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Abstract

This paper presents a general, consistency-based framework for expressing belief change.
The framework has good formal properties while being well-suited for implementation. For
belief revision, informally, in revising a knowledge base K by a sentence α, we begin with α

and include as much of K as consistently possible. This is done by expressing K and α in dis-
joint languages, asserting that the languages agree on the truth values of corresponding atoms
wherever consistently possible, and then re-expressing the result in the original language of
K . There may be more than one way in which the languages of K and α can be so correlated:
in choice revision, one such “extension” represents the revised state; alternately (skeptical)
revision consists of the intersection of all such extensions. Contraction is similarly defined
although, interestingly, it is not interdefinable with revision.

The framework is general and flexible. For example, one could go on and express other
belief change operations such as update and erasure, and the the merging of knowledge bases.
Further, the framework allows the incorporation of static and dynamic integrity constraints.
The approach is well-suited for implementation: belief change can be equivalently expressed
in terms of a finite knowledge base; and the scope of a belief change operation can be restricted
to just those propositions common to the knowledge base and sentence for change. We give a
high-level algorithm implementing the procedure, and an expression of the approach in Default
Logic. Lastly, we briefly discuss two implementations of the approach.

Keywords: Belief change, belief revision and contraction, consistency-based reasoning

1 Introduction

This paper describe a general framework for expressing belief change, focussing on revision and
contraction. A key feature of the framework is that it combines theoretical and practical considera-
tions in a single system: revision and contraction operators have good formal properties (satisfying
most AGM postulates) while being well-suited for implementation. Informally, to revise a knowl-
edge base K by sentence α, we begin with α and “include” as much of K as consistently possible.
This is carried out by expressing K and α in disjoint languages, “forcing” (via a maximisation
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process) the languages to agree on truth values of atoms wherever consistently possible, and then
re-expressing the result in the original language of K. There may be more than one way in which
the maximisation process can be carried out. This inherent non-determinism gives rise to two
notions of revision. In “choice” revision one such “extension” is selected for the revised state. In
general “skeptical” revision, the revised state consists of the intersection of all such extensions. Be-
lief contraction is defined analogously. Since we are maximising equivalences over a set of atomic
sentences, the approach has the same flavour as the consistency-based approaches for diagnosis
[Rei87b], or default reasoning [Poo88], or assumption-based truth maintenance [RdK87].

The approach is developed first in a formal, abstract framework. The central notion is that of
a belief change scenario consisting of a triple of sets of formulas, B = (K,R,C). Informally,
K is a knowledge base that will be changed such that the set R will be derivable in the resulting
knowledge base, while members of C will not. Revision and contraction are then easily defined,
by letting C = ∅ and R = ∅, respectively. Update, erasure, and merging are similarly definable
although we do not do so here. Moreover it is straightforward to incorporate different sorts of
integrity constraints in this framework.

The approach is independent of syntax, in that revising (or contracting) a knowledge base K
by sentence α is independent of how K and α are expressed. The belief change operators are also
shown to satisfy the majority of the AGM postulates, with the exception of a “non-basic” postulate
and, in the case of contraction, the recovery postulate. On the other hand, the approach is well-
suited for implementation. Belief change can be expressed in terms of a finite knowledge base,
in place of a deductively-closed belief set. Further, the scope of a belief change operator can be
restricted to those propositions common to a knowledge base and sentence for change. We provide
a high-level algorithm implementing the approach, and show how the approach can be expressed
using Default Logic [Rei80]. Finally we briefly describe two implementations of the approach.

In the next section we briefly review approaches to belief change. In Section 3 we discuss intu-
itions underlying our approach and, in particular, the suitability of a consistency-based approach.
Section 4 presents the general framework, then explores revision and contraction. In Section 5 we
consider implementation issues, while in Section 6 we compare our approach with related work.
We conclude in Section 7 with a summation and discussion. Proofs of theorems are contained in
an appendix. In [DS02], we further explore the general framework, and show that it is flexible
enough to express other belief change operations such as update, erasure, and merging.

2 Background

A common approach in addressing belief change has been to provide a set of rationality postulates
for a belief change function. These rationality postulates constrain, or give properties of, such
functions, but have little to say about how a specific function is to be implemented. The AGM ap-
proach of Alchourron, Gärdenfors, and Makinson [AGM85, Gär88] provides the best-known set
of such postulates; see also [Han99, Rot01] for extensive discussions of this and other approaches.
The approach assumes a language L, closed under the usual set of Boolean connectives; the lan-
guage is assumed to be governed by a logic that includes classical propositional logic, and that is
compact. Belief change is described at the knowledge level, that is on an abstract level, indepen-
dent of how beliefs are represented and manipulated. Belief states are modelled by logically closed
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sets of sentences, called belief sets. Thus, a belief set is a set K of sentences which satisfies the
constraint:

If K logically entails β then β ∈ K.

So K can be seen as a partial theory of the world. For belief set K and formula α, K + α is the
deductive closure of K ∪ {α}, called the expansion of K by α. K⊥ is the inconsistent belief set
(i.e. K⊥ is the set of all formulas).

A revision function +̇ is a function from 2L × L to 2L satisfying the following postulates.

(K+̇1) K+̇α is a belief set.

(K+̇2) α ∈ K+̇α.

(K+̇3) K+̇α ⊆ K + α.

(K+̇4) If ¬α 6∈ K, then K + α ⊆ K+̇α.

(K+̇5) K+̇α = K⊥ iff ` ¬α.

(K+̇6) If ` α ≡ β, then K+̇α = K+̇β.

(K+̇7) K+̇(α ∧ β) ⊆ (K+̇α) + β.

(K+̇8) If ¬β 6∈ K+̇α, then (K+̇α) + β ⊆ K+̇(α ∧ β).

That is: the result of revising K by α is a belief set in which α is believed; whenever the result
is consistent, revision consists of the expansion of K by α; the only time that K⊥ is obtained is
when ¬α is a tautology; and revision is independent of the syntactic form of K and α. The last
two postulates deal with the relation between revising with a conjunction and expansion.

Contraction is the dual notion of revision, in which beliefs are retracted but no new beliefs are
added. In the AGM approach, a contraction function −̇ is a function from 2L × L to 2L satisfying
the following postulates.

(K−̇1) K−̇α is a belief set.

(K−̇2) K−̇α ⊆ K.

(K−̇3) If α 6∈ K, then K−̇α = K.

(K−̇4) If 6` α, then α 6∈ K−̇α.

(K−̇5) If α ∈ K, then K ⊆ (K−̇α) + α.

(K−̇6) If ` α ≡ β, then K−̇α = K−̇β.

(K−̇7) K−̇α ∩K−̇β ⊆ K−̇(α ∧ β).

(K−̇8) If β 6∈ K−̇(α ∧ β), then K−̇(α ∧ β) ⊆ K−̇β.

Revision and contraction are often interdefinable by means of the following identities:
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Levi Identity: K+̇α = (K−̇¬α) + α.

Harper Identity: K−̇α = K ∩ (K+̇¬α).

The Levi Identity asserts that revision by α corresponds to contraction by ¬α followed by expan-
sion by α, while the Harper Identity asserts that contracting K by α corresponds to selecting just
those sentences of K that remain if K is revised by ¬α.

Various constructions based on preference relations have been proposed, in terms of which be-
lief change functions can be defined. Earliest and best-known among these is epistemic entrench-
ment orderings [Gär88]. An epistemic entrenchment ordering related to a belief set K is a binary
relation ≤ on the formulas in L, reflecting the relative degree of acceptance of sentences. Belief
change can also be characterised by a total preorder on interpretations in the language [Gro88].

The postulate sets for belief change, and their accompanying constructions, do not address the
issue of iterated belief revision. However, clearly, one would be interested in not just a single
revision of a belief set by a formula, but also in sequences of revisions. [Leh95] provides an
extended set of rationality postulates; other representative work includes [BG93, Bou94, Wil94,
NFPS96, DP97, Pap01]. Much, if not all, of this work is based upon or inspired by [Spo88].
However, it has proven to be very difficult to develop a belief revision operator with plausible
properties for iterated revision; see [NFPS96, DP97] for excellent discussions. We briefly discuss
Darwiche and Pearl’s approach here, as a more recent and well-known proposal.

Darwiche and Pearl employ the notion of an epistemic state that encodes how a revision func-
tion changes following a revision. They propose the following postulates.1

(C1) If α ` β then (K+̇β)+̇α = K+̇α.

(C2) If α ` ¬β then (K+̇β)+̇α = K+̇α.

(C3) If β ∈ K+̇α then β ∈ (K+̇β)+̇α.

(C4) If ¬β 6∈ K+̇α then ¬β 6∈ (K+̇β)+̇α.

[NFPS96] propose a variant of (C2) along with the following postulate:

(Conj ) If α ∧ β 6` ⊥ then (K+̇α)+̇
α
β = K+̇(α ∧ β).

The superscript on +̇
α indicates that following revision by α, +̇ depends in part on α. This postu-

late is strong enough to derive (C1), (C3), and (C4) in the presence of the AGM postulates.
These postulates are not uncontentious. For example, an instance of (C2) (letting α be ¬p and

β be p ∧ q) is the following:

(C2′) (K+̇(p ∧ q)) +̇ ¬p ≡ K+̇¬p.

Thus if one revises by (p ∧ q) and then by the negation of some of this information (¬p), then the
other original information (q) is lost. So, in a variant of an example from [DP97], consider where I
see a bird in the distance and come to believe that it is red and flies. If on closer examination I see
that it is yellow, then according to (C2′) I no longer believe that it flies. Hence this is too strong a

1Darwiche and Pearl phrase their postulates in terms of epistemic states, in which the associated belief set is
represented by a formula; for uniformity, we remain with the preceding terminology.
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condition to reasonably adopt, at least for every revision function in all circumstances. Moreover,
for approaches based on [Spo88], such as [DP97], it is not at all obvious how such a result can be
avoided.

There has also been work on specific revision operators based on the distance between models
of a knowledge base and a sentence to be incorporated in the knowledge base. This work in-
cludes [Bor85, Web86, Dal88, Sat88, Win88, For89]. In these approaches, the models of the new
knowledge base are those models of the sentence to be added that are closest (based on “distance”
between atomic sentences) to models of the original knowledge base. For example, in [Dal88] the
revision operator uses the Hamming distance between interpretations as metric, where the Ham-
ming distance d(w1, w2) between interpretationsw1 andw2 is the number of propositional variables
on which the interpretations differ. The distance between an interpretation w and the models of K
is given by: d(Mod(K), w) = minwi|=K d(wi, w), where Mod(K) is the set of models of K and
wi |= K indicates that K is true in wi. A total pre-order on interpretations is given by:

w1 ≤K w2 iff d(Mod(K), w1) ≤ d(Mod(K), w2).

The operator +̇D, defined by Mod(K+̇Dα) = min≤K
Mod(α), satisfies the AGM postulates.

[dV93] provides syntactic characterisations of most of the above-cited distance-based approaches.
As well, an algorithm is provided for each characterisation. The general strategy is to first convert
(a portion of) a knowledge base and formula into disjunctive normal form (DNF). A distance is
defined between the clauses in the DNF representations, depending on the approach being consid-
ered. Dependencies are propagated among the clauses, generating the set of clauses in the resulting
knowledge base. In related work, [EG92] considers the decision problem “Is p true in K+̇q?” for
a wide selection of distance-based operators, and syntactic restrictions onK, q, and p. [LS97] con-
siders how distance-based operators operators can be expressed using circumscription (and vice
versa) along with the complexity of the reductions.

A separate direction in belief revision is to assume that revision is not carried out on a belief
set per se, but rather on an arbitrary set of formulas. This notion of base revision is proposed in
[Mak85, FUV83], and fully explored in [Neb92]. The idea is that a knowledge base is represented
by a (arbitrary, syntactic) belief base that is to be modified, queried, etc. While conceptually sim-
ple, revision in these approaches frequently relies on arbitrary syntactic distinctions. With respect
to implementations, [Wil95] provides a computational model for belief base revision; other rele-
vant work includes [BDP01] and [Lib99]. These approaches are further discussed and compared
with the present approach in Section 6.

Revision and contraction reflect the intuition that an agent receives new information concern-
ing a static world or domain. [KM92] explores the distinct notions of belief update and erasure
in which an agent changes its beliefs in response to changes in its external environment. As well,
recently there has been significant interest in belief merging or fusing, where two or more knowl-
edge sources are combined. Our interests in this paper centre on revision and contraction; as will
become apparent, the present approach can be easily extended to represent these other operations.

3 Consistency-Based Belief Change

This section informally introduces our approach to belief change, concentrating on belief revision.
As well as describing underlying intuitions and the approach, we also discuss the broader paradigm
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of consistency-based reasoning.

3.1 A Naı̈ve Approach

The problem we address is the general problem of belief revision:

Given a general knowledge base and sentence for revision (contraction, etc.), what
should the revised (contracted, etc.) knowledge base look like?

A common assumption is that K is to be minimally changed, in order to accommodate α. In our
approach, we require that α is true in K+̇α, and we subsequently “add” whatever we can from K.

An obvious way to realise such a scheme is to consider an enumeration of sentences of K and,
beginning with α, iteratively add each sentence to a candidate revision whenever consistent. Let
〈φi〉i∈I be an exhaustive enumeration of the sentences of belief set K, and let α be the sentence for
revision. Define:

1. K0 = α.

2. If Ki ∪ {φi} 6` ⊥

(a) then Ki+1 = Cn(Ki ∪ {φi})

(b) otherwise Ki+1 = Cn(Ki).

Define K+̇Iα as
⋃

i∈I Ki and K+̇α as
⋂

I K+̇Iα over all enumerations 〈φi〉i∈I of K.

Theorem 3.1 Let K be a belief set and α a formula such that K ` ¬α and α 6` ⊥.

1. For every β ∈ L where α 6` ¬β, there is an enumeration 〈φi〉i∈I of K such that K+̇Iα ` β.

2. For every enumeration 〈φi〉i∈I of K and for every formula β, we have that

K+̇Iα ` β or K+̇Iα ` ¬β .

3. K+̇α = Cn(α).

Proof 3.1 (Outline) The proofs are straightforward, and follow those in [AM82] showing similar
results for full meet and maxichoice belief change. The key step is to note that since K ` ¬α and
K is a belief set, we also have K ` ¬α ∨ γ. Hence the addition of a sentence ¬α ∨ γ to a set
containing α, in the proposed definition for revision, effectively adds γ.

The properties given in Theorem 3.1 are unappealing. Moreover, these difficulties are not easily
repaired. For example, in the definition of K+̇Iα, if we don’t take the deductive closure, via Cn(·),
we get the same results. Second, if we just consider enumerations ordered by the logical strength
of formulas, we also get the same results given in Theorem 3.1. Third, if we relax the assumption
that K be a belief set, and allow K to be a belief base (i.e. an arbitrary set of formulas), then we
essentially obtain the approach to base revision of [FUV83], also explored in [Neb92]. In standard
approaches to base revision, among other things, we lose the principle of irrelevance of syntax,
given as AGM postulate (K+̇6).
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On this last point, [Neb92, p. 58] concludes that abstracting from a syntactic representation of
a belief base to a belief set leads nowhere. Nebel goes on to note that several authors (e.g. [Dal88,
Win88, KM91]) as a result advocate approaches based on the models characterising a knowledge
base and formula. Our approach, introduced informally next, can be seen as a compromise, where
a knowledge base and formula can (ultimately) be represented as arbitrary formulas, yet wherein
irrelevance of syntax obtains.

3.2 Our Approach

In general, the syntactic form of a sentence doesn’t give a clear indication as to which sentences
should or should not be retained in a revision. Alternately, one can consider interpretations, and
look at the models of K and α. The interesting case occurs when K ∪ {α} is unsatisfiable because
K and α share no models. Intuitively, a model of K+̇α should then contain models of α, but
incorporating “parts” of models of K that don’t conflict with those of α. That is, we will have

Mod(K+̇α) ⊆ Mod(α),

and for m ∈ Mod(K+̇α) we will want to incorporate whatever we can of models of K.
We accomplish this by expressing K and α in different languages, but such that there is an iso-

morphism between atomic sentences of the languages, and so between the languages themselves.
In essence, we replace every occurrence of an atomic sentence p in K by a new atomic sentence p′,
yielding knowledge base K ′ and leaving α unchanged. Clearly, under this relabelling, the models
of K ′ and α will be independent, and K ′ ∪ {α} will be satisfiable (assuming that each of K, α
are satisfiable). We now assert that the languages agree on the truth values of corresponding atoms
wherever consistently possible. So, for every atomic sentence p, we assert that p ≡ p′ whenever
this is consistent with K ′ ∪ {α} along with the set of equivalences obtained so far. We obtain a
maximal set of such equivalences, call it EQ, such that K ′ ∪ {α} ∪ EQ is consistent. A model
of K ′ ∪ {α} ∪ EQ then will be a model of α in the original language, wherein the truth values of
atomic sentences in K ′ and α are linked via the set EQ. A candidate “choice” revision of K by α
consists of K ′ ∪ {α} ∪EQ re-expressed in the original language. General revision corresponds to
the intersection of all candidate choice revisions.

To illustrate, consider where

K = Cn({(p ∨ q) ∧ r}) and α = (¬p ∨ ¬q) ∧ ¬r.

Renaming the atoms in K gives K ′ = Cn({(p′ ∨ q′) ∧ r′}). Clearly K ′ ∪ {α} is consistent,
even though K ∪ {α} is not. We have that Cn(K ′ ∪ {α} ∪ {p′ ≡ p, q′ ≡ q}) is consistent, but
Cn(K ′ ∪ {α} ∪ {p′ ≡ p, q′ ≡ q, r′ ≡ r}) is not. Hence we take EQ = {p′ ≡ p, q′ ≡ q}. Intersect-
ing Cn(K ′ ∪ {α} ∪ EQ) with the original language yields Cn({(p ≡ ¬q) ∧ ¬r}) as the revised
knowledge base.

We can justify this process is as follows: A language has implicit inductive commitments, ex-
pressed in the choice of atomic propositions. That is, the atoms are (pragmatically) chosen because
they are intended to mean something relevant in the domain of discourse. The collection of atomic
sentences represents the basic set of meaningful propositions from which further propositions are
constructed. In the approach, we essentially employ something resembling a frame assumption,
asserting that the truth value of the atomic sentences do not change unless “forced” to change by an
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incompatibility between K and α. This also means that if we change the representation language,
the results of revision may, not unnaturally, change; see [Som94] for a discussion on the sensitivity
of revision to the underlying language.

Overall this yields a specific approach to belief revision. The general framework (next section)
also allows the expression of contraction and integrity constraints. Further, the general approach
also allows the expression of update, erasure, and knowledge base merging operations [DS02].
Significantly, the approach is independent of how the knowledge base and formula for revision
are represented. As well, as we show in subsequent sections, the belief change operators have
reasonable properties and are well-suited for implementation.

3.3 Consistency-Based Reasoning

The overall approach to belief change described here is founded on the same intuitions as a group of
closely-related consistency-based reasoning methodologies in Artificial Intelligence. Consistency-
based reasoners can be broadly characterised as essentially involving

1. a nonmonotonic minimisation (or maximisation) step that is

2. based on a distinguished set of atoms.

In Theorist [Poo88] for example, one can make predictions of default properties based on selecting
from a set of hypotheses, such that the hypotheses selected, together with the background theory
and facts, are consistent. Hypotheses are drawn from a designated set of atoms. Similarly, in
consistency-based diagnosis [Rei87b], a diagnosis is a conjecture that some minimal set of com-
ponents are faulty. That a component ci is faulty, or abnormal, is expressed by a ground formula
Ab(ci), and the assertion that a minimal set of components is faulty is effected by minimizing
the set of positive Ab instances. In assumption-based truth maintenance [dK86], explanations are
selected from a designated set of atoms.

The emphasis here is slightly different. The maximisation step is applied to pairs of corre-
sponding atoms which are asserted to be equivalent. Hence, we do not have a distinguished set of
atoms per se to which the maximisation is applied , but rather a designated set of sentences, viz. a
set of equivalences between atoms, that is used in the maximization step.

4 Specifying Belief Change Functions

4.1 Formal Foundations

We deal with propositional languages and use the logical symbols >, ⊥, ¬, ∨, ∧, ⊃, and ≡ to
construct formulas in the standard way. We write LP to denote a language over an alphabet P of
propositional letters or atomic propositions. Formulas are denoted by the Greek letters α, β, α1,
. . . . Knowledge bases are initially identified with deductively-closed sets of formulas, or belief
sets, and are denoted K, K1, . . . . Thus K = Cn(K), where Cn(·) is the deductive closure in
classical propositional logic of the formula or set of formulas given as argument. Later we relax
this restriction and allow knowledge bases to be arbitrary belief bases. Given an alphabet P , we
define a disjoint alphabet P ′ as P ′ = {p′ | p ∈ P}. For α ∈ LP , α′ is the result of replacing
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in α each proposition p ∈ P by the corresponding proposition p′ ∈ P ′ (so implicitly there is an
isomorphism between P and P ′). This is defined analogously for sets of formulas.

A belief change scenario in LP is defined as a triple B = (K,R,C), where K, R, and C
are sets of formulas in LP . Informally, K is a knowledge base that is to be modified so that the
formulas inR are contained in the result, and the formulas inC are not. For an approach to revision
we have |R| = 1 and C = ∅, and for an approach to contraction we have R = ∅ and |C| = 1.

We next define the notion of an extension for a belief change scenario, called a belief change
extension. In the definition below, “maximal” is with respect to set containment (rather than set
cardinality). The following is our central definition.2

Definition 4.1 Let B = (K,R,C) be a belief change scenario in LP .
Define EQ as a maximal set of equivalences EQ ⊆ {p ≡ p′ | p ∈ P} such that

Cn(K ′ ∪ R ∪ EQ) ∩ (C ∪ {⊥}) = ∅.

Then

Cn(K ′ ∪ R ∪ EQ) ∩ LP

is a (consistent) belief change extension of B.
If there is no such set EQ then B is inconsistent and LP is defined to be the sole (inconsistent)

belief change extension of B.

The sole use of “{⊥}” in the definition is to take care of the case where C = ∅. The consistency
condition on belief change extensions can be written equivalently as follows:

Alternative Consistency Condition: K ′ ∪R ∪ EQ 6` φ for every φ ∈ C ∪ {⊥}.

We make use of this alternative formulation in the proofs of the theorems.
Clearly a consistent belief change extension of B is a modification of K which contains every

formula in R, and which contains no formula in C. We say that EQ determines the respective
consistent belief change extension of B. For later use, we define EQ as {p ≡ p′ | p ∈ P} \ EQ.

For a given belief change scenario there may be more than one consistent belief change exten-
sion. We will make use of the notion of a selection function c that for any set I 6= ∅ has as value
some element of I . When we come to define revision and contraction, in Definition 4.2 and 4.3,
we will use a selection function to select a specific consistent belief change extension. This use of
selection functions then is slightly different from that in the AGM approach.

The following theorem provides elementary results that will be useful later.

Theorem 4.1 Let K be a knowledge base and α ∈ LP . Let EQ,EQ? ⊆ {p ≡ p′ | p ∈ P}.

1. If EQ determines a consistent belief change extension of (K,R,C), then

for (p ≡ p′) ∈ EQ there is φ ∈ C ∪ {⊥} such that K ′ ∪R ∪ {¬φ} ∪ EQ ` p ≡ ¬p′.

2Our technique of maximizing sets of equivalences of propositional letters bears a superficial resemblance to the
use of such equivalences in [LS97] (based in turn on techniques developed in [dK89]). However the approaches are
distinct; in particular and in contradistinction to these references, we employ disjoint alphabets for a knowledge base
and revising sentence.

9



2. If EQ determines a given consistent belief change extension of (K,R, {α}), then

K ′ ∪ R ∪ {¬α} ∪ EQ ` p ≡ ¬p′ for every (p ≡ p′) ∈ EQ.

3. If E1 and E2 are two distinct belief change extensions of (K,R, {α}), then E1 ∪ E2 ` ⊥.

4. If K 6` ¬α, then {p ≡ p′ | p ∈ P} determines the sole consistent belief change extension of
(K, {α}, ∅).

5. If EQ determines a belief change extension of (K, ∅, {α ∧ β}), then

EQ determines a belief change extension of (K, ∅, {α}) or of (K, ∅, {β}).

6. IfEQ determines a belief change extension of (K, ∅, {α}), then there is a set of equivalences
EQ? determining a belief change extension of (K, ∅, {α ∧ β}) such that EQ ⊆ EQ?.

7. EQ determines a belief change extension E1 of (K, {α}, ∅) iff

EQ determines a belief change extension E2 of (K, ∅, {¬α}).

Furthermore, E1 = Cn(E2 ∪ {α}).

Parts 1 and 2 of the theorem state that a belief change extension determines the relation between all
corresponding pairs of atoms in P and P ′. Part 3 asserts that distinct belief change extensions are
mutually inconsistent. The fourth part states that if α is consistent with K then all corresponding
atoms in P and P ′ share the same truth value in a (in fact, the) resulting belief change exten-
sion. The next two parts relate the components of a conjunction comprising C to the individual
conjuncts; via Part 7 we get an analogous relation between parts of a disjunction of a formula
comprising R. Part 7 of the theorem shows the relation of singleton elements of R and C, along
with their respective belief change extensions.

4.2 Revision and Contraction

Definition 4.1 provides a very general framework for specifying belief change. In this subsection
we restrict the definition to obtain specific functions for belief revision and contraction. In the
definitions below, note that K need not be a belief set, but rather may be any arbitrary set of
formulas.

Definition 4.2 (Revision) Let K be a knowledge base and α a formula, and let (Ei)i∈I be the
family of all belief change extensions of (K, {α}, ∅). Then, we define

1. K+̇cα = Ei as a choice revision of K by α with respect to
some selection function c with c(I) = i.

2. K+̇α =
⋂

i∈I Ei as the (skeptical) revision of K by α.

Observe that for each belief change extension Ei there is some selection function c such that
Ei = K+̇cα and vice versa. A choice revision represents one feasible way in which a knowl-
edge base can be revised to incorporate new information. The intersection of all belief change
extensions (comprising skeptical revision) represents a “safe” means of taking all choice revisions
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into account. One might also take the intersection of some set of belief change extensions as the
revision of K by α. For example, one may have background information indicating that there is
a preferred subset of the belief change extensions whose intersection could comprise the revision
of K by α. However, we do not address this intermediate notion, analogous to partial meet belief
change [AGM85].

Table 1 gives examples of skeptical revision. The first column specifies the original knowledge
base, but with atoms already renamed. The second column gives the revision formula, while the
third lists the determining EQ set(s), and the last column gives the results of the revision. For the
first and last column, we give a formula whose deductive closure is the corresponding belief set.

K ′ α EQ K+̇α
p′ ∧ q′ ¬q {p ≡ p′} p ∧ ¬q
¬p′ ≡ q′ ¬q { p ≡ p′, q ≡ q′ } p ∧ ¬q
p′ ∨ q′ ¬p ∨ ¬q { p ≡ p′, q ≡ q′ } p ≡ ¬q
p′ ∧ q′ ¬p ∨ ¬q {p ≡ p′}, {q ≡ q′} p ≡ ¬q

Table 1: Skeptical revision examples.

In detail, for the last example, we wish to determine

{p ∧ q}+̇(¬p ∨ ¬q) . (1)

We find determining maximal sets EQ ⊆ {p ≡ p′, q ≡ q′} such that

{p′ ∧ q′} ∪ {¬p ∨ ¬q} ∪ EQ

is consistent. These are: EQ1 = {p ≡ p′} and EQ2 = {q ≡ q′}. Accordingly, we obtain

{p ∧ q}+̇(¬p ∨ ¬q) =
⋂

i=1,2Cn({p′ ∧ q′} ∪ {¬p ∨ ¬q} ∪ EQi) ∩ LP

= Cn(p ≡ ¬q) .

In this example there are two choice extensions, Cn(p ∧ ¬q) and Cn(¬p ∧ q). This raises the ques-
tion of the usefulness of choice revision compared to general revision. A choice reasoner may be
expected to be faster than a full, skeptical, reasoner, since only one extension is generated. How-
ever the conclusions obtained from a single extension may be overly strong, since they won’t be
tempered by those in other extensions. In belief revision this may be less of a problem than, say,
in nonmonotonic reasoning: the goal in revision is to determine the true state of the world; if a
(choice) revision results in an inaccurate knowledge base, then this inaccuracy will presumably be
detected and rectified in a later revision. So, over several revisions, choice revision may converge
to the true state of the world as quickly as skeptical revision. Hence for a land vehicle exploring a
benign environment, choice revision might be an effective part of a control mechanism; for some-
thing like flight control, or controlling a nuclear reactor, one would prefer the more conservative
skeptical revision.

Contraction is defined similarly to revision.

11



Definition 4.3 (Contraction) Let K be a knowledge base and α a formula, and let (Ei)i∈I be the
family of all belief change extensions of (K, ∅, {α}). Then, we define

1. K−̇cα = Ei as a choice contraction of K by α with respect to
some selection function c with c(I) = i.

2. K−̇α =
⋂

i∈I Ei as the (skeptical) contraction of K by α.

A choice contraction represents a feasible way in which a knowledge base can be contracted to
incorporate new information, while the intersection of all choice contractions represents a “safe,”
skeptical means of taking all choice contractions into account.

Table 2 gives examples of skeptical contraction, using the same format as Table 1. For the

K ′ α EQ K−̇α
p′ ∧ q′ q {p ≡ p′} p

p′ ∧ q′ ∧ r′ p ∨ q {r ≡ r′} r

p′ ∨ q′ p ∧ q { p ≡ p′, q ≡ q′ } p ∨ q
p′ ∧ q′ p ∧ q {p ≡ p′}, {q ≡ q′} p ∨ q

Table 2: Skeptical contraction examples.

first example we wish to determine {p ∧ q}−̇q. To compute the belief change extensions of ({p ∧
q}, ∅, {q}) we rename the propositions in {p∧q} and look for maximal subsetsEQ of {p ≡ p′, q ≡
q′} such that {p′ ∧ q′} ∪ {¬q} ∪ EQ is consistent. Thus EQ = {p ≡ p′}, yielding

{p ∧ q}−̇q = Cn({p′ ∧ q′} ∪ ∅ ∪ {p ≡ p′}) ∩ LP

= Cn({p}) .

We thus get p, along with all of its logical consequences.
The general approach, with |C| > 1, can be immediately employed to express multiple contrac-

tion [Fuh88], in which contraction is with respect to a set of (not necessarily mutually consistent)
sentences. Hence we can use a belief change scenario of the form (K, ∅, {α,¬α}) to represent a
(say) symmetric contraction [KM92] of α from K. See Section 4.4 for a related discussion.

4.3 Properties of Revision and Contraction

With respect to the AGM postulates, we obtain the following.3

Theorem 4.2 Let +̇ and +̇c be given as in Definition 4.2.
Then +̇ and +̇c satisfy the following postulates.4

1. (K+̇1) to (K+̇4), (K+̇6), (K+̇7)

3If K1 and K2 are sets of formulas, we take ` K1 ≡ K2 to mean that K1 ` α, ∀α ∈ K2, and vice versa.
4In Definitions 4.1 and 4.2, we have given what seems to us to be the most natural approach to (consistency-

based) revision. These definitions yield a slightly weaker version of (K+̇5). To obtain (K+̇5) one can either modify
Definition 4.1 so that when B is inconsistent the belief change extension consists of just the closure of R, or, as in
[KM91], simply assume that K is consistent.
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2. (K+̇5)′ K+̇α = K⊥ iff: K = K⊥ or ` ¬α (a weaker version of (K+̇5)).

3. (K+̇6)′ If ` K1 ≡ K2 and ` α ≡ β then K1+̇α = K2+̇β

(a stronger version of (K+̇6)).

Hence the basic AGM postulates are (effectively) satisfied, while one of the two supplementary
postulates is not. The following is a counterexample to (K+̇8) [KM91, p. 272]:

K = Cn( (p ∧ q ∧ r ∧ s) ∨ (¬p ∧ ¬q ∧ ¬r ∧ ¬s) ) ,

α = (¬p ∧ ¬q ∧ r ∧ s) ∨ (p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ r ∧ ¬s) ,

β = (¬p ∧ ¬q ∧ r ∧ s) ∨ (p ∧ ¬q ∧ ¬r ∧ ¬s) .

So (K+̇α)+β is (p∧¬q ∧¬r ∧¬s) while K+̇(α∧β) is (¬p∧¬q ∧ r∧ s)∨ (p∧¬q ∧¬r ∧¬s).
We obtain analogous results for −̇ and −̇c with respect to the AGM contraction postulates:

Theorem 4.3 Let −̇ and −̇c be given as in Definition 4.3.
Then, −̇ and −̇c satisfy the following postulates.

1. (K−̇1) to (K−̇3), and (K−̇6),

2. (K−̇4)′ If ` K 6= K⊥ and 6` φ then φ 6∈ K−̇φ (a weaker version of (K−̇4)).

3. (K−̇6)′ If ` K1 ≡ K2 and ` α ≡ β then K1−̇α = K2−̇β (a stronger version of (K−̇6)).

In addition, −̇ satisfies the following postulate.

4. (K−̇7) K−̇α ∩K−̇β ⊆ K−̇(α ∧ β).

For −̇c, we have the following results, corresponding to AGM postulates (K−̇7) and (K−̇8).

Theorem 4.4 For any selection function c, there is selection function c′ such that

1. K−̇c(α ∧ β) = K−̇c′α or K−̇c(α ∧ β) = K−̇c′β

2. If K−̇c(α ∧ β) 6` ¬α then K−̇c(α ∧ β) = K−̇c′α.

The controversial recovery postulate (K−̇5) is not satisfied; a counterexample is given by

K = Cn( p ∧ q ) , α = p ∨ q.

We obtain (K−̇α) + α = Cn(p ∨ q) . Hence p ∈ K but p 6∈ (K−̇α) + α.
We also obtain the following (near) interdefinability results:

Theorem 4.5 (Levi Identity) K+̇α = (K−̇¬α) + α.

Theorem 4.6 (Partial Harper Identity) K−̇α ⊆ K ∩ (K+̇¬α).
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The following example shows that equality fails in the Harper Identity: if K ≡ p ∧ q ∧ r and
α ≡ p ∧ q, then K−̇α ≡ (p ∨ q) ∧ r while K ∩ (K+̇¬α) ≡ (p ≡ ¬q) ∧ r. Similar results are
obtained for choice revision and contraction by appeal to appropriate selection functions.

The operator +̇ provides a (near) syntactic counterpart to the minimal-distance-between-models
approach of [Sat88]. For two sets S and T , let S∆T be the symmetric difference, (S∪T )\(S∩T ).
For formulas α, β, define

∆min(α, β) = min⊆({M1∆M2 |M1 ∈ Mod(α),M2 ∈ Mod(β)}),

where we identify a model with the set of literals true in the model. Then, we have:

Theorem 4.7 Let B = (K,R, ∅) be a belief change scenario in LP where K 6= K⊥, and let
(EQi)i∈I be the family of all sets of equivalences, as given in Definition 4.1.

Then, we have { {p ∈ P | (p ≡ p′) 6∈ EQi} | i ∈ I} = ∆min(K,R).

Corollary 4.8 For any K and α, K+̇α = K+̇sα where +̇s is the Satoh revision operator.

This correspondence provides a semantics for a restriction (viz. skeptical revision) of our general
approach. However, we emphasise that the approaches are distinct. First, contraction is expressed
here in terms of belief change scenarios, a topic not addressed in Satoh’s or other distance-based
approaches. Theorem 4.6 shows that contraction can’t simply be introduced via the Harper Identity
without violating Definition 4.1. As we show in the next section, the implementation of contraction
is quite different from that of revision. Lastly, the choice approach, “joint” revision and contraction,
and (below) integrity constraints, are not readily expressed in distance-based semantics. 5

Since we can determine a revision for every K and α, the approach clearly supports iterated
revision. Indeed, there are nontrivial results concerning iterated revision that hold for the present
approach. For example,6 we have:

Theorem 4.9 Let +̇ be defined as in Definition 4.2. Then, we have

1. (α+̇β)+̇α = β+̇α.

2. β+̇(β+̇α) = β+̇α.

3. (α+̇β)+̇α = α+̇(β+̇α).

A revision α+̇β is often interpreted as comprising that part of β that in some sense is “closest” or
“most similar to” the knowledge base given by α. Under this reading, (α+̇β)+̇α is the revision
of that part of β that is closest to α, by α; Part 1 of the theorem then says that this revision is the
same as β+̇α. In other words, the part of β that plays a role in the revision β+̇α is given by α+̇β.
Theorem 4.9.2 has an analogous reading, that the part of α that plays a role in the revision β+̇α is
exactly given by β+̇α. Combining Theorem 4.9.1 with the simple result β+̇α = α+̇(β+̇α) yields
Theorem 4.9.3. See [DS02] for a further discussion of iterated revision in this framework.

5An analogy may be drawn to Theorist [Poo88] or the causal calculator [GLMT02]. These approaches begin from
independent intuitions, yet are expressible by fragments of default logic or extended logic programs, respectively.

6This theorem relies on that fact that we can express knowledge bases and the results of revision as formulas; this
is covered in the next section.

14



4.4 Integrity Constraints

Definition 4.1 allows simultaneous revision and contraction by sets of formulas. This in turn leads
to a natural and general treatment of integrity constraints. There are two standard definitions of a
knowledge base K satisfying a static integrity constraint IC. In the consistency-based approach
of [Kow78, SK87], K satisfies IC iff K ∪ {IC} is satisfiable. In the entailment-based approach
of [Rei84], K satisfies IC iff K ` IC. Neither definition is wholly satisfactory; as well, there
are others [Rei87a]. [KM91] shows how entailment-based integrity constraints can be maintained
across revisions: given an integrity constraint IC (represented as a propositional formula) and
revision function +̇, a revision function +̇

IC which preserves IC is defined by: K+̇
IC
α = K+̇(α∧

IC). In our approach, we can define revision taking into account both approaches to integrity
constraints.

Corresponding to Definition 4.2 (and ignoring the choice approach) we obtain:

Definition 4.4 LetK be a knowledge base, α a formula, and ICe, ICc sets of formulas. Let (Ei)i∈I

be the family of all belief change extensions of (K, {α}∪ ICe, ICc) where ICc = {¬δ | δ ∈ ICc}.

Then, we define K+̇
(ICe,ICc)α =

⋂

i∈I Ei as the revision of K by α incorporating integrity
constraints ICe (entailment-based) and ICc (consistency-based).

[SK87] assumes that the set of consistency-based integrity constraints is mutually consistent; in
our approach this would correspond to considering belief change scenario

(K, {α} ∪ ICe, {¬
∧

φ∈ICc
φ}) instead of (K, {α} ∪ ICe, ICc).

That is, in our approach, elements of ICc are individually consistent with respect to a belief change
extension. This permits for example ICc = {p,¬p} to be a nontrivial set of consistency-based
integrity constraints (in which the resulting knowledge base remains uncommitted with regards the
truth value of p). The next theorem shows that integrity constraints preserve their respective forms
of integrity.

Theorem 4.10 Let +̇
(ICe,ICc) be defined as in Definition 4.4. Then, we have

1.
(

K+̇
(ICe,ICc)

α
)

` ICe.

2. If K 6` ⊥ then:

for every γ ∈ ICc: if we have ICe ∪ {α} 6` ¬γ then
(

K+̇
(ICe,ICc)

α
)

6` ¬γ.

Finally, and in contrast with previous approaches, it is straightforward to add dynamic integrity
constraints, which express constraints that hold between states of the knowledge base before and
after revision. The simplest way of so doing is to add the negation of such constraints to the
set C in Definition 4.1. To state that if a ∧ b is true in a knowledge base before revision then c
must be true afterwards, we would add ¬(a′ ∧ b′ ⊃ c) to C. Note however that the addition of
dynamic constraints may lead to an operator that violates some of the properties of +̇. For example
Cn(α) +̇¬α with dynamic constraint α′ ⊃ α leads to an inconsistent revision.
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5 Implementability Considerations

In this section we address general implementability issues. First we consider the problem of repre-
senting the results of revision in a finite, manageable representation. Second, we address limiting
the range of EQ. Following this we present a high-level algorithm for implementing the approach;
as well we show how the approach can be expressed in Default Logic. Two specific implementa-
tions are briefly reviewed, and we finish by giving several complexity results.

5.1 Finite Representations

Definitions 4.1, 4.2, and 4.3 provide a characterisation of revision and contraction, yielding in
each case a deductively-closed belief set. Here we consider how the same (with respect to logical
equivalence) operators can be defined so that they yield a knowledge base consisting of a (finite)
formula. It proves to be the case that, for formulas K and α, we can define choice revision so that
the size of K+̇cα is no greater than the sum of the sizes of K and α for any selection function c.

Informally the procedure is straightforward, although the technical details are less so. A knowl-
edge base K is now represented by a formula. For simplicity we lightly abuse notation in this sec-
tion, and allow the first argument of a belief change scenario to also be a single formula. Whether
a single formula or set of formulas is intended will be clear from the context.

Via Definitions 4.1 and 4.2 we consider maximal setsEQwhere {K ′}∪{α}∪EQ is consistent.
For each such set EQ, we carry out the substitutions:

• for p ≡ p′ ∈ EQ, substitute p uniformly for p′ in K ′,

• for p ≡ p′ 6∈ EQ, substitute ¬p uniformly for p′ in K ′.

The result of these substitutions into K ′ ∧ α is a sentence of size ≤ |K| + |α| in language LP

and whose deductive closure is equivalent to (some) choice revision. The disjunction of all such
sentences (and so considering all possible sets EQ) is equivalent to K+̇α.

Observe that any set of equivalences EQ induces a binary partition of its underlying alphabet
P , namely 〈PEQ,PEQ〉 with PEQ = {p ∈ P | p ≡ p′ ∈ EQ} and PEQ = P \ PEQ. Given
a belief change scenario B along with a set of (determining) equivalences EQi (according to
Definition 4.1), we define for φ ∈ LP , that dφei is the result of replacing in φ each proposition
p ∈ PEQi

by its negation ¬p.

Definition 5.1 Let B = (K,R,C) be a belief change scenario in LP and let (EQi)i∈I be the
family of all sets of equivalences, as defined in Definition 4.1. Then, we define

1. dBec as dKek for some selection function c with c(I) = k.

2. dBe as
∨

i∈IdKei .

Accordingly, we define

1. d(K, {α}, ∅)ec ∧ α as the finite representation of K+̇cα and

2. d(K, {α}, ∅)e ∧ α as the finite representation of K+̇α.
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We have the following result.

Theorem 5.1 Let K,α ∈ LP . Then, for (EQi)i∈I as given in Definition 4.1, we have

K+̇α ≡ d(K, {α}, ∅)e ∧ α =
∨

i∈I

dKei ∧ α.

Consider {p ∧ q}+̇(¬p ∨ ¬q). So B = ({p ∧ q}, {¬p ∨ ¬q}, ∅). We obtain:

dBe ∧ (¬p ∨ ¬q) = [(p ∧ ¬q) ∨ (¬p ∧ q)] ∧ (¬p ∨ ¬q) ≡ (p ≡ ¬q).

Contraction is handled somewhat differently. This is not surprising, given that revision and con-
traction are not fully interdefinable (Theorem 4.6). In revision we replace each atomic proposition
in EQi by its negation in K. For contraction, we need to substitute into K all possible combi-
nations of truth value assignments for all elements in EQi. As [Lin00] points out, this notion of
“forgetting” was first defined by Boole in 1854; it has reappeared in [Web86, LR94, Lin00].

Given a belief change scenarioB, a set of equivalencesEQi (according to Definition 4.1) along
with its induced partition 〈PEQi

,PEQi
〉 of P , we consider the set of functions

Πi = {πik | πik : PEQi
→ {>,⊥}}.

For each πik ∈ Πi and φ ∈ LP , we define bφcik as the result of replacing in φ each proposition
p ∈ PEQi

by πik(p). Note that every set of equivalences EQi induces a whole set Πi of such
mappings πik , amounting to all possible truth assignments to PEQi

.

Definition 5.2 Let B and (EQi)i∈I be defined as in Definition 4.1. Then, we define

1. bBcc as
∨

πj∈Πk
bKcj

k for some selection function c with c(I) = k.

2. bBc as
∨

i∈I,πj∈Πi
bKcj

i .

Accordingly, we define

1. b(K, ∅, {α})cc as the finite representation of K−̇cα and

2. b(K, ∅, {α})c as the finite representation of K−̇α.

We have the following result.

Theorem 5.2 Let K,α ∈ LP . Then, for (EQi)i∈I as given in Definition 4.1, we have

K−̇α ≡ b(K, ∅, {α})c =
∨

i∈I,πj∈Πi

bKcj
i .

Consider (p ∧ q)−̇q. We obtain

b ({p ∧ q}, ∅, {q}) c = (p ∧ ⊥) ∨ (p ∧ >) ≡ p .

Theorems 5.1 and 5.2 show that revision and contraction can be defined with respect to syn-
tactic objects (viz. a formula for K) yet are essentially independent of syntactic form. That is,
whether a knowledge base is represented by a formula, or a set of formulas, if K1 ≡ K2 and
α1 ≡ α2 then K1+̇α1 ≡ K2+̇α2 (and similarly for contraction). Hence in a certain sense the
approach combines the advantages of base revision [Neb92] and syntax-independent approaches:
knowledge bases and formulas can be represented arbitrarily, yet the results of belief change are
independent of syntactic form.
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5.2 Limiting the range of EQ

Intuitively, if an atomic sentence appears in a knowledge baseK but not in the sentence for revision
α, or vice versa, then that atomic sentence plays no part in the revision process. This is indeed the
case here. In the following, we show that for computing a belief change extension of belief change
scenario B = (K,R,C), we need consider just those atoms common to K and to R ∪ C.7

Let P(φ) be the atomic sentences in formula, or set of formulas, φ. Recall the notation: for
α ∈ LP , the formula α′ is obtained by replacing every atomic sentence p in α by p′. This is
extended to: for Q ⊆ P , the formula α′[Q] is the same as α except that for every p ∈ Q, where
α has p, α′[Q] has p′. This notation is extended to sets of formulas in the expected fashion.
Definition 4.1 is modified to apply to a restricted set of atoms:

Definition 5.3 Let B = (K,R,C) be a belief change scenario in LP and let Q ⊆ P .
Define EQQ as a maximal set of equivalences EQQ ⊆ {p ≡ p′ | p ∈ Q} such that

Cn
(

K ′[Q] ∪ R ∪ EQQ
)

∩ (C ∪ {⊥}) = ∅.

Then

Cn
(

K ′[Q] ∪ R ∪ EQQ
)

∩ LP

is a (consistent) definitional extension of B with respect to Q.
If there is no such set EQ then B is inconsistent with respect to Q and LP is defined to be the

sole belief change extension of B.

Similarly we define vocabulary-restricted revision:

Definition 5.4 (Vocabulary-Restricted Revision) Let K be a knowledge base, α a formula, and
Q ⊆ P . Let (Ei)i∈I be the family of all consistent belief change extensions of (K, {α}, ∅) with
respect to Q. Then, we define

1. K+̇
Q
c α = Ei as a choice revision of K by α with respect to

some selection function c with c(I) = i and with respect to Q.

2. K+̇
Q
α =

⋂

i∈I Ei as the (skeptical) revision of K by α with respect to Q.

Vocabulary-restricted contraction (−̇Q
c and −̇

Q) is defined in the obvious analogous fashion.
The next result shows that one obtains the same belief change extensions if the “context” of

change is restricted to atoms common to K and R ∪ C.

Theorem 5.3 Let K ⊆ LP and α ∈ LP . Let Q = P(K) ∩ P(α). Then, we have

1. K+̇α ≡ K+̇
Q
α.

2. K−̇α ≡ K−̇
Q
α.

7In a related but orthogonal vein, [dV93, Par99] split a knowledge base into (effectively) relevant and irrelevant
parts. Such techniques could also be used to improve an implementation. We don’t pursue the matter here; however
see Section 6 for a discussion.
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So for belief change, we need consider just the atomic sentences common to K and to α; we can
ignore (with regards EQ) other atomic sentences.

We can combine Theorems 5.1 and 5.3 in the obvious fashion to obtain a finite, vocabulary-
restricted formulation of revision that is equivalent to the original. We extend our previous notation
as follows: Given a belief change scenario B and for Q ⊆ P , let EQi be a set of (determining)
equivalences based on Q (according to Definition 5.3). Define for φ ∈ LP , that dφeQi is the result
of replacing in φ each proposition p ∈ QEQi

by its negation ¬p.

Definition 5.5 Let B = (K,R, ∅) be a belief change scenario and let (EQi)i∈I be the family of
all sets of equivalences with respect to Q = P(K)∩P(R), as given in Definition 5.3. Then, define

1. dBeQc as dKeQk for some selection function c with c(I) = k.

2. dBeQ as
∨

i∈IdKeQi .

Accordingly, we define

1. d(K, {α}, ∅)eQc ∧ α as the finite representation of K+̇
Q
c α and

2. d(K, {α}, ∅)eQ ∧ α as the finite representation of K+̇
Q
α.

We have the following result.

Theorem 5.4 Let K,α ∈ LP , and let Q = P(K) ∩ P(α). Then,

K+̇α ≡ d(K, {α}, ∅)eQ ∧ α =
∨

i∈I

dKeQi ∧ α

for (EQi)i∈I as given in Definition 5.3.

Consider an extension to example (1): {p ∧ q ∧ r}+̇((¬p ∨ ¬q) ∧ s). We have Q = {p, q} and

dBeQ ∧ ((¬p ∨ ¬q) ∧ s) = r ∧ [(p ∧ ¬q) ∨ (¬p ∧ q)] ∧ (¬p ∨ ¬q) ∧ s

≡ (p ≡ ¬q) ∧ r ∧ s.

Notably, in determining the revision, the EQ sets are drawn from {p, q} only.
A finite, vocabulary-restricted version of contraction, obtained by combining Theorems 5.2 and 5.3

and equivalent to the original, is similarly obtained. We omit the details.

5.3 Algorithm

The results of the previous subsections lead to an algorithm for computing a belief change exten-
sion for an arbitrary belief change scenario B. We have:

Function: BeliefChange: Compute a belief change extension for given belief change scenario.
Input: Belief change scenario B = (K,R,C)
Output: For input B, a formula equivalent to some belief change extension of B.
Using:

Function Atoms(S) – Returns the set of atoms in the set of formulas S.
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Function Prime(S,A) – S is a set of formulas; A is a set of atoms.
Returns S, but where every atom p ∈ A is replaced by p′.

Function Replace(S,At1, At2) – S is a set of formulas; At1, At2 are individual atoms.
Returns S with every occurrence of At1 replaced by At2.

Function body:
1. if K ` ⊥ or R ` ⊥ then return ⊥.
2. In := Out := ∅.
3. At := Atoms(K) ∩ (Atoms(R) ∪ Atoms(C)).
4. K ′ := Prime(K,At)
5. for each a ∈ At do {
5.1 if { for each φ ∈ C ∪ {⊥}

we have K ′ ∪ R ∪ {p ≡ p′ | p ∈ In ∪ {a}} 6` φ }
5.2 then In := In ∪ {a}
5.3 else Out := Out ∪ {a} }
6 for each p ∈ In

6.1 K ′ := Replace(K ′, p′, p).
7 for each p ∈ Out

7.1 K ′ := Replace(K ′, p′,¬p).

8 return
(

(
∧

α∈K′ α
)

∧
(

∧

β∈R β
))

.

This algorithm allows to generate a belief change extension in nondeterministic polynomial
time. In other words, an extension can be computed by a deterministic polynomial Turing machine
which uses the answers given by an NP oracle. The oracle is in charge of performing the con-
sistency and entailment checks at 1 and 5.1, which are computations doable in nondeterministic
polynomial time. It is clear from the algorithm that only a polynomial number of calls to the oracle
are needed (see also Section 5.6). Note that the selection function is left implicit in Line 5; it is
realised by the particular order chosen when treating the atoms in At.

5.4 Belief change scenarios and default logic

As pointed out in Section 3.3, our approach falls within the category of consistency-based rea-
soning methodologies. As we show now, there is an intimate connection between belief change
scenarios and default theories in Default Logic [Rei80].8 The following theorem makes this pre-
cise by showing that there is a 1–1 correspondence between the set of consistent belief change
extensions of a belief change scenarios and the extensions of a particular default theory.

Theorem 5.5 Let B = (K,R,C) be a belief change scenario, where C = {φ1, . . . , φn}.
Let (Ei)i∈I be the family of all extensions of default theory
({

: p ≡ p′,¬φ1, . . . ,¬φn

p ≡ p′

∣

∣

∣

∣

p ∈ P

}

, K ′ ∪ R

)

.

Then (Ei ∩ LP)i∈I is the family of all belief change extensions of B, and vice versa.

8This section assumes a basic familiarity with Default Logic.
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Similar (yet unconstrained) default theories were also used in [BS98] for modelling different forms
of paraconsistent reasoning.

5.5 Implementations

There are two prototype implementations available for computing the results of belief change op-
erations. First, belief revision and belief contraction operators have been axiomatised by means
of quantified Boolean formulas [DSTW01], in that for both the general approach and for specific
operators, a quantified Boolean formula is given such that satisfying truth assignments to the free
variables correspond to belief change extensions in the original approach. Thus, in this case the
problem of determining the results of a belief change operation is reduced to that of satisfiability.
This axiomatisation also allows us to identify strict complexity bounds for the considered reasoning
tasks described in the next subsection. The results given in Sections 5.1 and 5.2 are implemented
as a special module of the reasoning system QUIP [EETW00], a prototype tool for solving various
nonmonotonic reasoning tasks based on reductions to QBFs.

The second implementation, called COBA [DHS02], is implemented in Java. The program was
originally implemented as a stand-alone application, after which an applet interface was designed
that is suitable for testing any belief revision software. The interface allows the user to enter
sentences to the knowledge base or the revision list through a text box; then they can simply click
a button to perform the revision. The revised knowledge base appears in a preview window, and
can be subsequently saved. In this manner, iterated revision can be easily carried out. Results from
the program may be displayed without simplification, with (limited) simplification, or in CNF or
DNF. The implementation is intended as a proof-of-concept, and there is room for considerable
improvement, to be addressed in later work.

The prototype implementations can be accessed from

http://www.cs.sfu.ca/∼cl/software.htm .

5.6 Complexity

We consider briefly the complexity of several decision problems in general belief change scenarios,
as well as restrictions to revision and contraction. Specifically, we deal with the following basic
reasoning tasks:

DEFEXT: Decide whether a belief change scenario B has a consistent belief change extension.

CHOICE: Given a belief change scenario B and some formula φ, decide whether φ is contained
in at least one consistent belief change extension of B.

SKEPTICAL: Given a belief change scenarioB and some formula φ, decide whether φ is contained
in all consistent belief change extensions of B.

The above general tasks can also be relativised to analogous tasks for revision (called RDEFEXT,
RCHOICE, and RSKEPTICAL respectively) and contraction (CDEFEXT, CCHOICE, and CSKEPTI-
CAL). The following complexity results are obtained in [DSTW01], strengthening and extending
those discussed in [DS00]:
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Theorem 5.6 We have the following completeness results:

1. DEFEXT, RDEFEXT, and CDEFEXT are NP-complete.

2. CHOICE, RCHOICE, and CCHOICE are Σp
2-complete.

3. SKEPTICAL, RSKEPTICAL, and CSKEPTICAL are Πp
2-complete.

Informally, the above complexity bounds are the results of two factors. First, propositional
satisfiability is NP-complete. To this end, we have not yet addressed restrictions on the syntactic
form of K or α; however see [EG92]. The second results from the determination of the sets
(EQi)i∈I . Of considerable heuristic value in this case is the fact that (via Theorem 5.3) we can
restrict these sets to the atoms common to K and α.

Note that our algorithm from Section 5.3 allows for deciding the first group of problems, viz.
DEFEXT, RDEFEXT, and CDEFEXT; in addition, it provides us with some belief change extension.

6 Related Work

In Section 2 we reviewed the area of belief revision, concentrating on its theory. Here we con-
tinue the discussion by comparing our approach with other specific approaches. Previous work on
implementing belief change can be divided into two groups, essentially consisting of implemen-
tations of non-base revision and of base revision. The former group typically have good formal
properties (for example, conforming to the AGM postulates) but with inefficient implementations,
while the latter group may violate some pertinent postulate (often syntax-independence), while
being expected to perform reasonably well. We survey this work in some detail since we claim
that our approach bridges these categories, in that we have good formal properties (in particular
syntax-independence) yet an implementation may be expected to perform reasonably.

Approaches that satisfy the AGM postulates (or, for update, KM postulates) generally imple-
ment a distance-based approach. For example, [CW94] implements the PMA approach to update
[Win88] in a process that mimics the original definition: for each model of the knowledge base,
the closest models of the update formula are determined; the union of all such models is the new
knowledge base. The resulting algorithm satisfies the KM update postulates. However, repre-
senting a knowledge base by its set of models is not going to be a compact, nor intuitive, way of
representing a KB in general. The approach also allows entailment-based integrity constraints.

[dV93] provides a syntactic characterisation and algorithm for most of the distance-based ap-
proaches to revision and update. The formula to be incorporated is assumed to be in DNF; as well
the algorithms rely on a “relevant” portion of the knowledge base (see below) being in DNF. Hence
these algorithms may require an exponential time step, and exponential space, that our’s do not.
Revision or update by formula α is restricted to a “relevant” portion of the knowledge base; this
consists of those clauses in the knowledge base sharing atoms with α, call them ψ0, along with,
recursively at Step i + 1, those clauses sharing atoms with clauses in ψi.9 This is distinct from
our approach, where EQ sets are drawn just from those atoms common to the knowledge base and

9[Par99] does something similar in splitting the language of a theory. To incorporate del Val’s or Parikh’s heuristic
in our algorithm of Section 5.3: Prior to Line 4, K would be split into relevant and irrelevant parts, Krel and Kirr;
Krel would be primed and assigned to K

′ in Line 4; and in Line 8, Kirr would be returned as an additional conjunct.
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formula for revision. Entailment-based integrity constraints are handled in the following manner:
First the revision without integrity constraints is computed. If the integrity constraints are true in
the result, the process halts. Otherwise the revision is recomputed with the original formula con-
joined with those integrity constraints that didn’t follow after the original revision. This process is
repeated until all integrity constraints are entailed.

[Lib99] presents a framework in which revision, update, and merging of knowledge bases may
be jointly expressed; contraction and erasure are not considered. (As Section 4.3 shows, one can’t
just use the Harper Identity to obtain these latter operations.) The operators are expressed in terms
of a distance-based semantics, in which the AGM (or KM) postulates are claimed to hold. Update
corresponds to Forbus’ approach [For89] while revision appears to correspond to Dalal’s approach
[Dal88].10 As with [CW94], the output of the system is a set of models.

In the above-cited works, the requirement that the knowledge base be in DNF (or represented
by its models) will be impractical for many applications or for large knowledge bases. Often, one
would expect a knowledge base to consist of a large number of relatively small-sized assertions,
and so be relatively close to conjunctive normal form.

For belief base revision, the earliest work appears to be [FUV83], where a revision consists of
the formula for revision together with (the disjunction of) all maximal subsets of the knowledge
base that are consistent with the formula for revision; no model theoretic analysis is given.

With respect to implementations, [Wil95] provides a computational model for belief base revi-
sion based on partial entrenchment rankings. The dynamic behaviour of the system is described by
a procedure of adjustment. Adjusting a sentence down in the ranking reflects a generalised notion
of contraction; adjusting upwards reflects a notion of increased acceptance. The adjustment of one
sentence may result in the adjustment of other sentences. The result is an intuitively-appealing
model for revising and contracting a finite base of beliefs although, as with other such approaches,
there is a syntactic sensitivity to how a ranking is expressed. For example the two rankings

B1(φ ∧ ψ) = 6, B1(φ ∨ ψ) = 8 and B2(φ) = B2(ψ) = 6, B2(φ ∨ ψ) = 8

are equivalent, yet a contraction of φ in B1 results in a contraction of ψ (since the formula φ ∧ ψ
is adjusted downwards), while in the second case it does not.

[BDP01] gives a framework in which belief change and fusion are expressed in the context of
possibility theory. The authors consider change both with respect to possibilistic belief sets and
to possibilistic belief bases. While complexity results and algorithms are not given, the syntactic
framework appears suitable for the realisation of a variety of belief change operators.

7 Conclusion

We have presented a general consistency-based framework for belief change, having the same
flavour as the consistency-based approaches to diagnosis or default reasoning. The approach cen-
tres on the notion of a belief change scenario, consisting of a triple of sets of formulas, B =
(K,R,C). Informally, K is a knowledge base that is to be modified so that the formulas in R
are contained in (or implied by) the result, and the formulas in C are not. We focus initially on
approaches to belief revision, where |R| = 1 and C = ∅, and to belief contraction, in which R = ∅

10It is suggested that Dalal revision is captured in [Lib99], but not in [LS00].
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and |C| = 1. To determine a revision K+̇α, the knowledge base K and sentence α are expressed
in separate languages. Given this, we syntactically force truth assignments to the atoms in the
languages of K and α to coincide insofar as consistently possible. Lastly, we express the resultant
knowledge base in the original language. There may be more than one way in which this process
may be carried out. This gives rise to two notions of revision: a choice notion, in which one such
“extension” is used for the revised state, and the intersection of all such extensions.

The approach is amenable for implementation: belief change can be expressed in terms of a
finite knowledge base; and the scope of a change operation can be restricted to those propositions
common to the knowledge base and sentence. Other considerations, such as splitting the language
of the knowledge base, are easily incorporated. We give an algorithm for computing a belief change
extension, and show how the approach may be realised in Default Logic. There are two prototype
implementations, one using quantified Boolean formulas, and the other providing a Java applet.

A primary contribution of the approach is that we combine theoretical and practical aspects in
a single system. Our revision and contraction operators have good formal properties, in particular
satisfying the majority of the AGM postulates. Notably, the result of a belief change is indepen-
dent of the syntactic form of the knowledge base and formula for change. As well, the approach
is amenable to implementation. For choice revision, the size of the revised knowledge base is
bounded by the sum of the size of the knowledge base and formula for revision. In general revi-
sion, the size of a resulting knowledge base depends further on the number of (choice) extensions.
This contrasts with previous implementations of non-base approaches, which may require expo-
nential space in a DNF representation or in listing a set of models. Unlike previous approaches, we
also consider contraction (along with arbitrary combinations of revision and contraction). Notably,
given our assumptions, contraction is not interdefinable with revision, and its implementation must
be handled differently from that of revision.

The approach allows for a simple, uniform treatment of integrity constraints, including consis-
tency-based and entailment-based static constraints, as well as dynamic constraints. The approach
trivially supports iterated revision, since belief change extensions are defined over all triples of
formulas. Although we do not do so here (but see [DS02]), it is straightforward to apply the
approach to other belief operations such as update, erasure, and merging.

A Proofs

A.1 Proofs of Section 4

Proof 4.1

1. Let EQ ⊆ {p ≡ p′ | p ∈ P} be a set of equivalences determining some consistent belief
change extension of (K,R,C).

Assume that EQ 6= ∅, and let p ≡ p′ ∈ EQ. By the maximality of EQ, we have that
K ′∪R∪{¬φ}∪EQ∪{p ≡ p′} ` ⊥ for some φ ∈ C∪{⊥}. That is, K ′∪R∪{¬φ}∪EQ `
¬(p ≡ p′) or equivalently K ′ ∪ R ∪ {¬φ} ∪ EQ ` (p ≡ ¬p′).

2. This is an obvious consequence of the previous part in which |C| = 1.
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3. This is an immediate consequence of the previous part: since E1 6= E2 we get EQ1 6= EQ2,
from which the result follows.

4. Any model of K ∪ {α} over LP can be extended to a model of K ∪ {α} ∪EQ over LP∪P ′ ,
where EQ = {p ≡ p′ | p ∈ P}. Further, a model of K ∪ {α} ∪ EQ over LP∪P ′ is a model
of K ′ ∪ {α} ∪ EQ. Since we are given that K ∪ {α} has a model, and since EQ is the
maximum set of equivalences, it is, trivially, the only maximal set of equivalences.

5. LetEQ be a maximal set of equivalences determining a belief change extension of (K, ∅, {α∧
β}). By definition, K ′ ∪ EQ 6` α ∧ β. Thus K ′ ∪ EQ 6` α or K ′ ∪ EQ 6` β. Further

K ′ ∪ EQ ∪ {e} ` α ∧ β for any e ∈ EQ. (2)

If K ′ ∪ EQ 6` α then EQ is a maximal (from (2)) set of equivalences determining a belief
change extension of (K, ∅, α).

Alternately, K ′ ∪ EQ 6` β and an analogous result holds for a belief change extension of
(K, ∅, β).

6. We are given that K ′ ∪ EQ 6` α; hence K ′ ∪ EQ 6` α ∧ β. Clearly EQ can be extended
to a maximal set of equivalences EQ? ⊇ EQ such that K ′ ∪ EQ? 6` α ∧ β, and either
EQ? = {p ≡ p′ | p ∈ P} or K ′ ∪ EQ? ∪ {e} ` α ∧ β for every e ∈ EQ?. In either case,
EQ? determines a belief change extension of (K, ∅, α ∧ β).

7. if part: Let E2 be a belief change extension of (K, ∅, {¬α}) given by Cn(K ′ ∪ EQ) ∩ LP

where K ′ ∪ EQ 6` ¬α and so K ′ ∪ EQ ∪ {α} 6` ⊥.

Thus Cn(K ′ ∪ EQ ∪ {α}) ∩LP satisfies the definition of a belief change extension of
(K, {α}, ∅). As well,

E1 = Cn(K ′ ∪ EQ ∪ {α}) ∩ LP

= Cn((Cn(K ′ ∪ EQ) ∩ LP) ∪ {α})

= Cn(E2 ∪ {α}) .

only-if part: LetE1 = Cn(K ′ ∪ EQ ∪ {α})∩LP be a belief change extension of (K, {α}, ∅).
Thus K ′ ∪ {α} ∪ EQ 6` ⊥.

Hence by Definition 4.1, E2 = Cn(K ′ ∪ EQ) ∩ LP is a belief change extension of
belief change scenario (K, ∅, {¬α}).

By the same argument as in the if part, we get that E1 = Cn(E2 ∪ {α}).

Proof 4.2
We just give proofs for +̇; those for +̇c follow as corollaries.
(K+̇1), (K+̇2), and (K+̇6)′ are obvious.
For (K+̇3), if K ` ¬α then K + α = LP and so K+̇α ⊆ K + α.
So assume that K 6` ¬α. By Theorem 4.1.4 there is a single consistent belief change extension

in which EQ = {p ≡ p′ | p ∈ P}. It follows that Cn(K ′ ∪ {α} ∪ EQ) ∩ LP = Cn(K ∪ {α}) :
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⊆: We obtain that Cn(K ′ ∪ EQ) ∩ LP ⊆ Cn(K) by virtue of the fact that any model
of K ′ ∪ EQ is a model of K; the result then follows immediately.

⊇: We need to show that if, for every φ ∈ LP , K∪{α} ` φ thenK ′∪{α}∪EQ ` φ.
This is the same as, for every φ ∈ LP , if K ′ ∪ {α}∪EQ 6` φ then K ∪ {α} 6` φ,
or:

If K ′ ∪ {α} ∪ EQ ∪ {¬φ} 6` ⊥ then K ∪ {α} ∪ {¬φ} 6` ⊥.

But clearly any model ofK ′∪{α}∪EQ∪{¬φ} is also a model ofK∪{α}∪{¬φ},
from which our result follows.

Hence K+̇α = Cn(K ∪ {α}) = K + α. This also establishes (K+̇4).
For (K+̇5)′, if K = K⊥ or ` ¬α then K+̇α = K⊥. Otherwise, K 6= K⊥ and 6` ¬α, and so

K+̇α 6= K⊥ by Definition 4.1.
For (K+̇7), the postulate is trivially satisfied if (K+̇α) + β ` ⊥. Consequently assume that

(K+̇α) + β 6` ⊥.
We must show that K+̇(α ∧ β) ⊆ (K+̇α) + β, or, expanding via Definition 4.2,
(

⋂

i∈I

Cn(K ′ ∪ {α ∧ β} ∪ EQi)

)

∩ LP ⊆ Cn

(((

⋂

i∈I

Cn(K ′ ∪ {α} ∪ EQi)

)

∩ LP

)

∪ {β}

)

.

Assume that
⋂

i∈I

Cn(K ′ ∪ {α ∧ β} ∪ EQi) ` φ where φ ∈ LP

To conclude we need to show that
((

⋂

i∈I

Cn(K ′ ∪ {α} ∪ EQi)

)

∩ LP

)

∪ {β} ` φ

or that

(Cn(K ′ ∪ {α} ∪ EQi) ∩ LP) ∪ {β} ` φ (3)

for every belief change extension of (K, {α}, ∅).
We make use of the following lemma.

Lemma A.1 If EQ determines a belief change extension of (K, {α ∨ β}, ∅), then EQ determines
a belief change extension of (K, {α}, ∅) or of (K, {β}, ∅).

Proof A.1 Immediate from Theorem 4.1.7 and Theorem 4.1.5

Let EQ be a set of equivalences determining some belief change extension of (K, {α}, ∅) or
(K, {(α ∧ β) ∨ (α ∧ ¬β)}, ∅).

From Lemma A.1 we get that EQ determines some belief change extension of (K, {α∧ β}, ∅)
or (K, {α ∧ ¬β}, ∅).

In the former case we have by assumption thatCn(K ′ ∪ {α ∧ β} ∪ EQ) ` φ and soCn(K ′ ∪ {α} ∪ EQ)∪
{β} ` φ as required.
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If this case does not hold, thenCn(K ′ ∪ {α} ∪ EQ) ` ¬β and soCn(K ′ ∪ {α} ∪ EQ)∪{β} `
⊥, thus trivially Cn(K ′ ∪ {α} ∪ EQ) ∪ {β} ` φ.

Proof 4.3
We just give proofs for −̇; those for −̇c follow as corollaries, except as noted in Theorem 4.4.
(K−̇1) and (K−̇6)′ are obvious.
For (K−̇2) we need to show that if φ ∈ K−̇α then φ ∈ K. As noted in the proof of (K+̇3),

this amounts to showing that if K ∪ {¬φ} 6` ⊥ then (K−̇α) ∪ {¬φ} 6` ⊥, or: if K ∪ {¬φ} 6` ⊥
then

⋂

i∈I(K
′ ∪ EQi) ∪ {¬φ} 6` ⊥.

So letM be a model ofK∪{¬φ} over the language LP . We construct a modelM ′ of
⋂

i∈I(K
′∪

EQi) ∪ {¬φ} over LP∪P ′ by: M ′ assigns true to p′ ∈ P ′ iff M assigns true to p ∈ P . Obviously
then M ′ is a model of K ′ ∪ EQ ∪ {¬φ} for EQ = {p ≡ p′ | p ∈ P} , and so M ′ is a model of
K ′ ∪ EQi ∪ {¬φ} for every EQi ⊆ EQ, from which our result follows.

For (K−̇3), if α 6∈ K then K ∪ {¬α} 6` ⊥; hence K ′ ∪ {¬α} ∪ {p ≡ p′ | p ∈ P} 6` ⊥; hence
K is the sole consistent belief change extension of (K, ∅, {α}); hence K−̇α = K.

For (K−̇4)′, assume K 6= K⊥ and 6` α. For belief change scenario (K, ∅, {α}) we have
K ′ ∪ {¬α} 6` ⊥; hence there is a maximal set of equivalences EQ (Definition 4.1) such that
K ′ ∪ {¬α} ∪ EQ 6` ⊥. Hence K ′ ∪ EQ 6` α and so K−̇α 6` α.

For (K−̇7), let:

• EQα
1 , . . . , EQ

α
n determine the belief change extensions of (K, ∅, {α})

• EQ
β
1 , . . . , EQ

β
m determine the belief change extensions of (K, ∅, {β})

1. For each EQ ∈ {EQα
1 , . . . , EQ

α
n, EQ

β
1 , . . . , EQ

β
m} there exists EQαβ ⊇ EQ that deter-

mines a belief change extension of (K, ∅, {α ∧ β}) (Theorem 4.1.6).

2. Also for every EQαβ that determines a belief change extension of (K, ∅, {α ∧ β}), we have
that EQαβ determines a belief change extension of (K, ∅, {α}) or of (K, ∅, {β}) (Theo-
rem 4.1.5).

Assume that K−̇α ` φ and K−̇β ` φ. Hence for every EQ, as given in 1., K ′ ∪ EQ ` φ.
As well, there is EQαβ ⊇ EQ (as specified in 1.) that determines a belief change extension of
(K, ∅, {α ∧ β}); and from monotonicity we also have K ′ ∪ EQαβ ` φ. From 2. we get that
every belief change extension of (K, ∅, {α ∧ β}) has a corresponding belief change extension of
(K, ∅, {α}) or of (K, ∅, {β}). It follows that for every belief change extension of (K, ∅, {α ∧ β})
determined by EQ? we have K ′ ∪ EQ? ` φ. Hence K−̇α ∩K−̇β ⊆ K−̇(α ∧ β).

Proof 4.4

1. This is a corollary of Theorem 4.1.5.

2. Assume that K−̇c(α ∧ β) 6` ¬α. Thus for some set EQαβ determining (K, ∅, {α ∧ β}) we
have K ′ ∪ EQαβ 6` α and so K ′ ∪ EQαβ ∪ {¬α} 6` ⊥.

Further if EQαβ 6= ∅ then K ′∪EQαβ ∪{e} ` α∧β for any e ∈ EQαβ; hence K ′∪EQαβ ∪
{e} ` α.
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So EQα = EQαβ is a maximal set of equivalences determining a belief change extension of
(K, ∅, {α}). Hence there is a selection function c′ (that chooses EQα) such that K−̇c(α ∧
β) = K−̇c′α.

Proof 4.5
We have that Ei is belief change extension of (K, ∅, {¬α}) iff Cn(Ei ∪ {α}) is a belief change

extension of (K, {α}, ∅) (Theorem 4.1.7).
Let (Ei)i∈I be the family of all consistent belief change extensions of (K, {α}, ∅). Then

K+̇α =
⋂

i∈I

Cn(Ei) =
⋂

i∈I

Cn(Ei ∪ {α})

=
⋂

i∈I

Cn(Cn(Ei) ∪ {α}) = Cn

(

⋂

i∈I

Cn(Ei) ∪ {α}

)

= Cn
(

(K−̇α) ∪ {α}
)

= (K−̇α) + α.

Proof 4.6
We need to show the two parts:

1. K−̇α ⊆ K.

This is just (K−̇2).

2. K−̇α ⊆ K+̇¬α.

From Theorem 4.1.7 we get that there is a 1-1 correspondence between every belief change
extension E1 of (K, ∅, {α}) and E2 of (K, {¬α}, ∅), where E2 = Cn(E1 ∪ {α}), and so
E1 ⊆ E2.

Hence, if (E1,i)i∈I is the family of all consistent belief change extensions of (K, ∅, {α}) and
(E2,i)i∈I is the family of all consistent belief change extensions of (K, {α}, ∅), then

K−̇α =
⋂

i∈I

E1,i ⊆
⋂

i∈I

E2,i = K+̇¬α.

Proof 4.7

⊇: Let {p1, . . . , pn} ∈ ∆min(K,R).

So there are models M1 of K and M2 of R such that M1∆M2 = {p1, . . . , pn}.

Thus we have:

p ∈ {p1, . . . , pn} iff: M1 ` p iff M2 6` p

iff: M1 ` p iff M2 ` ¬p.
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Thus for K ′ over LP ′ there is a model M ′
1 isomorphic to M1 such that

p ∈ {p1, . . . , pn} iff: M ′
1 ` p

′ iff M2 ` ¬p.

Let M ′′ be the composition of M ′
1 and M2 over language LP∪P ′ . We obtain:

p ∈ {p1, . . . , pn} iff: M ′′ ` p′ iff M ′′ ` ¬p

iff: M ′′ ` p′ ≡ ¬p.

Hence

p ∈ P \ {p1, . . . , pn} iff: M ′′ 6` p′ ≡ ¬p.

iff: M ′′ ` p′ ≡ p.

Thus EQ = {p ≡ p′ | p ∈ P \ {p1, . . . , pn}} is a set of equivalences such that K ′ ∪ R ∪
EQ 6` ⊥. As well, since {p1, . . . , pn} ∈ ∆min(K,R), we get for any p 6∈ {p1, . . . , pn}, that
K ′ ∪ R ∪ EQ ∪ {p ≡ p′} ` ⊥. Hence EQ is a maximal set of such equivalences, and so
determines some consistent belief change extension of B.

⊆: Let B = (K,R, ∅) be a belief change scenario in LP where K 6= K⊥ and R 6` ⊥, and let EQ
be a set of equivalences as given in Definition 4.1.

Then there is an assignment of truth values to atoms in P ∪ P ′ where K ′ ∪R ∪ EQ 6` ⊥.

For any model M ′′ of K ′ ∪R ∪ EQ we have by definition:

p ≡ p′ ∈ EQ iff M ′′ ` p ≡ p′.

For model M ′′ as above, we define models M1 and M2 over LP by:

M1 ` p iff M ′′ ` p′ and: M2 ` p iff M ′′ ` p

Then:

1. M1 is a model of K (since M ′′ is a model of K ′).

2. M2 is a model of R (since M ′′ is a model of R).

3. M1∆M2 ∈ ∆min(K,R). (This follows from the maximality of EQ.)

From this it follows that {p ∈ P | (p ≡ p′) 6∈ EQ} ∈ ∆min(K,R).

Since EQ is an arbitrary set of equivalences determining a belief change extension of B, our
result follows.
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Proof 4.9
Notation: In Section 4.1, for α ∈ LP , we defined α′ as being the same as α but with all atoms
replaced by primed counterparts. Here (only) we extend the definition to α ∈ LP∪P ′ in the natural
fashion: For α ∈ LP∪P ′ , α′ is the result of replacing in α each proposition p ∈ P by the the cor-
responding proposition p′ ∈ P ′, and replacing each proposition p′ ∈ P ′ by the the corresponding
proposition p ∈ P . Hence α = (α′)′ and for a set of equivalences EQ, we have EQ = EQ′.

We assume a finite language for expressing a belief change scenario and we rely on the fact
that a belief set in such a case can be finitely represented (see Section 5).

We begin with the following lemma

Lemma A.2 1. EQ determines a belief change extension of α+̇β iff EQ deter-
mines a belief change extension of β+̇α.

2. EQ determines a belief change extension of (α+̇β)+̇α iffEQ determines a belief
change extension of β+̇α.

Proof A.2

1. This follows immediately from Definition 4.1.

2. Let EQ be a maximal set of equivalences determining a belief change extension
of (α+̇β)+̇α.

Then (α+̇β)′ ∪ {α} ∪ EQ 6` ⊥.

So for (EQj)j∈J determining the belief change extensions of α+̇β we have:
⋂

j∈J (Cn({α′} ∪ {β} ∪ EQj) ∩ LP)′ ∪ {α} ∪ EQ 6` ⊥.
⋂

j∈J (Cn({α′} ∪ {β} ∪ EQj) ∩ LP)′ ∪ EQ 6` ⊥ (since α = (α′)′).
⋂

j∈J (Cn({α′} ∪ {β} ∪ EQj ∪ EQ) ∩ LP)′ 6` ⊥ (since EQ = EQ′).

For specific EQj we have that EQj ∪ EQ ` ⊥ iff EQj 6= EQ. Consequently
the above simplifies to:

(({α′} ∪ {β} ∪ EQ) ∩ LP)′ 6` ⊥.

Thus ({β ′} ∪ {α} ∪ EQ) ∩ LP 6` ⊥ from which it follows that EQ determines
an extension of β+̇α.

Since each step in the preceding can be replaced by an “iff” the result follows.

1. Let (EQi)i∈I be the family of all sets of equivalences determining extensions of (α+̇β, {α}, ∅)
and let (EQj)j∈J be the family of all sets of equivalences determining extensions of ({α}, {β}, ∅).
Then:

(α+̇β)+̇α =
⋂

i∈I

Cn
(

{α+̇β}′ ∪ {α} ∪ EQi

)

∩ LP
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=
⋂

i∈I

Cn

((

⋂

j∈J

Cn({α′} ∪ {β} ∪ EQj) ∩ LP

)′

∪ {α} ∪ EQi

)

∩ LP

=
⋂

i∈I

⋂

j∈J

Cn
(

(Cn({α′} ∪ {β} ∪ EQj) ∩ LP)
′
∪ {α} ∪ EQi

)

∩ LP (4)

(4) is of the form
⋂

i∈I

⋂

j∈J Ψi,j ∩ LP . From Lemma A.2.2, it follows, for specific i and
j appearing in the intersections in (4), that Ψi,j = LP∪P ′ if EQi 6= EQj. Moreover from
Lemma A.2.2, it follows that for every distinct EQi (as indexed by the first intersection
in (4)) there is a EQj (indexed in the second intersection in (4)) such that EQi = EQj .
Conequently we can simplify (4):

(4) =
⋂

j∈J

Cn
(

(Cn({α′} ∪ {β} ∪ EQj) ∩ LP)
′
∪ {α} ∪ EQj

)

∩ LP

=
⋂

j∈J

Cn
((

Cn({α′} ∪ {β} ∪ EQj)
′
∩ L′

P

)

∪ {α} ∪ EQj

)

∩ LP

=
⋂

j∈J

Cn((Cn({α′} ∪ {β} ∪ EQj)
′
∪ {α} ∪ EQj) ∩

Cn(L′
P ∪ {α} ∪ EQj)) ∩ LP

=
⋂

j∈J

Cn
(

(Cn
(

{α} ∪ {β ′} ∪ EQ′
j

)

∪ {α} ∪ EQj) ∩ LP∪P ′

)

∩ LP

=
⋂

j∈J

Cn
(

Cn
(

{α} ∪ {β ′} ∪ EQ′
j

)

∪ {α} ∪ EQj

)

∩ LP

=
⋂

j∈J

Cn(Cn({α} ∪ {β ′} ∪ EQj) ∪ {α} ∪ EQj) ∩ LP

=
⋂

j∈J

Cn({α} ∪ {β ′} ∪ EQj) ∩ LP

= β+̇α.

2. The proof of this part proceeds analogously to the preceding part.

3. From Part (1) above we have (α+̇β)+̇α = β+̇α.

Since β+̇α ` α we have β+̇α ≡ Cn
(

α ∧ (β+̇α)
)

by propositional logic. From (K+̇4) we
get that Cn

(

α ∧ (β+̇α)
)

≡ α+̇(β+̇α), from which our result obtains.

Proof 4.10
If K ` ⊥ then both parts of the theorem trivially hold.
Thus assume that K 6` ⊥. Since ICe ∪ {γ} ∪ {α} 6` ⊥ for every γ ∈ ICc, there is a belief

change extension of (K, {α} ∪ ICe, ICc).
From Definition 4.1, we have that ICe is true in every such extension, and every member of

ICc is consistent with every such extension.
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A.2 Proofs of Section 5

Proof 5.1
We make use of the following Lemma.

Lemma A.3 Let Ei be a belief change extension of belief change scenario B =
(K,R,C) with determining set of equivalences EQi. Then we have:

`

(

∧

p≡p′∈EQi

(p ≡ p′) ∧
∧

p≡p′ 6∈EQi

(p ≡ ¬p′)

)

⊃ (K ′ ≡ dKei).

Proof A.3

Let M be a model of
∧

p≡p′∈EQi
(p ≡ p′) ∧

∧

p≡p′ 6∈EQi
(p ≡ ¬p′).

dKei is the same as K except that for every p ∈ PEQi
, where K mentions p, dKei has

¬p.

1. For p ∈ PEQi
we have that M assigns the same truth value to p′ in K ′ as p in K,

and so p in dKei.

2. For p ∈ PEQi
, we have that M assigns the opposite truth value to p′ in K ′ as it

does to p in K. But this means that M assigns the same truth value to p′ in K ′ as
to ¬p in dKei.

Thus M is a model of K ′ iff M is a model of dKei, from which our result follows.

Let (EQi)i∈I be the family of equivalences determing a belief change extension of B =
(K, {α}, ∅). We have that

K+̇α =
⋂

i∈I

Cn({K ′} ∪ {α} ∪ EQi) ∩ LP .

As well,

d(K, {α}, ∅)e ∧ α =
∨

i∈I

dKei ∧ α.

We just need to show: For Ei = Cn({K ′} ∪ {α} ∪ EQi) ∩ LP a belief change extension of B
with determining set of equivalences EQi:

1. Cn({K ′} ∪ {α} ∪ EQi) ∩ LP ` dKei ∧ α and

2. {dKei ∧ α} ` φ for every φ ∈ Cn({K ′} ∪ {α} ∪ EQi) ∩ LP .

For each part in turn:
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1. From Lemma A.3 we have

`

(

∧

p≡p′∈EQi

(p ≡ p′) ∧
∧

p≡p′ 6∈EQi

(p ≡ ¬p′)

)

⊃ (K ′ ≡ dKei).

Hence,

{K ′} ∪ EQi ∪ EQi ` dKei. (5)

Since we have {K ′} ∪ {α} ∪ EQi ` p ≡ ¬p′ for every (p ≡ p′) ∈ EQi by Theorem 4.1.1,
we obtain from (5) that {K ′} ∪ {α} ∪ EQi ` dKei.

Hence, we get {K ′} ∪ {α} ∪ EQi ` dKei ∧ α.

By the definition of Cn(·), this means that dKei ∧ α ∈ Cn({K ′} ∪ {α} ∪ EQi) .

Since also dKei ∧ α ∈ LP we get dKei ∧ α ∈ Cn({K ′} ∪ {α} ∪ EQi) ∩ LP .

Hence Cn({K ′} ∪ {α} ∪ EQi) ∩ LP ` dKei ∧ α.

2. Assume that φ ∈ Cn({K ′} ∪ {α} ∪ EQi) ∩ LP .

Thus φ ∈ LP and

{K ′} ∪ {α} ∪ EQi ` φ.

From monotonicity of classical logic it follows that

{K ′} ∪ {α} ∪ EQi ∪ EQi ` φ.

Lemma A.3 yields {dKei} ∪ {α} ∪ EQi ∪ EQi ` φ.

Since dKei, α, φ ∈ LP it follows that {dKei, α} ` φ as required.

Proof 5.2
Let (EQi)i∈I determine belief change extensions of B = (K, ∅, {α}). We have that

K−̇α =
⋂

i∈I

Cn({K ′} ∪ EQi) ∩ LP .

As well,

b(K, ∅, {α})c =
∨

i∈I

∨

πj∈Πi

bKcj
i .

We just need to show that for each belief change extension of B with determining set of equiv-
alences EQi:

Cn({K ′} ∪ EQi) ∩ LP ≡
∨

πj∈Πi

bKcj
i .
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only-if part: We show {K ′} ∪ EQi `
∨

πj∈Πi
bKcj

i .

Let M be a model of {K ′} ∪ EQi.

Then there is πk ∈ Πi that corresponds to the assignment of truth values to members of P
(and so P ′) in PEQi

; let the corresponding disjunct in
∨

πj∈Πi
bKcj

i be bKck
i .

Since M is a model of EQi, for every p ≡ p′ ∈ EQi, we obtain that M assigns the same
truth values to occurrences of p′ in K ′ as to p in bKck

i .

As well, we have chosen k so that for every p ∈ PEQi
, M assigns the opposite truth values

to occurrences of p′ in K ′ as to p in bKck
i .

Hence (using Lemma A.3) M is a model of bKck
i and so M is a model of

∨

πj∈Πi
bKcj

i .

if part: We show that if {K ′} ∪ EQi ` φ for arbitrary φ ∈ LP then
{

∨

πj∈Πi
bKcj

i

}

` φ,

or equivalently, if
{

∨

πj∈Πi
bKcj

i

}

∪ {¬φ} 6` ⊥ then {K ′} ∪ EQi ∪ {¬φ} 6` ⊥.

So we need to find a model M , over the language LP∪P ′ , of
{

∨

πj∈Πi
bKcj

i

}

∪ {¬φ} such

that M is also a model of {K ′} ∪ EQi ∪ {¬φ}.

Let MP be a model over LP of
{

∨

πj∈Πi
bKcj

i

}

∪ {¬φ}.

For p ∈ PEQi
, MP coincides with a specific mapping, πk ∈ Πi. As well, MP satisfies a

specific disjunct bKck
i of

∨

πj∈Πi
bKcj

i .

We extend MP to a model M over LP∪P ′ as follows.

1. M is the same as MP for atoms in P .

2. For p ≡ p′ ∈ EQi, M assigns the same value to p′ as MP does to p.

3. The remaining atoms p′ ∈ P ′ (and so for p ≡ p′ ∈ EQi) are assigned according to πk’s
assignment to atoms of P .

Thus from 1. we get that ¬φ is satisfied; from 2. we get that EQi is satisfied; and from 3. we
get that K ′ is satisfied.

Proof 5.3
We make use of the following Lemmas.

Lemma A.4 Let EQ be a set of equivalences determining a consistent belief change
extension of belief change scenario B = (K,R,C).

Then {p ≡ p′ | p ∈ P(K) ∆P(R ∪ C)} ⊆ EQ.

(So if p is mentioned in K, but not R or C, or else in R or C, but not K, then p ≡ p′ ∈ EQ for
any EQ determining a belief change extension of B = (K,R,C).
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Proof A.4

Assume otherwise. So there is a belief change extension of belief change scenario
B = (K,R,C) where for corresponding set of equivalences EQ we have

1. ∃p ∈ P where p ∈ P(K), p 6∈ P(R ∪ C) and p ≡ p′ 6∈ EQ or

2. ∃p ∈ P where p 6∈ P(K), p ∈ P(R ∪ C) and p ≡ p′ 6∈ EQ.

For the first case, and for p as above, we have from Theorem 4.1.1 that for some
φ ∈ C ∪ {⊥} that K ′ ∪ R ∪ {¬φ} ∪ EQ ` ¬(p ≡ p′) or K ′ ∪ R ∪ {¬φ} ∪ EQ `
(p ∨ p′) ∧ (¬p ∨ ¬p′).

So:

K ′ ∪ R ∪ {¬φ} ∪ EQ ` p ∨ p′ (6)

K ′ ∪ R ∪ {¬φ} ∪ EQ ` ¬p ∨ ¬p′ (7)

We have that p 6∈ P(R ∪ {¬φ}) by assumption, and clearly p 6∈ P(EQ), and p 6∈
P(K ′). That is, p doesn’t appear on the left hand side of ` in (6) and (7).

So from (6) we must have

K ′ ∪ R ∪ {¬φ} ∪ EQ ` p′. (8)

(If this isn’t the case and K ′ ∪ R ∪ {¬φ} ∪ EQ 6` p′ then there is a model M of
K ′ ∪R∪ {¬φ}∪EQ that isn’t a model of p′. Let M1 be the same as M but assigning
false to p. Then M1 is a model of K ′∪R∪{¬φ}∪EQ but not of p∨p′, contradicting
(6).)

Analogously, from (7) we derive

K ′ ∪ R ∪ {¬φ} ∪ EQ ` ¬p′. (9)

But (8) + (9) givesK ′∪R∪{¬φ}∪EQ ` ⊥, contradicting the fact thatEQ determines
a belief change extension.

For the second case, we derive, as previously,

K ′ ∪ R ∪ {¬φ} ∪ EQ ` p ∨ p′

K ′ ∪ R ∪ {¬φ} ∪ EQ ` ¬p ∨ ¬p′

Since p 6∈ P(K) by assumption, so p′ 6∈ P(K ′). As well, clearly p′ 6∈ P(R ∪ {¬φ})
and p′ 6∈ P(EQ). Analogous to the first case, we obtain the contradiction

K ′ ∪ R ∪ {¬φ} ∪ EQ ` ¬p

K ′ ∪ R ∪ {¬φ} ∪ EQ ` p.
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Lemma A.5 Let B = (K,R,C) be a belief change scenario and let Q = P(K) ∩
P(R ∪ C).

For EQ ⊆ {p ≡ p′ | p ∈ P} a set of equivalences determining some belief change
extension of B we have that, for every φ ∈ C ∪ {⊥}:

Cn(K ′ ∪R ∪ {¬φ} ∪ EQ) ∩ LP = Cn
(

K ′[Q] ∪ R ∪ {¬φ} ∪ EQQ
)

∩ LP

where EQQ = EQ \ {p ≡ p′ | p 6∈ Q}.

Thus there is a 1–1 correspondence between sets EQ and EQQ determining belief change exten-
sions of belief change scenario B.

Proof A.5

Only-if part: We show that any model of K ′ ∪ R ∪ {¬φ} ∪ EQ is also a model of
K ′[Q] ∪R ∪ {¬φ} ∪ EQQ.

Let M be a model of K ′ ∪ R ∪ {¬φ} ∪ EQ. From substitution of equivalent
formulas (here in EQ) we get that K ′ ∪ EQ ` K ′[Q].

Thus since M is a model of K ′ ∪ EQ it is of K ′[Q].

Since EQQ ⊆ EQ (Lemma A.4), and M is a model of EQ, it is also of EQQ.
Thus M is a model of K ′[Q] ∪R ∪ {¬φ} ∪ EQQ.

If part: We show that for arbitrary δ ∈ LP , any proof ofK ′[Q]∪R∪{¬φ}∪EQQ ` δ
can be transformed into a proof of K ′ ∪ R ∪ {¬φ} ∪ EQ ` δ.

Let ψ1, . . . , ψn = δ be a proof of δ from K ′[Q] ∪ R ∪ {¬φ} ∪ EQQ.

We construct a proof of δ from K ′ ∪R ∪ {¬φ} ∪ EQ as follows.

For ψj , 1 ≤ j ≤ n we have the following cases.

1. ` ψj . We leave ψj unchanged.

2. ψj ∈ K ′[Q]. It follows easily that K ′ ∪ EQ ` ψj . We replace ψj by a proof
(sequence of formulas) of ψj from K ′ ∪ EQ.

3. ψj = R or ψj = {¬φ}. We leave ψj unchanged.

4. ψj ∈ EQQ. We leave ψj unchanged.

5. ψj results from ψk, ψl, 1 ≤ k, l < j by an application of modus ponens.
Since, by an induction hypotheses, we have ψk, ψl are logical consequences
ofK ′∪R∪{¬φ}∪EQ and ψl is ψk ⊃ ψj , we obtainK ′∪R∪{¬φ}∪EQ ` ψj

by modus ponens.

Hence we obtain a sequence of formulas where each formula is

1. a tautology,

2. a premiss drawn from the set K ′ ∪R ∪ {¬φ} ∪ EQ, or

3. obtained from previous formulas in the sequence by an application of modus
ponens.

Hence we have shown that K ′ ∪R ∪ {¬φ} ∪ EQ ` δ.
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Let B = (K, {α}, ∅) be a belief change scenario.

1. For +̇c we have:

Let Ei be a belief change extension of B such that K+̇cα = Ei for selection function c.
Then we have for EQi determining Ei that:

K ′ ∪ {α} ∪ EQi 6` ⊥ and

Ei = Cn(K ′ ∪ {α} ∪ EQi) ∩ LP .

From Lemma A.5 we obtain that

Cn(K ′ ∪ {α} ∪ EQi) ∩ LP = Cn
(

K ′[Q] ∪ {α} ∪ EQQ
i

)

∩ LP .

Hence K ′[Q] ∪ {α} ∪ EQQ
i 6` ⊥.

As well for p ≡ p′ 6∈ EQi we obtain K ′[Q] ∪ {α} ∪ EQQ
i ∪ {p ≡ p′} ` ⊥, again from

Lemma A.5.

Thus Ei = K+̇
Q
c α is a choice revision for selection function c with respect to Q.

2. For +̇, the theorem follows by noting that for belief change scenario B, there is a 1-1 corre-
spondence between belief change extensions determined by a set of equivalences EQi and
the corresponding set EQQ

i .

3. Proofs for −̇c and −̇
v

c follow analogously to those for revision.

Proof 5.4
From Theorem 5.1 we have that K+̇α ≡

∨

i∈I dKei ∧ α.
Hence we just need to show that

∨

i∈I dKei ∧ α. ≡ .
∨

i∈I dKeQi ∧ α.
We have, for any EQi determining a belief change extension of B, that p ∈ P(K) ∆P(α)

implies that p ≡ p′ ∈ EQi, or p ≡ p′ ∈ EQi implies that p ∈ P(K) ∩ P(α).
Thus EQi determines a belief change extension of B (via Definition 4.1) iff EQi determines a

belief change extension of B with respect to Q (via Definition 5.3).
From this it follows that (informally stated) Definitions 5.1 and 5.5 identify precisely the same

formulas, from which our result follows.

Proof 5.5
The proof relies upon the following lemma which follows easily from the results proven

in [Rei80].
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Lemma A.6 Let W and E be sets of formulas and let D be a set of default rules of the form
:β,φ1,...,φn

β
where β, φ1, . . . , φn are formulas.

Then, we have that E is an extension of (D,W ) iff E = Cn
(

W ∪ {β | : β,φ1,...,φn

β
∈ D′}

)

for

some maximal subset D′ ⊆ D such that for every : β,φ1,...,φn

β
∈ D′ we have that ¬β 6∈ E and

¬φi 6∈ E for i = 1..n.

Moreover, [Rei80] tells us that E is consistent iff W is consistent.
Let B = (K,R,C) be a belief change scenario. Define

∆B =

({

: p ≡ p′,¬φ1, . . . ,¬φn

p ≡ p′

∣

∣

∣

∣

p ∈ P

}

, K ′ ∪R

)

.

Assume B is an inconsistent belief change scenario, that is, K ′ ∪ R is inconsistent. Then, by
Definition 4.1, we have that LP is the sole (inconsistent) belief change extension of B. According
to [Rei80], the inconsistency ofK ′∪R implies that ∆B has a single (inconsistent) extension LP∪P ′ .

For the remainder, assume that K ′ ∪R is consistent.

only-if part: Let E be an extension of ∆B .
According to Lemma A.6, we have that

E = Cn
(

K ′ ∪R ∪
{

(p ≡ p′) | : (p≡p′),φ1,...,φn

(p≡p′)
∈ D′

})

for some maximal subset D′ ⊆
{

: p≡p′,φ1,...,φn

p≡p′

∣

∣

∣
p ∈ P

}

such that ¬(p ≡ p′) 6∈ E and ¬φi 6∈ E

for i = 1..n.
We show that EQ = {(p ≡ p′) | : (p≡p′),φ1,...,φn

(p≡p′)
∈ D′} determines a belief change extension F

of B such that F = E ∩ LP .
In fact,E = Cn(K ′ ∪ R ∪ EQ). By the theory of default logic, we get thatE = Cn(K ′ ∪ R ∪ EQ)

is consistent, due to the consistency of K ′ ∪ R. That is, ⊥ 6∈ Cn(K ′ ∪R ∪ EQ).
Moreover, we get that EQ is maximal in satisfying

Cn(K ′ ∪ R ∪ EQ) ∩ C = ∅ .

As a consequence, EQ determines the belief change extension F of B.

if part: Let F be a belief change extension ofB determined byEQ. DefineE = Cn(K ′ ∪R ∪ EQ).
Clearly, we have F = E ∩ LP .

By definition, EQ is a maximal set of equivalences satisfying

Cn(K ′ ∪ R ∪ EQ) ∩ {φ1, . . . , φn,⊥} = ∅.

That is, ¬φi 6∈ E for i = 1..n. Clearly, we also have ¬(p ≡ p′) 6∈ E for all (p ≡ p′) ∈ EQ.
Given that EQ is also maximal with respect to the latter requirements, it induces a maximal

subset D′ ⊆
{

: p≡p′,φ1,...,φn

p≡p′

∣

∣

∣
(p ≡ p′) ∈ EQ

}

such that

E = Cn
(

K ′ ∪R ∪
{

(p ≡ p′) | : (p≡p′),φ1,...,φn

(p≡p′)
∈ D′

})

.

According to Lemma A.6, E is an extension of ∆B .

Proof 5.6 See [DSTW01].
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mann Publishers.

[Lib99] P. Liberatore. BReLS: A system for revising, updating, and merging knowledge bases.
In The Third IJCAI Workshop on Nonmonotonic Reasoning, Action and Change, pages
41–48, Stockholm, Sweden, August 1999.

[Lin00] F. Lin. On strongest necessary and weakest sufficient conditions. In A. Cohn,
F. Giunchiglia, and B. Selman, editors, Proceedings of the Seventh International Con-
ference on the Principles of Knowledge Representation and Reasoning, pages 167–
175. Morgan Kaufmann Publishers, 2000.

[LR94] F. Lin and R. Reiter. Forget it! In AAAI Fall Symposium on Relevance, New Orleans,
November 1994.

[LS97] P. Liberatore and M. Schaerf. Reducing belief revision to circumscription (and vice
versa). Artificial Intelligence, 93(1–2):261–296, 1997.

[LS00] P. Liberatore and M. Schaerf. Brels: A system for the integration of knowledge bases.
In A. Cohn, F. Giunchiglia, and B. Selman, editors, Proceedings of the Seventh Inter-
national Conference on the Principles of Knowledge Representation and Reasoning,
pages 145–152. Morgan Kaufmann Publishers, 2000.

[Mak85] D. Makinson. How to give it up: A survey of some formal aspects of the logic of
theory change. Synthese, 62:347–363, 1985.

[Neb92] B. Nebel. Syntax based approaches to belief revision. In P. Gärdenfors, editor, Belief
Revision, pages 52–88. Cambridge University Press, 1992.

[NFPS96] A.C. Nayak, N.Y. Foo, M. Pagnucco, and A. Sattar. Changing conditional belief un-
conditionally. In Proc. of the Sixth Conference on Theoretical Aspects of Reasoning
About Knowledge, pages 119–136, De Zeeuwse Stromen, The Netherlands, 1996.

[Pap01] O. Papini. Iterated revision operations stemming from the history of an agent’s ob-
servations. In M.-A. Williams and H. Rott, editors, Frontiers in Belief Revision, vol-
ume 22 of Applied Logic Series, pages 279–301. Kluwer Academic Publishers, 2001.

[Par99] Rohit Parikh. Beliefs, belief revision, and splitting languages. In L.S. Moss,
J. Ginzburg, and M. de Rijke, editors, Logic, Language and Computation, Vol II, pages
266–278. CSLI Publications, 1999.

41



[Poo88] D.L. Poole. A logical framework for default reasoning. Artificial Intelligence,
36(1):27–48, 1988.

[RdK87] R. Reiter and J. de Kleer. Foundations for assumption-based truth maintenance sys-
tems: Preliminary report. In Proceedings of the AAAI National Conference on Artifi-
cial Intelligence, pages 183–188. Morgan Kaufmann Publishers, 1987.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[Rei84] R. Reiter. Towards a logical reconstruction of relational database theory. In M.L.
Brodie, J. Mylopoulos, and J.W. Schmidt, editors, On Conceptual Modelling, pages
191–233. Springer-Verlag, 1984.

[Rei87a] R. Reiter. On integrity constraints. In Proceedings of the Second Conference on
Theoretical Aspects of Reasoning about Knowledge, pages 97–111, Pacific Grove,
CA, 1987.

[Rei87b] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–
96, 1987.

[Rot01] H. Rott. Change, Choice and Inference - A Study of Belief Revision and Nonmonotonic
Reasoning. Oxford: Clarendon Press, 2001.

[Sat88] K. Satoh. Nonmonotonic reasoning by minimal belief revision. In Proceedings of
the International Conference on Fifth Generation Computer Systems, pages 455–462,
Tokyo, 1988.

[SK87] F. Sadri and R. Kowalski. A theorem-proving approach to database integrity. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, chap-
ter 9, pages 313–362. Morgan Kaufmann Publishers, 1987.
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