ⊗
satisfies (PP⊗) if and only if it satisfies (P⊗) and (S⊗).

In order to justify the postulates (P⊗) and (S⊗), we turn next to the corresponding conditions
on faithful orderings. From a semantic point of view, consider the following condition on a faithful
ranking �K⊗S defined in terms of a faithful ranking �K.

(P⊗R) Let S1 ⊂ S where S1 ∪ (S \ S1) 6` ⊥. Then

min(Mod(S \ S1),�K⊗S) ⊆ Mod(S1)

(S⊗R) Let S1 ⊂ S. Then

min(Mod(S1 ∪ (S \ S1)),�K) = min(Mod(S1 ∪ (S \ S1)),�K⊗S).

Unsurprisingly, these conditions can also be combined into the single condition:

(PP⊗R) Let S1 ⊂ S where S1 ∪ (S \ S1) 6` ⊥. Then

min(Mod(S1 ∪ (S \ S1)),�K) = min(Mod(S \ S1),�K⊗S).

Thus, informally, for S1 ⊂ S, the minimum S1 ∪ (S \ S1) worlds in a faithful ranking are just
the minimum (S \ S1) worlds following revision by S. This in turn means that following revision
by S, S1 will be true at the least (S \ S1) worlds, as desired.

Proposition 2 Suppose�K is a faithful ranking. Then�K satisfies (PP⊗R) if and only if it satisfies
(P⊗R) and (S⊗R).

For illustration, consider the following examples:
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Example 2 Let P = {a, b}, and let the agent’s faithful ranking be given as follows:

{ab} ≺K {ab} ≺K {ab} ≺K {ab}

Thus Bel(K) = Cn(a∧¬b). There are three possible faithful rankings resulting fromK⊗{a, b} =
K′:

{ab} ≺K′ {ab} ≺K′ {ab} ≺K′ {ab}
{ab} ≺K′ {ab} ≺K′ {ab} ≺K′ {ab}
{ab} ≺K′ {ab, ab} ≺K′ {ab}

This example is very simple. In fact it can be observed in the example that, since the possible
worlds correspond to subsets of {a, b}, the possible outcomes are independent of the initial belief
state K. The next example is a little more complicated.

Example 3 Let P = {a, b, c}, and let the agent’s faithful ranking be given as follows:

{abc, abc} ≺K {abc, abc, abc} ≺K {abc, abc, abc}

For K ⊗ {a, b} = K′, three possible faithful rankings are as follows:

{abc} ≺K′ {abc, abc} ≺K′ {abc} ≺K′ {abc, abc} ≺K′ {abc, abc}
{abc} ≺K′ {abc, abc, abc, abc} ≺K′ {abc, abc} ≺K′ {abc}
{abc} ≺K′ {abc} ≺K′ {abc, abc, abc} ≺K′ {abc} ≺K′ {abc} ≺K′ {abc}

Thus Bel(K) = Cn(a∧¬b) and Bel(K′) = Cn(a∧b∧c). Two properties can be observed for each
of the example rankings for K′. First, for any S1 ⊆ S = {a, b}, the minimum S1∪ (S \ S1) worlds
are the same in K and K′. Thus the minimum {a, b} worlds in each case is given by {abc}, and
the minimum {a,¬b} worlds is given by {abc, abc}. Second, for any S2 ⊂ S1 ⊆ S = {a, b}, the
minimum S1 ∪ (S \ S1) worlds are ranked strictly lower than the minimum S2 ∪ (S \ S2) worlds.
Hence, the minimum {a, b}worlds are ranked strictly lower than the minimum {a,¬b} and {¬a, b}
worlds, and these latter sets are strictly lower than the minimum {¬a,¬b} worlds.

Otherwise, for the three rankings given in the example, the first is not particularly special one
way or another. The second, in a sense, is the most compact possible ranking, in that worlds are
positioned as low in the ranking as possible. The third ranking has the property that for S2 ⊂ S1 ⊆
S, every S1 ∪ (S \ S1) world is ranked below every S2 ∪ (S \ S2) world. This last example can
be seen as extending the approach of [Nayak et al., 2003] or [Jin and Thielscher, 2007] to apply
to subsets of a set for revision; we develop this latter point in Section 4 with regards to [Jin and
Thielscher, 2007].

The next result expresses basic properties of faithful rankings that satisfy (P⊗R) and (S⊗R).

Proposition 3 LetK be a belief state and let�K be the faithful ranking induced byK. Let⊗ revise
faithful rankings corresponding to an AGM revision operator, and let �K⊗S be a faithful ranking
satisfying (P⊗R) and (S⊗R).

1. Let S1 ⊂ S be such that S1 ∪ (S \ S1) is consistent.

Then min(Mod(S \ S1),�K⊗S) = min(Mod(S1 ∪ (S \ S1)),�K⊗S).
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2. Let S2 ⊂ S1 ⊂ S and S2 6` S1.

If w1 ∈ min(Mod(S \ S1),�K⊗S) and w2 ∈ min(Mod(S \ S2),�K⊗S) then w1 ≺K⊗S w2.

The first part expresses the fundamental intuition underlying the approach: after revising by a
set of formulas S, in the resulting faithful ordering restricted to (S \ S1) worlds, the least S1

worlds will be ranked lower than any world in which S1 isn’t true. The second part expresses
another fundamental property of the approach, that after revising by a set S, for S2 ⊂ S1 ⊂ S, the
minimum (S \ S1) worlds are ranked below the minimum (S \ S2) worlds. Both parts refer to the
faithful ranking corresponding to K ⊗ S. Together they can be thought of as expressing a relation
among conditional (or counterfactual) beliefs; that is, after revising by S, the faithful ranking given
by K ⊗ S reflects the counterfactual assertion that if some members of S were determined to be
false, the remaining elements of S would still be believed to be true. Hence if a revision by S were
in fact followed by a revision wherein some members of S were asserted to be false, the remaining
elements of S would be believed to be true.

We obtain the representation result:

Theorem 2 Let ⊗ be a revision operator satisfying Postulates (K ⊗ 1)–(K ⊗ 8).

1. ⊗ satisfies (P⊗) iff it revises faithful rankings according to (P⊗R).

2. ⊗ satisfies (S⊗) iff it revises faithful rankings according to (S⊗R).

An AGM revision operator that satisfies postulates (P⊗) and (S⊗) will be referred to as a (basic)
parallel revision operator.

We have shown that in revising by a set of formulas S, and then revising by the negations of
some subset S ′ of S, that the remaining members of S will continue to be believed. The next result
shows that if we revise by a set of formulas S, and then revise where some formulas of a subset S ′

of S are false (but it is not necessarily known which), then the other formulas in S will continue to
be believed. This result is more or less a corollary to the factoring result in AGM revision in the
context of parallel revision.

Proposition 4 Let ⊗ be a basic parallel revision operator and let S1 ⊂ S.
Then S1 ⊆ Bel(K ⊗ S ⊗ {∨(S \ S1)}).

Thus, if all we know is that some members of S \ S1 are false, then S1 will still be believed after
revising by S followed by ∨(S \ S1).

Some examples will make the properties and ramifications of the approach clear. Throughout
the following examples, K will be some belief state and S will be a set of formulas. α, β, γ will
be logically independent formulas, that is, for φ1, φ2 ∈ {α, β, γ} if φ1 ` φ2 then φ1 = φ2.

The first example considers the situation where the elements of the set for revision are inde-
pendent.

Example 4 Consider K ⊗ S where S = {α, β, γ}.
We get that in a faithful ranking resulting from the revision �K⊗S , the least {α, β, γ} worlds

are strictly less than the least {α, β,¬γ} worlds, which in turn are strictly less than the least
{α,¬β,¬γ} worlds.
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Consequently we obtain:

α ∧ γ ∈ Bel(K ⊗ {α, β, γ} ⊗ {¬β})
α ∈ Bel(K ⊗ {α, β, γ} ⊗ {¬β,¬γ})
α ∈ Bel(K ⊗ {α, β, γ} ⊗ {¬β ∨ ¬γ})

The first two parts illustrate the basic property of the approach in the case of logically independent
formulas: that revising by a set of formulas, then by the negation of some members of the set
leaves the remaining elements still in the agent’s belief set. The last part illustrates the result given
in Proposition 4.

In the next example, the elements of the set for revision are not independent.

Example 5 Consider K ⊗ S where S = {α, α ∧ β, γ}.
We obtain:

α ∧ γ ∈ Bel(K ⊗ {α, α ∧ β, γ} ⊗ {¬β})
γ ∈ Bel(K ⊗ {α, α ∧ β, γ} ⊗ {¬α})

On the other hand, there are resulting faithful rankings in which

β 6∈ Bel(K ⊗ {α, α ∧ β, γ} ⊗ {¬α}).

In the first case, since β is believed to be false, then α∧β must certainly also be false. On the other
hand, the other elements of the set, α and γ continue to be believed after revision by ¬β. Similarly
in the second part, if α is false, then γ can continue to be believed.

The following two examples illustrate a very interesting phenomenon, that the approach can be
used to express a preference over which formulas are accepted.

Example 6 Consider K ⊗ S where S = {α, α ∧ β}.
With respect to the agent’s contingent beliefs, revision by {α, α ∧ β} is of course the same as

revision by {α ∧ β}.
However, we also obtain:

α ∈ Bel(K ⊗ {α, α ∧ β} ⊗ {¬α ∨ ¬β}).

That is, in revising by {α, α ∧ β}, we effectively encode the preference that if one of α or β are to
be subsequently given up, then β will be given up and α retained. In terms of faithful rankings, we
have the following. After revising K by S = {α, α ∧ β}, at the minimum worlds in the resulting
ranking, {α, α∧β} will be true. For subsets S1 of S, we must have that S1∪ (S \ S1) is consistent.
This will be the case for S1 = {α} and (PP⊗R) stipulates that the minimum ¬α∨¬β worlds in the
ranking associated with K ⊗ S is the same as the minimum {α} ∪ {(α ∧ β)} = {α ∧ ¬β} worlds
associated with K. Hence in revising by S and then {¬α ∨ ¬β}, we get that {α ∧ ¬β} is true in
the resulting belief set.
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Example 7 Consider K ⊗ S where S = {α, α ∨ β}.
Clearly, for atoms α, β, we don’t generally obtain that β ∈ Bel(K ⊗ {α, α ∨ β}), since the

logical content of {α, α ∨ β} is equivalent to that of {α}.
However, we do obtain:

β ∈ Bel(K ⊗ {α, α ∨ β} ⊗ {¬α}).

Thus, after revising by {α, α∨β}we don’t necessarily believe that β is true; however we do believe
that β is true on subsequently revising by {¬α}. This result, on reflection, is to be expected: In
revising by a set, if one of the elements of the set is found later to be false then, where consistently
possible, the remaining elements of the set would still be believed. Thus in revising by {α, α∨β},
if α were subsequently determined to be false then the remaining element, viz. α∨β would remain
true. But since α is now believed false, this requires that β is now believed to be true. Thus in this
case in revising by {α, α∨β}, a preference is established between α and β, to the effect of “accept
α, but if it is subsequently found to be false, accept β.”

The next two examples deal with revising by a set of formulas where the set is inconsistent. In
the first case, individual elements of the set are consistent; in the second, some member of the set
is inconsistent. In both cases, we obtain desirable results in subsequent revisions. This illustrates
that, even though revision by an inconsistent set is defined to yield an inconsistent belief set, the
underlying faithful ranking nonetheless retains nontrivial information about the agent’s belief state.

Example 8 Consider K ⊗ S where S = {α,¬α, β, γ}.
Obviously Bel(K ⊗ {α,¬α, β, γ}) is inconsistent. However we obtain the following:

β ∧ γ ∈ Bel(K ⊗ {α,¬α, β, γ} ⊗ {α})
⊥ 6∈ Bel(K ⊗ {α,¬α, β, γ} ⊗ {α})

β ∧ γ ∈ Bel(K ⊗ {α,¬α, β, γ} ⊗ {α ∨ ¬α})
γ ∈ Bel(K ⊗ {α,¬α, β, γ} ⊗ {¬β})

Analogous results obtain when an element of the set for revision is inconsistent.

Example 9 Consider K ⊗ S where S = {⊥, α, β}.
We obtain:

β ∈ Bel(K ⊗ {⊥, α, β} ⊗ {α})
β ∈ Bel(K ⊗ {⊥, α, β} ⊗ {¬α})
⊥ 6∈ Bel(K ⊗ {⊥, α, β} ⊗ {α})

4 Parallel Revision and Iterated Revision
The basic approach only deals with limited situations where we first revise by a set of formulas
then by the negations of some of these formulas. In this section, we extend the basic approach to
deal with more general cases. We first show that the straightforward generalization of the well-
known iterated revision postulates are problematic and insufficient. Then, we present a postulate
of evidence retainment, which offers an alternative that avoids these difficulties.
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We start with the following generalization of the DP postulates to sets of formulas, as suggested
by [Zhang, 2004].

(C1⊗) If S2 ` S1, then Bel((K ⊗ S1)⊗ S2) = Bel(K ⊗ S2).

(C2⊗) If S1 ∪ S2 is inconsistent, then Bel((K ⊗ S1)⊗ S2) = Bel(K ⊗ S2).

(C3⊗) If S1 ⊆ Bel(K ⊗ S2), then S1 ⊆ Bel((K ⊗ S1)⊗ S2).

(C4⊗) If S1 ∪ Bel(K ⊗ S2) is consistent, then S1 ∪ Bel((K ⊗ S1)⊗ S2) is also consistent.

We remark that, while (C1⊗), (C3⊗) and (C4⊗) still seem as reasonable as their counterparts,
(C2⊗) is not desirable. First, previous criticisms of (C2) apply equally well to (C2⊗). Second,
(C2⊗) is clearly inconsistent with (P⊗) in the presence of the (adapted to sets) AGM postulates. As
a specific example, let α and β be logically independent formulas, and assume that ¬α ∈ Bel(K)
and β 6∈ Bel(K). Then (C2⊗) dictates that Bel(K ⊗ {α, β} ⊗ {¬β}) = Bel(K ⊗ {¬β}) =
Bel(K) + {¬β}. Thus ¬α ∈ Bel(K ⊗ {α, β} ⊗ {¬β}). On the other hand, (P⊗) requires that
{α} ⊆ Bel(K ⊗ {α, β} ⊗ {¬β}). Hence, we do not consider (C2⊗) further as a general postulate
for parallel revision.

For reference, the semantical conditions for the DP postulates can be generalised as follows.

(C1⊗R) If w1, w2 |= S, then w1 �K w2 iff w1 �K⊗S w2

(C2⊗R) If w1, w2 6|= S, then w1 �K w2 iff w1 �K⊗S w2

(C3⊗R) If w1 |= S and w2 6|= S, then w1 ≺K w2 implies w1 ≺K⊗S w2

(C4⊗R) If w1 |= S and w2 6|= S, then w1 �K w2 implies w1 �K⊗S w2

To show (C2⊗) is undesirable from another perspective, one may argue that (C2⊗R) is overly
strong: in the case where w2 satisfies more sentences of S than w1, it is perfectly reasonable that
we might have w2 ≺K⊗S w1 even if w1 �K w2.

Similarly, we can also generalise the postulate of independence and its corresponding semanti-
cal condition:

(Ind⊗) If S1 ∪ Bel(K ⊗ S2) is consistent, then S1 ⊆ Bel((K ⊗ S1)⊗ S2)

(Ind⊗R) If w1 |= S and w2 6|= S, then w1 �K w2 implies w1 ≺K⊗S w2

Note that, among the above-mentioned postulates, (C2⊗) is the only one which deals with the
case where S1 and S2 are jointly inconsistent. This suggests that we need some new postulates
in order to address this situation. As already argued, it is too radical to give up all formulas of
S1 (as imposed by (C⊗2)) just because S1 ∪ S2 is inconsistent. The question is, in revising by S1

and then S2 when S1 ∪ S2 is inconsistent, what formulas in S1 should be retained? Intuitively, a
formula α ∈ S1 should be kept if there is no evidence (in S1 and S2) against α after learning S2.
To formalise this idea, we need the following definition:

Definition 2 Let S1, S2 be two sets of sentences. We denote by S1||S2 the set of all subsets of S1

that are consistent with S2. That is Sc ∈ S1||S2 iff:
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1. Sc ⊆ S1

2. Sc ∪ S2 is consistent

Formally, the fact that there exists evidence in S1 against α after learning S2 (given the original
belief state K) can be expressed as: ∃Sc ∈ S1||S2 such that ¬α ∈ Bel(K ⊗ (Sc ∪ S2)).

Based on these considerations, we obtain the so-called postulate of evidence retainment:

If α ∈ S1 and α 6∈ Bel((K ⊗ S1)⊗ S2), then

∃Sc ∈ S1||S2 such that ¬α ∈ Bel(K ⊗ (Sc ∪ S2))

This postulate is inspired by the postulate of core retainment [Hansson, 1999], which says a
formula α is removed from a belief set K by a contraction with β only if there is some evidence in
K that shows that α contributes to the implication of β. Formally, core retainment is expressed as
follows:

If α ∈ K and α 6∈ K − β, then ∃A ⊆ K such that A 0 β but A ∪ α ` β.

The postulate of evidence retainment can be equivalently rephrased as follows:

(Ret⊗) If α ∈ S1, and for every Sc ∈ S1||S2 where S2 6= ∅ we have ¬α 6∈ Bel(K ⊗ (Sc ∪ S2)),
then

α ∈ Bel((K ⊗ S1)⊗ S2).

Recall Example 1 with S1 = {a,m} and S2 = {¬a}. Since S1||S2 = {{m}}, Postulate (Ret⊗)
implies that (K⊗S1)⊗S2 ` m, which gives us the desired result. Note that, in case a and m make
up a single piece of information (i.e. S1 = {a ∧m}), Postulate (Ret⊗) does not apply.

To give a formal justification for (Ret⊗), we will show a representation theorem.

Definition 3 Let S be a set of sentences and w a possible world. Then S|w denotes the set of
elements of S which are true in w, i.e., S|w = {α ∈ S | w |= α}.

The following theorem gives a necessary and sufficient semantical condition for (Ret⊗):

Theorem 3 Suppose⊗ is a parallel revision operator satisfying Postulates (K⊗1)–(K⊗8). Then
⊗ satisfies (Ret⊗) iff it revises faithful rankings in the following manner:

(Ret⊗R) If S|w2 ⊂ S|w1, then w1 �K w2 implies that w1 ≺K⊗S w2

Arguably, (Ret⊗R) is very natural and intuitive. It essentially says: if w1 confirms more new
information (in S) than w2, and w1 is at least as plausible as w2, then w1 becomes more plausible
than w2 after revising by S. It is not difficult to see that (Ret⊗) implies (Ind⊗).

Proposition 5 Suppose ⊗ is a parallel revision operator satisfying Postulates (K ⊗ 1)–(K ⊗ 8).
Then ⊗ satisfies (Ret⊗) only if it satisfies (Ind⊗).

For the effect of (Ret⊗), consider the following example.
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Example 10 Let ⊗ be a revision operator satisfying Postulates (K ⊗ 1)–(K ⊗ 8), (K ⊗ P ),
(K ⊗ S), and (Ret⊗). Let α, β, and γ be logically independent formulas.

We obtain:

If ¬α 6∈ Bel(K ⊗ {¬β, γ}) then α ∈ Bel(K ⊗ {α, β} ⊗ {¬β, γ}).

On the other hand, there is a revision operator ⊗ satisfying Postulates (K⊗ 1)–(K⊗ 8), (K ⊗P ),
and (K ⊗ S), but not (Ret⊗), such that

¬α 6∈ Bel(K ⊗ {¬β, γ}) and α 6∈ Bel(K ⊗ {α, β} ⊗ {¬β, γ}).

The examples of the previous section are of the form K ⊗ S ⊗ T where members of T were
denials of elements of S. In the basic approach to parallel revision, it is possible to have α 6∈
Bel(K ⊗ {α, β} ⊗ {¬β, γ}) because, after the revision K ⊗ {α, β}, the minimal ¬β worlds will
also have α be true, as expected. However, the minimal ¬β worlds may also happen to have
¬γ also be true; the basic approach places no constraints on the minimal ¬β ∧ γ worlds, and at
these worlds it is quite possible that α not be true. On the other hand, (Ret⊗) guarantees that
α is believed following the revisions by {α, β} and {¬β, γ}, provided ¬α is not believed in a
revision by {¬β, γ}. Informally, in revising by {α, β}, we have that α will be believed, and in the
subsequent revision {¬β, γ} if there is no reason to disbelieve α.

Based on similar considerations, we present two additional postulates which also seem quite
intuitive, and which naturally extend (C3⊗) and (C4⊗).

(PC3⊗) If for every Sc ∈ S1||S2 where S2 6= ∅ we have that α ∈ Bel(K ⊗ (Sc ∪ S2)), then

α ∈ Bel((K ⊗ S1)⊗ S2)

(PC4⊗) If for every Sc ∈ S1||S2 where S2 6= ∅ we have that ¬α 6∈ Bel(K ⊗ (Sc ∪ S2)), then

¬α 6∈ Bel((K ⊗ S1)⊗ S2)

Essentially, (PC3⊗) says if all evidence in S1 supports α after learning S2, then α must be believed;
(PC4⊗) says if no evidence in S1 is against α, then there is no reason to believe ¬α. We present a
representation theorem for (PC3⊗) and (PC4⊗) as the formal justification.

Theorem 4 Suppose⊗ is a parallel revision operator satisfying Postulates (K⊗1)–(K⊗8). Then
⊗ satisfies (PC3⊗) and (PC4⊗) iff it revises faithful rankings in the following manner:

(PC3⊗R) If S|w2 ⊆ S|w1, then w1 ≺K w2 implies w1 ≺K⊗S w2

(PC4⊗R) If S|w2 ⊆ S|w1, then w1 �K w2 implies w1 �K⊗S w2

It can be observed that (PC3⊗R) and (PC4⊗R) extend (C3⊗R) and (C4⊗R), respectively.

Proposition 6 Suppose ⊗ is a parallel revision operator satisfying Postulates (K ⊗ 1)–(K ⊗ 8).
Then ⊗ satisfies (PC3⊗) only if it satisfies (C3⊗); and ⊗ satisfies (PC4⊗) only if it satisfies (C4⊗).

Moreover, the semantical conditions of (PC3⊗R) and (PC4⊗R) require that the relative order-
ing of two possible worlds remain unchanged, provided they satisfy the same subset of the new
information.
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Proposition 7 (PC3⊗R) and (PC3⊗R) imply the following semantical condition:

If S|w2 = S|w1, then w1 �K w2 iff w1 �K⊗S w2

It is not difficult to see that (PC3⊗) and (PC4⊗) together imply (C1⊗) and (K ⊗ S).

Proposition 8 Suppose ⊗ is a parallel revision operator satisfying Postulates (K⊗ 1)–(K⊗ 8). If
⊗ satisfies (PC3⊗) and (PC4⊗) then it also satisfies (C1⊗) and (K ⊗ S).

As well, (P⊗) does not follow from (Ret⊗), (PC3⊗), and (PC4⊗); we give an example in terms
of the corresponding semantical conditions.9 Consider the language over propositional atoms a
and b, and the faithful ranking �K given by:

{ab} ≺K {ab} ≺K {ab} ≺K {ab}.

Assume that after revising by S = {a, b} the faithful ranking �K⊗S is given by:

{ab} ≺K⊗S {ab} ≺K⊗S {ab} ≺K⊗S {ab}.

It can be verified that �K⊗S satisfies (Ret⊗R), (PC3⊗R), and (PC4⊗R), but not (P⊗R).
We conclude with a result that further illustrates the relation between the basic parallel revision

postulates and those for iterated revision. It has already been noted that (P⊗), and so (PP⊗), does
not follow from (Ret⊗). However, we can show that a weakened version of (PP⊗) does follow from
(Ret⊗). Consider the following weaker versions of (PP⊗) and (PP⊗R):

(PP⊗′) Let S1 ⊂ S where S1 ∪Bel(K ⊗ (S \ S1)) is consistent. Then

Bel(K ⊗ S ⊗ (S \ S1)) = Bel(K ⊗ (S1 ∪ (S \ S1))).

(PP⊗R′) Let S1 ⊂ S where S1 ∪Bel(K ⊗ (S \ S1)) is consistent. Then

min(Mod(S1 ∪ (S \ S1)),�K) = min(Mod(S \ S1),�K⊗S).

It is not difficult to see that (Ret⊗), (PC3⊗) and (PC4⊗) together imply (PP⊗′).

Proposition 9 Suppose ⊗ is a parallel revision operator satisfying Postulates (K⊗ 1)–(K⊗ 8). If
⊗ satisfies (Ret⊗), (PC3⊗) and (PC4⊗) then it also satisfies (PP⊗′).

Based on the above development, we suggest a general parallel revision operator should satisfy
the AGM postulates (extended to sets), (P⊗), (Ret⊗), (PC3⊗), and (PC4⊗).

9We are indebted to a reviewer for this example.
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5 OCF-Based Parallel Revision
Up to this point, we have considered those properties that parallel revision, regarded a mathemat-
ical function, should satisfy. We now present a concrete parallel revision operator which satisfies
all the proposed postulates. The operator is based on Spohn’s proposal of ordinal conditional
functions [Spohn, 1988].

Originally, an ordinal conditional function (OCF) was defined as a mapping κ from the set of
possible worlds ΘP to the class of ordinals such that some world was assigned the value 0. An
OCF provides one concrete form of a belief state. As in [Spohn, 1991], for the sake of simplicity,
we take the signature of an OCF κ as ΘP → N, where κ(w) is called the rank of w. Intuitively, the
rank of a world represents its degree of plausibility. The lower a world’s rank, the more plausible
that world is. A formula α is in the belief set Bel(κ) just if every world of rank 0 is a model of α;
that is:

Mod(Bel(κ)) = {w | κ(w) = 0}.
The corresponding faithful ranking can be defined as follows:

w1 �κ w2 iff κ(w1) ≤ κ(w2). (3)

Given an OCF κ, we extend this function to a ranking on sentences (or sets of sentences) as follows:

κ(µ) =

{
∞ if ` ¬µ
min{κ(w) | w |= µ} otherwise

Put in words, the rank of a sentence is the lowest rank of a world in which the sentence holds.
In what follows we give a concrete parallel revision function in terms of an OCF. That is, for

a given OCF κ and finite set of formulas S, we define a revised OCF κ ⊗ S; the corresponding
faithful ranking can then be obtained via (3).

Consider for reference the semantic conditions for parallel revision:

(P⊗R) Let S1 ⊂ S where S1 ∪ (S \ S1) 6` ⊥. Then min(Mod(S \ S1),�K⊗S) ⊆ Mod(S1)

(Ret⊗R) If S|w2 ⊂ S|w1, then w1 �K w2 implies that w1 ≺K⊗S w2

(PC3⊗R) If S|w2 ⊆ S|w1, then w1 ≺K w2 implies w1 ≺K⊗S w2

(PC4⊗R) If S|w2 ⊆ S|w1, then w1 �K w2 implies w1 �K⊗S w2

We will use the following notation: Let S be a finite set of formulas, and let S1 ⊆ S.

Cs(S1) = S1 ∪ (S \ S1)

min(µ, κ) = {w | w |= µ, and for every w′ where κ(w′) < κ(w), w′ 6|= µ}

Mnemonically,Cs(S1) is the “completion” of S1 with respect to S: If α ∈ S\S1 then¬α ∈ Cs(S1).
min(µ, κ) is the set of least µ worlds with respect to κ. We also use min(S, κ) for a set of formulas
S to denote the κ-least set of S-worlds.

The construction of κ⊗S is given in terms of a recurrence relation. The definition is admittedly
somewhat complicated, although each part of the definition reflects a basic intuition concerning
postulates of parallel OCF revision. Consequently, after presenting the definition, we discuss in-
tuitions underlying the parts of the definition, and then provide a formal statement that shows that
the definition indeed specifies a general parallel revision operator.
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Definition 4 Let κ be an ordinal conditional function over ΘP and let S be a finite satisfiable set
of sentences. Define the parallel OCF revision of κ by S, κ⊗ S, by

1. If w ∈ min(S, κ) then (κ⊗ S)(w) = 0.

2. Assume that (κ⊗S)(w1) has been assigned for every w1 ∈ ΘP where w1 ∈ min(Cs(S1), κ),
and where S1 ⊆ S and |S| − |S1| < i for i > 0.

Let w2 ∈ min(Cs(S2), κ) where S2 ⊂ S and |S| − |S2| = i. Then

(κ⊗ S)(w2) = max{ (κ⊗ S)(Cs(S
′
1)), (4)

(κ⊗ S)(Cs(S
′
1)) + κ(Cs(S2))− κ(Cs(S

′
1)) (5)

| S2 ⊂ S ′1 ⊆ S and |S ′1|+ 1 = |S2| }
+ 1

3. For w 6∈ min(Cs(S|w), κ),

(κ⊗ S)(w) = (κ⊗ S)(Cs(S|w)) + κ(w)− κ(Cs(S|w)).

Each part of the definition applies to a particular set of worlds with respect to κ. The first
condition in the definition applies to minimum S worlds in κ, and ensures that these worlds are
given rank 0 in κ⊗ S; the remaining conditions implicitly assign a rank greater than 0 to all other
worlds. The second part of the definition assigns ranks in κ⊗ S to minimum (in κ) Cs(S1) worlds
for every S1 ⊂ S. This part is phrased iteratively, working from larger subsets of S to smaller. The
third part of the definition assigns ranks in κ⊗ S to all remaining worlds.

Intuitively the various postulates are obtained as follows. Since the set of 0-ranked worlds in
κ⊗S is the same as the minimum S worlds in κ, and since every world is assigned a rank in κ⊗S,
it follows that κ⊗S defines a faithful ranking. Thus, via [Katsuno and Mendelzon, 1991] we have
an AGM revision operator. (P⊗R) is obtained by requiring, for S2 ⊂ S1 ⊆ S where |S2|+1 = |S1|,
that

(κ⊗ S)(Cs(S2)) ≥ (κ⊗ S)(Cs(S1)) + 1.

That is, in κ⊗S the rank of the least Cs(S2) worlds is greater than the rank of the the least Cs(S1)
worlds. This is taken care of by (4) in the definition. The general case, where |S2| + i = |S1| for
i > 0 follows trivially by transitivity of ≥. (PC3⊗R) and (PC4⊗R) are obtained by a condition
similar to that in [Darwiche and Pearl, 1997], adjusted for subsets of a set of formulas for revision:
For worlds w1 and w2 where we have S1|w1 = S1|w2 for S1 ⊆ S, we require that the difference in
rankings between w1 and w2 will be the same in κ⊗S as in κ. Condition 3 of the definition ensures
that this is the case. (Ret⊗R) is trickier; refer to Figure 1, where we have that κ(w1) = κ(w2), and
assume thatw1 ∈ Mod(Cs(S1)) andw2 ∈ Mod(Cs(S2)). The minimumCs(S1) andCs(S2) worlds
are indicated by arrows on the κ ranking. A potential problem arises, in that to this point there is
nothing to prevent

(κ⊗ S)(Cs(S2))− (κ⊗ S)(Cs(S1)) < κ(Cs(S2))− κ(Cs(S1)).

Our constraints for (PC3⊗R) and (PC4⊗R) require that the respective distances d1 and d2 be the
same in κ and κ⊗ S, and this would yield that

(κ⊗ S)(w2)− (κ⊗ S)(w1) < 0.
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Figure 1: Enforcing (Ret⊗R)

This in turn violates (Ret⊗R). The condition (5) in the definition ensures that this doesn’t occur,
and so that (Ret⊗R) is satisfied.

To establish formally that the definition indeed stipulates a parallel OCF revision function, we
first state several small results that identify pertinent facts concerning the definition.

First, the definition yields an AGM revision function.

Lemma 1 Let κ be an OCF and let κ⊗ S be given by Definition 4. Then κ⊗ S defines a faithful
ranking.

The next lemma shows that the definition satisfies the basic parallel revision postulate.

Lemma 2 Let κ be an OCF, let κ ⊗ S be given by Definition 4, and let S2 ⊂ S1 ⊆ S. Then
(κ⊗ S)(Cs(S1)) < (κ⊗ S)(Cs(S2)).

As well, worlds that satisfy exactly the same elements of a set S retain their relative ranking before
and after revision.

Lemma 3 Let κ be an OCF, let κ ⊗ S be given by Definition 4, and let S|w1 = S|w2. Then
(κ⊗ S)(w1)− (κ⊗ S)(w2) = κ(w1)− κ(w2).

We obtain the following result.

Theorem 5 Parallel OCF revision satisfies the extended AGM postulates, (P⊗), (Ret⊗), (PC3⊗),
and (PC4⊗).

6 Conclusion
In this paper, we have developed an account of parallel belief revision, in which the second ar-
gument to a revision function is a finite set of formulas. Each formula of the set represents an
individual item of information. Thus K ∗ {α, β} specifies a revision of K by two formulas, while
K ∗ {α ∧ β} specifies a revision of K by a single formula that happens to be expressed as a con-
junction. The intention is that, following revision by a set of formulas, if a subsequent revision
is in conflict with some members of the original set, then belief in the other elements of that set
is retained. Thus, in revising by {α, β} and then by {¬β}, then, if α and β are independent, α
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continues to be believed in the resulting belief state. This is not necessarily the case in revising by
{α ∧ β} and then by {¬β}. Informally, a revision K ∗ {α, β} can be seen as yielding not just the
(contingent) incorporation of α and β among the beliefs of K, but also incorporating a counterfac-
tual assumption that if one of α or β were subsequently believed to be false, then the agent would
still believe the other formula to be true (provided there is no positive logical dependence between
α and β).

We presented two accounts of parallel belief revision. First, we consider a basic approach,
in which minimal conditions for revising by a set of formulas are developed. Two postulates
are proposed, along with corresponding semantic conditions, and a representation result is given.
Semantically we require that in a revision by a set of formulas S, in the associated faithful ordering
on worlds, for S1 ⊂ S, at the least S \ S1 worlds we also have that S1 is true. As a consequence,
problems associated with the DP postulate (C2) are sidestepped. Second, we develop a “preferred”
account of iterated parallel revision, consisting of an additional three new postulates. This is carried
out by extending the approach of Jin and Thielscher [2007] for iterated revision to deal with sets of
formulas. Again, corresponding semantic conditions are given and a representation result derived.
Last, Section 5 provides a concrete construction of a parallel revision operator.

Our account of parallel revision is intended as an extension of the AGM approach. In particular,
revising by an inconsistent set of formulas yields an inconsistent belief set. For future work,
an obvious and interesting extension is to examine revision in the case of an inconsistent set of
formulas. As the examples at the end of Section 3 indicate, there is information that may be
gleaned in revising by an inconsistent set of formulas, provided some of the elements of the set are
consistent. Thus, given some “reasonable” means of extracting consistent information from a set
S, say ∆(S), one could express revision as follows:

Bel(K ⊗ S) = Bel(K ⊗ (∆S)).

Hence in this case, if β were consistent, one would expect that Bel(K ⊗ {α,¬α, β}) would also
be consistent and entail β, while Bel(K⊗ {α ∧ ¬α ∧ β}) would of course be inconsistent. In this
way, one might obtain consistent revisions in some cases where the input is inconsistent.

Last, as indicated in the examples in the basic approach, parallel revision may be used to
encode preferences over formulas with respect to revision. A second, intriguing direction for future
research is to further explore this phenomenon, to determine to what extent the present approach
may be used to express a general notion of preference over formulas in revision.

Acknowledgements.
The authors would like to thank Pavlos Peppas and Hans Rott, as well as the referees of this paper,
for their helpful and insightful comments. Financial support was gratefully received from the
Natural Sciences and Engineering Council of Canada.

7 Proofs of Theorems
Notation:
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For W ⊆ ΘP , form(W) is a formula such that W = Mod(form(W)). Since we assume
a finite underlying language, such a formula is guaranteed to exist. Most often we will have
|W| = 2, and to avoid an overabundance of brackets we will abuse notation and write e.g. K ⊗
{form({w1, w2})} as K ⊗ form(w1, w2).

In analogy to Bel(K) standing for the set of sentences comprising the belief set of K (and to
simplify notation), Mod(K) will be the set of models of the belief set of K. I.e. Mod(K) is defined
as Mod(Bel(K)).

Proof of Proposition 1: Assume that S1 ⊂ S and that S1 ∪ (S \ S1) is consistent.

1. (a) (PP⊗) implies (P⊗):
From the success postulate we have that S1 ⊆ Bel(K⊗ (S1∪ (S \ S1))). (PP⊗) asserts
that Bel(K⊗ S ⊗ (S \ S1)) = Bel(K⊗ (S1 ∪ (S \ S1))), and so S1 ⊆ Bel(K⊗ S ⊗
(S \ S1)).

(b) (PP⊗) implies (S⊗):
(PP⊗) states that Bel(K ⊗ (S1 ∪ (S \ S1))) = Bel(K ⊗ S ⊗ (S \ S1)). Since S1 ⊆
Bel(K ⊗ (S1 ∪ (S \ S1))) so also S1 ⊆ Bel(K ⊗ S ⊗ (S \ S1)). Via (K ⊗ 3) and
(K ⊗ 4) we obtain that Bel(K ⊗ S ⊗ (S \ S1)) = Bel(K ⊗ S ⊗ (S \ S1)) ∪ S1 =
Bel(K ⊗ S ⊗ (S1 ∪ (S \ S1))) from which we get Bel(K ⊗ (S1 ∪ (S \ S1))) =
Bel(K ⊗ S ⊗ (S1 ∪ (S \ S1))).

2. (P⊗) and (S⊗) imply (PP⊗):

From (K ⊗ 3), (K ⊗ 4), and (P⊗), we get that Bel(K ⊗ S ⊗ (S \ S1)) = Bel(K ⊗
S ⊗ (S1 ∪ (S \ S1))). From (S⊗) we have in turn that Bel(K ⊗ S ⊗ (S1 ∪ (S \ S1))) =
Bel(K ⊗ (S1 ∪ (S \ S1))), from which we obtain (PP⊗).

Proof of Proposition 2: The proof is very similar to that of Proposition 1. Assume that S1 ⊂ S
and that S1 ∪ (S \ S1) is consistent.

1. (a) (PP⊗R) implies (P⊗R):
We have that min(Mod(S1 ∪ (S \ S1)),�K) ⊆ Mod(S1). (PP⊗R) then implies that
min(Mod(S \ S1),�K⊗S) ⊆ Mod(S1).

(b) (PP⊗R) implies (S⊗R):
(PP⊗R) states that min(Mod(S1 ∪ (S \ S1)),�K) = min(Mod(S \ S1),�K⊗S).

Since min(Mod(S1 ∪ (S \ S1)),�K) ⊆ Mod(S1), so min(Mod(S \ S1),�K⊗S) ⊆
Mod(S1). Consequently, we obtain that
min(Mod(S \ S1),�K⊗S) = min(Mod(S1 ∪ (S \ S1)),�K⊗S)

from which we get
min(Mod(S1 ∪ (S \ S1)),�K) = min(Mod(S1 ∪ (S \ S1)),�K⊗S).

2. (P⊗R) and (S⊗R) imply (PP⊗R):

From (P⊗R), we can show that min(Mod(S \ S1),�K⊗S) = min(Mod(S1 ∪ (S \ S1)),�K⊗S
).
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From (S⊗R) we have min(Mod(S1 ∪ (S \ S1)),�K⊗S) = min(Mod(S1 ∪ (S \ S1)),�K),
from which we obtain (PP⊗R).

Proof of Proposition 3:
LetK be a belief state and let�K be the faithful ranking induced by the faithful assignment induced
by K. Let �K⊗S satisfy (P⊗R) and (S⊗R). Then �K⊗S satisfies (PP⊗R) by the preceding result.

1. Let S1 ⊂ S where S1 ∪ (S \ S1) is consistent.

Letw ∈ min(Mod(S \ S1),�K⊗S). By (PP⊗R),w ∈ min(Mod(S1 ∪ (S \ S1)),�K),whence
w ∈ Mod(S1), and so w |= S1.

Since w ∈ min(Mod(S \ S1),�K⊗S) and w |= S1, and since �K⊗S is a faithful ranking, it
follows that w ∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S).

Conversely, assume w 6∈ min(Mod(S \ S1),�K⊗S). If w 6|= S \ S1 or w 6|= S1, then trivially
w 6∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S). So assume that w |= S \ S1 and w |= S1.

Towards a contradiction assume that w ∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S). Then since w 6∈
min(Mod(S \ S1),�K⊗S), for any w′ ∈ min(Mod(S \ S1),�K⊗S) we have w′ ≺K⊗S w.

However, (PP⊗R) implies that w′ |= S1, and this together with w′ ≺K⊗S w contradicts
w ∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S).

Hence w 6∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S), which was to be shown.

2. Assume S2 ⊂ S1 ⊂ S and S2 6` S1.

Let w1 ∈ min(Mod(S \ S1),�K⊗S) and w2 ∈ min(Mod(S \ S2),�K⊗S) (1)

Since S2 ⊂ S1 we have that (S \ S1) ⊂ (S \ S2), and so (S \ S1) ⊂ (S \ S2). From this
together with (1), and since �K⊗S is a faithful ranking, it follows that w1 �K⊗S w2.

Since w1 ∈ min(Mod(S \ S1),�K⊗S), we obtain via (PP⊗R) that

w1 ∈ min(Mod(S1 ∪ (S \ S1)),�K), and so w1 |= S1.

By the same argument with respect to w2 and S2 we get that w2 |= S2.

Consider φ ∈ (S1 \ S2). We have that w2 |= ¬φ since w2 |= S \ S2 and φ ∈ S \ S2.

As well, φ ∈ S1.

From Part 1 of the proposition, we showed that

min(Mod(S \ S1),�K⊗S) = min(Mod(S1 ∪ (S \ S1)),�K⊗S).

Thus, since w2 |= ¬φ and φ ∈ S1, so w2 6∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S), and so
w2 6∈ min(Mod(S \ S1),�K⊗S).

We have already shown that w1 �K⊗S w2. However, since w1 ∈ min(Mod(S \ S1),�K⊗S),
w2 |= S \ S1, and w2 6∈ min(Mod(S \ S1),�K⊗S), it follows that w1 ≺K⊗S w2.

Proof of Theorem 2.
It is more compact to show each direction for the two conditions, rather than showing both

directions for each postulate.

28



Construction to Postulates: Let � be a faithful ranking induced by an underlying epistemic state,
and define ⊗ according to (2), i.e.

Bel(K ⊗ S) = T (min(Mod(S),�K)).

Katsuno and Mendelzon [1991] show that ⊗ satisfies (K ⊗ 1)–(K ⊗ 8).

1. Let � satisfy (P⊗R). To show that ⊗ satisfies P⊗, let S1 ⊂ S where S1 ∪ (S \ S1) 6` ⊥.
Thus Mod(S1 ∪ (S \ S1)) 6= ∅, and so Mod(S \ S1) 6= ∅.
Let w1 ∈ min(Mod(S \ S1),�K⊗S).

From Proposition 3.1 we get that w1 ∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S). Hence w1 ∈
Mod(S1).
This means that for any w ∈ min(Mod(S \ S1),�K⊗S) that w |= S1.
Hence min(Mod(S \ S1),�K⊗S) ⊆ Mod(S1) or S1 ⊆ Bel(K⊗ S ⊗ (S \ S1)) via (2),
which was to be shown.

2. Let � satisfy (S⊗R). If S1 ∪ (S \ S1) ` ⊥ then S⊗ is trivially satisfied.
So assume that S1 ∪ (S \ S1) 6` ⊥, and let w ∈ Mod(K ⊗ (S1 ∪ (S \ S1))).

Thus in the associated faithful ranking we have w ∈ min(Mod(S1 ∪ (S \ S1)),�K).

Via (S⊗R) this means that w ∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S).

But then in terms of our defined revision operator this means that
w ∈ Mod(K ⊗ S ⊗ (S1 ∪ (S \ S1))).

Consequently, we have that
Mod(K ⊗ (S1 ∪ (S \ S1))) ⊆ Mod(K ⊗ S ⊗ (S1 ∪ (S \ S1))).

The reverse containment follows by noting that each step above is in fact an if-and-
only-if.
We obtain that

Mod(K ⊗ (S1 ∪ (S \ S1))) = Mod(K ⊗ S ⊗ (S1 ∪ (S \ S1))),

whence
Bel(K ⊗ (S1 ∪ (S \ S1))) = Bel(K ⊗ S ⊗ (S1 ∪ (S \ S1))).

Postulates to Construction:

Define, for every w1, w2 ∈ ΘP , w1 �K w2 iff w1 ∈ Mod(K ⊗ form(w1, w2)). We have
from [Katsuno and Mendelzon, 1991] that �K (and so of course �K⊗S) is a total preorder
that captures one-shot AGM revision.

1. We need to show that, given this definition and Postulate (P⊗) that condition (P⊗R)
holds.
Let S1 ⊂ S where S1 ∪ (S \ S1) 6` ⊥. Let w ∈ min(Mod(S \ S1),�K⊗S).

Since �K⊗S is a faithful ranking, this means that w ∈ Mod(K ⊗ S ⊗ (S \ S1)).

By (P⊗) we obtain that w |= S1, from which it follows that
min(Mod(S \ S1),�K⊗S) ⊆ Mod(S1).
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2. We need to show that, given the initial definition and Postulate (S⊗) that condition
(S⊗R) holds.
Let S1 ⊂ S. If S1 ∪ (S \ S1) ` ⊥, then (S⊗R) holds trivially.
So assume that S1 ∪ (S \ S1) 6` ⊥, and let w ∈ min(Mod(S1 ∪ (S \ S1)),�K).

Thus w ∈ Mod(K ⊗ (S1 ∪ (S \ S1))).

Therefore by (S⊗) we obtain that w ∈ Mod(K ⊗ S ⊗ (S1 ∪ (S \ S1))).

Consequently w ∈ min(Mod(S1 ∪ (S \ S1)),�K⊗S).

This shows that min(Mod(S1 ∪ (S \ S1)),�K) ⊆ min(Mod(S1 ∪ (S \ S1)),�K⊗S).

The reverse containment, viz.
min(Mod(S1 ∪ (S \ S1)),�K⊗S) ⊆ min(Mod(S1 ∪ (S \ S1)),�K)

follows by observing that each step above is in fact an if-and-only-if.

Proof of Proposition 4:
The proof is by induction on |S \ S1|.
If |S \ S1| = 1 then for S \ S1 = {φ} we are to show that S1 ⊆ Bel(K ⊗ S ⊗ {¬φ}). But this

is just an instance of (P⊗).
If |S \ S1| = 2 then the result follows from the factoring result in AGM revision. That is, let

S \ S1 = {φ, ψ}. Then the AGM factoring result yields

Bel(K ⊗ S ⊗ {¬φ ∨ ¬ψ}) =


Bel(K ⊗ S ⊗ {¬φ}) or
Bel(K ⊗ S ⊗ {¬ψ}) or
Bel(K ⊗ S ⊗ {¬φ}) ∩ Bel(K ⊗ S ⊗ {¬ψ}).

We have already noted that S \ {φ} ⊆ Bel(K ⊗ S ⊗ {¬φ}), from which it trivially follows that
S \ {φ, ψ} ⊆ Bel(K⊗S⊗{¬φ}), and analogously S \ {φ, ψ} ⊆ Bel(K⊗S⊗{¬ψ}). It follows
also that S \ {φ, ψ} ⊆ Bel(K⊗S ⊗{¬φ})∩Bel(K⊗S ⊗{¬ψ}), from which our result follows
using the factoring result.

The general case with |S \ S1| > 2 follows by a straightforward induction, again using the
AGM factoring result. We omit the details.

Lemma 4 Let S, S ′ be two sets of sentences and w1, w2 two possible worlds, such that Mod(S ′) =
{w1, w2} and S|w2 ⊆ S|w1. Then for all A ⊆ S such that A ∪ S ′ is consistent, we have w1 |= A.

Proof: Suppose there exists A ⊆ S such that, A ∪ S ′ is consistent and w1 6|= A. Since Mod(S ′) =
{w1, w2}, it follows that w2 |= A. From S|w2 ⊆ S|w1, we have A ⊇ S|w1. This contradicts
w1 6|= A.

Proof of Theorem 3:

(⇒) Assume S|w2 ⊂ S|w1, w1 �K w2 and w2 �K⊗S w1. Let S ′ be a set of sentences such that,
Mod(S ′) = {w1, w2}. Let α ∈ S be a sentence such that, w1 |= α and w2 6|= α. From
Lemma 4, it follows that ∀Sc ∈ S||S ′ that w1 |= Sc. Thus w1 |= Sc ∪ S ′. From w1 �K w2, it
follows that w1 |= Bel(K ⊗ (Sc ∪ S ′)). Therefore, Bel(K ⊗ (Sc ∪ S ′)) 0 ¬α. Then (Ret⊗)
implies that Bel((K ⊗ S)⊗ S ′) ` α, which contradicts w2 �K⊗S w1.
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(⇐) Assume α ∈ S1,∀Sc ∈ S1||S2 that we have Bel(K⊗(Sc∪S2)) 0 ¬α and Bel((K⊗S1)⊗S2) 0
α. Let w2 be a possible world such that w2 |= Bel((K ⊗ S1) ⊗ S2) and w2 6|= α. Let
Sc = S1|w2. Obviously, Sc ∈ S1||S2. Thus Bel(K ⊗ (Sc ∪ S2)) 0 ¬α. Let w1 be a
possible world such that w1 |= Bel(K⊗ (Sc ∪S2)) and w1 |= α. It follows immediately that
w1 �K w2. Since w1 |= Sc, w1 |= α and w2 6|= α, we have S1|w2 ⊂ S1|w1. Thus (Ret⊗R)
implies w1 ≺K⊗S1 w2. This contradicts w2 |= Bel((K ⊗ S1)⊗ S2).

Proof of Proposition 5:
It suffices to show that (Ret⊗R) implies (Ind⊗R). Assume w1 = S, w2 6|= S and w1 �K w2.

Obviously, S|w2 ⊂ S|w1. From (Ret⊗R), it follows that w1 ≺K⊗S w2.

Proof of Theorem 4:

1. (⇒) Assume S|w2 ⊆ S|w1, w1 ≺K w2 and w2 �K⊗S w1. Let S ′ be a set of sentences
such that Mod(S ′) = {w1, w2}. From Lemma 4, it follows that ∀Sc ∈ S||S ′ we
have w1 |= Sc. Thus Mod(K ⊗ (Sc ∪ S ′)) = {w1}, since w1 ≺K w2. Let α be
a sentence such that w1 |= α and w2 6|= α. It follows that ∀Sc ∈ S||S ′ we have
Bel(K ⊗ (Sc ∪ S ′)) ` α. Then (PC3⊗) implies that Bel((K ⊗ S) ⊗ S ′) ` α. This
contradicts w2 �K⊗S w1 and w2 6|= α.

(⇐) Assume ∀Sc ∈ S1||S2 we have Bel(K⊗ (Sc ∪ S2)) ` α, and Bel((K⊗ S1)⊗ S2) 0 α.
Let w2 be a possible world such that w2 |= Bel((K ⊗ S1) ⊗ S2) and w2 6|= α. Let
Sc = S1|w2. Obviously, Sc ∈ S1||S2. Thus Bel(K ⊗ (Sc ∪ S2)) ` α. Let w1 be a
possible world such that w1 |= Bel(K ⊗ (Sc ∪ S2)). It is easy to see that w1 ≺K w2

and Sc|w2 ⊆ Sc|w1. Then (PC3⊗R) implies w1 ≺K⊗S1 w2. This contradicts w2 |=
Bel((K ⊗ S1)⊗ S2).

2. (⇒) Assume S|w2 ⊆ S|w1, w1 �K w2 and w2 ≺K⊗S w1. Let S ′ be a set of sentences such
that Mod(S ′) = {w1, w2}. From Lemma 4, it follows that ∀Sc ∈ S||S ′ we have that
w1 |= Sc. Thus w1 |= Bel(K ⊗ (Sc ∪ S ′)), since w1 �K w2. Let α be a sentence such
that w1 |= α and w2 6|= α. It follows that Bel(K ⊗ (Sc ∪ S ′)) 0 ¬α. Then (PC4⊗)
implies that Bel((K ⊗ S)⊗ S ′) 0 ¬α. This contradicts w2 ≺K⊗S w1 and w2 6|= α.

(⇐) Assume ∀Sc ∈ S1||S2 we have that Bel(K ⊗ (Sc ∪ S2)) 0 ¬α, and Bel((K ⊗ S1) ⊗
S2) ` ¬α. Let w2 be a possible world such that w2 |= Bel((K ⊗ S1) ⊗ S2). Let
Sc = S1|w2. Obviously, Sc ∈ S1||S2. Thus Bel(K ⊗ (Sc ∪ S2)) 0 ¬α. Let w1 be
a possible world such that w1 |= Bel(K ⊗ (Sc ∪ S2)) and w1 |= α. It is easy to see
that w1 �K w2 and S1|w2 ⊆ S1|w1. Then (PC4⊗R) implies that w1 �K⊗S1 w2. Thus
w1 |= Bel((K ⊗ S1)⊗ S2), which contradicts Bel((K ⊗ S1)⊗ S2) ` ¬α.

Proof of Proposition 7:
Assume S|w2 = S|w1. Suppose w1 �K w2. Then (PC4⊗R) implies w1 �K⊗S w2. Suppose
w1 �K⊗S w2. It follows from (PC3⊗R) that w2 6≺K w1. Thus w1 �K w2, since �K is total.

Proof of Proposition 9:
It suffices to show that (Ret⊗R), (PC3⊗R) and (PC4⊗R) imply (PP⊗R′). Let S1 ⊂ S where S1 is

consistent withBel(K⊗(S \ S1)). Thus there is a possible worldw such thatw ∈ min(Mod(S \ S1),�K
) and w |= S1. We need to show that min(Mod(S1 ∪ (S \ S1)),�K) = min(Mod(S \ S1),�K⊗S).
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⊆ Suppose there is a possible world w1 such that w1 ∈ min(Mod(S1 ∪ (S \ S1)),�K) and w1 /∈
min(Mod(S \ S1),�K⊗S). This implies that there exists another possible world

w2 ∈ min(Mod(S \ S1),�K⊗S) and w2 ≺K⊗S w1. Since w2 ∈ Mod(S \ S1) and w ∈
min(Mod(S \ S1),�K), we have w �K w2. As w |= S1 ∪ (S \ S1) and w2 |= (S \ S1), it
is obvious that S|w2 ⊆ S|w. It follows from (PC4⊗R) that w �K⊗S w2. On the other hand,
since w1 ∈ min(Mod(S1 ∪ (S \ S1)),�K) and w ∈ Mod(S1 ∪ (S \ S1)) we have w1 �K w.
It follows from (PC4⊗R) that w1 �K⊗S w as S|w1 = S|w. This contradicts w �K⊗S w2 and
w2 ≺K⊗S w1.

⊇ Suppose there is a possible world w1 such that w1 ∈ min(Mod(S \ S1),�K⊗S) and w1 6∈
min(Mod(S1 ∪ (S \ S1)),�K). Since w ∈ min(Mod(S \ S1),�K) and w1 ∈ Mod(S \ S1),
we have w �K w2. Now we show that w1 |= S1. Suppose w1 6|= S1. Since w |= S1,
we have S|w1 ⊂ S|w. It follows from (Ret⊗R), w ≺K⊗S w1. This contradicts w1 ∈
min(Mod(S \ S1),�K⊗S). Thus we have w1 |= S1. It implies that there exists another
possible world w2 such that w2 ∈ min(Mod(S1 ∪ (S \ S1)),�K) and w2 ≺K w1. Since
S|w1 = S|w2, it follows from (PC3⊗R) that w2 ≺K⊗S w1. This contradicts

w1 ∈ min(Mod(S \ S1),�K⊗S).

Proof of Lemma 1: It is straightforward to verify that κ⊗S is a total function on ΘP . Thus κ⊗S
defines a total preorder over ΘP .

If w ∈ min(S, κ) then, by the first condition in Definition 4, (κ ⊗ S)(w) = 0. Similarly, if
w 6∈ min(S, κ), then it can be seen that (κ⊗ S)(w) 6= 0, as follows.

If w 6∈ min(S, κ) and w |= S then (κ⊗ S)(w) 6= 0 by Condition 3 in Definition 4.
If w ∈ min(Cs(S1), κ) for some S1 ⊂ S, then it can be observed from Condition 2 in Defini-

tion 4 that (κ⊗ S)(w) ≥ 1.
If w 6∈ min(Cs(S1), κ) for any S1 ⊂ S then, since (κ ⊗ S)(S1) ≥ 1, it can be observed from

Condition 3 in Definition 4 that (κ⊗ S)(w) ≥ 1.
Hence κ⊗ S satisfies the conditions for a faithful ranking.

Proof of Lemma 2: Since by Lemma 1, κ ⊗ S defines a faithful ranking, the lemma holds for
S1 = S. For the induction hypothesis, assume that the claim holds for all sets S1 ⊆ S where
|S| − |S1| < j for some j ≥ 0.

Let S2 ⊂ S1 where |S| − |S2| = j, and let w2 ∈ (κ ⊗ S)(Cs(S2)). The result follows
immediately from the second condition in Definition 4, since (κ ⊗ S)(Cs(S2)) can be seen to be
greater than (κ⊗ S)(Cs(S

′
1)) for any S ′1 where |S ′1|+ 1 = |S2|.

Proof of Lemma 3: Let S ′ = Cs(S|w2) (= Cs(S|w1)). There are four cases.

1. If w1, w2 ∈ min(S ′, κ), then κ(w1) = κ(w2), and Condition 2 in Definition 4 implies that
(κ⊗ S)(w1) = (κ⊗ S)(w2).

2. If w1 ∈ min(S ′, κ), w2 6∈ min(S ′, κ) then substituting into the equation in Condition 3 of
Definition 4 we get:

(κ⊗ S)(w2) = (κ⊗ S)(Cs(S|w2)) + κ(w2)− κ(Cs(S|w2))
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or: (κ⊗ S)(w2) = (κ⊗ S)(w1) + κ(w2)− κ(w1)

Rearranging terms we get:

(κ⊗ S)(w2)− (κ⊗ S)(w1) = κ(w2)− κ(w1)

3. The same argument establishes the result for w1 6∈ min(S ′, κ), w2 ∈ min(S ′, κ).

4. If w1 6∈ min(S ′, κ), w2 6∈ min(S ′, κ) then two instances of Condition 3 of Definition 4 give

(κ⊗ S)(w1) = (κ⊗ S)(S ′) + κ(w1)− κ(S ′) (6)
(κ⊗ S)(w2) = (κ⊗ S)(S ′) + κ(w2)− κ(S ′) (7)

Subtracting (7) from (6) yields:

(κ⊗ S)(w1)− (κ⊗ S)(w2) = κ(w1)− κ(w2)

Proof of Theorem 5: It suffices to show that κ⊗ S is a faithful ranking that satisfies the semantic
conditions (P⊗R), (Ret⊗R), (PC3⊗R), and (PC4⊗R).

• From Lemma 1 we have that κ⊗S defines a faithful ranking. By the representation theorem
of [Katsuno and Mendelzon, 1991] (extended to sets), κ ⊗ S satisfies the extended AGM
postulates.

• For (P⊗R), assume that S ′ ⊂ S where S ′ ∪ (S \ S ′) 6` ⊥, and let w ∈ min((S \ S ′), κ⊗ S).

Assume toward a contradiction that w 6∈ Mod(S ′). So we have for some S ′′ ⊂ S ′ that
w |= S ′′ and w |= S \ S ′′. Since w ∈ min((S \ S ′), κ ⊗ S), (S \ S ′) ⊂ (S \ S ′′), and
w |= S \ S ′′, this means that w ∈ min((S \ S ′′), κ⊗ S). Since w |= S ′′ this also means that
w ∈ min(S ′′ ∪ (S \ S ′′), κ ⊗ S) or w ∈ min(Cs(S

′′), κ ⊗ S). We also have by assumption
that w ∈ min((S \ S ′), κ⊗ S), and so (κ⊗ S)(w) ≤ (κ⊗ S)(Cs(S

′)).

But this in turn implies that (κ ⊗ S)(Cs(S
′′)) ≤ (κ ⊗ S)(Cs(S

′)) where S ′′ ⊂ S ′, contra-
dicting Lemma 2. Consequently we must have that w ∈ Mod(S ′).

• For [(PC3⊗R)] and [(PC4⊗R)], consider where S|w2 = S|w1; the case S|w2 ⊂ S|w1 is
implied by (Ret⊗R), covered in the next item.

Lemma 3 states that (κ ⊗ S)(w1) − (κ ⊗ S)(w2) = κ(w1) − κ(w2), which immediately
implies [(PC3⊗R)] and [(PC4⊗R)].

• For (Ret⊗R), assume that S|w2 ⊂ S|w1 and that κ(w1) ≤ κ(w2); we must show that (κ ⊗
S)(w1) < (κ⊗ S)(w2).

Let S1 = S|w1 and S2 = S|w2.

If we can show that the result holds for |S2| + 1 = |S1| then by transitivity of ≤ the result
holds trivially for |S2|+ i = |S1| for i ≥ 1. So assume further that |S2|+ 1 = |S1|.
There are three cases.
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1. w1 ∈ min(Cs(S1), κ) and w2 ∈ min(Cs(S2), κ).
From Condition 2 of Definition 4 we obtain that

(κ⊗ S)(w2) = max{ (κ⊗ S)(Cs(S
′
1)),

(κ⊗ S)(Cs(S
′
1)) + κ(Cs(S2))− κ(Cs(S

′
1))

| S ′1 ⊆ S and |S ′1|+ 1 = |S2| } + 1

≥ max{ (κ⊗ S)(Cs(S1)),

(κ⊗ S)(Cs(S1)) + κ(Cs(S2))− κ(Cs(S1)) } + 1

= max{ (κ⊗ S)(w1),

(κ⊗ S)(w1) + κ(w2)− κ(w1) } + 1

= (κ⊗ S)(w1) + κ(w2)− κ(w1) + 1.

The last step comes from the fact that κ(w1) ≤ κ(w2) by assumption. Hence

(κ⊗ S)(w2)− (κ⊗ S)(w1) ≥ κ(w2)− κ(w1) + 1 > κ(w2)− κ(w1),

which establishes the result.

2. w1 6∈ min(Cs(S1), κ) and w2 ∈ min(Cs(S2), κ).
Let w′1 ∈ min(Cs(S1), κ). Since S|w1 = S|w′1, Lemma 3 implies that (κ ⊗ S)(w1) −
(κ⊗ S)(w′1) = κ(w1)− κ(w′1) where in addition we have κ(w1)− κ(w′1) > 0.
Rearranging terms we get

(κ⊗ S)(w′1)− κ(w′1) = (κ⊗ S)(w1)− κ(w1). (8)

From the previous case, above, we have that

(κ⊗ S)(w2)− (κ⊗ S)(w′1) > κ(w2)− κ(w′1),

or
(κ⊗ S)(w2) > (κ⊗ S)(w′1) + κ(w2)− κ(w′1),

Substituting (8) into this inequality yields

(κ⊗ S)(w2) > (κ⊗ S)(w1) + κ(w2)− κ(w1),

or
(κ⊗ S)(w2)− (κ⊗ S)(w1) > κ(w2)− κ(w1)

which establishes the result.

3. w2 6∈ min(Cs(S2), κ).
Let w′1 ∈ min(Cs(S1), κ) and w′2 ∈ min(Cs(S2), κ).
From Lemma 3 we have that

(κ⊗ S)(w′1)− (κ⊗ S)(w1) = κ(w′1)− κ(w1)

(κ⊗ S)(w′2)− (κ⊗ S)(w2) = κ(w′2)− κ(w2)
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Rearranging terms yields:

(κ⊗ S)(w′1)− κ(w′1) = (κ⊗ S)(w1)− κ(w1) (9)
(κ⊗ S)(w′2)− κ(w′2) = (κ⊗ S)(w2)− κ(w2) (10)

From the first case, above, we have:

(κ⊗ S)(w′2)− (κ⊗ S)(w′1) > κ(w′2)− κ(w′1),

or
(κ⊗ S)(w′2)− κ(w′2) > (κ⊗ S)(w′1)− κ(w′1)

Substituting (9) and (10) into the above gives

(κ⊗ S)(w2)− κ(w2) > (κ⊗ S)(w1)− κ(w1)

and rearranging terms gives

(κ⊗ S)(w2)− (κ⊗ S)(w1) > κ(w2)− κ(w1),

which establishes the result.
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