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Abstract
Recent years have witnessed a surge of new 

generation applications involving big data. The 
de facto framework for big data processing, 
MapReduce, has been increasingly embraced by 
both academic and industrial users. Data local-
ity seeks to co-locate computation with data, 
which effectively reduces remote data access and 
improves MapReduce’s performance in physical 
machine clusters. State-of-the-art public clouds 
heavily rely on virtualization to enable resource 
sharing and scaling for massive users, however. 
In this article, through real-world experiments, 
we show strong evidence that the conventional 
notion of data locality is unfortunately not always 
beneficial for MapReduce in a virtualized environ-
ment. The observations suggest that the measure 
of node-local must be extended to distinguish 
physical and virtual entities. We develop vLocality, 
a comprehensive and practical solution for data 
locality in virtualized environments. It incorpo-
rates a novel storage architecture that efficient-
ly mitigates the shared disk contention, and an 
enhanced task scheduling algorithm that priori-
tizes co-located VMs. We have implemented a 
prototype of vLocality based on Hadoop 1.2.1, 
and have validated its effectiveness on a typical 
virtualized cloud platform consisting of 22 nodes. 
Our experimental results demonstrate that vLocal-
ity can improve the job finish time to around a 
quarter of that for typical Hadoop benchmark 
applications.

Introduction
Recent years have witnessed a surge of new gen-
eration applications involving big data. A typical 
big data life cycle consists of multiple stages [1]. 
First, the source data are generated from various 
devices at different locations and collected via 
wired/wireless access networks. Second, the col-
lected data are aggregated and delivered through 
the global Internet to remote data centers for 
further processing and analysis. Third, the results 
may be delivered back to end devices to be fur-
ther exploited. Given the large volume of data 
to be transmitted and processed, each stage has 
specific requirements on data transmissions, bring-
ing new challenges to the underlying networking 
architecture and services.

As an example, MapReduce [2] has become 
the de facto framework for big data processing, 
with the ability to harness the power of thousands 
of interconnected servers in data centers to deal 
with terabyte and even petabyte data. Such prac-
tical implementations as the open source Apache 

Hadoop have increasingly been embraced by 
both academic and industrial users.1 However, 
not all MapReduce users or potential users have 
dedicated MapReduce clusters due to various 
reasons, such as the costly upfront investment in 
hardware/software and the lack of expertise on 
their cumbersome configuration, not to mention 
the challenges in expanding the cluster when the 
application scale escalates. Fortunately, the readily 
available clouds provide an alternative solution for 
big data analytics. Cloud users can rent machines 
from public cloud providers, say Amazon Web 
Services (AWS),2 and deploy the Hadoop stack 
as well as other standard/customized tools. Thus, 
they can enjoy the convenient and flexible pay-
as-you-go billing option, as well as on-demand 
resource scaling. For example, Yelp, a famous 
business rating and review site, successfully saved 
US$55,000 in upfront hardware costs by using 
MapReduce on AWS, processing 3 TB of data 
per day.3

A MapReduce cluster generally consists of a 
master, which acts as a central controller, and a 
number of slaves, which store data and conduct 
user-defined computation tasks in a distributed 
fashion [2]. In a physical machine cluster, each 
slave node has a DataNode that stores a por-
tion of data, and a TaskTracker that accepts and 
schedules tasks. The NameNode on the master 
node hosts the directory tree of all files on Data-
Nodes, and keeps track of the locations of files. 
A typical MapReduce workflow consists of two 
major phases, as shown in Fig. 1. First, the map 
processes (mappers) on slaves read the input data 
from the distributed file system and transform the 
input data to a list of intermediate key-value pairs 
(known as the map phase); the reduce processes 
(reducers) then merge the intermediate values 
for the distinct keys, which are stored in the local 
disks of slaves, to form the final results that are 
written back to the distributed file system (known 
as the reduce phase). This distributed paradigm of 
MapReduce inevitably incurs a large amount of 
network traffic within/across MapReduce clusters.

Since fetching data from remote servers 
across multiple network switches can be costly 
(particularly in clusters/data centers with high 
overprovisioning ratio), in traditional MapReduce 
clusters, data locality, which seeks to co-locate 
computation with data, can largely avoid the cost-
ly massive data exchange across switches, thereby 
significantly improving the job finish time of most 
tasks [3–5]. As one of the most important techni-
cal foundations of modern clouds, virtualization 
techniques (e.g., Xen, KVM, and VMware) allow 
multiple virtual machines (VMs) to run on a sin-
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gle physical machine (PM), which achieves high-
ly efficient hardware resource multiplexing and 
effectively reduces the operating costs of cloud 
providers. It has been identified that MapReduce 
jobs running on VMs have significantly longer fin-
ish times compared to directly running on their 
physical counterparts due to such unique char-
acteristics of VMs as resource sharing/contention 
and VM scheduling [6–8], which is also confirmed 
by our real-world experiments.

Our experiments suggest that the conven-
tional notion of data locality designed for PMs 
needs substantial revision to accurately reflect the 
data locality in virtualized environments. In par-
ticular, node-local, which indicates that running 
tasks fetch data in a vicinity, should be extend-
ed. Simply distributing data to nearby VMs (i.e., 
VM-local) is not necessarily helpful; only if the 
VMs are co-located in the same PM (i.e., PM-lo-
cal) will a large portion of congested disk I/O be 
effectively offloaded through highly efficient mem-
ory sharing. Modifying the storage architecture 
to improve PM-locality, however, is nontrivial, as 
the current task scheduler in Hadoop is unable to 
distinguish the difference: when scheduling tasks, 
co-located VMs have the same priority as the 
VMs on other PMs in the same rack. To this end, 
we develop an enhanced task scheduling algo-
rithm that prioritizes co-located VMs. These efforts 
together lead to the development of vLocality, a 
comprehensive and practical solution toward data 
locality in virtualized environments. We examine 
the design issues of vLocality and implement it in 
Hadoop 1.2.1. Its effectiveness has been validat-
ed on a typical virtualized cloud platform, which 
shows that vLocality improves the job finish time 
to around a quarter of that for typical MapReduce 
applications compared to baselines.

The rest of this article is organized as fol-
lows. We present our motivational experiments 
and summarize the key observations. We discuss 
the design principles of vLocality. We compare 
vLocality to the default Hadoop system with 
state-of-the-art data placement [4, 9] in real-world 
experiments. We provide some further discussion 
and conclude this article

When Data Locality Meets Virtualization
Real-world MapReduce systems, such as Hadoop 
and Google’s MapReduce, attempt to achieve 
better data locality through replicating each file 
block on three servers so that two of them are 
within the same rack and the remaining one is 

in a different rack. More advanced data locality 
solutions have also been developed [4, 5, 10], 
although mostly working for PM clusters.

Similarly, in a VM cluster, each VM serving 
as a slave also has a DataNode and a TaskTrack-
er by default. This balanced architecture is very 
straightforward, and is supposed to provide the 
best performance since each VM can access data 
locally, achieving the maximum data locality. On 
the other hand, a single DataNote can be set up 
on only one VM to serve all the other co-locat-
ed VMs. Intuitively, this imbalanced architecture 
incurs more remote accesses and has a lower 
degree of data locality, since the VMs without 
DataNodes need to fetch data remotely.

We have conducted a series of experiments in 
a testbed cloud platform to understand and com-
pare the performance of data locality under the 
different configurations above. Our experimen-
tal results reveal the distinct characteristics when 
data locality meets virtualization, which indeed 
contradict our intuition, suggesting that the con-
ventional data locality strategies working for PMs 
should be revised.

Our testbed consists of three state-of-the-art 
Dell servers (OPTIPLEX 7010), each equipped with 
an Intel Core i7-3770 3.4 GHz quad core CPU, 
8 GB 1333 MHz DDR3 RAM, a 1 TB 7200 RPM 
hard drive, and a 1 Gb/s Ethernet network inter-
face card (NIC). Hyper-threading is enabled for 
the CPU so that each CPU core can support two 
threads. All the PMs are interconnected through 
a gigabit switch. This cluster of controlled scale 
allows the machines to be interconnected with 
maximum speed and enables us to closely examine 
the interplay among all of them, without concern 
for the background interference from many other 
machines. We use a widely adopted open source 
virtualization tool, Xen [11], in which a Xen hyper-
visor provides the resource mapping between the 
virtual hardware and the underlying real hardware 
of the PM. A privileged VM, Domain0, is created at 
boot time and is allowed to use the control inter-
face. The hypervisor works together with the host 
OS running on Domain0 to provide system man-
agement utilities. The OS running on an unprivi-
leged domain ( DomainU) VM is called the guest 
OS, and can only access the resources that are 
allocated by the hypervisor. The DomainU VMs 
cannot directly access the I/O devices; rather, the 
Domain0 VM handles all of the I/O processing. 
Xen uses the shared memory mechanism for data 
transfer between co-located VMs [11].

FIGURE 1. A typical MapReduce workflow.

Key-value

Merge

Merge

Key-value

Key-value

Key-va
lue

Reducer

Mapper

Reducer

Reduce phase

Output
data

Distributed
file system

Intermediate
data

Input
data

Mapper

Mapper

Mapper

Map phase

Split

Split

Split

Split

Split

Split

Distributed
file system



IEEE Network • January/February 201730

We use a separate PM as the master node 
to ensure fast response time with minimized 
resource contention, and accordingly enable a 
fair comparison with fully non-virtualized systems. 
On each of the other PMs, besides the Domain0 
VM, we configure three identical DomainU VMs 
(two virtual CPUs and 2 GB RAM for each) as 
slave nodes. We use the logical volume man-
agement (LVM) system, which is convenient for 
resizing, to allocate each DomainU VM 100 GB 
disk space by default. We use the popular Ubuntu 
12.04 LTS 64-bit as the operating system, and run 
Hadoop 1.2.1 on the VMs. Our testbed is config-
ured similarly to public cloud,4 as well as the set-
ting in [16], with high-end Intel multicore CPUs, 
Linux-based operating systems, and the Xen virtu-
alization tool. Hence, the observations in our test-
bed experiments can be reproducible in typical 
virtualized clouds.

DataNode Placement: Less Is Better
Our first observation is that the number of Data-
Nodes per PM has a remarkable impact on 
MapReduce’s performance. We start from a sim-
ple cluster, in which two PMs are interconnect-
ed through the switch, one serving as the master 
node and the other hosting three VMs. The three 

VMs act as slaves, each having a TaskTracker. We 
extract 3.5 GB Wikipedia data from the Wikime-
dia database,5 and select the widely used Sort 
application as our benchmark, which arranges the 
lines of text in the input files in alphabetical order. 
For the DataNode placement, we examine three 
representative configurations: 
1. Setting up a DataNode on only one VM.
2. Randomly selecting two VMs and setting up 

a DataNode on each.
3. Setting a DataNode on each VM. When 

there are more than one DataNode, the 
input data will be almost evenly stored on 
them.
We run the benchmark application five times 

for each configuration, and the average job finish 
times of the above three configurations are 458.0, 
487.0, and 524.5 s, respectively. It can be seen 
that the lower the number of DataNodes per PM, 
the shorter the job finish time. This contradicts 
the observation with traditional PM MapReduce 
clusters. In a PM cluster, the highest data locality 
will be achieved when all tasks can access the 
input data from local nodes (node local), and the 
job finish time is generally shorter than that with a 
lower degree of data locality. However, for virtu-
alized clusters, our results indicate that achieving 
complete VM locality can be harmful.

A closer look shows that the reasons are three-
fold. First, many MapReduce tasks, say Sort in the 
example, are both computation and I/O intensive; 
considering the contention for the shared resourc-
es, more DataNodes will significantly increase the 
burden of VMs and the extent of inter-VM interfer-
ence. Second, both reading data from and writing 
data to the Hadoop distributed file system (HDFS) 
involve meta-data exchange with the master node; 
having multiple DataNodes also increases the 
overhead of such information exchange. Third, 
besides HDFS involved I/O operations, each VM 
also generates massive intermediate data, which 
is generally several times more than the amount 
of input and output data; the intermediate data 
needs to be written to and read from the local 
disk of each VM to bridge the map and reduce 
phases. But the concurrent I/O operations of 
HDFS and local disks will aggravate the intra- and 
inter-VM contention for the disk.

The observations suggest that selecting one 
VM hosting the DataNode to serve all co-locat-
ed VMs can be a better choice. This architecture 
overcomes the above drawbacks of one DataN-
ode per VM, and thus mitigates the contention 
for disk. To understand this, we use the iotop 
tool, which is available in most Linux distros, to 
measure the real-time disk read/write throughput 
during the process of two experiments (one Dat-
aNode per VM and one DataNode per PM), and 
plot the total disk read/write throughput of the 
three VMs in Fig. 2 We can see that the one-Dat-
aNode-per-PM setting has a noticeably higher 
average disk read/write throughput (read: 19.03 
MB/s vs. 15.19 MB/s, write: 27.39 MB/s vs. 21.23 
MB/s) and lower variation.6 Further, the data 
exchange between co-located VMs is very effi-
cient, which has been validated using the iperf 
tool. The measurement results show that the net-
work bandwidth between two co-located VMs 
exceeds 15 Gb/s, indicating that co-located VMs 
directly use the memory bus for data exchange. 

4 For example, a Rackspace 
General1-2 instance has 2 vir-
tual CPUs and 2 GB RAM. 
 
5 Available at http://dumps.
wikimedia.org/ 
 
6 It is worth noting that 
iotop itself introduces 
some overhead and thus 
the job finish time becomes 
slightly longer, which how-
ever exists for all the cases 
and thus will not affect the 
relative differences.

FIGURE 2. Total disk read/write throughput during MapReduce running time.
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Hence, the added latency caused by remote 
access across co-located VMs is negligible.

Virtual Locality: Nearest Is Not the Best
To further verify that remote data access across 
co-located VMs does not add noticeable perfor-
mance penalty, our other set of experiments use 
two PMs, which are connected through a switch. 
For the non-master PM, we have two configura-
tions: in configuration a, we boot up only one 
DomainU VM, which has both TaskTracker and 
DataNode; in configuration b, we boot up two 
DomainU VMs: one has a TaskTracker only, and 
the other has a DataNode only. Other experi-
mental settings are the same as in the previous 
experiment. We again run each experiment five 
times for each configuration. The average job fin-
ish times of configurations a and b are 799.0 and 
433.3 s, respectively. The result is very interest-
ing. In configuration a, the VM can access all the 
data from its local disk, while in configuration b, 
all the input/output data needs to be transmit-
ted between the two VMs. However, the latter is 
much more efficient in terms of MapReduce job 
finish time, which not only verifies our previous 
conjecture that remote access across co-locat-
ed VMs does not add noticeable performance 
penalty, but also indicates that MapReduce can 
significantly benefit from decoupling TaskTracker 
and DataNode.

vLocality: Architecture Design and 
Prototype Implementation

Given the observations above, it is necessary to 
revisit the notation of data locality for MapReduce 
in virtualized clouds. This inspires our design and 
development of vLocality, which seeks to improve 
the effectiveness of locality in the virtualized envi-
ronment, but with minimized modifications to 
existing MapReduce implementations. Figure 3a 
illustrates the architecture of vLocality. For the 

VMs co-located on the same PM, we only set up 
a single DataNode on one of them; each other 
VM on this PM has only TaskTracker.

To reduce the cross-server network traffic 
during job execution, the task scheduler on the 
master node usually places a task onto the slave, 
on which the required input data is available if 
possible. However, this is not always successful 
since the slave nodes that have the input data may 
not have free slots at that time. Recall that the 
default replication factor is three in the Hadoop 
systems, which means that each file block is 
stored on three servers, two of them within the 
same rack and the remaining one in a different 
rack. Hence, depending on the distance between 
DataNode and TaskTracker, the default Hadoop 
defines three levels of data locality: node-local, 
rack-local, and off-switch. Node-local is the opti-
mal case when the task is scheduled on the node 
having data. Rack-local represents a suboptimal 
case when the task is scheduled on a node dif-
ferent from the node having data, but the two 
nodes are within the same rack. Rack-local will 
incur cross-server traffic. Off-switch is the worst 
case, when all the node-local and rack-local nodes 
are busy, and thus the task needs to retrieve data 
from a node in a different rack, incurring cross-
rack traffic. When scheduling a task, the task 
scheduler uses a priority-based strategy: node-lo-
cal has the highest priority, whereas off-switch has 
the lowest.

In virtualized MapReduce clusters, however, 
the three-level design is not enough to accurately 
reflect the data locality. For example, in Fig. 3a, 
for a file block stored on VM 1-a, scheduling the 
task on VM 1-b or VM 2-b is considered identical 
by the task scheduler since both are rack-local. 
However, data exchanges between co-located 
VMs (e.g., VM 1-a and VM 1-b) are much faster 
than those between remote VMs (e.g., VM 1-b 
and VM 2-b), and hence the two cases should 
have different scheduling priorities. To this end, 

FIGURE 3. a) vLocality architecture design: a core switch is a high-capacity switch interconnecting top-of-rack (ToR) switches, which have 
relatively low capacity; b) task scheduler in vLocality.
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we modify the original three-level priority sched-
uling strategy by splitting node-local into two pri-
ority levels, VM-local and PM-local, in virtualized 
MapReduce clusters, defined as follows:
•	 VM-local: A task and its required data are on 

the same VM.
•	 PM-local: A task and its required data are on 

two co-located VMs.
At the beginning of running a MapReduce job, 

vLocality launches a topology configuration pro-
cess that identifies the structure of the underlying 
virtualized clusters from a configuration file. Then 
a VM is associated with a unique ID in the format 
of rack-PM-VM such that the degree of locality 
can easily be obtained. A vScheduling algorithm 
(Algorithm 1) then schedules the tasks in a vir-
tualized MapReduce cluster based on the newly 
designed priority levels as follows. When a VM 
has free slots, it requests new tasks from the mas-
ter node through heartbeat, and the task schedul-
er on the master node assigns tasks according to 
the following priority order: PM-local if this VM 
has no DataNode (VM-local if this VM has a Data-
Node), rack-local, and off-switch.

The above high-level description provides a 
sketch of vLocality’s workflow. Implementing it 
in real-world MapReduce systems, however, is 
nontrivial. In particular, we need to modify the 
original priority level as well as the correspond-
ing scheduling policy, calling for careful exam-
ination of the whole Hadoop package to identify 
the related classes and methods. We also need to 
ensure that our modifications are compatible with 
other modules.

To demonstrate the practicability of vLocali-
ty and understand its practical performance, we 
have implemented a prototype of vLocality based 
on Hadoop 1.2.1. First, we modify the main con-
figuration file core-site.xml, and add two 
more configuration files to declare the topology 
information of the underlying virtualized cluster. 
Second, we revise the task scheduling algorithm 
based on the proposed four-level locality design. 
In particular, we replace the original NODE-LO-

CAL by PM-LOCAL and VM-LOCAL depending 
on whether a task is launched on the local VM 
or on a co-located VM. The task priority is then 
updated by the method getPhysicalMa-
chine() to PM-local (0), VM-local (1), rack-lo-
cal (2), and off-switch (3), based on the distance 
between data (DataNode) and computation 
(TaskTracker). Second, we modify the task sched-
uling algorithm to be virtualization aware, which is 
mainly implemented in JobInProgress.java 
and JobQueueTaskScheduler.java. The 
task scheduler in vLocality first assigns the VM-lo-
cal and PM-local tasks through obtainVmOrP-
mLocalMapTask(), then the rack-local tasks 
through obtainRackLocalMapTask(), and 
finally other tasks through obtainNonLocalM-
apTask(), as shown in Fig. 3a. All these three 
methods are encapsulated in a general method, 
obtainNewMapTask()  in the file JobIn-
Progress.class.

Performance Evaluation
In this section, we evaluate the performance of 
vLocality based on a virtualized cloud testbed. 
Our testbed consists of eight PMs that are inter-
connected through a gigabit switch. We use one 
dedicated PM as the master node, and create 
three DomainU VMs on each of the remaining 
seven VMs. The setup of each VM is the same 
as that described earlier. Hence, our virtualized 
MapReduce cluster has 22 nodes in total: one 
physical master node and 21 virtual slave nodes. 
We compare vLocality with two other systems, 
Default and HDFS-only. Default runs the standard 
Hadoop 1.2.1 system with one DataNode on 
each virtual slave node, which serves as the base-
line; HDFS-only adopts the one-DataNode-per-PM 
setting with the original task scheduling algorithm. 
We select three widely used Hadoop benchmark 
applications, Sort, ShortestPath, and Pag-
eRank. We use the 3.5 GB Wikipedia data as the 
input for Sort, and process the data to the input 
format (directed graph) of ShortestPath and 
PageRank.7 The PageRank application ranks 
the vertices according to the PageRank algorithm, 
and the ShortestPath application finds the 
shortest path for all pairs of vertices in the input 
file.

It is worth noting that in all the experiments, all 
the file blocks are evenly distributed on all VMs, 
and thus on all PMs as well. In each experiment, 
the file access pattern is uniform, which means 
that each file block is accessed once. In this sce-
nario, the default system already achieves the 
optimal node-local data locality, as discussed in 
[4, 9]. Since vLocality takes on the major efforts 
in minimizing the interference of co-located VMs, 
as well as differentiating between PM-local and 
rack-local, our testbed platform, where all the 
nodes are connected with one switch, focuses 

FIGURE 4. Comparison of job finish time.
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ALGORITHM 1. vScheduling: Task scheduling in vLocali-
ty MapReduce systems.

1.  when the task scheduler receives a heartbeat from node v:
2.     if v has a free slot then
3.        sort the pending tasks according to the priority policy 
     and obtain a list T
4. schedule the first task to node v
5.     end if
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on improvements at the rack level. The results are 
representative, and the conclusion can be extend-
ed to larger systems since cross-rack scheduled 
tasks only account for a marginal portion of the 
total tasks [15].

Job Finish Time
We first compare the job finish time of different 
systems. For each system, we run each bench-
mark application five times, and plot the average 
job finish time in Fig. 4.

It is observed that vLocality significantly 
improves the performance of all the selected 
MapReduce applications over the other systems. 
Compared to Default, HDFS-only improves the 
job finish time by 9.6 percent on average for 
Sort, which again verifies the effectiveness of 
revising the DataNote placement strategy. vLocal-
ity, by adapting the task scheduling algorithm to 
be virtual aware, can further improve the job fin-
ish time by 16.3 percent on average compared to 
HDFS-only (24.3 percent when directly compared 
to Default).

The improvements on ShortestPath and 
PageRank are less significant (16.2 percent 12.3 
percent compared to Default, respectively), since 
the number of reducers in these two applications 
is less than that in Sort , and thus the reduce 
phase, in which data locality has less impact, 
accounts for most of the running time. Further, 
these two applications involve iterative steps, 
which incur a lot of communication overhead.

Since data locality is mainly related to the 
map phase, we plot of the empirical CDF of the 
map task finish time in Fig. 5, which gives a much 
clearer picture of the impressive improvements of 
vLocality over Default. We can see that the system 
design has a remarkable impact on the finish time 
of individual map tasks. Taking Sort as an exam-
ple, in the Default system, all the map tasks take 
more than 20 s, and nearly 30 percent of the tasks 
need more than 40 s. On the other hand, in both 
HDFS-only and vLocality, more than 70 percent of 
the tasks can be finished in less than 18 s, indicat-
ing that the reduced number of DataNodes can 
effectively mitigate the interference and speed up 
task execution. The remaining tasks, accounting 
for about 20 percent of the total, have divergent 
finish time distributions in HDFS-only and vLocal-
ity: all the remaining tasks can be finished within 
40 s in vLocality, while most of them need more 
than 40 s in HDFS-only, implying that vScheduling 
significantly reduces rack-local (cross-PM) tasks.

Data Locality
We further calculate the distribution of different 
degrees of data locality for each system running 
the benchmark applications, and report the results 
of Sort  in Table 1. The results are similar for 
ShortestPath and PageRank, which are omit-
ted for the sake of conciseness.

Table 1 explains the advantages of vLocality 
over Default and HDFS-only. In Default, most 
tasks are VM-local, a few are rack-local, and 
PM-local cases are very rare. Concurrent running 
VM-local tasks on co-located VMs will incur serve 
inter-VM interference, leading to increased task 
finish time. HDFS-only successfully reduces VM-lo-
cal tasks by reducing the number of DataNodes 
per PM, but it incurs many rack-local tasks since 

the original task scheduler regards PM-local and 
rack-local as identical. In vLocality, most tasks are 
assigned to the appropriate VMs, minimizing the 
non-necessary rack-local tasks. It is worth noting 
that vLocality cannot completely eliminate the 
rack-local tasks. To identify the root cause, we 
analyze the log files and find that in some cases, 
the VMs on one PM are all busy and have no free 
slots, while some VMs on other PMs have free 
slots. Hence, the task scheduler has to allocate 
the pending tasks, which are rack-local to these 
VMs; otherwise, the slot resources would be wast-
ed.

Further Discussion
Data locality is critical to the performance of 
MapReduce tasks, and there have been significant 
studies toward improving data locality [3]. Scarlett 
[4] and DARE [5] adopt a popularity-based strat-
egy, which smartly place more replicas for pop-
ular file blocks. There have also been substantial 
efforts on directly scheduling tasks close to data 
[10, 12, 13].

These works on data locality have yet to 
address the important challenges of VMs in a 
public cloud. In the virtualized environment, a 
location-aware data allocation strategy was pro-
posed in [9], which allocates file blocks across all 
PMs evenly, with replicas located in different PMs. 
DRR [14] enhances locality-aware task scheduling 
through dynamically increasing or decreasing the 
computation capability of each node. An interfer-
ence and locality-aware (ILA) scheduling strategy 
has been developed for virtualized MapReduce 
clusters, using a task performance prediction 
model to mitigate inter-VM interference and pre-
serve task data locality [15].

Our vLocality improves the data locality in 
a virtualized cloud environment by observing 
that directly applying conventional data locali-
ty strategies in PM clusters to VM clusters (i.e., 
achieving complete VM-locality) can be harm-
ful to MapReduce performance given the shared 

FIGURE 5. Empirical CDF of map task finish time of different systems.
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resource contention. We have revised the under-
lying data placement strategy and accordingly 
propose a customized virtual-aware task sched-
uling algorithm. The existing improvements (e.g., 
Delay Scheduling [10], DRR [14], and interfer-
ence-aware scheduling [15]) can be further incor-
porated into vLocality after being customized for 
the new architecture of vLocality. We plan to 
work on this issue in future work.

The virtualization performance overhead in 
cloud scenarios has attracted a lot of attention 
from researchers [8]. In general, the causes of 
overhead stem from different levels of cloud 
infrastructure: from single-server virtualiza-
tion, a single-site mega data center, to multiple 
geo-distributed data centers. In this article, we 
investigate the single-server virtualization over-
head for MapReduce-based big data processing, 
and vLocality is also beneficial to mitigate the 
overhead on the data center scale by reducing 
cross-sever traffic.

The dynamics of virtualized cloud platforms 
(e.g., VM migration [8, 16]) is also very important 
for load balancing, power saving, and fault toler-
ance. In big data processing, VM migration can be 
very costly since large volumes of data also need 
to be migrated besides VM images. The data cen-
ter network would be overloaded during migration, 
and the performance interference on migration 
source and destination PMs can be severe. vLocal-
ity is able to reduce the migration overhead since 
migrating a VM without DataNode incurs much 
less data transfer than migrating a fully function-
al VM, while the data availability is not affected. 
The iAware strategy [16] can be also adapted to 
vLocality (e.g., considering the data locality issue 
when selecting destination PMs) to further mini-
mize the overhead of live migration.

Conclusion
As an important practice to improve MapReduce’s 
performance, data locality has been extensively 
investigated in physical machine clusters. In this 
article, we show strong evidence that the con-
ventional efforts on improving data locality can 
have a negative impact on typical MapReduce 
applications in virtualized clouds. We suggest 
adapting the existing storage architecture to be 
virtual-machine-aware, which offloads a large por-
tion of congested disk I/O to the highly efficient 
network I/O with memory sharing. This new stor-
age design demands revision of the traditional 

three-level data locality, as does the task sched-
uling. We have developed vLocality, a systemat-
ic solution to improve data locality in virtualized 
MapReduce clusters, and demonstrate the supe-
riority of vLocality against state-of-the-art systems.

We plan to further optimize the two basic 
components of vLocality: for storage design, we 
can incorporate the file popularity issue to bal-
ance the workloads of individual DataNodes; 
for task scheduling, we may incorporate other 
advanced strategies, such as Delay Scheduling 
[10], into the virtualized environment. We will 
also investigate the possibility of more flexible 
resource allocation in vLocality. Given that not 
all VMs have DataNodes, the workloads of dif-
ferent types of VMs can be different, leading to a 
heterogeneous environment. We plan to conduct 
a more detailed profiling analysis to identify the 
potential performance bottleneck of the vLocality 
design, and investigate both offline solutions that 
allocate different amounts of resources (e.g., CPU 
and memory) based on workloads, as well as 
online solutions that dynamically adjust the capa-
bilities of VMs through the Xen control interfaces.
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TABLE 1. Degrees of data locality in different systems.

VM-Local PM-local rack-local
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