
IEEE Network • January/February 201728 0890-8044/17/$25.00 © 2017 IEEE

Abstract
Recent years have witnessed a surge of new

generation applications involving big data. The
de facto framework for big data processing,
MapReduce, has been increasingly embraced by
both academic and industrial users. Data local-
ity seeks to co-locate computation with data,
which effectively reduces remote data access and
improves MapReduce’s performance in physical
machine clusters. State-of-the-art public clouds
heavily rely on virtualization to enable resource
sharing and scaling for massive users, however.
In this article, through real-world experiments,
we show strong evidence that the conventional
notion of data locality is unfortunately not always
beneficial for MapReduce in a virtualized environ-
ment. The observations suggest that the measure
of node-local must be extended to distinguish
physical and virtual entities. We develop vLocality,
a comprehensive and practical solution for data
locality in virtualized environments. It incorpo-
rates a novel storage architecture that efficient-
ly mitigates the shared disk contention, and an
enhanced task scheduling algorithm that priori-
tizes co-located VMs. We have implemented a
prototype of vLocality based on Hadoop 1.2.1,
and have validated its effectiveness on a typical
virtualized cloud platform consisting of 22 nodes.
Our experimental results demonstrate that vLocal-
ity can improve the job finish time to around a
quarter of that for typical Hadoop benchmark
applications.

Introduction
Recent years have witnessed a surge of new gen-
eration applications involving big data. A typical
big data life cycle consists of multiple stages [1].
First, the source data are generated from various
devices at different locations and collected via
wired/wireless access networks. Second, the col-
lected data are aggregated and delivered through
the global Internet to remote data centers for
further processing and analysis. Third, the results
may be delivered back to end devices to be fur-
ther exploited. Given the large volume of data
to be transmitted and processed, each stage has
specific requirements on data transmissions, bring-
ing new challenges to the underlying networking
architecture and services.

As an example, MapReduce [2] has become
the de facto framework for big data processing,
with the ability to harness the power of thousands
of interconnected servers in data centers to deal
with terabyte and even petabyte data. Such prac-
tical implementations as the open source Apache

Hadoop have increasingly been embraced by
both academic and industrial users.1 However,
not all MapReduce users or potential users have
dedicated MapReduce clusters due to various
reasons, such as the costly upfront investment in
hardware/software and the lack of expertise on
their cumbersome configuration, not to mention
the challenges in expanding the cluster when the
application scale escalates. Fortunately, the readily
available clouds provide an alternative solution for
big data analytics. Cloud users can rent machines
from public cloud providers, say Amazon Web
Services (AWS),2 and deploy the Hadoop stack
as well as other standard/customized tools. Thus,
they can enjoy the convenient and flexible pay-
as-you-go billing option, as well as on-demand
resource scaling. For example, Yelp, a famous
business rating and review site, successfully saved
US$55,000 in upfront hardware costs by using
MapReduce on AWS, processing 3 TB of data
per day.3

A MapReduce cluster generally consists of a
master, which acts as a central controller, and a
number of slaves, which store data and conduct
user-defined computation tasks in a distributed
fashion [2]. In a physical machine cluster, each
slave node has a DataNode that stores a por-
tion of data, and a TaskTracker that accepts and
schedules tasks. The NameNode on the master
node hosts the directory tree of all files on Data-
Nodes, and keeps track of the locations of files.
A typical MapReduce workflow consists of two
major phases, as shown in Fig. 1. First, the map
processes (mappers) on slaves read the input data
from the distributed file system and transform the
input data to a list of intermediate key-value pairs
(known as the map phase); the reduce processes
(reducers) then merge the intermediate values
for the distinct keys, which are stored in the local
disks of slaves, to form the final results that are
written back to the distributed file system (known
as the reduce phase). This distributed paradigm of
MapReduce inevitably incurs a large amount of
network traffic within/across MapReduce clusters.

Since fetching data from remote servers
across multiple network switches can be costly
(particularly in clusters/data centers with high
overprovisioning ratio), in traditional MapReduce
clusters, data locality, which seeks to co-locate
computation with data, can largely avoid the cost-
ly massive data exchange across switches, thereby
significantly improving the job finish time of most
tasks [3–5]. As one of the most important techni-
cal foundations of modern clouds, virtualization
techniques (e.g., Xen, KVM, and VMware) allow
multiple virtual machines (VMs) to run on a sin-

vLocality: Revisiting Data Locality for MapReduce in Virtualized Clouds
Xiaoqiang Ma, Xiaoyi Fan, Jiangchuan Liu, Hongbo Jiang, and Kai Peng

Xiaoqiang Ma, Hongbo
Jiang, and Kai Peng are with
Huazhong University of Sci-
ence and Technology.

Xiaoyi Fan and Jiangchuan
Liu are with Simon Fraser
University.

This work was supported in
part by the National Natural
Science Foundation of China
under Grants 61572219 and
61502192, a Canada NSERC
Discovery Grant, and a Can-
ada NSERC Strategic Project
Grant.

1 Apache Hadoop. http://
hadoop.apache.org

2 Amazon Web Services.
http://aws.amazon.com

3 AWS Case Study: Yelp.
http://aws.amazon.com/
solutions/case-studies/yelp/

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.2016.1500133NM

IEEE Network • January/February 2017 29

gle physical machine (PM), which achieves high-
ly efficient hardware resource multiplexing and
effectively reduces the operating costs of cloud
providers. It has been identified that MapReduce
jobs running on VMs have significantly longer fin-
ish times compared to directly running on their
physical counterparts due to such unique char-
acteristics of VMs as resource sharing/contention
and VM scheduling [6–8], which is also confirmed
by our real-world experiments.

Our experiments suggest that the conven-
tional notion of data locality designed for PMs
needs substantial revision to accurately reflect the
data locality in virtualized environments. In par-
ticular, node-local, which indicates that running
tasks fetch data in a vicinity, should be extend-
ed. Simply distributing data to nearby VMs (i.e.,
VM-local) is not necessarily helpful; only if the
VMs are co-located in the same PM (i.e., PM-lo-
cal) will a large portion of congested disk I/O be
effectively offloaded through highly efficient mem-
ory sharing. Modifying the storage architecture
to improve PM-locality, however, is nontrivial, as
the current task scheduler in Hadoop is unable to
distinguish the difference: when scheduling tasks,
co-located VMs have the same priority as the
VMs on other PMs in the same rack. To this end,
we develop an enhanced task scheduling algo-
rithm that prioritizes co-located VMs. These efforts
together lead to the development of vLocality, a
comprehensive and practical solution toward data
locality in virtualized environments. We examine
the design issues of vLocality and implement it in
Hadoop 1.2.1. Its effectiveness has been validat-
ed on a typical virtualized cloud platform, which
shows that vLocality improves the job finish time
to around a quarter of that for typical MapReduce
applications compared to baselines.

The rest of this article is organized as fol-
lows. We present our motivational experiments
and summarize the key observations. We discuss
the design principles of vLocality. We compare
vLocality to the default Hadoop system with
state-of-the-art data placement [4, 9] in real-world
experiments. We provide some further discussion
and conclude this article

When Data Locality Meets Virtualization
Real-world MapReduce systems, such as Hadoop
and Google’s MapReduce, attempt to achieve
better data locality through replicating each file
block on three servers so that two of them are
within the same rack and the remaining one is

in a different rack. More advanced data locality
solutions have also been developed [4, 5, 10],
although mostly working for PM clusters.

Similarly, in a VM cluster, each VM serving
as a slave also has a DataNode and a TaskTrack-
er by default. This balanced architecture is very
straightforward, and is supposed to provide the
best performance since each VM can access data
locally, achieving the maximum data locality. On
the other hand, a single DataNote can be set up
on only one VM to serve all the other co-locat-
ed VMs. Intuitively, this imbalanced architecture
incurs more remote accesses and has a lower
degree of data locality, since the VMs without
DataNodes need to fetch data remotely.

We have conducted a series of experiments in
a testbed cloud platform to understand and com-
pare the performance of data locality under the
different configurations above. Our experimen-
tal results reveal the distinct characteristics when
data locality meets virtualization, which indeed
contradict our intuition, suggesting that the con-
ventional data locality strategies working for PMs
should be revised.

Our testbed consists of three state-of-the-art
Dell servers (OPTIPLEX 7010), each equipped with
an Intel Core i7-3770 3.4 GHz quad core CPU,
8 GB 1333 MHz DDR3 RAM, a 1 TB 7200 RPM
hard drive, and a 1 Gb/s Ethernet network inter-
face card (NIC). Hyper-threading is enabled for
the CPU so that each CPU core can support two
threads. All the PMs are interconnected through
a gigabit switch. This cluster of controlled scale
allows the machines to be interconnected with
maximum speed and enables us to closely examine
the interplay among all of them, without concern
for the background interference from many other
machines. We use a widely adopted open source
virtualization tool, Xen [11], in which a Xen hyper-
visor provides the resource mapping between the
virtual hardware and the underlying real hardware
of the PM. A privileged VM, Domain0, is created at
boot time and is allowed to use the control inter-
face. The hypervisor works together with the host
OS running on Domain0 to provide system man-
agement utilities. The OS running on an unprivi-
leged domain (DomainU) VM is called the guest
OS, and can only access the resources that are
allocated by the hypervisor. The DomainU VMs
cannot directly access the I/O devices; rather, the
Domain0 VM handles all of the I/O processing.
Xen uses the shared memory mechanism for data
transfer between co-located VMs [11].

FIGURE 1. A typical MapReduce workflow.

Key-value

Merge

Merge

Key-value

Key-value

Key-va
lue

Reducer

Mapper

Reducer

Reduce phase

Output
data

Distributed
file system

Intermediate
data

Input
data

Mapper

Mapper

Mapper

Map phase

Split

Split

Split

Split

Split

Split

Distributed
file system

IEEE Network • January/February 201730

We use a separate PM as the master node
to ensure fast response time with minimized
resource contention, and accordingly enable a
fair comparison with fully non-virtualized systems.
On each of the other PMs, besides the Domain0
VM, we configure three identical DomainU VMs
(two virtual CPUs and 2 GB RAM for each) as
slave nodes. We use the logical volume man-
agement (LVM) system, which is convenient for
resizing, to allocate each DomainU VM 100 GB
disk space by default. We use the popular Ubuntu
12.04 LTS 64-bit as the operating system, and run
Hadoop 1.2.1 on the VMs. Our testbed is config-
ured similarly to public cloud,4 as well as the set-
ting in [16], with high-end Intel multicore CPUs,
Linux-based operating systems, and the Xen virtu-
alization tool. Hence, the observations in our test-
bed experiments can be reproducible in typical
virtualized clouds.

DataNode Placement: Less Is Better
Our first observation is that the number of Data-
Nodes per PM has a remarkable impact on
MapReduce’s performance. We start from a sim-
ple cluster, in which two PMs are interconnect-
ed through the switch, one serving as the master
node and the other hosting three VMs. The three

VMs act as slaves, each having a TaskTracker. We
extract 3.5 GB Wikipedia data from the Wikime-
dia database,5 and select the widely used Sort
application as our benchmark, which arranges the
lines of text in the input files in alphabetical order.
For the DataNode placement, we examine three
representative configurations:
1. Setting up a DataNode on only one VM.
2. Randomly selecting two VMs and setting up

a DataNode on each.
3. Setting a DataNode on each VM. When

there are more than one DataNode, the
input data will be almost evenly stored on
them.
We run the benchmark application five times

for each configuration, and the average job finish
times of the above three configurations are 458.0,
487.0, and 524.5 s, respectively. It can be seen
that the lower the number of DataNodes per PM,
the shorter the job finish time. This contradicts
the observation with traditional PM MapReduce
clusters. In a PM cluster, the highest data locality
will be achieved when all tasks can access the
input data from local nodes (node local), and the
job finish time is generally shorter than that with a
lower degree of data locality. However, for virtu-
alized clusters, our results indicate that achieving
complete VM locality can be harmful.

A closer look shows that the reasons are three-
fold. First, many MapReduce tasks, say Sort in the
example, are both computation and I/O intensive;
considering the contention for the shared resourc-
es, more DataNodes will significantly increase the
burden of VMs and the extent of inter-VM interfer-
ence. Second, both reading data from and writing
data to the Hadoop distributed file system (HDFS)
involve meta-data exchange with the master node;
having multiple DataNodes also increases the
overhead of such information exchange. Third,
besides HDFS involved I/O operations, each VM
also generates massive intermediate data, which
is generally several times more than the amount
of input and output data; the intermediate data
needs to be written to and read from the local
disk of each VM to bridge the map and reduce
phases. But the concurrent I/O operations of
HDFS and local disks will aggravate the intra- and
inter-VM contention for the disk.

The observations suggest that selecting one
VM hosting the DataNode to serve all co-locat-
ed VMs can be a better choice. This architecture
overcomes the above drawbacks of one DataN-
ode per VM, and thus mitigates the contention
for disk. To understand this, we use the iotop
tool, which is available in most Linux distros, to
measure the real-time disk read/write throughput
during the process of two experiments (one Dat-
aNode per VM and one DataNode per PM), and
plot the total disk read/write throughput of the
three VMs in Fig. 2 We can see that the one-Dat-
aNode-per-PM setting has a noticeably higher
average disk read/write throughput (read: 19.03
MB/s vs. 15.19 MB/s, write: 27.39 MB/s vs. 21.23
MB/s) and lower variation.6 Further, the data
exchange between co-located VMs is very effi-
cient, which has been validated using the iperf
tool. The measurement results show that the net-
work bandwidth between two co-located VMs
exceeds 15 Gb/s, indicating that co-located VMs
directly use the memory bus for data exchange.

4 For example, a Rackspace
General1-2 instance has 2 vir-
tual CPUs and 2 GB RAM.

5 Available at http://dumps.
wikimedia.org/

6 It is worth noting that
iotop itself introduces
some overhead and thus
the job finish time becomes
slightly longer, which how-
ever exists for all the cases
and thus will not affect the
relative differences.

FIGURE 2. Total disk read/write throughput during MapReduce running time.

Time (sec)
(a)

1000

10

0

Di
sk

 re
ad

 th
ro

ug
hp

ut
 (M

bp
s)

20

30

40

50

60

70

80

200 300 400 500 600

Time (sec)
(b)

1000

10

0

Di
sk

 w
rit

e
th

ro
ug

hp
ut

 (M
bp

s)

20

30

40

50

60

70

80

200 300 400 500 600

One DataNode
Three DataNodes

One DataNode
Three DataNodes

IEEE Network • January/February 2017 31

Hence, the added latency caused by remote
access across co-located VMs is negligible.

Virtual Locality: Nearest Is Not the Best
To further verify that remote data access across
co-located VMs does not add noticeable perfor-
mance penalty, our other set of experiments use
two PMs, which are connected through a switch.
For the non-master PM, we have two configura-
tions: in configuration a, we boot up only one
DomainU VM, which has both TaskTracker and
DataNode; in configuration b, we boot up two
DomainU VMs: one has a TaskTracker only, and
the other has a DataNode only. Other experi-
mental settings are the same as in the previous
experiment. We again run each experiment five
times for each configuration. The average job fin-
ish times of configurations a and b are 799.0 and
433.3 s, respectively. The result is very interest-
ing. In configuration a, the VM can access all the
data from its local disk, while in configuration b,
all the input/output data needs to be transmit-
ted between the two VMs. However, the latter is
much more efficient in terms of MapReduce job
finish time, which not only verifies our previous
conjecture that remote access across co-locat-
ed VMs does not add noticeable performance
penalty, but also indicates that MapReduce can
significantly benefit from decoupling TaskTracker
and DataNode.

vLocality: Architecture Design and
Prototype Implementation

Given the observations above, it is necessary to
revisit the notation of data locality for MapReduce
in virtualized clouds. This inspires our design and
development of vLocality, which seeks to improve
the effectiveness of locality in the virtualized envi-
ronment, but with minimized modifications to
existing MapReduce implementations. Figure 3a
illustrates the architecture of vLocality. For the

VMs co-located on the same PM, we only set up
a single DataNode on one of them; each other
VM on this PM has only TaskTracker.

To reduce the cross-server network traffic
during job execution, the task scheduler on the
master node usually places a task onto the slave,
on which the required input data is available if
possible. However, this is not always successful
since the slave nodes that have the input data may
not have free slots at that time. Recall that the
default replication factor is three in the Hadoop
systems, which means that each file block is
stored on three servers, two of them within the
same rack and the remaining one in a different
rack. Hence, depending on the distance between
DataNode and TaskTracker, the default Hadoop
defines three levels of data locality: node-local,
rack-local, and off-switch. Node-local is the opti-
mal case when the task is scheduled on the node
having data. Rack-local represents a suboptimal
case when the task is scheduled on a node dif-
ferent from the node having data, but the two
nodes are within the same rack. Rack-local will
incur cross-server traffic. Off-switch is the worst
case, when all the node-local and rack-local nodes
are busy, and thus the task needs to retrieve data
from a node in a different rack, incurring cross-
rack traffic. When scheduling a task, the task
scheduler uses a priority-based strategy: node-lo-
cal has the highest priority, whereas off-switch has
the lowest.

In virtualized MapReduce clusters, however,
the three-level design is not enough to accurately
reflect the data locality. For example, in Fig. 3a,
for a file block stored on VM 1-a, scheduling the
task on VM 1-b or VM 2-b is considered identical
by the task scheduler since both are rack-local.
However, data exchanges between co-located
VMs (e.g., VM 1-a and VM 1-b) are much faster
than those between remote VMs (e.g., VM 1-b
and VM 2-b), and hence the two cases should
have different scheduling priorities. To this end,

FIGURE 3. a) vLocality architecture design: a core switch is a high-capacity switch interconnecting top-of-rack (ToR) switches, which have
relatively low capacity; b) task scheduler in vLocality.

Public synchronized List <Task>
assignTasks(TaskTracker taskTracker){
List<Task> assignedTasks = new ArrayList<Task>();
for (int i=0; i < availableMapSlots; ++i) {
 synchronized (jobQueue) {
 for (JobInProgress job : jobQueue) {
 Task t = null;
 t = job.obtainNewVmOrPmLocalMapTask();
 if (t !=null) {
 assignedTasks.add(t);
 break;
 }
 t = job.obtainNewRackLocalMapTask();
 if (t !=null) {
 assignedTasks.add(t);
 break;
 }
 t = job.obtainNewNonLocalMapTask();
 if (t !=null){
 assignedTasks.add(t);
 break;
 break scheduleMaps;
 }
 }
 }
}

•••TaskTrackerTaskTracker
DataNode

VM 4-b
PM 4

VM 4-a

•••TaskTracker

ToR switch 2ToR switch 1

Core switch

Master node

TaskTracker
DataNode

VM 3-b
PM 3

VM 3-a

•••TaskTrackerTaskTracker
DataNode

VM 2-b
PM 2

(a) (b)

VM 2-a

•••TaskTrackerTaskTracker
DataNode

VM 1-b
PM 1

VM 1-a

IEEE Network • January/February 201732

we modify the original three-level priority sched-
uling strategy by splitting node-local into two pri-
ority levels, VM-local and PM-local, in virtualized
MapReduce clusters, defined as follows:
•	 VM-local: A task and its required data are on

the same VM.
•	 PM-local: A task and its required data are on

two co-located VMs.
At the beginning of running a MapReduce job,

vLocality launches a topology configuration pro-
cess that identifies the structure of the underlying
virtualized clusters from a configuration file. Then
a VM is associated with a unique ID in the format
of rack-PM-VM such that the degree of locality
can easily be obtained. A vScheduling algorithm
(Algorithm 1) then schedules the tasks in a vir-
tualized MapReduce cluster based on the newly
designed priority levels as follows. When a VM
has free slots, it requests new tasks from the mas-
ter node through heartbeat, and the task schedul-
er on the master node assigns tasks according to
the following priority order: PM-local if this VM
has no DataNode (VM-local if this VM has a Data-
Node), rack-local, and off-switch.

The above high-level description provides a
sketch of vLocality’s workflow. Implementing it
in real-world MapReduce systems, however, is
nontrivial. In particular, we need to modify the
original priority level as well as the correspond-
ing scheduling policy, calling for careful exam-
ination of the whole Hadoop package to identify
the related classes and methods. We also need to
ensure that our modifications are compatible with
other modules.

To demonstrate the practicability of vLocali-
ty and understand its practical performance, we
have implemented a prototype of vLocality based
on Hadoop 1.2.1. First, we modify the main con-
figuration file core-site.xml, and add two
more configuration files to declare the topology
information of the underlying virtualized cluster.
Second, we revise the task scheduling algorithm
based on the proposed four-level locality design.
In particular, we replace the original NODE-LO-

CAL by PM-LOCAL and VM-LOCAL depending
on whether a task is launched on the local VM
or on a co-located VM. The task priority is then
updated by the method getPhysicalMa-
chine() to PM-local (0), VM-local (1), rack-lo-
cal (2), and off-switch (3), based on the distance
between data (DataNode) and computation
(TaskTracker). Second, we modify the task sched-
uling algorithm to be virtualization aware, which is
mainly implemented in JobInProgress.java
and JobQueueTaskScheduler.java. The
task scheduler in vLocality first assigns the VM-lo-
cal and PM-local tasks through obtainVmOrP-
mLocalMapTask(), then the rack-local tasks
through obtainRackLocalMapTask(), and
finally other tasks through obtainNonLocalM-
apTask(), as shown in Fig. 3a. All these three
methods are encapsulated in a general method,
obtainNewMapTask() in the file JobIn-
Progress.class.

Performance Evaluation
In this section, we evaluate the performance of
vLocality based on a virtualized cloud testbed.
Our testbed consists of eight PMs that are inter-
connected through a gigabit switch. We use one
dedicated PM as the master node, and create
three DomainU VMs on each of the remaining
seven VMs. The setup of each VM is the same
as that described earlier. Hence, our virtualized
MapReduce cluster has 22 nodes in total: one
physical master node and 21 virtual slave nodes.
We compare vLocality with two other systems,
Default and HDFS-only. Default runs the standard
Hadoop 1.2.1 system with one DataNode on
each virtual slave node, which serves as the base-
line; HDFS-only adopts the one-DataNode-per-PM
setting with the original task scheduling algorithm.
We select three widely used Hadoop benchmark
applications, Sort, ShortestPath, and Pag-
eRank. We use the 3.5 GB Wikipedia data as the
input for Sort, and process the data to the input
format (directed graph) of ShortestPath and
PageRank.7 The PageRank application ranks
the vertices according to the PageRank algorithm,
and the ShortestPath application finds the
shortest path for all pairs of vertices in the input
file.

It is worth noting that in all the experiments, all
the file blocks are evenly distributed on all VMs,
and thus on all PMs as well. In each experiment,
the file access pattern is uniform, which means
that each file block is accessed once. In this sce-
nario, the default system already achieves the
optimal node-local data locality, as discussed in
[4, 9]. Since vLocality takes on the major efforts
in minimizing the interference of co-located VMs,
as well as differentiating between PM-local and
rack-local, our testbed platform, where all the
nodes are connected with one switch, focuses

FIGURE 4. Comparison of job finish time.

Sort

400

0

Jo
b

fin
ish

 ti
m

e
(s

)

Shortest path PageRank

200

600

800

1000

1200

1400
Default
HDFS-only
vLocality

7 Each URL in the file is
represented by a vertex, and
each hyperlink is represented
by a directed edge.

ALGORITHM 1. vScheduling: Task scheduling in vLocali-
ty MapReduce systems.

1. when the task scheduler receives a heartbeat from node v:
2. if v has a free slot then
3. sort the pending tasks according to the priority policy
 and obtain a list T
4. schedule the first task to node v
5. end if

IEEE Network • January/February 2017 33

on improvements at the rack level. The results are
representative, and the conclusion can be extend-
ed to larger systems since cross-rack scheduled
tasks only account for a marginal portion of the
total tasks [15].

Job Finish Time
We first compare the job finish time of different
systems. For each system, we run each bench-
mark application five times, and plot the average
job finish time in Fig. 4.

It is observed that vLocality significantly
improves the performance of all the selected
MapReduce applications over the other systems.
Compared to Default, HDFS-only improves the
job finish time by 9.6 percent on average for
Sort, which again verifies the effectiveness of
revising the DataNote placement strategy. vLocal-
ity, by adapting the task scheduling algorithm to
be virtual aware, can further improve the job fin-
ish time by 16.3 percent on average compared to
HDFS-only (24.3 percent when directly compared
to Default).

The improvements on ShortestPath and
PageRank are less significant (16.2 percent 12.3
percent compared to Default, respectively), since
the number of reducers in these two applications
is less than that in Sort , and thus the reduce
phase, in which data locality has less impact,
accounts for most of the running time. Further,
these two applications involve iterative steps,
which incur a lot of communication overhead.

Since data locality is mainly related to the
map phase, we plot of the empirical CDF of the
map task finish time in Fig. 5, which gives a much
clearer picture of the impressive improvements of
vLocality over Default. We can see that the system
design has a remarkable impact on the finish time
of individual map tasks. Taking Sort as an exam-
ple, in the Default system, all the map tasks take
more than 20 s, and nearly 30 percent of the tasks
need more than 40 s. On the other hand, in both
HDFS-only and vLocality, more than 70 percent of
the tasks can be finished in less than 18 s, indicat-
ing that the reduced number of DataNodes can
effectively mitigate the interference and speed up
task execution. The remaining tasks, accounting
for about 20 percent of the total, have divergent
finish time distributions in HDFS-only and vLocal-
ity: all the remaining tasks can be finished within
40 s in vLocality, while most of them need more
than 40 s in HDFS-only, implying that vScheduling
significantly reduces rack-local (cross-PM) tasks.

Data Locality
We further calculate the distribution of different
degrees of data locality for each system running
the benchmark applications, and report the results
of Sort in Table 1. The results are similar for
ShortestPath and PageRank, which are omit-
ted for the sake of conciseness.

Table 1 explains the advantages of vLocality
over Default and HDFS-only. In Default, most
tasks are VM-local, a few are rack-local, and
PM-local cases are very rare. Concurrent running
VM-local tasks on co-located VMs will incur serve
inter-VM interference, leading to increased task
finish time. HDFS-only successfully reduces VM-lo-
cal tasks by reducing the number of DataNodes
per PM, but it incurs many rack-local tasks since

the original task scheduler regards PM-local and
rack-local as identical. In vLocality, most tasks are
assigned to the appropriate VMs, minimizing the
non-necessary rack-local tasks. It is worth noting
that vLocality cannot completely eliminate the
rack-local tasks. To identify the root cause, we
analyze the log files and find that in some cases,
the VMs on one PM are all busy and have no free
slots, while some VMs on other PMs have free
slots. Hence, the task scheduler has to allocate
the pending tasks, which are rack-local to these
VMs; otherwise, the slot resources would be wast-
ed.

Further Discussion
Data locality is critical to the performance of
MapReduce tasks, and there have been significant
studies toward improving data locality [3]. Scarlett
[4] and DARE [5] adopt a popularity-based strat-
egy, which smartly place more replicas for pop-
ular file blocks. There have also been substantial
efforts on directly scheduling tasks close to data
[10, 12, 13].

These works on data locality have yet to
address the important challenges of VMs in a
public cloud. In the virtualized environment, a
location-aware data allocation strategy was pro-
posed in [9], which allocates file blocks across all
PMs evenly, with replicas located in different PMs.
DRR [14] enhances locality-aware task scheduling
through dynamically increasing or decreasing the
computation capability of each node. An interfer-
ence and locality-aware (ILA) scheduling strategy
has been developed for virtualized MapReduce
clusters, using a task performance prediction
model to mitigate inter-VM interference and pre-
serve task data locality [15].

Our vLocality improves the data locality in
a virtualized cloud environment by observing
that directly applying conventional data locali-
ty strategies in PM clusters to VM clusters (i.e.,
achieving complete VM-locality) can be harm-
ful to MapReduce performance given the shared

FIGURE 5. Empirical CDF of map task finish time of different systems.

Time (s)

Sort

200

0.2

0

Em
pi

ric
al

CD
F

0.4

0.6

0.8

1

40 60 80 100 120 140

vLocality
HDFS-only
Default

IEEE Network • January/February 201734

resource contention. We have revised the under-
lying data placement strategy and accordingly
propose a customized virtual-aware task sched-
uling algorithm. The existing improvements (e.g.,
Delay Scheduling [10], DRR [14], and interfer-
ence-aware scheduling [15]) can be further incor-
porated into vLocality after being customized for
the new architecture of vLocality. We plan to
work on this issue in future work.

The virtualization performance overhead in
cloud scenarios has attracted a lot of attention
from researchers [8]. In general, the causes of
overhead stem from different levels of cloud
infrastructure: from single-server virtualiza-
tion, a single-site mega data center, to multiple
geo-distributed data centers. In this article, we
investigate the single-server virtualization over-
head for MapReduce-based big data processing,
and vLocality is also beneficial to mitigate the
overhead on the data center scale by reducing
cross-sever traffic.

The dynamics of virtualized cloud platforms
(e.g., VM migration [8, 16]) is also very important
for load balancing, power saving, and fault toler-
ance. In big data processing, VM migration can be
very costly since large volumes of data also need
to be migrated besides VM images. The data cen-
ter network would be overloaded during migration,
and the performance interference on migration
source and destination PMs can be severe. vLocal-
ity is able to reduce the migration overhead since
migrating a VM without DataNode incurs much
less data transfer than migrating a fully function-
al VM, while the data availability is not affected.
The iAware strategy [16] can be also adapted to
vLocality (e.g., considering the data locality issue
when selecting destination PMs) to further mini-
mize the overhead of live migration.

Conclusion
As an important practice to improve MapReduce’s
performance, data locality has been extensively
investigated in physical machine clusters. In this
article, we show strong evidence that the con-
ventional efforts on improving data locality can
have a negative impact on typical MapReduce
applications in virtualized clouds. We suggest
adapting the existing storage architecture to be
virtual-machine-aware, which offloads a large por-
tion of congested disk I/O to the highly efficient
network I/O with memory sharing. This new stor-
age design demands revision of the traditional

three-level data locality, as does the task sched-
uling. We have developed vLocality, a systemat-
ic solution to improve data locality in virtualized
MapReduce clusters, and demonstrate the supe-
riority of vLocality against state-of-the-art systems.

We plan to further optimize the two basic
components of vLocality: for storage design, we
can incorporate the file popularity issue to bal-
ance the workloads of individual DataNodes;
for task scheduling, we may incorporate other
advanced strategies, such as Delay Scheduling
[10], into the virtualized environment. We will
also investigate the possibility of more flexible
resource allocation in vLocality. Given that not
all VMs have DataNodes, the workloads of dif-
ferent types of VMs can be different, leading to a
heterogeneous environment. We plan to conduct
a more detailed profiling analysis to identify the
potential performance bottleneck of the vLocality
design, and investigate both offline solutions that
allocate different amounts of resources (e.g., CPU
and memory) based on workloads, as well as
online solutions that dynamically adjust the capa-
bilities of VMs through the Xen control interfaces.

References
[1] X. Yi et al., “Building A Network Highway for Big Data: Archi-

tecture and Challenges,” IEEE Network, vol. 28, no. 4, July/
Aug. 2014, pp. 5--13.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Commun. ACM, vol. 51, no.
1, Jan. 2008, pp. 107--13.

[3] Z. Guo, G. Fox, and M. Zhou, “Investigation of Data Locality
in MapReduce,” Proc. IEEE/ACM CCGRID, 2012.

[4] G. Ananthanarayanan et al., “Scarlett: Coping with Skewed
Content Popularity in MapReduce Clusters,” Proc. EuroSys,
2011.

[5] C. L. Abad, Y. Lu, and R. H. Campbell, “Dare: Adaptive
Data Replication for Efficient Cluster Scheduling,” Proc. IEEE
CLUSTER, 2011.

[6] S. Ibrahim et al., “Evaluating MapReduce on Virtual
Machines: The Hadoop Case,” Proc. CloudCom, 2009.

[7] Y. Yuan et al., “On Interference-Aware Provisioning for
Cloud-Based Big Data Processing,” Proc. IEEE/ACM IWQoS,
2013.

[8] F Xu et al., “Managing Performance Overhead of Virtual
Machines in Cloud Computing: A Survey, State of the Art,
and Future Directions,” Proc. IEEE, vol. 102, no. 1, Jan. 2014,
pp. 11--31.

[9] Y. Geng, S. Chen et al., “Location-Aware MapReduce in Vir-
tual Cloud,” Proc. ICPP, 2011.

[10] M. Zaharia et al., “Delay Scheduling: A Simple Technique
for Achieving Locality and Fairness in Cluster Scheduling,”
Proc. EuroSys, 2010.

[11] P. Barham et al., “Xen and the Art of Virtualization,” Proc.
ACM SOSP, 2003.

[12] X. Zhang et al., “Improving Data Locality of MapReduce
by Scheduling in Homogeneous Computing Environments,”
Proc. IEEE ISPA, 2011.

[13] M. Hammoud and M.F. Sakr, “Locality-Aware Reduce Task
Scheduling for MapReduce,” Proc. IEEE CloudCom, 2011.

[14] J. Park et al., “Locality-Aware Dynamic VM Reconfiguration
on MapReduce Clouds,” Proc. HPDC, 2012.

[15] X. Bu, J. Rao, and C. Xu, “Interference and Locality-aware
Task Scheduling for MapReduce Applications in Virtual Clus-
ters,” Proc. HPDC, 2013.

[16] F. Xu et al., “iAware: Making Live Migration of Virtual
Machines Interference-Aware in the Cloud,” IEEE Trans.
Computers, vol. 63, no. 12, Dec. 2014, pp. 3012--25.

Biographies
Xiaoqiang Ma (maxiaoqiang@hust.edu.cn) received his B.Eng.
degree from Huazhong University of Science and Technology,
China, in 2010; he received his M.Sc. and Ph.D. degrees from
Simon Fraser University, Canada, in 2012 and 2015, respec-
tively. He is currently an assistant professor in the School of
Electronic Information and Communication at Huazhong Uni-
versity of Science and Technology. His current research interests
are in the areas of wireless networking, multimedia, cloud, and
big data.

TABLE 1. Degrees of data locality in different systems.

VM-Local PM-local rack-local

Default 90.0% 1.7% 8.3%

HDFS-only 31.7% 38.3% 30.0%

vLocality 25.0% 71.7% 3.3%

We plan to conduct a more detailed profiling analysis to identify the potential performance bottleneck
of the vLocality design, and investigate both offline solutions that allocate different amounts of

resources based on workloads, as well as online solutions that dynamically adjust the
capabilities of VMs through the Xen control interfaces.

IEEE Network • January/February 2017 35

Xiaoyi Fan (xiaoyif@sfu.ca) received his B.E.ng degree from
Beijing University of Posts and Telecommunications, China, in
2013, and his M.Sc. degree from Simon Fraser University in
2015. He is now a Ph.D. student in the School of Computing
Science, Simon Fraser University. His areas of interest are cloud
computing, big data, and wireless networks.

Jiangchuan Liu (jcliu@sfu.ca) is a University Professor in the
School of Computing Science, Simon Fraser University, and an
NSERC E.W.R. Steacie Memorial Fellow. He is an EMC-Endowed
Visiting Chair Professor of Tsinghua University, Beijing, China
(2013–2016). From 2003 to 2004, he was an assistant professor
at the Chinese University of Hong Kong. He received his B.Eng.
degree (cum laude) from Tsinghua University in 1999, and his
Ph.D. degree from the Hong Kong University of Science and
Technology in 2003, both in computer science. He is a co-re-
cipient of the inaugural Test of Time Paper Award of IEEE INFO-
COM (2015), the ACM TOMCCAP Nicolas D. Georganas Best
Paper Award (2013), the ACM Multimedia Best Paper Award
(2012), the IEEE GLOBECOM Best Paper Award (2011), and
the IEEE Communications Society Best Paper Award on Multi-
media Communications (2009). His students received the Best
Student Paper Award of IEEE/ACM IWQoS twice (2008 and
2012). His research interests include multimedia systems and
networks, cloud computing, social networking, online gaming,
big data computing, wireless sensor networks, and peer-to-peer

networks. He has served on the Editorial Boards of IEEE Trans-
actions on Big Data, IEEE Transactions on Multimedia, IEEE Com-
munications Surveys & Tutorials, IEEE Access, the IEEE Internet of
Things Journal, Computer Communications, and Wiley Wireless
Communications and Mobile Computing. He is the Steering
Committee Chair of IEEE/ACM IWQoS from 2015 to 2017.

Hongbo Jiang [SM] (hongbojiang2004@gmail.com) received
his B.S. and M.S. degrees from Huazhong University of Science
and Technology. He received his Ph.D. from Case Western
Reserve University in 2008. After that he joined the faculty of
Huazhong University of Science and Technology, where he is
a full professor and Dean of the Department of Communica-
tion Engineering. His research concerns computer networking,
especially algorithms and protocols for wireless and mobile net-
works. He is serving as an Associate Editor of IEEE Transactions
on Mobile Computing, ACM/Springer Wireless Networks, and
Wiley Security and Communication Networks, and as an Associ-
ate Technical Editor of IEEE Communications Magazine.

Kai Peng (eikaipeng2015@gmail.com) received his B.S., M.S.,
and Ph.D. degrees from Huazhong University of Science and
Technology in 1999, 2002, and 2006, respectively. He is now
with the faculty of the same university as an associate professor.
His current research interests are in the areas of wireless sensor
networking and big data processing.

