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Abstract

A standard assumption underlying traditional accounts of be-
lief change is the principle of minimal change, that an agent’s
belief state should be modified minimally to incorporate new
information. In this paper we introduce a novel account of
belief change in which the agent’s belief state is modified
minimally to incorporate exactly the new information. Thus a
revision by p∨q will result in a new belief state in which p∨q
is believed, but a stronger proposition (such as p ∧ q) is not,
regardless of the initial form of the belief state. This form of
belief change is termed conservative belief change and corre-
sponds to a Gricean interpretation of the input formula. We
investigate belief revision in this framework, and provide a
representation result between a set of postulates characteris-
ing this form of belief change and a construction in terms of
systems of spheres. This approach is extended to that of be-
lief revision with respect to a specified context. Last, we show
how this approach resolves a longstanding problem in belief
revision.

1 Introduction
An agent interacting with an external environment will need
to maintain its stock of beliefs in the face of new informa-
tion. Such belief change is not arbitrary, but rather is usually
taken to be guided by various rationality criteria. One of
the most widely accepted rationality criteria is the princi-
ple of minimal change: that a belief state is modified min-
imally to incorporate new information. This principle has
many guises (Makinson 1993; Rott 2000). Perhaps the most
evident way in which a change in belief can be said to be
minimal is in terms of standard constructions such as sys-
tems of spheres (Grove 1988) or epistemic entrenchment
(Gärdenfors & Makinson 1988), i.e., orderings of logical in-
terpretations or orderings of sentences.

In this paper we introduce an account of belief change in
which “minimal change” is taken with respect to the new
information. We examine an account of belief change in
which all we wish to accept is the new information itself—
no more, no less. This is reminiscent of the Gricean princi-
ple of Conversational Implicature, in particular, The Maxim
of Quantity, that in interpreting a speaker we should assume
that the speaker means no more, and no less, than what she
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says. Our approach ensures that, in a sense to be specified,
exactly the sentence accepted as evidence is incorporated.
Thus for example if an agent believed that p∧q was true and
was subsequently informed that p ∨ q was the case, then in
the resulting belief state the agent would believe only p ∨ q.
This is in contrast with the standard account, in which re-
vision by an implied sentence has no effect; here this has
the effect of weakening the belief state. It proves to be the
case that a modified knowledge base in this new approach
is a conservative extension (see Section 3) of the sentence
for belief change; consequently we term this conservative
belief change. We provide a characterisation of this form
of belief change in terms of a set of postulates and in terms
of a construction involving systems of spheres (i.e., order-
ings over logical interpretations); a representation result es-
tablishes a correspondence between these characterisations.
This approach is extended to a context-dependent approach
to belief change. A revision of a belief set is now with re-
spect to a context (a set of atoms) and a formula; intuitively
the idea is that for a revision, the given formula is exactly
what is known about the provided context.

The paper is organised as follows. In the next section
we give some motivating examples that highlight particular
aspects of our proposal; as well we examine related work.
Section 3 provides the necessary background material. In
Section 4 we outline our proposed method of belief change.
Section 5 discusses the significance of these results and Sec-
tion 6 presents our conclusions. Proofs of theorems are
given in an extended version of this paper, as is the treat-
ment of belief update in this approach.

2 Motivation and Examples
The following example illustrates the traditional account of
integrating new information in accord with the principle of
minimal change. We write K ∗ α to denote the belief set
resulting from the revision of K by the sentence α.

Example 1 (Exclusive disjunctive revision) Leslie and
Robin are two students who share a flat above yours. They
are independent and have their own circles of friends. One
evening, you believe that both are out of town,K ≡ ¬l∧¬r.
However, you hear unmistakable sounds of domestic activ-
ity. You modify your beliefs minimally to account for this
new information, and so you conclude just that one of them



has gone out, i.e. K ∗ (l ∨ r) ≡ (l ↔ ¬r).1

To be sure, this result is not dictated by the standard revision
postulates (see Section 3). However, if the assumption that
Leslie and Robin are independent and have their own cir-
cles of friends is taken seriously, and coded into the system
of spheres accompanying the belief set K, then this result
becomes the most plausible minimal change.2 This phe-
nomenon recurs in the standard distance-based approaches
to update of (Winslett 1990; Forbus 1989), as well as in the
belief revision counterparts. The next example illustrates
that these results aren’t always desirable.

Example 2 (Inclusive disjunctive revision) 3 There are
two rooms in a warehouse, one on the left and another on the
right. Let l and r denote the fact that the respective rooms
are not empty. You believe that there are a number of boxes
(that can fit together in a single room) outside the warehouse
and the rooms are empty, and so K ≡ ¬l ∧ ¬r. You are
later informed that it had been raining, and the boxes had
been moved inside. You conclude just that the rooms are not
empty, i.e. K ∗ (l ∨ r) ≡ (l ∨ r).

On the face of it, this example violates the principle of mini-
mal change. As well it conflicts with the aforecited distance-
based approaches, which dictate that the result be l ↔ ¬r,
that all the boxes are in one room or the other. The next ex-
ample is expressed in first-order terms, but has an obvious
propositional encoding over a finite domain.

Example 3 (Generalised inclusive disjunctive revision)
A robbery has taken place; with no other information,
we have K ≡ ∃xR(x), that someone is a robber. It
is subsequently learned that there were exactly three
people A, B, and C present at the time of the robbery,
that is φ = (R(A) ∨ R(B) ∨ R(C)). We conclude that
K ∗ φ ≡ (R(A) ∨ R(B) ∨ R(C)) – i.e. the robber(s)
constitutes a (nonempty) subset of {A,B,C}. However
standard accounts of minimization (e.g., Dalal’s revision
operator) stipulate thatK ∗φ entail that R is true of exactly
one of {A,B,C}.

Example 1 comprises the standard interpretation of belief
revision: the belief set is modified in a minimal fashion so
as to incorporate a formula consistently. Examples 2 and 3
comprise a distinct sense for belief change, in which for a
revision by a formula φ, exactly φ is to be incorporated into
the belief set. ConsiderK ∗ (p∨ q). If the idea is that all we
know about p and q is that p∨ q is true, then we would want
the possible combinations of truth values {p, q}, {¬p, q},

1We use ↔ for material biconditional and ≡ for logical equiv-
alence.

2If we assumed to the contrary that Leslie and Robin always
do things together, and reflect this information in the system of
spheres, then minimal change of beliefs leads you to believe that
neither of them has gone out, i.e., K∗(l∨r) ≡ (l∧r), as expected.
However both in this example as in the next, we take l ∧ r to be
less plausible than either of l ∧ ¬r and ¬l ∧ r in order to examine
the problem from the same footing.

3It is contentious whether this example illustrates update or re-
vision. We take it to be revision since information about the current
state of the world is learned.

and {p,¬q} to be considered possible, and so be consistent
with K ∗ (p ∨ q). In this example, the atoms p and q supply
an implicit context. We can extend this notion by giving
an explicit context, where a context (or, subject matter) is
comprised of some set of atoms. Thus a revision of belief
set K by p in the context {p, q}, say K ∗ ({p, q}, p), would
be intended to convey that, of the context {p, q}, precisely p
will be known to be true; in particular, neither q nor ¬q will
be believed in the resulting belief set.

This sense is reminiscent of Gricean conversational im-
plicature (Grice 1989) wherein a speaker is required to be
maximally informative. Thus if a listener is told that p ∨ q
is true, then the communicator does not know which of
p, q are true; if they did, they would have conveyed the
stronger information to the listener. A similar notion has
been studied by Lakemeyer and Levesque (see (Lakemeyer
& Levesque 2000)) dealing with “only-knowing” or “only-
knowing about”. These concepts arise in autoepistemic de-
fault reasoning where one may want to assert that all an
agent knows is φ or all that an agent knows about α is φ.

An example similar to Example 2 has been addressed in
(Herzig & Rifi 1999) in what is there called “the problem
of disjunctive input.” Their diagnosis is that the problem
arises from how disjunction is interpreted. Here, in contrast,
we argue that a deeper issue is manifested in these exam-
ples involving disjunction and, further, that there is a sec-
ond, distinct way in which belief change can be interpreted,
in which the input formula for belief change expresses all
that is known concerning the propositions expressible in the
language of this formula. Technically in our approach this
will amount to the result of a belief change being a conserva-
tive extension (Section 3) of the formula to be incorporated
into the belief set. As we discuss later, this division is es-
sentially the dual of the revision/update distinction for types
of belief change. As well, we show that this distinction pro-
vides a resolution to a longstanding problem concerning the
recovery postulate in belief revision.

3 Background

The underlying logic will be classical propositional logic.
We consider a finitary propositional languageL, over a set of
atoms, or propositional letters, P = {a, b, c, . . .}, and truth-
functional connectives ¬, ∧, ∨, ⊃, and ↔. L also includes
the truth-functional constants > and ⊥. To clarify the pre-
sentation we shall use the following notational conventions.
Upper-case Roman characters (A, B, . . .) denote consistent
conjunctions of literals from L. Lower-case Greek charac-
ters (φ, ψ, ξ, . . .) denote arbitrary sentences of L.

An interpretation of L is a function from P to {T, F};M
is the set of interpretations of L. A model of a sentence φ
is an interpretation that makes φ true, according to the usual
definition of truth. A model can be equated with its defining
set of literals. |φ|L denotes the set of models of sentence φ
over language L. For interpretation ω we write ω |= φ for
φ is true in ω. For φ ∈ L, we will define L(φ), the lan-
guage in which φ is expressed, as comprising the minimum
set of atoms required to express φ, as follows, where φp

q is



the result of substituting atom q everywhere for p in φ:

L(φ) = {p ∈ P | φp
> 6≡ φ

p
⊥} ∪ {>,⊥}

Thus L(p ∧ (q ∨ ¬q)) = L(p) = {p}. This can be extended
to sets of sentences in the obvious way. It follows trivially
that if |= φ↔ ψ then L(φ) = L(ψ).

We will make use of the notion of a conservative exten-
sion of one set of sentences by another.

Definition 1 For Γ1 ⊆ Γ2 ⊆ L, Γ2 is a conservative exten-
sion of Γ1 iff for every φ ∈ L(Γ1), if Γ2 |= φ then Γ1 |= φ.

Intuitively Γ2 is a conservative extension of Γ1 iff Γ2 ex-
tends Γ1 but tells us nothing more about sentences that are
in the language of Γ1. Γ2 may entail sentences in its ex-
tended language of course but as far as the language which
it shares with Γ1 is concerned, it says no more than Γ1.

3.1 Belief Revision
A common approach in addressing belief revision has been
to provide a set of rationality postulates for belief change
functions. The AGM approach (see (Gärdenfors 1988)) pro-
vides the best-known set of such postulates. Belief states are
modelled by sets of sentences, called belief sets, closed un-
der the logical consequence operator of a logic that includes
classical propositional logic. Thus a belief set K satisfies
the constraint: φ ∈ K if and only if K logically entails φ.
K can be seen as a partial theory of the world. For belief set
K and formula φ,K+φ is the deductive closure ofK∪{φ},
the expansion of K by φ. K⊥ is the inconsistent belief set
(i.e. K⊥ = L).

Revision represents the situation in which the new infor-
mation may be inconsistent with the reasoner’s beliefs K
and needs to be incorporated in a consistent manner where
possible. A revision function ∗ is a function from 2L ×L to
2L satisfying the following postulates.

(K ∗ 1) K ∗ φ is a belief set.

(K ∗ 2) φ ∈ K ∗ φ.

(K ∗ 3) K ∗ φ ⊆ K + φ.

(K ∗ 4) If ¬φ 6∈ K, then K + φ ⊆ K ∗ φ.

(K ∗ 5) K ∗ φ = K⊥ iff |= ¬φ.

(K ∗ 6) If |= φ ↔ ψ, then K ∗ φ = K ∗ ψ.

(K ∗ 7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) + ψ.

(K ∗ 8) If ¬ψ 6∈ K ∗ φ, then (K ∗ φ) + ψ ⊆ K ∗ (φ ∧ ψ).

Motivation for these postulates can be found in (Gärdenfors
1988). A dual operator, called contraction, is similarly de-
fined, so that for a contraction of φ from K, denoted K−̇φ,
the result is a belief set in which φ is not believed. See
(Gärdenfors 1988) for the set of contraction postulates.

Various constructions have been proposed to characterise
belief revision. We will make reference to Grove’s use of
a system of spheres (SOS) model for characterizing AGM
revision (Grove 1988). A system of spheres centred on X
is a total preorder on the set of interpretations (or: possible
worlds), ≤SOS , in L such that for ω ∈ M we have that:
ω ∈ X iff ω ≤ ω′ for all ω′ ∈ M . (That is, X is the
least set of worlds in the preorder.) We will often omit the

subscript from ≤SOS for readability. Revision is defined for
|K|L = X by

|K ∗ φ|L = min
≤SOS

{ω ∈ M | ω |= φ} (1)

where min{} denotes the minimal models under ≤. Grove
shows that for every belief revision operator satisfying the
AGM postulates there is a system of spheres characterising
that operator, and vice versa.

4 Approach
4.1 Conservative Belief Revision
We use ∗̂ to denote the type of belief revision described
in Section 2, called “conservative belief revision” or “C-
revision.” The idea we wish to capture is that, for K ∗̂φ,
φ is exactly what will be believed in the resulting belief set,
relative to the “subject matter” φ. So for K ∗̂ ((p ∨ q) ∧ r)
the idea is that (p ∨ q) ∧ r constrains the truth values of
atoms in {p, q, r}, and that exactly (p∨q)∧r will be known
about these atoms in the resulting belief set. In particular,
strengthenings of p ∨ q, such as p or p ↔ ¬q will not be
true in the resulting belief set. This will be the case even
when K implies p or p ↔ ¬q; hence revision may in fact
yield a weakening of the belief set. This restriction does not
hold for sentences not in L(φ). The assumption is that the
new information is more reliable than that contained in the
current belief set. Further, the new information completely
overrides what was previously believed.

The semantic intuition behind our proposal is easily vi-
sualised. In Figure 1 we consider a revision where the
underlying language is generated from atoms x, y and z.
The agent believes x ∧ ¬y ∧ z and encounters evidence
¬x∨¬y. Accordingly the interpretations are partitioned into
four cells corresponding to the interpretations over the lan-
guage L(¬x ∨ ¬y). The best worlds from each of the three
cells satisfying ¬x ∨ ¬y are chosen to represent the revised
belief set. Clearly, the belief content of the new belief set
modulo L(¬x ∨ ¬y) will be exactly ¬x ∨ ¬y. Beliefs re-
garding z will depend on extralogical factors, namely the
plausibility of different worlds.

 xyz¬

xy  z¬      ¬

x  y   z   ¬    ¬

x  yz¬   ¬

xyz

xy  z      ¬

[x  y]     ¬

[xy]

[  x  y]  ¬   ¬

[  xy]  ¬

x   y
   z

¬    ¬
     ¬

x  yz   ¬

Figure 1: Conservative Revision – Semantics



Now, in determining C-revision, we consider the plausibil-
ity of different worlds represented in Figure 1 by the con-
centric “rings” in the system of spheres model. The worlds
that are more centrally located are more plausible. Ac-
cordingly, from the |x¬y| cell, the world x¬yz is selected,
whereas worlds ¬xy¬z and ¬x¬y¬z are selected from the
cells |¬xy| and |¬x¬y| respectively. Since some of these se-
lected worlds satisfy z and some ¬z, under this plausibility
ordering belief z is lost. In fact, new beliefs regarding z are
captured by the beliefs x ↔ z and y ∨ z. We can formal-
ize this analogously to Grove’s system of spheres model for
characterizing AGM revision. Revision was defined in (1).
We have an analogous definition for C-revision:4

|K ∗̂φ|L =
⋃

σ∈|φ|L(φ)

min
≤SOS

{ω ∈ M | ω |= σ}. (2)

A key result is captured by the following theorem:

Theorem 1 For any belief set K and input sentence φ,
K ∗̂φ is a conservative extension of φ, i.e., for ψ ∈ L(φ), if
K ∗̂φ |= ψ then φ |= ψ.

We also obtain the following results relating this approach
to AGM revision.

Theorem 2 Let ∗̂ be obtained from a systems of spheres
≤SOS and let ∗ be the AGM revision obtained from ≤SOS .

1. K ∗̂φ ⊆ K ∗ φ.
2. K ∗̂A = K ∗A.5

This raises the question of whether a specific C-revision
function can be captured using the standard definition of re-
vision (1) in a suitably-constructed system of spheres. In
general the answer is negative; for a counterexample, con-
sider where L = {p, q} and we are given a C-revision
function such that K ≡ ¬p ∧ ¬q and in which K ∗̂ p =
K ∗̂ (p ∧ q). This entails the constraints on the ordering:
{¬p,¬q} < {p, q}, < {p,¬q}. However, as is easily veri-
fied,K ∗̂ (p∨q) ≡ p∨q. This cannot be obtained by standard
revision given the above constraints on the ordering, since it
requires {p, q}, {¬p, q} and {p,¬q} at the same level.

While a given system of spheres determines a unique C-
revision (as constructed by (2)), the converse in general does
not hold. The following example demonstrates this point.

Example 4 Consider two SOS’s: SOS1: . . . < xyz <
x¬y¬z and SOS2: . . . < x¬y¬z < xyz, where
the . . . in the orderings represent an identical subsequence.
The C-revision based on these SOS’s (using (2)) exhibit
identical behaviour since no cell of any partition based
on a sub-language of {x, y, z} will pick up exactly the set
{xyz, x¬y¬z}.

Thus we notice an asymmetry between the classical AGM
account of belief revision and C-revision. An AGM revision
operation ∗, given a fixed belief set K, determines a unique

4Since φ is a formula and by definition finite, a model of φ over
the language of φ will be finite; hence we are justified in conflating
the model σ with a formula, viz. a conjunction of literals.

5Recall that formulas A, B, . . . , are conjunctions of literals by
convention.

system of spheres. On the other hand, the C-revision oper-
ation, given a fixed belief set K, corresponds to a class of
systems of spheres. It is of interest to characterise the class
of systems of spheres that a given C-revision operation ∗̂
determines. We have such a characterisation:

Definition 2 Two systems of spheres, ≤1 and ≤2 are ∗̂ -
equivalent iff for every sentence φ ∈ L, K ∗̂≤1φ =
K ∗̂≤2φ, where |K| is the set of ≤{1,2}-minimal6 worlds
and ∗̂≤1 and ∗̂≤2 are defined from ≤1 and ≤2 using (2).

Our goal is to characterise in formal terms the set of SOS’s
that are ∗̂ -equivalent to a given SOS. Toward this end, we
offer the following construction:

Definition 3 Let ≤ be a given SOS. We say an SOS ≤′ is a
C-transform of ≤ iff the former can be constructed from the
latter in the following manner: (1) Consider any two worlds
ω and ω′. If there is a consistent set S of literals over L such
that both ω |=

∧
(S) and ω′ |=

∧
(S), and ω is ≤-minimal

among all worlds satisfying
∧

(S), then ω ≤ ω′ iff ω ≤′ ω′

(note that since
∧

(ω) ≡ ω we obtain a reflexive ≤′); and
(2) After obtaining all those constraints on ≤′, we complete
it as we wish to get a total preorder ≤′.

It is easily verified that C-transformation is a symmetric rela-
tion, i.e., if ≤′ is a C-transform of ≤, then≤ is a C-transform
of ≤′. The following is a simple example illustrating this
construction:

Example 5 Assume a language based on atoms {p, q, r}.
Let ≤ be: {¬p¬q¬r,¬p¬qr} < {¬pq¬r,¬pqr} <
{p¬q¬r} < {p¬qr} < {pq¬r, pqr}. If we compare worlds
pq¬r and p¬qr, the only relevant conjuncts are p and >.
Since neither of these worlds are ≤-minimal either in |>|
(all worlds) or |p| (worlds satisfying p), no particular con-
straint on ≤′ is generated by this comparison. On the other
hand, if we compare pq¬r and ¬pqr, we notice that the rele-
vant conjuncts are q and >. Since, among worlds satisfying
q, we have ¬pqr as one of the ≤-minimal elements, and also
¬pqr < pq¬r it follows that ¬pqr <′ pq¬r

The reader is invited to verify that, given this definition,
the two SOS’s, SOS1 and SOS2 used in Example 4 are
actually C-transforms of each other. This suggests that
there is a close connection between the two concepts, C-
transformation and ∗̂ -equivalence. In fact the following the-
orem shows that C-transformation actually captures the set
of total preorders that are ∗̂ -equivalent to each other.

Theorem 3 Two preorders ≤ and ≤′ are C-transforms of
each other iff they are ∗̂ -equivalent.

We consider next the properties that characterise C-revision
functions.

4.2 Postulates
Recall that upper-case Roman characters (A, B, . . .) denote
consistent conjunctions of literals from L, and lower-case
Greek characters (φ, ψ, ξ, . . .) denote arbitrary sentences
of L. A C-revision function is a function ∗̂ : 2L ×L → 2L

satisfying the following postulates.

6The ≤1-minimal worlds and the ≤2-minimal worlds are both
equal to |K| otherwise they are not appropriate for revising K.



(K ∗̂ 1) K ∗̂φ is a belief set

(K ∗̂ 2) φ ∈ K ∗̂φ

(K ∗̂ 3) K ∗̂A ⊆ K +A

(K ∗̂ 4) If ¬A 6∈ K, then K +A ⊆ K ∗̂A

(K ∗̂ 5) K ∗̂φ = K⊥ iff |= ¬φ.

(K ∗̂ 6) If |= φ ↔ ψ, then K ∗̂φ = K ∗̂ψ

(K ∗̂ 7) K ∗̂ (A ∧ B) ⊆ (K ∗̂A) +B

(K ∗̂ 8) If ¬B 6∈ K ∗̂A, then (K ∗̂A)+B ⊆ K ∗̂ (A∧B).

(K ∗̂ 9) If φ 6|= ⊥, then there is anA 6|= ⊥ such that,A |= φ
and for all B, ¬φ 6∈ K ∗̂B implies A ∧ B |= K ∗̂B

(K ∗̂ 10) If A |= φ and L(A) ⊆ L(φ) then K ∗̂φ ⊆ K ∗̂A.

(K ∗̂ 11) If ¬A 6∈ K ∗̂φ, then there is a C such that C |= φ
and ¬A 6∈ K ∗̂C, and L(C) ⊆ L(φ).

Postulates (K ∗̂ 1) – (K ∗̂ 8) are the standard AGM pos-
tulates with the proviso that postulates (K ∗̂ 3), (K ∗̂ 4),
(K ∗̂ 7) and (K ∗̂ 8) are restricted to consistent conjunctions
of literals. Postulate (K ∗̂ 9) compensates for the weaken-
ing of these postulates. It states that for every consistent
formula φ there is a stronger conjunction of literals A capa-
ble of accounting for any other C-revision, consistent with
φ, by a conjunction of literals.7 It is possible to show that
the general, AGM, versions of postulates (K∗3) and (K∗7)
follow from these postulates. Postulate (K ∗̂ 10) says that if
A |= φ, then the only reason for K ∗̂φ to not be included in
K ∗̂A is because the language of A is outside the minimum
language of φ. Postulate (K ∗̂ 11) essentially states the con-
verse: the only reason that a conjunction of literals A is in
K ∗̂φ is that there is some conjunction of literals C (in fact,
a prime implicant of φ) such thatA is inK ∗̂C. It is possible
in fact to rephrase (K ∗̂ 10) and (K ∗̂ 11) in terms of prime
implicants:

(K ∗̂ 10′) If A |= φ and K ∗̂φ 6⊆ K ∗̂A, then there is a
literal L such that A |= L, and L is neither entailed nor
contradicted by any prime implicant of φ.

(K ∗̂ 11′) If ¬A 6∈ K ∗̂φ, then ∃C such that C |= φ and
¬A 6∈ K ∗̂C, and for all literals L, if C |= L, then L is
either entailed or contradicted by a prime implicant of φ.

The following postulate is also of interest.

(K ∗̂ 12) K ∗̂A is the largest theory satisfying postulates
(K ∗̂ 1) – (K ∗̂ 10).

It is possible to show that this postulate is equivalent to
(K ∗̂ 11) in the presence of postulates (K ∗̂ 1) – (K ∗̂ 10).

Proposition 1 Postulates (K ∗̂ 11) and (K ∗̂ 12) are equiv-
alent given (K ∗̂ 1) – (K ∗̂ 10).

For a representation result, the soundness of (K ∗̂ 1) –
(K ∗̂ 11) is relatively straightforward:

Theorem 4 Let K be a theory and ≤SOS a system of
spheres centred on |K|L. The function ∗̂ induced from
≤SOS via (2) satisfies (K ∗̂ 1) – (K ∗̂ 11).

7This postulate can be better motivated in terms of models
where it guarantees that among each non-empty set of models of
φ, |φ|L, there is a non-empty set of “best” models |A|L.

For the completeness of the axioms, we proceed in two
steps: (i) we consider the special case of consistent con-
junctions of literals, for which C-revision reduces to classi-
cal AGM revision, and prove the completeness of (K ∗̂ 1) –
(K ∗̂ 9), and (ii) extend the results to arbitrary sentences and
include (K ∗̂ 10) and (K ∗̂ 11). More precisely, we have:

Theorem 5

1. Let K be a theory and ∗̂ a revision function satisfying
(K ∗̂ 1) – (K ∗̂ 9). There exists a system of spheres ≤SOS

centred on |K|L, such that for any consistent conjunction
of literals A, |K ∗̂A|L = min≤SOS

{ω ∈ M | ω |= A}

2. Let K be a theory and ∗̂ a revision function satisfying
(K ∗̂ 1) – (K ∗̂ 11). There exists a system of spheres
≤SOS centred on |K|L, such that ∗̂ is identical to the
C-revision function induced from ≤SOS .

4.3 Context-Dependent Revision
We defined L(φ) as comprising the least set of atoms re-
quired to express φ. Thus L(φ) provides an implicit con-
text for revision, in that following the C-revision K ∗̂φ, all
conjunctions of literals corresponding to models of φ over
L(φ) are satisfied by the resulting belief set. This can be
generalised to revision of the form K ∗̂ (C, φ),8 such that
L(φ) ⊆ C ⊆ P, and the intuition is that K is to be revised
so that all that is known concerning the context C is φ.

As an example of context sensitive revision, consider the
revision of a belief set {a ∧ b ∧ c ∧ d} by a ∨ b. Let a, b
and c stand respectively for Albert, Becky and Charles being
involved in a bank robbery, and d stand for Doug being a
geologist. The input a ∨ b suggests that the context is the
relevant bank robbery, represented by {a, b, c}. We would
expect that after the revision, we would no longer suspect
Charles of robbery, and whether or not we would still believe
that Doug is a geologist would depend on extraneous factors.
Otherwise, if we let c stand for Charles being a nice dad (and
a, b and d as before) we would expect that the context is
simply {a, b}, and as a result of the revision, whether or not
c would be maintained will depend on extraneous factors.

We can formalize this analogously to C-revision, as in (2)
and again using Grove’s system of spheres model. For K ⊆
L, φ ∈ L, and L(φ) ⊆ C ⊆ P define:

|K ∗̂ (C, φ)|L =
⋃

σ∈|φ|C

min
≤SOS

{ω ∈M | ω |= σ}. (3)

We obtain for any belief set K, context C, and input sen-
tence φ, that K ∗̂ (C, φ) is a conservative extension of C in
which φ is true. As well, we obtain the following results:

Theorem 6 Let ∗̂ and ∗ (representing AGM revision) be
obtained from a system of spheres ≤SOS .

1. K ∗̂ (C, φ) ⊆ K ∗ φ.
2. If L(A) = C then K ∗̂A = K ∗A.
3. K ∗̂ (P, φ) ≡ φ.

8Writing K ∗̂ (C, φ) as well as K ∗̂φ overloads the symbol ∗̂ .
However the revision operator intended is clear from the use of ∗̂ .



The third result is justified by the fact that we work with a
finitary language; it states that, as a special case, when the
context is the full set of atoms, context-sensitive revision
corresponds to full-meet revision.

Clearly C-revision can be defined in terms of context sen-
sitive revision by defining K ∗̂φ as K ∗̂ (L(φ), φ). Con-
versely, context sensitive revision can be defined in terms
of C-revision via: |K ∗̂ (C, φ)|L =

⋃
A∈|φ|C

|K ∗̂A|L.

5 Discussion
Semantically, the distinction between standard AGM revi-
sion and C-revision is analogous to the distinction between
revision and update, and in fact the two distinctions may be
seen as duals of each other. For an (AGM) revision, K ∗ φ,
we consider the set of all models of K, and revise by select-
ing the closest models of φ to that set. For an update,K �φ,
for each model ofK we look for the closest models of φ; the
update is the union of all such models. Analogous, for a C-
revision, K ∗̂φ, we consider each model of φ (over L(φ)),
and revise K by this model; the C-revision is the union of
all such models. This duality between C- and standard belief
change on the one hand, and between revision and update on
the other, completes a classification of belief change opera-
tors, in terms of whether the models of a knowledge base or
formula for change are considered en masse, or individually.

C-belief change is also of independent interest. We have
already noted that it conforms to a Gricean interpretation of
the sentence for revision. As well it resolves the problem
of disjunction noted by (Herzig & Rifi 1999), but in a gen-
eral and syntax-independent setting. To conclude, we dis-
cuss two further ways in which C-revision contributes to the
overall theory of belief change.

First, the approach provides a resolution to a recalcitrant
problem concerning the recovery postulate of belief contrac-
tion: K ⊆ (K−̇φ)+φ. Thus if one contracts a belief set by a
sentence, and then adds that sentence, no information is lost
with respect to the original belief set. (Hansson 1999) gives
the following counterintuitive example (paraphrased): Let
K entail that “Cleopatra had a son and a daughter” (s∧d).
New information is received that Cleopatra didn’t have a
child, expressed by K−̇(s ∨ d). Then one learns that she
had a child, thus (K−̇(s∨ d))+ (s∨ d). Recovery says that
s∧d is believed – that Cleopatra had a son and daughter. In-
tuitively, just s∨ d should be believed, that all that is known
after these changes is that she had a child. We note that if
K |= φ then recovery can be written as K ⊆ (K−̇φ) ∗ φ.
Arguably this example is best interpreted as involving con-
servative revision – that is, concerning {s, d}, one learns at
most that Cleopatra has a child s ∨ d. Under this reading of
revision we have possibly K 6⊆ (K−̇φ) ∗̂φ. In our exam-
ple, if K ≡ (s ∧ d), then we would expect: K−̇(s ∨ d) ≡
¬s ∧ ¬d; (K−̇(s ∨ d)) ∗̂ (s ∨ d) ≡ (s ∨ d).

Second, and more speculatively, belief contraction has
been criticised for removing too little information from a
knowledge base; at the other extreme, severe contraction
(Rott & Pagnucco 1999) has been criticised as removing too
much information. (Hansson 1999) proposes that a realis-
tic contraction operator should lie between AGM-style con-
traction operators and severe contraction operators. As sug-

gested earlier, a corresponding C-contraction operator −̂ is
easily defined using the Harper Identity or by direct defi-
nition. C-contraction is easily shown to lie between AGM
and severe contraction. Given that it comes with (arguably)
compelling intuitions and a straightforward semantics, C-
contraction can be proposed as a “reasonable” intermediate.

6 Conclusion
We have discussed a theory of conservative belief change.
The main intuitive motivation for this work stems from an
attempt to make the most of the information presented by
new evidence that a reasoner acquires. As such, our ap-
proach focuses on the content of the new evidence. Our
current analysis suggests that the operators we have intro-
duced based on these intuitions possesses some interesting
and appealing properties; as well it resolves a problem with
the recovery postulate, and may provide a satisfactory con-
traction operator. Last, the distinction between traditional
belief change and C-belief change appears to be a dual to
that between revision and update.
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