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Abstract

We consider the iterated belief change that occurs following
an alternating sequence of actions and observations. At each
instant, an agent has some beliefs about the action that occurs
as well as beliefs about the resulting state of the world. We
represent such problems by a sequence of ranking functions,
so an agent assigns a quantitative plausibility value to every
action and every state at each point in time. The resulting
formalism is able to represent fallible knowledge, erroneous
perception, exogenous actions, and failed actions. We illus-
trate that our framework is a generalization of several existing
approaches to belief change, and it appropriately captures the
non-elementary interaction between belief update and belief
revision.

Introduction
Several formalisms have been introduced for reasoning
about belief change in the context of actions and obser-
vations, including (Shapiro et al. 2000; Herzig, Lang, &
Marquis 2004; Jin & Thielscher 2004). Roughly speaking,
agents perform belief update following actions and agents
perform belief revision following observations. Existing for-
malisms for the most part have treated actions and obser-
vations independently, with little explicit discussion about
the interaction between the two. In this paper, we consider
the belief change that occurs due to an alternating sequence
of actions and observations. We are interested in action
domains where an agent may have erroneous beliefs, both
about the state of the world as well as the action history.

Let K denote the initial beliefs of an agent, represented
as a set of possible worlds. For 1 ≤ i ≤ n, let Ai denote an
action and let Oi denote an observation. Informally, we are
interested in sequences of the form

K �A1 ∗O1 � · · · �An ∗On (1)

where � is an update operator and ∗ is a revision operator.
Such sequences may contain conflicting information. For
example, the observation On may not be possible following
the actions A1, . . . , An. In this case, there are two options.

1. Reject On.
2. Accept On, and modify A1, . . . , An.
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In order to determine which option is preferable for a spe-
cific problem, an agent needs to be able to compare the plau-
sibility of On with the plausibility of each Ai.

Expressions of the form (1) have previously been consid-
ered in (Hunter & Delgrande 2005), under the assumption
that ontic action histories are infallible and recent observa-
tions take precedence over older observations. Clearly, there
are action domains in which these assumptions are not rea-
sonable. In this paper, we propose a more flexible approach
in which actions and observations are both represented by
Spohn-style ranking functions. When presented with con-
flicting information, an agent appeals to the relative plausi-
bility of each action and observation.

This paper makes several contributions to existing work
on epistemic action effects. The main contribution is a for-
mal mechanism for representing fallible beliefs about action
histories. Existing formalisms are unable to compare the
plausibility of an action occurrence with the plausibility of
a state of the world. By using the same formal tool to rep-
resent beliefs about actions and states, we explicitly address
the manner in which prior action occurrences are postulated
or retracted in response to new observations. A second con-
tribution is a flexible treatment of unreliable observations,
in which new information need not always be incorporated.
We formulate all of our results in a simple transition system
framework that makes our treatment of action effects explicit
and easy to compare with more elaborate action formalisms.

Preliminaries
We are interested in action domains that can be described by
a finite set of fluent symbols F, a finite set of action sym-
bols A, and a transition system describing the effects of ac-
tions(Gelfond & Lifschitz 1998). A state is an interpretation
over F; we identify the state s with the set of fluent symbols
that are true in s.

Definition 1 A transition system is a pair 〈S, R〉 where S ⊆
2F, R ⊆ S ×A× S.

We restrict attention to deterministic transition systems, i.e.
we assume that 〈s,A, s′〉 ∈ R and 〈s,A, s′′〉 ∈ R implies
s′ = s′′. We also assume that A always contains a distin-
guished null action symbol denoted by λ.

A belief state is a set of states, informally the set of states
that an agent considers possible. An observation is also a



set of states. The observation α provides evidence that the
actual state is in α. We assume the reader is familiar with the
AGM approach to belief revision (Alchourrón, G ardenfors,
& Makinson 1985) and the Katsuno-Mendelzon approach to
belief update (Katsuno & Mendelzon 1992). Our approach
differs in that we consider belief revision and belief update
with respect to sets of states, rather than formulas. More-
over, we define update with respect to an action with effects
given by an underlying transition system.

Definition 2 Let T = 〈S, R〉 be a transition system. The
update function � : 2S × A → 2S is given by α � A =
{s | 〈s′, A, s〉 ∈ R for some s′ ∈ α}.
We introduce a common-sense example, to which we will
return after introducing our formal machinery.

Example Consider an action domain involving four agents:
Bob, Alice, Eve, and Trent. Bob places a chocolate chip
cookie on his desk and then leaves the room; he believes
that no one is likely to eat his cookie while he is gone. At
time 1, Bob knows that Alice is at his desk. At time 2, Bob
knows that Eve is at his desk. At time 3, Trent comes and
tells Bob that a single bite has been taken from the cookie
on his desk.

Given the preceding information, Bob can draw three
reasonable conclusions: Alice bit the cookie, Eve bit the
cookie, or Trent gave him poor information. If Bob has no
additional information about the world, then each conclu-
sion is equally plausible. However, we suppose that Bob
does have some additional information. In particular, sup-
pose that Alice is a close friend of Bob and they have shared
cookies in the past. Moreover, suppose that Bob believes
that Trent is always honest. Bob’s additional information
about Alice and Trent provides a sufficient basis for deter-
mining which of the three possible conclusions is the most
plausible.

Informally, at time 2, Bob believes that his cookie was
unbitten at all earlier points in time. After Trent tells him
the cookie is bitten, he must determine the most plausi-
ble world history consistent with this information. In this
case, the most plausible solution is to conclude that Alice
bit the cookie. Note that this conclusion requires Bob to al-
ter his subjective view of the action history. There is a non-
monotonic character to belief change in this context, because
Bob may be forced to postulate and retract actions over time
in response to new observations. We remark that, in order to
represent this kind of reasoning, we need to be able to com-
pare the plausibility of action occurrences at different points
in time.

Ranking Functions over Actions and States
Plausibility Functions
At each point in time, an agent needs a plausibility or-
dering over all actions and a plausibility ordering over all
states. Moreover, in order to resolve inconsistency at differ-
ent points in time, each of the plausibility orderings must be
comparable. One natural way to create mutually comparable

orderings is by assigning quantitative plausibility values to
every action and state at every point in time. Towards this
end, we define plausibility functions.

Definition 3 Let X be a non-empty set. A plausibility func-
tion over X is a function r : X → N.

If r is a plausibility function and r(x) ≤ r(y), then we say
that x is at least as plausible as y. In this paper, we restrict
attention to plausibility functions over finite sets.

Plausibility functions are inspired by Spohn’s ordinal con-
ditional functions (Spohn 1988), with two main differences.
First, we allow plausibility functions over an arbitrary set
X , rather than restricting attention to propositional interpre-
tations. This allows us to treat partially observable actions
in the same manner that we treat observations. The second
difference is that ordinal conditional functions must always
assign rank 0 to a non-empty subset of elements of the do-
main. Plausibility functions are not restricted in this man-
ner, the minimal rank for a given plausibility function may
be greater than 0.

We introduce some notation related to plausibility func-
tions. For any plausibility function r, let minr denote the
minimum value obtained by r and let Bel(r) = {w | r(w) =
minr}. The normalization of a plausibility function r is
the function r′ with minimum zero, defined by r′(w) =
r(w) −minr. The degree of strength of a plausibility func-
tion r is the span between the plausibility of the minimally
ranked elements and the non-minimally ranked elements.
Formally, the degree of strength of r is the least n such that
minr +n = r(v) for some v 6∈ Bel(r). There are two natu-
ral interpretations of the degree of strength of a plausibility
function r over a set of states. If we think of r as an initial
belief state, then r represents the belief that the actual state
is in Bel(r) and the degree of strength of r is an indication
of how strongly this is believed. If we think of r as an obser-
vation, then the degree of strength is a measure of reliability.
We remark that Spohn defines the degree of strength of a
subset of X , rather than the degree of strength of a ranking
function. Our definition coincides with Spohn’s definition if
we identify the degree of strength of r with Spohn’s degree
of strength of the set Bel(r). Hence, we use the same con-
ception of degree of strength, but we are only interested in
the strength of belief in the minimally ranked elements.

Graded World Views
Informally, a graded world view represents an agent’s sub-
jective view of the evolution of the world. Before defining
graded world views, we need to define the notion of a history
over a transition system.

Definition 4 Let T = 〈S, R〉 be a transition system. A his-
tory of length n is a tuple 〈w0, A1, . . . , An, wn〉 where for
each i: wi ∈ S, Ai ∈ A, and 〈wi, Ai, wi+1〉 ∈ R.

Let HISTn denote the set of histories of length n.
We are interested in action domains where an agent is un-

certain not only about the state at each point in time, but
also uncertain about the action that has been executed. As
such, at each time i, we use a plausibility function over 2F to
represent an agent’s beliefs about the state of the world and



we use a plausibility function over A to represent an agent’s
beliefs about the action that occurs.
Definition 5 A graded world view of length n is a (2n+1)-
tuple

〈OBS0, ACT1, OBS1, . . . , ACTn, OBSn〉
where each OBSi is a plausibility function over 2F and each
ACTi is a plausibility function over A.
At time i, the most plausible actions are the minimally
ranked actions of ACTi and the most plausible states are
the minimally ranked states of OBSi. As such, we take
OBS0 to represent the initial belief state, and each subse-
quent OBSi to represent a new observation. If ACT =
〈ACT1, . . . , ACTn〉 and OBS = 〈OBS0, . . . , OBSn〉,
then we write 〈ACT,OBS〉 as a shorthand for the graded
world view 〈OBS0, ACT1, OBS1, . . . , ACTn, OBSn〉.

Given a graded world view 〈ACT,OBS〉, we would like
to be able to determine the plausibility of a history h. How-
ever, 〈ACT,OBS〉 does not provide sufficient information
to pick out a unique plausibility function over histories. For
example, a graded world view does not indicate the relative
weight of recent information versus initial information.

Although a graded world view does not define a unique
plausibility function over histories, we can define a gen-
eral notion of consistency between graded world views and
plausibility functions on histories. Let 〈r0, . . . , rn〉 be a se-
quence of plausibility functions over X0, . . . , Xn, respec-
tively. Let r be a plausibility function over X0 × · · · ×Xn.
We say that r is consistent with 〈r0, . . . , rn〉 if, for every i
and every xi, x

′
i ∈ Xi

ri(xi) < ri(x′
i)

⇐⇒
r(〈x0, . . . , xi, . . . , xn〉) < r(〈x0, . . . , x

′
i, . . . , xn〉

So r is consistent with 〈ACT,OBS〉 just in case r in-
creases monotonically with respect to each component of
〈ACT,OBS〉. Any plausibility function r that is consistent
with 〈ACT,OBS〉 provides a potential candidate ranking
over histories.

An aggregate plausibility function is a function plaus
that maps every graded world view to a plausibility func-
tion on histories. An aggregate plausibility function plaus
is admissible if, for every 〈ACT,OBS〉, the function
plaus(〈ACT,OBS〉) is consistent 〈ACT,OBS〉.

We provide some examples. Note that aggregate plausi-
bility functions return a function as a value; we can specify
the behaviour of an aggregate by specifying a plausibility
value for each pair consisting of a graded world view and a
history. Let h = 〈w0, A1, . . . , An, wn〉. One admissible ag-
gregate is obtained by taking the sum of plausibility values.

sum(ACT,OBS)(h) =
n∑

i=1

ACTi(Ai) + OBSi(wi)

A weighted sum can be used to reflect the relative impor-
tance of different time points. For each i, let bi be a positive
integer.

sumw(ACT,OBS)(h) =
n∑

i=1

ACTi(Ai)+ bi ·OBSi(wi).

By setting bi = 2i, the aggregate function sumw can be
used to represent a strict preference for recent information.
The functions sum and sumw are just two simple examples;
many more examples can be defined by specifying aggregate
functions that increase monotonically with each component.

Example (cont’d) Let F = {BiteTaken} and let A =
{BiteAlice,BiteEve}. Both actions have the same effect,
namely they both make the fluent BiteTaken become true.
We need to define plausibility functions a1, a2 over actions
and plausibility functions o1, o2, o3 over states. The func-
tion ai gives the plausibility ranks for each action at Time
i and the function oi gives the plausibility ranks for each
state at Time i. Since Bob believes that no one will eat his
cookie, every ai obtains a minimum value at the null action
λ. Define a1, a2 by the values in the following table.

λ BiteAlice BiteEve
a1 0 1 10
a2 0 10 2

The fact that Alice is more likely to bite the cookie is repre-
sented by assigning a lower plausibility value to BiteAlice
at Time 1.

The plausibility function o0 represents the initial state, so
it should assign a minimum value to the state where the
cookie is unbitten. The plausibility function o2 represents
Trent’s report that the cookie has been bitten. We remark
that we will generally treat reported information as an obser-
vation, and we will use the degree of strength of the reported
information as an indication of the reliability of the source.
In this case, the degree of strength of o2 is an indication of
trust in Trent. Define o0, o1, o2 as follows.

∅ {BiteTaken}
o0 0 9
o1 0 0
o2 9 0

Note that the degree of strength of o2 is higher than the de-
gree of strength of a1 or a2. This reflects the fact that Trent’s
report is understood to supersede the assumption that Alice
and Eve do not bite the cookie. Graded world views have
been defined precisely for this kind of comparison between
action plausibilities and state plausibilities.

If we use the aggregate function sum, then we are in-
terested in finding the minimal sum of plausibilities over
〈o0, a1, o1, a2, o2〉. By inspection, we find that the minimum
plausibility is obtained by the following history:

h = 〈∅,BiteAlice,BiteTaken, λ,BiteTaken〉.
This history represents the sequence of events in which Al-
ice bites the cookie at time 1. Intuitively, this is the correct
solution: given the choice between Alice and Eve, Bob be-
lieves that Alice is the more plausible culprit.

We remark that graded world views bear a resemblance to
the generalized belief change framework proposed by Liber-
atore and Schaerf (2000). However, the Liberatore-Schaerf



approach associates a “penalty” with state change, which is
minimized when determining plausible models. As such,
it is difficult to represent problems where non-null actions
are strictly more plausible than null actions. By contrast,
graded world views have no implicit preference for null ac-
tions. Moreover, our approach differs in that we allow ac-
tions with conditional effects given by a transition system.

Subjective Probabilities
One issue that arises from our definition of a graded world
view is the fact that it is not clear how plausibility values
should be assigned in practical problems. We address this
problem by illustrating a correspondence between plausibil-
ity functions and probability functions. We simplify the dis-
cussion by restricting attention to rational-valued probability
functions as follows.

Definition 6 Let X be a non-empty set. A probability func-
tion over X is a function Pr : X → Q such that

• for all x ∈ X , 0 ≤ Pr(x) ≤ 1
•

∑
x∈X Pr(x) = 1.

At a common-sense level, it is clear what it means to say
that “action A occurred at time t with probability p.” By
contrast, the problem with plausibility values is that there is
no obvious sense of scale; it is difficult to assign numerical
plausibility values, because the numbers have no clear mean-
ing. We illustrate how probability functions can be trans-
lated uniformly into plausibility functions, thereby giving a
sense of scale and meaning to plausibility values.

Let Pr be a probability function over a finite set X . Let
Q denote the least common denominator of all rational num-
bers p

q such that Pr(x) = p
q for some x ∈ X . Define the

plausibility function r as follows.

1. If Pr(x) is minimal, set r(x) = Q.

2. Otherwise, if Pr(x) = p
Q , then set r(x) = Q− p.

Hence, every probability function can be translated into a
plausibility function.

Example (cont’d) In the cookie example, the given plausi-
bility functions are obtained by starting with the following
probability functions and then normalizing.

λ BiteAlice BiteEve
a1 .5 .45 .05
a2 .5 .15 .35

∅ {BiteTaken}
o0 .9 .1
o1 .5 .5
o2 .1 .9

This perspective on plausibility functions also provides
some justification for the use of the aggregate function sum.
In particular, if we assume that the subjective probability

functions are independent, then the probability of a given
sequence of events is determined by taking a product. In the
cookie example, we can compare the probability of Alice
biting the cookie versus Eve biting the cookie:

1. Pr(〈∅,BiteAlice,BiteTaken, λ,BiteTaken〉)
= .9× .45× .5× .5× .9 = .091125

2. Pr(〈∅, λ, ∅,BiteEve,BiteTaken〉)
= .9× .5× .5× .35× .9 = .070875

It is easy to check that the history where Alice bites the
cookie is actually the most probable history. So, in this ex-
ample, the minimally ranked history according to the aggre-
gate function sum is also the most probable history accord-
ing the sequence of probability functions. This is a general
property of our translation: maximizing probability over in-
dependent probability functions corresponds to minimizing
the sum over plausibility values. In the interest of space, we
omit the proof of this property.

Note that we have explicitly assumed plausibility func-
tions in a graded world view are independent. The likelihood
of a given action at a fixed point in time does not depend on
the state of the world. We leave the treatment of conditional
events for future work.

Graded World Views as Epistemic States
Unless otherwise indicated, we assume that plausibility val-
ues are assigned to histories by the aggregate function sum.
Although this is not the only approach to combining plausi-
bility functions, it provides a categorical example that allows
us to ground the discussion.

Graded world views can be defined that simply pick out a
distinguished set of elements of the domain. If α is a subset
of X and c is an integer, let α↑c denote the function defined
as follows:

α↑c (w) =
{

0 if w ∈ α
c otherwise

Plausibility functions of the form α↑c will be called simple.
If X is a set of states, then simple plausibility functions cor-
respond to belief states; if X is a set of actions, then simple
plausibility functions pick out the actions that are believed
to have occurred.

More generally, every graded world view defines an epis-
temic state in the sense of Darwiche and Pearl(1997). In
particular, we can define a pre-order � on states as follows.
For any states s1, s2, define s1 � s2 if and only if

sum(〈ACT,OBS〉)(h1) ≤ sum(ACT,OBS)(h2)

for some pair of histories h1, h2 with terminal states s1, s2,
respectively. For any graded world view 〈ACT,OBS〉, we
let Bel(ACT,OBS) denote the minimal states according to
this ordering.

If we think of graded world views as epistemic states, then
we can define standard belief change operations in a more
familiar manner. If rA is a plausibility function over actions
and rS is a plausibility function over states, we define • as
follows:

〈ACT,OBS〉 • 〈rA, rS〉 = 〈ACT · rA, OBS · rS〉



where · denotes concatenation. We can identify belief up-
date with the concatenation of a single action and we can
identify belief revision with the concatenation of a single
observation. This new approach to update and revision
is demonstratably more expressive than the standard ap-
proaches since it incorporates varying degrees of reliability.

Consider an expression of the form 〈INIT 〉 • 〈rA, rS〉.
In this context, INIT represents the initial beliefs of an
agent, rA represents an agent’s beliefs about the action that
has been executed, and rS represents the observed state of
the world. Assume the minimal elements have degrees of
strength deg(INIT ), deg(rA), and deg(rS) respectively.
Varying the magnitudes of these values allows us to capture
several different underlying assumptions.

1. Fallible initial beliefs: deg(INIT ) < deg(rA) and
deg(INIT ) < deg(rS).

2. Erroneous perception: deg(rS) < deg(INIT ) and
deg(rS) < deg(rA).

3. Fallible action history: deg(rA) < deg(INIT ) and
deg(rA) < deg(rS).

By manipulating degrees of strength in this manner, we can
also represent exogenous actions, additive evidence, and
noisy observations.

Comparison with Existing Formalisms
Single Shot Belief Change
In this section, we consider graded world views from the per-
spective of single-shot belief change. The initial epistemic
state is given by a graded world view, and we are interested
in the belief change that occurs when a single action or ob-
servation is added. We first consider the case of a single
ontic action.

Proposition 1 Let 〈ACT,OBS〉 be a graded world view
and let 0 denote a constant plausibility function on states.
For any plausibility function r over A with Bel(r) = {A},

Bel(〈ACT,OBS〉 • 〈r, 0〉) = Bel(〈ACT,OBS〉) �A.

Hence, for a single action, we need not consider the entire
action history. If we are only interested in the most plau-
sible outcome states, we need only consider the belief state
defined by the initial graded world view.

In the case of a single observation, we are interested in
comparing graded world views with AGM revision opera-
tors. There are two senses in which graded world views are
clearly more expressive than AGM operators. First, when
we add a new observation to a graded world view, we get
a new pre-order over states; so graded world views are able
to represent more sophisticated approaches to iterated revi-
sion. Second, graded world views allow unreliable observa-
tions that need not be incorporated into an agent’s beliefs.
Both of these distinctions are unimportant if we restrict at-
tention to a single observation with a sufficiently high degree
of reliability. Under these restrictions, graded views can es-
sentially be captured by AGM revision operators. We make
this claim precise in the next propositions.

First, we prove that every plausibility function defines a
system of spheres. For any n, let r[n] denote the set of com-
plete, consistent theories over F that are satisfied by some I
with r(I) ≤ n.
Proposition 2 Let r be a plausible function over a finite ac-
tion signature. The collection R = {r[n] | n ≥ minr} is a
system of spheres centered on r[minr].
By combining this with Grove’s representation result (Grove
1988), we can prove that a graded world view can be repre-
sented by an AGM revision operator when we restrict atten-
tion to observations with high degree of strength.
Proposition 3 Let 〈ACT,OBS〉 be a graded world view.
There is an AGM revision function ∗ and a natural number
n such that, for any plausibility function r over states with
degree of strength at least n,

Bel(〈ACT,OBS〉 • 〈λ↑n, r〉)
= Bel(〈ACT,OBS〉) ∗Bel(r).

Proposition 3 states that, for a single observation, the most
plausible states can be determined by AGM revision. The
converse is also true.
Proposition 4 Let ∗ be an AGM revision operator and let K
be a belief state. There is a graded world view 〈ACT,OBS〉
with Bel(〈ACT,OBS〉) = K and a natural number n such
that, for every non-empty observation α,

K ∗ α = Bel(〈ACT,OBS〉 • 〈λ↑n, r〉)
where r is any plausibility function over states where the
minimal ranked elements α have degree n.
Propositions 3 and 4 illustrate that, if we are only interested
in the final belief state, then graded world views are equiva-
lent to AGM revision when we restrict attention to a single
observation with a sufficiently high degree of reliability.

Spohn uses ranking functions to define a more gen-
eral form of belief change called conditionalization (Spohn
1988). The idea is that new evidence is presented as a pair
(α, m), where m indicates the strength of the observation
α. Given a plausibility function r over states, the condi-
tionalization r(α,m) is a new plausibility function where the
minimal α-worlds receive plausibility 0 and the rank of non
α-worlds is shifted upwards by m. We can define condi-
tionalization in terms of graded world views by defining the
following plausibility function

rC(α, m) (w) =
{

0 if w ∈ α
m + min(α) if w 6∈ α

where min(α) denotes the minimum value that r assigns to
an element of α.
Proposition 5 For any r, α, m, the ranking function r(α,m)

is the normalization of the function r + rC(α, m).
It is easy to generalize Proposition 5 to the case of graded
world views. Briefly, since 〈ACT,OBS〉 defines a plausi-
bility function over final states, we can simply consider the
corresponding function rC .

We remark that the epistemic extension of the Fluent Cal-
culus provides an axiomatic treatment of plausibility mini-
mization (Jin & Thielscher 2004). However, since the Fluent



Calculus is not concerned with partially observable actions,
it is not possible to represent graded world views in the cur-
rent framework. This would be an interesting topic for future
research.

Iterated Epistemic Action Effects
Iterated epistemic action effects are treated in (Hunter &
Delgrande 2005). It is pointed out that alternating sequences
of updates and revisions should not be computed by naively
applying successive operations; instead a set of rationality
postulates is presented, and so-called belief evolution oper-
ators are introduced to give a reasonable treatment of the
interaction between update and revision. Let K be a belief
state, let A = A1, . . . , An be a sequence of action symbols
and let O = O1, . . . , On be a sequence of observations. A
belief evolution operator ◦ is defined such that we have the
following informal correspondence

K ◦ 〈A,O〉 ≈ K �A1 ∗O1 � · · · �An ∗On.

There are two underlying assumptions in the definition of
belief evolution. First, there is a reliability ordering over all
observations. Second, the action history is assumed to be
correct.

Let K, O,A be as above, define θ(K, 〈A,O〉) =
〈ACT,OBS〉 where:

1. OBS0 = K ↑1
2. For 1 ≤ i ≤ n, OBSi = Oi ↑2i

3. For 1 ≤ i ≤ n, ACTi = Ai ↑2n+1

Proposition 6 For any K, O,A as above, K ◦ 〈A,O〉 =
Bel(θ(K, 〈A,O〉)).
We remark that this translation is not surjective; there are
graded world views that do not correspond to any belief evo-
lution operator. Also, note that if we restrict attention to null
actions, this translation gives Nayak’s lexicographic iterated
revision operator (Nayak 1994).

Another approach to reasoning about the evolution of an
agent’s beliefs in a non-static world is provided by belief
extrapolation (Dupin de Saint-Cyr & Lang 2002). Belief
extrapolation operators are intended to capture the manner
in which an agent’s beliefs should evolve in response to un-
predicted change. A belief extrapolation operator l maps a
sequence of observations to a set of preferred histories. We
say that a belief extrapolation operator is representable if
there is a graded world view with the same set of preferred
histories.
Proposition 7 There is a belief extrapolation operator l
that is not representable.
The proof of Proposition 7 is constructive and it demon-
strates that there is a simple, concrete, extrapolation oper-
ator that is not representable. The key point is that a be-
lief extrapolation operator is defined with respect to a sin-
gle ordering over histories, whereas a graded world view is
defined with respect to several independent orderings over
states. We remark that belief extrapolation operators are not
strictly more expressive than graded world views, however.
Belief extrapolation does not assume an underlying transi-
tion system, so it does not allow for actions with conditional
effects.

Conclusion
We have introduced a formalism for reasoning about se-
quences of actions and observations. The formalism uses
Spohn-style ranking functions at each instant to determine
the most plausible action or observation, and determines the
most plausible histories by an aggregate function over all in-
stants. We have proved that the formalism subsumes belief
revision, belief evolution, and conditionalization. Moreover,
it is suitable for the representation of fallible beliefs, erro-
neous perception, exogenous actions, and failed actions. We
have used transition systems for the representation of actions
in order to facilitate comparison with a wide range of action
formalisms. In future work, we will be interested in axiom-
atizing the belief change that is permitted by the class of
admissible aggregate functions.
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