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Abstract
A recalcitrant problem in approaches to iterated belief revi-
sion is that, after first revising by a formula and then by a
formula that is inconsistent with the first formula, all infor-
mation in the original formula is lost. As noted by various
researchers, this phenomenon is made explicit in the second
postulate (C2) of the well-known Darwiche-Pearl framework,
and so this postulate has been a point of criticism of this and
related approaches. In contrast, we argue that the true culprit
of this problem arises from a basic assumption of the AGM
framework, that new information is represented by a single
formula. We propose a more general framework for belief
revision (called parallel belief revision) in which individual
items of new information are represented by a set of formu-
las. In this framework, if one revises by a set of formulas, and
then by the negation of some members of this set, then other
members of the set are still believed after the revision. Hence
the aforecited problem is discharged. We present first a basic
approach to parallel belief revision, and next an approach that
combines the basic approach with that of Jin and Thielscher.
Postulates and semantic conditions characterizing these ap-
proaches are given, and representation results provided.

Introduction
Belief revision is the area of knowledge representation con-
cerned with how an agent may incorporate new information
about a domain. It is generally accepted that there is no sin-
gle “best” revision operator, and different agents may have
different revision functions. However, revision functions are
not arbitrary, but are usually considered as being guided, or
characterized, by various rationality criteria. The original
and best-known set of postulates is called the AGM postu-
lates (Alchourrón, Gärdenfors, & Makinson 1985). Subse-
quently, there has been a great deal of attention paid to iter-
ated belief revision, which addresses logical relations among
a sequence of (possibly conflicting) observations.

While there has been much progress in the area of iter-
ated belief revision, all such work suffers from the following
problem: if one revises by a formula and then by a formula
that is inconsistent with this formula, the agent’s beliefs are
exactly the same as if only the second revision had taken
place. For example, consider where an agent receives a re-
port that a particular object is a red bird. If K is the agent’s
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original set of beliefs and ∗ is a revision operator, we can
represent the result of this revision byK∗(r∧b). Then if we
next discover that the object is not a bird (¬b), we also lose
the information that the object is red; i.e. the beliefs resulting
from K ∗ (r∧ b) ∗¬b are exactly the same as those obtained
by K ∗¬b. While this may be a desired result in some cases,
it certainly shouldn’t be a necessary outcome. This example
can be exaggerated to emphasize the point: Consider where
an agent with no initial non-tautological beliefs is presented
with a huge number of facts, only to have one of these items
subsequently negated. Then all other information is lost, ex-
cept for the newly-negated item. Clearly, this is too strong
a condition to impose on every revision function in all cir-
cumstances. We will refer to this as the “drowning prob-
lem” of iterated revision, noting that it is quite distinct from
a similarly-named problem that arises in some approaches
to nonmonotonic reasoning.

Our thesis is that this isn’t a problem with these ap-
proaches per se, but rather that a more nuanced represen-
tation of the item(s) for revision is required. To this end, we
develop an account of what we call parallel belief revision,
in which the second argument to a revision function is a fi-
nite set of formulas. Thus, we distinguish K ∗ {α ∧ β} and
K ∗ {α, β}. In the former, revision is by a single formula,
and if a subsequent revision contradicts this formula, then
belief in this item of information may well be lost. On the
other hand, it generally makes sense that α be believed in
K ∗ {α, β} ∗ {¬β}, since if one element of the input set is
contradicted, this need not affect belief in other elements.
In this paper then, we develop approaches to parallel belief
revision, and show how the aforecited problem is resolved.

In the next section we review the area of belief revision
and further motivate our approach. It proves to be the case
that parallel belief revision is, in a sense, largely indepen-
dent of other accounts of iterated belief revision. Hence, we
first give an account of the most basic approach to parallel
revision. We then show how this approach can be combined
with the approach to iterated revision of Jin and Thielscher
(2007). (The combination of parallel revision with other ap-
proaches is deferred to the full paper.) In each case, pos-
tulates characterizing the revision function are given, along
with a semantic account, in terms of total orders on sets of
worlds, and representation results. We conclude with a com-
parison to related work.



Background
Formal Preliminaries
We assume a propositional language L generated from a fi-
nite set P of atomic propositions. The language is that of
classical propositional logic, i.e., with the classical conse-
quence relation `. Cn(A) is the set of logical consequences
of A, that is Cn(A) = {α ∈ L | A ` α}. > stands for some
arbitrary tautology. For a (finite) set of formulas S, ∧S is
the conjunction of members of S; and S = {¬α | α ∈ S}.
Given two sets of formulas A and B, A + B denotes the
expansion of A by B, that is A + B = Cn(A ∪ B). Ex-
pansion of a set A by a formula β is defined analogously.
Two sentences α and β are logically equivalent, written as
α ≡ β, iff α ` β and β ` α. A propositional interpre-
tation (also referred to as a possible world) is a mapping
from P to {true, false}. The set of all interpretations is
denoted by ΘL. A model of a sentence α is an interpreta-
tion w that makes α true according to the usual definition
of truth, and is denoted by w |= α. For W ⊆ ΘL, we
also write W |= α if w |= α for every w ∈ W . For a
set of sentences A, Mod(A) is the set of all models of A.
For simplicity, Mod({α}) is also written as Mod(α). Con-
versely, given a set of possible worldsW ⊆ ΘL, we denote
by T (W) the set of sentences which are true in all elements
ofW , that is T (W) = {α ∈ L | w |= α for all w ∈ W}.

A total preorder � (possibly indexed) is a reflexive, tran-
sitive binary relation, s.t. either α � β or β � α for every
α, β. As well, α ≺ β iff α � β and β 6� α. As usual, α = β
abbreviates α � β and β � α. Given a set S and total pre-
order � defined on members of S, we denote by min(S,�)
the set of minimal elements of S in �.

Belief Revision
In the AGM theory, beliefs of an agent are modelled by a be-
lief setK, i.e. a setK such thatK = Cn(K). Belief revision
is modeled as a function from belief sets and formulas to be-
lief sets. However, various researchers have argued that, in
order to address iterated belief revision, it is more appro-
priate to consider belief states (also called epistemic states)
as objects of revision. A belief state K effectively encodes
preferential information regarding how the revision function
itself changes under a revision.1 The belief set correspond-
ing to belief stateK is denoted Bel(K). Formally, a revision
operator ∗ maps a belief state K and new information α to a
revised belief state K ∗ α. Then, in the spirit of (Darwiche
& Pearl 1997), the AGM postulates for revision can be re-
formulated as follows:

(K ∗ 1) Bel(K ∗ α) = Cn(Bel(K ∗ α))

(K ∗ 2) α ∈ Bel(K ∗ α)

(K ∗ 3) Bel(K ∗ α) ⊆ Bel(K) + α

(K ∗ 4) If ¬α /∈ Bel(K) then Bel(K) + α ⊆ Bel(K ∗ α)

(K ∗ 5) Bel(K ∗ α) is inconsistent, only if 0 ¬α
1This glosses over a number of issues on the nature of a revision

function, which need not concern us here. See (Rott 2001; Nayak,
Pagnucco, & Peppas 2003) for more on this issue.

(K ∗ 6) If α ≡ β then Bel(K ∗ α) ≡ Bel(K ∗ β)

(K ∗ 7) Bel(K ∗ (α ∧ β)) ⊆ Bel(K ∗ α) + β

(K ∗ 8) If ¬β /∈ Bel(K ∗ α) then
Bel(K ∗ α) + β ⊆ Bel(K ∗ (α ∧ β))

See (Gärdenfors 1988) for motivation and interpretation of
these postulates.

We will call a revision operator an AGM revision opera-
tor if it satisfies the reformulated AGM postulates. Katsuno
and Mendelzon (1991) have shown that a necessary and suf-
ficient condition for constructing an AGM revision opera-
tor is that any belief state K can induce, as its preferential
information, a total preorder on the set of possible worlds.
Formally, given a belief state K, a faithful ranking on K is
a total preorder �K on the possible worlds ΘL, s.t., for any
possible worlds w1, w2:

1. If w1, w2 |= Bel(K) then w1 =K w2

2. If w1 |= Bel(K) and w2 6|= Bel(K), then w1 ≺K w2

Intuitively, w1 �K w2 if w1 is at least as plausible as w2.
It follows directly from the results of (Katsuno & Mendel-

zon 1991) that a revision operator ∗ satisfies (K ∗ 1)–(K ∗ 8)
iff there exists a faithful ranking �K for an arbitrary belief
state K, such that for any sentence α:

Bel(K ∗ α) =
{
L if ` ¬α
T (min(Mod(α),�K)) otherwise

Iterated Belief Revision
The AGM postulates do not address properties of iterated
belief revision. This has led to the development of additional
postulates for iterated revision; the best-known approach is
that of Darwiche and Pearl (1997) (DP). They propose the
following postulates, adapted according to our notation:

C1 If β ` α, then Bel((K ∗ α) ∗ β) = Bel(K ∗ β).

C2 If β ` ¬α, then Bel((K ∗ α) ∗ β) = Bel(K ∗ β).

C3 If α ∈ Bel(K ∗ β), then α ∈ Bel((K ∗ α) ∗ β).

C4 If ¬α /∈ Bel(K ∗ β), then ¬α /∈ Bel((K ∗ α) ∗ β).

Darwiche and Pearl show that an AGM revision operator
satisfies Postulates (C1)–(C4) iff the way it revises faithful
rankings satisfies the conditions:

CR1 If w1, w2 |= α, then w1 �K w2 iff w1 �K∗α w2.

CR2 If w1, w2 6|= α, then w1 �K w2 iff w1 �K∗α w2.

CR3 If w1 |= α and w2 6|= α, then w1 ≺K w2 implies
w1 ≺K∗α w2.

CR4 If w1 |= α and w2 6|= α, then w1 �K w2 implies
w1 �K∗α w2.

The DP postulates have been criticized in two aspects. On
one hand, the DP postulates are too permissive, in that they
support revision operators which allow arbitrary dependen-
cies among the items of information which an agent acquires
along its way. Consequently, Jin and Thielscher (2007) have
proposed the so-called postulate of independence:

Ind If ¬α /∈ Bel(K∗β) then α ∈ Bel((K∗α)∗β)



Postulate (Ind) strengthens both (C3) and (C4). Thus, their
suggested set of postulates consists of (C1), (C2), and (Ind).
They also give necessary and sufficient condition for an
AGM revision operator to satisfy (Ind):
IndR If w1 |= α and w2 |= ¬α, then w1 �K w2 implies
w1 ≺K∗α w2.
On the other hand, the DP postulates are too strong. In

particular, Postulate (C2) has been accused by many re-
searchers of being responsible for the “drowning” prob-
lem (Lehmann 1995; Konieczny & Pino Pérez 2000). As an-
other example, consider a scenario proposed by Konieczny
and Pino Pérez (2000):
Example 1. Suppose an electric circuit contains an adder
and a multiplier. The atomic propositions a and m denote
respectively that the adder and the multiplier are working.
Initially we have no information about this circuit, and we
then learn that the adder and the multiplier are working (α =
a∧m). Thereafter, someone tells us that the adder is actually
not working (β = ¬a).

As argued in (Konieczny & Pino Pérez 2000), there is ob-
viously no reason to “forget” that the multiplier is working;
however by (C2) we must have (K ∗ α) ∗ β = K ∗ β, since
β ` ¬α. Hence, in this case (C2) appears to be too strong.

Intuitively, such examples are compelling. However, the
case against (C2) isn’t clear cut. First, as a technical defense
of (C2), it can be observed that many researchers who are
against (C2) appear to be in favour of Postulate (C1). How-
ever, the semantic characterization of Postulate (C2) (viz.
(CR2)) seems as reasonable as that of (C1) (viz. (CR1)): If
being informed about α does not change the relative plausi-
bility of α-worlds, why should the relative ordering of ¬α-
worlds be changed? This idea is also articulated in (Spohn
1988), which argues that it is only reasonable to change the
relative ordering between α-worlds and ¬α-worlds.

As an informal defense of (C2), it can be observed that in
Example 1 it is implicitly assumed that a and m are separate
items of information. However, in the AGM approach, the
simultaneous revision by a and m is represented by a con-
junction. What gets lost is the relation, if any, between these
items of information. It could be that the new information
should be treated as an undecomposable unit; in this case,
the behaviour imposed by (C2) in Example 1 would be per-
fectly reasonable. Thus, if we are told by someone that both
the adder and multiplier are working, and then determine
ourselves that the adder is not working, it would make sense
to give up in toto all information provided by that person.

The above discussion shows that there are at least two
situations where the agent can learn several pieces of new
information simultaneously: either these pieces of informa-
tion are to be treated as separate items, or else they together
make up an undecomposable item of information. Clearly,
accounts of iterated belief revision are not sufficient to deal
with both situations. Thus, Example 1 doesn’t provide a
counterexample to (C2), so much as it highlights the limita-
tions of the expressibility of revision functions. More pre-
cisely, it suggests the necessity of generalizing AGM revi-
sion functions so that both above-mentioned situations can
be handled. This topic is developed in the next section.

Parallel Revision
We have argued thatK∗{α∧β} should be treated differently
from K ∗ {α, β} with respect to iterated revision. However,
we would want to relate these two instances, in the simplest
case, as follows2

For (finite) set of formulas S, Bel(K∗S) = Bel(K∗{∧S}).
Consider the binary case, assuming α ∧ β 6` ⊥:

Bel(K ∗ {α, β}) = Bel(K ∗ {α ∧ β}).
On the right hand side of the equality, we revise by a
single item of information, α ∧ β; if this item is shown
false (e.g. in later revising by ¬β) then this information
has been contradicted and it is reasonable that all original
information (including α) may be lost. Hence, possibly
α 6∈ Bel(K∗{α∧β}∗{¬β}). This argument doesn’t apply
to Bel(K ∗ {α, β}), where we revise by a set consisting of
two items of information. If one of these elements is sub-
sequently believed to be false then one would nonetheless
want to retain the other element where “reasonable”.3

Semantically, this has the following ramifications. In the
faithful ordering resulting from a revision K ∗ {α, β}, we
have that the least α ∧ β worlds are ranked lower than the
least ¬(α ∧ β) worlds in �K∗{α,β} (since, of course, the
least α ∧ β worlds are minimal in �K∗{α,β}). The key intu-
ition in parallel revision is that these considerations extend
to subsets of the set of formulas for revision. Hence follow-
ing the revisionK∗{α, β}, we will also require that the least
α ∧ ¬β worlds be ranked below the least ¬α ∧ ¬β worlds,
and similarly for the least ¬α ∧ β, ¬α ∧ ¬β worlds.

Essentially then, for a revision K ∗ S, changes to the un-
derlying ranking on worlds will depend not just on the set
S, but also on subsets of S. In the next subsection we for-
malize this intuition. The approach is largely independent of
previous approaches to iterated revision, and so in the next
section we combine the basic approach with that of (Jin &
Thielscher 2007) to yield what we suggest is the appropriate
general model for iterated belief revision.

The Basic Approach
In this section, we develop the basic approach to parallel re-
vision, wherein new information is represented by a set of
formulas. The intuition is that each formula of the set repre-
sents an undecomposable (with respect to revision) piece of
information. To distinguish this from standard belief revi-
sion, we denote a parallel revision operator by ⊗. Formally,
⊗ maps a belief state K and set of formulas S to a revised
belief state K ⊗ S. We assume henceforth that the second
argument to ⊗ is a finite set of formulas.

To begin, we adapt the AGM postulates for parallel re-
vision; the following are analogous to postulates given in
(Zhang et al. 1997), adapted for belief states.
(K ⊗ 1) Cn(Bel(K ⊗ S)) = Bel(K ⊗ S)

2In the final section we briefly consider where S ` ⊥, in which
case we may want to violate this constraint; however for the present
we hew as closely as possible to the standard (AGM) approach.

3A case where this wouldn’t apply is K ∗ {α, α ∧ β} where
clearly one requires that α ∧ β 6∈ Bel(K ∗ {α, α ∧ β} ∗ {¬α}).



(K ⊗ 2) S ⊆ Bel(K ⊗ S)

(K ⊗ 3) Bel(K ⊗ S) ⊆ Bel(K) + S

(K ⊗ 4) If Bel(K) ∪ S is consistent, then Bel(K) + S ⊆
Bel(K ⊗ S)

(K ⊗ 5) If S is consistent and S 6= ∅, then Bel(K ⊗ S) is
consistent

(K ⊗ 6) If S1 ≡ S2, then Bel(K ⊗ S1) = Bel(K ⊗ S2)

(K ⊗ 7) Bel(K ⊗ (S1 ∪ S2)) ⊆ Bel(K ⊗ S1) + S2

(K ⊗ 8) If Bel((K ⊗ S1)) ∪ S2 is consistent, then
Bel((K ⊗ S1)) + S2 ⊆ Bel(K ⊗ (S1 ∪ S2))

Note that (K ⊗ 6) yields Bel(K ⊗ S) = Bel(K ⊗ (∧S)).
The basic approach to parallel revision involves three new

postulates, along with three corresponding semantic condi-
tions. The first deals with a limiting case, that of revising
by the empty set. For the other two postulates, in the AGM
approach one has that, semantically, the set of worlds corre-
sponding toBel(K⊗S) is made up of a set of least S-worlds
in �K, and that this set is maximal in size. The second and
third postulates extend these notions to subsets of S.

First, as noted, the set S for revision could be the empty
set. In this case, in which there is no input information, the
belief state should remain unchanged. We adopt the slightly
weaker condition that K and K ⊗ ∅ behave identically with
respect to further revisions:

(K ⊗ ∅) Bel((K ⊗ ∅)⊗ S) = Bel(K ⊗ S)

Note that this means K⊗∅ and K⊗{>} behave differently,
specifically when Bel(K) is inconsistent; this is reflected in
the additional prerequisite condition to (K ⊗ 5). Obviously,
(K ⊗ ∅) corresponds to the following semantical condition:

(PE) w1 �K w2 iff w1 �K⊗∅ w2

The next postulate characterises the basic approach to par-
allel revision.

(K ⊗ P ) For S1, S2 ⊆ L where S1 ∪ S2 6` ⊥, and
S1∪S2 6` ⊥, we have S1 ⊆ Bel((K⊗(S1∪S2)⊗S2).

Hence for a revision of K by S (here = S1 ∪ S2), with
S1 ⊆ S, we have that S1 is preserved in revising by the
negations of S2 = S \ S1. The intuition is that, in revising
by S, all elements of S are believed; if some members of
S are subsequently disbelieved then, insofar as possible, the
remaining members of S are still believed. From a semantic
point of view, consider the following condition on a faithful
ordering �K, where w1, w2 ∈ ΘL:

(PR) If X ⊂ Y ⊆ S and w1 ∈ min(X,�K⊗S) and w2 ∈
min(Y ,�K⊗S) then w1 ≺K⊗S w2.

That is, in the AGM approach we have that in K ⊗ S, the
least S worlds are ranked below the least ¬(∧S) worlds in
�K⊗S ; the condition PR extends this minimal ranking, in-
sofar as possible, to subsets of S. We obtain the representa-
tion result:

Theorem 1. Let ⊗ be a revision operator satisfying Postu-
lates (K⊗1)–(K⊗8). Then⊗ satisfies (K⊗∅) and (K⊗P )
iff it revises faithful rankings according to (PE) and (PR).

Some examples will make the ramifications of this approach
clear. Consider first K ∗ S where S = {a, b, c}, and a, b, c
are atoms. We obtain that in a faithful ranking resulting from
the revision �K⊗S , the least {a, b, c} worlds are strictly less
than the least {a, b,¬c} worlds, which in turn are strictly
less than the least {a,¬b,¬c} worlds.

We get:

a ∧ c ∈ Bel(K ∗ {a, b, c} ∗ {¬b})
a ∈ Bel(K ∗ {a, b, c} ∗ {¬b,¬c})
a ∈ Bel(K ∗ {a, b, c} ∗ {¬b} ∗ {¬c})
a ∈ Bel(K ∗ {a, b, c} ∗ {¬b ∨ ¬c})

The final result follows from the factoring result in AGM
revision; in fact it is straightforward to show that, assuming
the antecedent conditions in (K ⊗ P ), that

S1 ⊆ Bel((K ⊗ (S1 ∪ S2)⊗ {¬(∧S2)}).

Clearly, for atoms a, b, we don’t generally obtain that b ∈
Bel(K ∗ {a, a ∨ b}). However, we do obtain:

b ∈ Bel(K ∗ {a, a ∨ b} ∗ ¬a).

Thus in this case we establish a preference between a and b,
to the effect of “accept a, but if it is subsequently found to
be false, accept b.”

Essentially then, in revising by a set S, we pay attention
to not just the minimal S elements in the faithful ordering,
but also to the minimal element of subsets of S. With this
in mind, we adopt the last postulate to characterize the basic
approach. The idea is that in revising by set S, for S1 ⊂ S,
the minimal S1∪ (S \ S1) worlds should be the same before
and after revising by S. This is given in the next postulate:

(K ⊗ S) For S1 ⊆ S, S 6` ⊥, Bel(K⊗ (S1∪ (S \ S1)))
= Bel(K ⊗ S ⊗ (S1 ∪ (S \ S1))).

We have the corresponding condition on a faithful ordering:
(PS) For S1 ⊂ S and S 6` ⊥,

min(S1∪ (S \ S1),�K) = min(S1∪ (S \ S1),�K⊗S).
We obtain the representation result.
Theorem 2. Let ⊗ be a revision operator satisfying Postu-
lates (K⊗1)–(K⊗8). Then⊗ satisfies (K⊗∅) and (K⊗S)
iff it revises faithful rankings according to (PE) and (PS).

Parallel Revision and Iterated Revision
The basic approach only deals with limited situations where
we first revise by a set of formulas then by the negations of
some of these formulas. In this section, we extend the ba-
sic approach to deal with more general cases. We first show
that the straightforward generalization of the well-known it-
erated revision postulates are problematic and insufficient.
Then, we will present a postulate of evidence retainment,
which offers a better solution to the drowning problem.

We start with the following generalization of the DP pos-
tulates as suggested by (Zhang 2004).
(C1⊗) If S2 ` S1, then Bel((K⊗S1)⊗S2) = Bel(K⊗S2).
(C2⊗) If S1∪S2 is inconsistent, then Bel((K⊗S1)⊗S2) =

Bel(K ⊗ S2)



(C3⊗) If S1 ⊆ Bel(K⊗S2), then S1 ⊆ Bel((K⊗S1)⊗S2).
(C4⊗) If S1∪Bel(K⊗S2) is consistent, then S1∪Bel((K⊗

S1)⊗ S2) is also consistent.
We remark that, while (C1⊗), (C3⊗) and (C4⊗) still seem
as reasonable as their counterparts, (C2⊗) is not desirable.
First, previous criticisms of (C2) apply equally well to
(C2⊗). Second, (C2⊗) is clearly inconsistent with (K ⊗ P )
in the presence of the (adapted to sets) AGM postulates.
Hence, we do not consider (C2⊗) further as a general postu-
late for parallel revision.

For reference, the semantical conditions for the DP pos-
tulates can be generalized as follows.
(C1⊗R) If w1, w2 |= S, then w1 �K w2 iff w1 �K⊗S w2

(C2⊗R) If w1, w2 6|= S, then w1 �K w2 iff w1 �K⊗S w2

(C3⊗R) If w1 |= S and w2 6|= S, then w1 ≺K w2 implies
w1 ≺K⊗S w2

(C4⊗R) If w1 |= S and w2 6|= S, then w1 �K w2 implies
w1 �K⊗S w2

To show (C2⊗) is undesirable from another perspective, one
may argue that (C2⊗R) is overly strong: in the case where
w2 satisfies significantly more sentences of S than w1, it is
perfectly reasonable that w2 ≺K⊗S w1 even if w1 �K w2.

Similarly, we can also generalize the postulate of inde-
pendence and its corresponding semantical condition:
(Ind⊗) If S1 ∪ Bel(K ⊗ S2) is consistent, then S1 ⊆

Bel((K ⊗ S1)⊗ S2)
(Ind⊗R) If w1 |= S and w2 6|= S, then w1 �K w2 implies
w1 ≺K⊗S w2

Note that, among the above-mentioned postulates, (C2⊗)
is the only one which deals with the case where S1 and S2

are jointly inconsistent. This suggest that we need some new
postulates in order to address the “drowning” problem. As
already argued, it is too radical to give up all formulas of S1

(as imposed by (C⊗2)) just because S1 ∪ S2 is inconsistent.
The problem is, what formulas in S1 should be retained?
Intuitively, a formula α ∈ S1 should be kept if there is no
evidence (in S1) against α after learning S2. To formalize
this idea, we need the following definition:
Definition 1. Let S1, S2 be two sets of sentences. We denote
by S1||S2 the set of all subsets of S1 that are consistent with
S2, that is S ∈ S1||S2 iff:

1. S ⊆ S1

2. S ∪ S2 is consistent
Formally, the fact that there exists evidence in S1

against α after learning S2 (given the original belief stateK)
can be expressed as: ∃S ∈ S1||S2 ¬α ∈ Bel(K⊗(S∪S2)).

Based on above discussion, we obtain the so-called pos-
tulate of evidence retainment:4

(Ret⊗) If α ∈ S1 and α 6∈ Bel((K⊗ S1)⊗ S2), then ∃S ∈
S1||S2 such that ¬α ∈ Bel(K⊗ (S ∪ S2))
4This postulate is inspired by the postulate of core retain-

ment (Hansson 1997), which says a formula α is removed from a
belief set K by a contraction with β only if there is some evidence
in K that shows that α contributes to the implication of β.

Equivalently, the postulate of evidence retainment can be
rephrased as follows:
(Ret⊗) If α ∈ S1 and ∀S ∈ S1||S2 ¬α 6∈ Bel(K ⊗ (S ∪

S2)), then α ∈ Bel((K⊗ S1)⊗ S2).
Recall Example 1 with S1 = {a,m} and S2 = {¬a}.

Since S1||S2 = {{m}}, Postulate (Ret⊗) implies that (K ⊗
S1)⊗ S2 ` m, which gives us the desired result. Note that,
in case a and m make up a single piece of information (i.e.
S1 = {a ∧m}) Postulate (Ret⊗) does not apply.

To give a formal justification for (Ret⊗), we will show a
representation theorem.
Definition 2. Let S be a set of sentences and w a possible
world. Then S|w denotes the set of all element of S which
are true in w, i.e., S|w = {α ∈ S | w |= α}.

The following theorem gives a necessary and sufficient
semantical condition for (Ret⊗):
Theorem 3. Suppose ⊗ is a parallel revision operator sat-
isfies Postulates (K⊗1)–(K⊗8). Then⊗ satisfies (Ret⊗) iff
it revises faithful rankings in the following manner:
(Ret⊗R) If S|w2 ⊂ S|w1, then w1 �K w2 implies
w1 ≺K⊗S w2

Arguably, (Ret⊗R) is very natural and intuitive. It essen-
tially says: if w1 confirms more new information (in S) than
w2, and w1 is at least as plausible as w2, then w1 becomes
more plausible than w2 after revising by S. It is not difficult
to see that (Ret⊗) implies (Ind⊗) and (K ⊗ P ).
Proposition 4. Suppose ⊗ is a parallel revision operator
satisfying Postulates (K ⊗ 1)–(K ⊗ 8). Then ⊗ satisfies
(Ret⊗) only if it satisfies (Ind⊗), (K ⊗ P ).

Based on similar considerations, we present two addi-
tional postulates which also seem quite intuitive, and which
naturally extend (C3⊗) and (C4⊗).
(PC3⊗) If ∀S ∈ S1||S2 α ∈ Bel(K ⊗ (S ∪ S2)), then
α ∈ Bel((K ⊗ S1)⊗ S2)

(PC4⊗) If ∀S ∈ S1||S2 ¬α 6∈ Bel(K ⊗ (S ∪ S2)), then
¬α 6∈ Bel((K ⊗ S1)⊗ S2)

Essentially, (PC3⊗) says if all evidences in S1 supports α
after learning S2, then α must be believed; (PC4⊗) says if
no evidence in S1 is against α, then there is no reason to
believe ¬α. We present a representation theorem for (PC3⊗)
and (PC4⊗) as the formal justification.
Theorem 5. Suppose ⊗ is a parallel revision operator sat-
isfying Postulates (K⊗1)–(K⊗8). Then⊗ satisfies (PC3⊗)
and (PC4⊗) iff it revises faithful rankings in the following
manner:
(PC3⊗R) If S|w2 ⊆ S|w1, then w1 ≺K w2 implies
w1 ≺K⊗S w2

(PC4⊗R) If S|w2 ⊆ S|w1, then w1 �K w2 implies
w1 �K⊗S w2

It can be observed that (PC3⊗) and (PC4⊗) extend (C3⊗)
and (C4⊗), respectively.
Proposition 6. Suppose ⊗ is a parallel revision operator
satisfying Postulates (K ⊗ 1)–(K ⊗ 8). Then ⊗ satisfies
(PC3⊗) and (PC4⊗) only if it satisfies (C3⊗) and (C4⊗),
respectively.



Moreover, the semantical conditions of (PC3⊗) and
(PC4⊗) requires that the relative ordering of two possible
worlds remain unchanged, provided they satisfy the same
subset of the new information.
Proposition 7. (PC3⊗R) and (PC3⊗R) imply the following
semantical condition:

If S|w2 = S|w1, then w1 �K w2 iff w1 �K⊗S w2

Clearly (PC3⊗) and (PC4⊗) imply postulate (K ⊗ ∅). As
well, it is not difficult to see that (PC3⊗) and (PC4⊗) to-
gether imply (C1⊗) and (K ⊗ S).
Proposition 8. Suppose ⊗ is a parallel revision operator
satisfying Postulates (K⊗ 1)–(K⊗ 8). If ⊗ satisfies (PC3⊗)
and (PC4⊗) then it also satisfies (C1⊗) and (K ⊗ S).

Based on the above development, we suggest a general
parallel revision operator should satisfy the AGM postulates
(extended to sets), (Ret⊗), (PC3⊗), and (PC4⊗).

Conclusions and Related Work
We have developed an account of parallel belief revision,
in which the second argument to a revision function is a fi-
nite set of formulas. Each formula of the set represents an
individual item of new information, whereas multiple parts
of a single item are represented by a conjunction. We then
showed how the drowning problem of iterated revision is ad-
dressed, by presenting several postulates for parallel belief
revision. In our account we present both a basic approach,
consisting of three new postulates, and a “preferred” account
of iterated parallel revision, also consisting of three new pos-
tulates, and wherein these postulates imply the three basic
postulates. In all cases, corresponding semantic conditions
are given and representation results derived.

The idea of the changing of an agent’s beliefs in light of a
set of formulas isn’t very new. (Fuhrmann & Hansson 1994)
proposes package contraction, which is concerned with re-
moving a set of formulas from a belief set. On the other
hand, the general contraction introduced by (Zhang et al.
1997) studies how to contract a belief set so that it is consis-
tent with a set of formulas. However, neither of these papers
are concerned with iterated belief change per se. As well,
(Nayak 1994) anticipates some of the properties of parallel
revision, in an approach where both the belief state and input
are represented by epistemic entrenchment relations.

Syntactically, our approach resembles set revision (Zhang
& Foo 2001) or multiple revision (Peppas 2004). There are
two main differences. First, our focus is on iterated revi-
sion, and in particular constraints that need to be imposed
on an agent’s underlying epistemic state in order to effect
plausible revisions. Second, (Zhang & Foo 2001) and (Pep-
pas 2004) mainly study infinite sets. Therefore, set revision
or multiple revision might be useful for investigating infinite
non-monotonic reasoning, our approach is more suitable for
modelling the evolution of an agent’s belief state.

Our account of parallel revision is intended to extend the
AGM approach. In particular, revising by an inconsistent
set of formulas yields an inconsistent belief set. For future
work, an obvious, interesting, and (we believe) straightfor-
ward extension is to combine our approach with that of a

merging operator. Given some “reasonable” merging opera-
tor ∆, one could relate merging and revision as follows:

Bel(K ⊗ S) = Bel(K ⊗ (∆S)).

Hence in this case, one would expect that Bel(K ⊗
{α,¬α, β}) would be consistent and entail β, while
Bel(K ⊗ {α ∧ ¬α ∧ β}) would of course be inconsistent.
In this way, merging operators would be employed in the
service of revision, in order to obtain consistent revisions in
some cases where the input is inconsistent.

Last, as indicated in an example in the basic approach,
parallel revision may be used to encode preferences over the
revision formulas; a second, intriguing direction for future
research is to further explore this phenomenon.
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