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Abstract— A network of sensors can be used to obtain state-
based data from the area in which they are deployed. To reduce
costs, the data, sent via intermediate sensors to a sink, is often
aggregated (or compressed). This compression is done by a
subset of the sensors called aggregators. Since sensors are usually
equipped with small and unreplenishable energy reserves, a
critical issue is to strategically deploy an appropriate number of
aggregators so as to minimize the amount of energy consumed
by transporting and aggregating the data.

In this paper, we first study single-level aggregation and
propose an Energy-Efficient Protocol for Aggregator Selection
(EPAS). Then, we generalize it to an aggregation hierarchy
and extend EPAS to a Hierarchical Energy-Efficient Protocol
for Aggregator Selection (hEPAS). We derive the optimal num-
ber of aggregators with generalized compression and power-
consumption models, and present fully distributed algorithms for
aggregator selection. Simulation results show that our algorithms
significantly reduce the energy consumption for data collection
in wireless sensor networks. Moreover, the algorithms do not
rely on particular routing protocols, and are thus applicable to
a broad spectrum of application environments.

Index Terms— Wireless sensor networks, energy-efficient, hi-
erarchy

I. INTRODUCTION

A wireless sensor network is a collection of sensors in-
terconnected by wireless communication channels. Each

sensor node 1 is a small device that can collect data from its
surrounding area, carry out simple computations, and commu-
nicate with other sensors or with the controlling authorities
of the network. Long distance communications are achieved
in a multi-hop fashion. Such networks have been realized
due to recent advances in micro-electro-mechanical systems
and are expected to be widely used for such applications as
environment monitoring, intrusion detection, and earthquake
warning [1].

In many of these applications, the data to be collected is
state-based, that is, it consists of measurements of ambient
surroundings. Significant redundancies often exist in such data
due to spatial-temporal correlations. These local redundancies
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1We assume that each sensor node has only one sensor, and hence, in the
rest of this paper, sensor and sensor node are used interchangeably [1]

can be removed prior to sending the over-sized raw data to
the sink and draining the limited sensor energy store. This
process, referred to as data aggregation or data fusion, is quite
attractive as it is often infeasible or costly to replenish the
batteries of the deployed sensors.

It is worth noting, however, that the amount by which the
data size may be reduced by aggregation depends on the
application. For example, simple statistical values such as sum,
mean or deviation, can be easily aggregated into a single
scalar or vector. On the other hand, a temperature map of
a region would allow more limited reduction. For example,
a wavelet scheme separately computes the wavelet transform
for each subregion first, and then merges the resulting wavelet
coefficients of subregions to obtain the wavelet transform of
the entire region. Here, the number of wavelet coefficients of a
subregion may increase as does the number of sensors therein.

In this paper, we investigate energy-efficient aggregator
selection in wireless sensor networks. A unique feature of
our study is that we consider a general compression model
for data aggregation, which is more realistic than the infinite
compression [2], [3], [4] allowed in previous studies. We
begin by using only a single level of aggregation. With this
restriction, we calculate the number of aggregators needed
to minimize the amount of total energy consumed in the
network. A practical Energy-efficient Protocol for Aggregator
Selection (EPAS) is presented to achieve the target number
of aggregators. Next, we demonstrate that multiple levels of
aggregation can further reduce energy consumption. EPAS is
then extended to hEPAS (Hierarchical EPAS) to provide a
multiple level solution. We give fully distributed algorithms
for aggregator selection in the above protocols, which are
applicable to a broad spectrum of state-based data collection
applications in sensor networks.

The performance of these algorithms are examined by
simulations. Our results demonstrate that EPAS conserves
energy consumed both by the entire network and by the
most heavily loaded sensors. The energy consumption can be
further reduced by using hEPAS. The number of levels in the
hierarchy is also a critical factor, and our results provide a
general guideline toward desirable settings of the aggregation
levels.

The remainder of this paper is organized as follows. In Sec-
tion II, we provide some background and review related work.
An energy-efficient protocol for aggregator selection (EPAS)
for one-level data aggregation is presented in Section III. In
Section IV, we generalize EPAS to accommodate aggregation
hierarchies, called hEPAS. The performance of these protocols
is examined in Section V. Finally, Section VI concludes the
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paper and offers some future research directions.

II. BACKGROUND AND RELATED WORK

Wireless sensor networks have received much attention due
to the number of potential applications of this technology.
Many data communication protocols have been proposed
lately, such as DD [5], TAG [6], TTDD [7], GRAB [8], Pilot
[9], LEACH [2], and LAF [10]. Recent surveys by Akkaya
and Younis [11], by Akyildiz et al. [12], and by Tilak, Abu-
Ghazaleh and Heinzelman [13] include information on these
and other protocols. There are three types of data collection in
sensor networks. Event-based data, such as intrusion detection
or object tracking, is collected when an event at a particular
venue within the deployment region occurs. The event is
confirmed by detecting sensors using local consensus and
reported to the control authority [14], [15]. Focused state-
based data is collected in response to a query sent to selected
sensors requesting relevant data [5], [8]. Global state-based
data, such as temperature or humidity, is collected by sensors
all over the deployment area and transmitted to the sink [16].
Our interest here is in global state-based data.

Bhardwaj, Garnett, and Chandrakasan [17] provided an up-
per bound on the lifetime of sensor networks that are engaged
in event detections. In their model, the energy consumed for
a node to relay (that is, to receive and transmit) a unit of
data to another node at distance d is denoted by α1 + α2d

l,
where α1 and α2 depend on the hardware implementation of
the sensors and l is the path attenuation exponent (usually in
the range 2 ≤ l ≤ 4). The distance from one sensor to the
next that minimizes the energy consumed is the characteristic
distance, denoted dchar, where dchar = l

√
α1

α2(l−1) . This value
depends only on the hardware design specifications and the
environment.

For state-based data collection, Heinzelman, Chandrakasan
and Balakrishnan [2] presented a clustering algorithm
(LEACH) to aggregate the data from sensors. In LEACH, each
sensor becomes a clusterhead with a fixed probability during
startup and every non-clusterhead sensor joins the cluster of a
nearest clusterhead. The clusterheads act as aggregators. As
clusterheads are likely to consume more energy than non-
clusterheads, LEACH allows rotation of clusterhead status.
Alternatively, unequal-sized clusters can be used to balance
the sensor energy consumption [18]. Clustering sensors and
mobile ad hoc nodes, in general, has been an intensively
studied area [19], [14], [20], [21], [22], [23], [24], [25].

In contrast to clustering, the design problem of determining
an appropriate number of aggregators for a given sensor
network has also been considered recently. This value can
be used to calculate the aggregator selection probability as in
LEACH, for example. Mhatre and Rosenberg [4] consider two
types of nodes: regular sensors (type 0) and more powerful
sensors (type 1) that can serve as clusterheads. Their work
focuses on determining the numbers of type-1 sensors in a
single aggregation level. A hierarchical clustering algorithm is
proposed by Bandyopadhyay and Coyle [3] assuming infinite
compression. In their model, they calculate the number of
aggregators in each level for energy conservation.

Our hierarchical aggregator selection protocol (hEPAS) is
motivated by these studies. In particular, Bandyopadhyay and
Coyle [3] show that the use of a hierarchical structure can help
conserve energy. However, we consider a more realistic com-
pression model, and propose a general hierarchical framework
to minimize the total energy consumed by both communication
and aggregation. Another novelty of this work is our 2-phase
aggregator selection protocol (Section III-C) to produce evenly
distributed aggregators.

III. ONE LEVEL AGGREGATION

We begin by allowing only one level of data aggregation.
Sensor nodes are partitioned into clusters, each with a cluster-
head. The sensors within each cluster periodically send their
data to the clusterhead. The clusterhead compresses the data
collected from all members and sends the aggregated data to
the sink. We first construct an ideal model, where the sensors
and the aggregators are uniformly distributed over the region.
Then we present a distributed algorithm, EPAS, to select the
aggregators under practical constraints.

A. System Model and Notations

We first state our assumptions and introduce some notation
to be used. A summary list of the notation used in this paper
is given in Table I.

Consider a network of n sensors uniformly distributed over
a region. Many large-scale sensor networks such as envi-
ronment monitoring sensors dropped from aircraft have this
property [12], [1]. Route calculation is carried out during the
initial setup after the aggregators (clusterheads) are selected,
and the sensors send packets to their respective clusterheads
using multi-hop paths (if necessary). Each hop in these paths
is roughly of characteristic distance dchar [17]. That is, each
node forwards the data to a node that is approximately dchar
closer to the destination.

We assume that data collection is synchronized by cycles,
where each cycle consists of a round of data collection,
transmission, and aggregation. During each cycle, sensors
collect data. The data generated is then sent to the aggregator
as a packet of r bits. Each aggregator compresses the data
it receives from the sensors of its cluster and then forwards
the data to the sink. We assume that, by relaying packets via
hops of the characteristic distance, transporting one unit of
data a distance d consumes α × d units of energy, where
α =

α1+α2d
l
char

dchar
[17]. That is, to send one unit of data

a distance one requires the sender to expend α2d
l
char units

of energy to transmit the message. The sender and receiver
together use a total of α1 units of energy internally.

We use a general function g(x) to represent the data
compressibility at aggregators. Basically, g(x) gives the data
volume after compression as a function of the input data
volume x. When g(x) is a constant, this is the infinite
compression assumed in many of the previous studies [2], [3].
We use fa(x) to denote the energy consumed by compressing
x data units. This is generally proportional to x but need not
be. Although in practice the energy consumed by compressing
a unit of data may be significantly less than that consumed by
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TABLE I
LIST OF NOTATION.

Symbol Meaning

a Radius of the network deployment region
ai Radius of a level i cluster
b Coverage radius of an aggregator
c Data compression overhead

dchar Characteristic distance, l
√

α1
α2(l−1)

Ea Energy consumed by aggregating data in a single
cycle in single-level context

Eai Energy consumed by aggregating data in a single
cycle in level i

Eci Energy consumed by transporting data from
level i to level i+ 1 in a single cycle

fa(·) Aggregation energy consumption function
g(·) Data compressibility function
h Number of levels in the hierarchy
k Number of aggregators in single-level context
ki Number of aggregators in level i
l Propagation loss exponent
n Number of sensors in the network
r Sensor data rate
ri Level i aggregator data rate
α1 Circuit energy consumption coefficient
α2 Antenna energy consumption coefficient

α
α1+α2d

l
char

dchar

β Aggregation energy consumption coefficient
γ Data compression ratio

transmitting it (see [1]), we include this cost in our model for
completeness, e.g., to accommodate advanced algorithms like
Wavelet compression [1].

B. Optimal Number of Aggregators

We would like to determine the number of clusterheads
(aggregators) that minimizes the total energy consumed by
transmitting and aggregating data under our model. For sim-
plicity, we assume that the sensors are deployed in a circular
region A of radius a meters with the sink located at the
center of the circle. Our solution can be easily extended to
accommodate other region shapes or sink locations.

Let Ec0 denote the total energy consumed by all of the
sensors sending data to their respective aggregators in a
single cycle. Consider the area covered by cluster C cen-
tered at (xc, yc). The total distance that the data pack-
ets travel from all members of C to (xc, yc) is n

πa2 ×∫∫
(x,y)∈C

√
(x− xc)2 + (y − yc)2 dxdy, where n

πa2 is the
sensor density.

If each sensor chooses the closest aggregator as its cluster-
head, the sensors essentially form a Voronoi diagram of the
network region where each cluster corresponds to a Voronoi
cell. For large k, a typical cluster can be approximated as a
circle of radius a√

k
[26] 2 with the aggregator at the center.

2More details on the problem of covering geometric spaces with spheres
can be found in Conway and Sloane [27].

With this, the above expression evaluates to 2an

3k
3
2
. Thus, after

factoring in the α coefficient to obtain the energy consumption,
the sensor data rate r, and summing over the k aggregators,
we have

Ec0 =
2αanr

3k
1
2

. (1)

Let Ea denote the total energy consumed by data aggrega-
tion in a single cycle. Since the aggregator receives data at an
average rate of nr

k bits per cycle, we have

Ea = k × fa
(nr
k

)
. (2)

Let Ec1 denote the total energy consumed by all of the
aggregators sending this data to the sink in a single cycle.
Since the data is sent by an aggregator at a rate of g

(
nr
k

)
bits

per cycle and the aggregator density is k
πa2 , we have Ec1 =

g
(
nr
k

)
×α× k

πa2 ×
∫∫

(x,y)∈A
√
x2 + y2 dxdy, which evaluates

to

Ec1 = g
(nr
k

)
× 2kαa

3
. (3)

Summing up Equations (1), (2) and (3), we have

2αanr

3k
1
2

+ k × fa
(nr
k

)
+ g

(nr
k

)
× 2kαa

3
. (4)

Consider a typical circuit power-consumption model where
the aggregation energy consumption is proportional to the
volume of the data to be compressed, that is, fa(x) = βx, for
some constant β. Also consider a typical linear compression
model, g(x) = γx+c, where γ (0 ≤ γ ≤ 1) is the compression
ratio and c is the compression overhead [28]. It follows that the
number of aggregators that minimizes the energy consumption
of the network in a single cycle (that is, Equation (4)), is
k =

(
nr
2c

) 2
3 . Substituting g(x) = γx+ c into Equation (3), we

see that the energy consumed by transporting the data from
k aggregators to the sink is proportional to nrγ + ck. Thus,
the contribution of γ to the value of Equation (3) (and (4)) is
independent of k.

Thus, to minimize energy consumption, there should be(
nr
2c

) 2
3 aggregators. This conclusion also applies to the special

case of β = 0, that is, where the energy required to compress
data is negligible (as assumed in many existing sensor systems
[1]).

C. Distributed Aggregator Selection – EPAS

In this section, we propose a practical Energy-Efficient
Protocol for Aggregator Selection (EPAS) that follows our
optimal solution in the previous subsection.

EPAS is a randomized and fully distributed algorithm that
consists of two phases. In the first phase, each sensor chooses
to be a clusterhead (aggregator) with probability p1 indepen-
dently for some p1 ∈ [0, kn ]. Suppose that each clusterhead
has a fixed coverage radius ofb meters. (See Section III-D for
discussion of determining the value of b.) In the second phase,
each sensor that is not within the coverage radius of some
clusterhead declares itself to be a clusterhead with probability
p2.
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By careful choice of p1 and p2, we can ensure that the
expected number of aggregators is k. To do that, we leverage
the following propositions.

Lemma 3.1: After phase 1 of EPAS, the probability that a

sensor c is not covered is (1−p1)
(

1− p1b
2

a2

)n−1

, where p1 is
the phase-1 selection probability, and b and a are the coverage
and network region radii, respectively.

Proof: Let X be a random variable denoting the
number of sensors other than c that are contained in a
circle of radius b centered at c. Thus, we have Prob[X =

i] =

(
n
i

)(
b2

a2

)i (
1− b2

a2

)n−i−1

, for i = 0, 1, . . . , n − 1.

Further, (1 − p1)X is a random variable indicating the prob-
ability that c is not covered by any selected clusterhead after
phase 1. Its expected value is

E
[
(1− p1)X

]
=

n∑

i=0

(1− p1)i × Prob[X = i]

=

n∑

i=0

(1− p1)i
(
n
i

)(
b2

a2

)i(
1− b2

a2

)n−i−1

=

(
1− p1b2

a2

)n−1

.

This is also the probability that c is not covered by any
selected clusterhead. Factoring in the probability that c does
not select itself, we have the expected probability that sensor

c is not covered: (1− p1)
(

1− p1b
2

a2

)n−1

.

For the expected number of clusterheads generated by EPAS
to be k, the selection probabilities of the two phases should
satisfy the following condition.

Theorem 3.2: The expected number of clusterheads gen-
erated by EPAS is k iff p1 and p2 are chosen such that

p1 + p2(1− p1)
(

1− p1b
2

a2

)n−1

= k
n .

Proof: Let random variable Y denote the number of
clusterheads generated by EPAS. Let binary random variable
Yi be 1 if and only if sensor ci (i = 1, 2, . . . , n) becomes
a clusterhead. Thus we have E[Yi] = E[Y ]

n = k
n . Let binary

random variables Yi,1 and Yi,2 denote the fact that ci becomes
a clusterhead in phases 1 and 2, respectively. Since the events
that ci becomes a clusterhead in either phase are mutually
exclusive, we have

E[Yi] = Prob[Yi = 1]

= Prob[(Yi,1 = 1) ∪ (Yi,2 = 1)]

= Prob[Yi,1 = 1] + Prob[Yi,2 = 1]

= E[Yi,1] +E[Yi,2].

We know that E[Yi,1] = p1. In addition, we have
E[Yi,2] = p2 × Prob[c is not covered in phase 1]. Based on
Lemma 3.1, we have Prob[c is not covered in phase 1] =

(1− p1)
(

1− p1b
2

a2

)n−1

. As a result, we have k
n = E[Yi,1] +

E[Yi,2] = p1+ p2(1− p1)
(

1− p1b
2

a2

)n−1

.

After phase 2, the expected number of aggregators is k. Each
sensor that is not an aggregator selects the closest aggregator
as its clusterhead. Thus, the clusters essentially form a Voronoi
partitioning of the network.

D. Discussion

Given the number of sensors, deployment area, compression
ratio, characteristic distance, and other network parameters,
we can calculate the optimal number of aggregators k. Given
this target number of aggregators, we can choose appropriate
probabilities p1 and p2 offline. After deployment, the sensors
select k aggregators. Each of the aggregators broadcasts its
status to all sensors within coverage radius b. For large k, k

circles of radius b =

√
3
√

3
2π

a√
k
≈ 1.0996 × a√

k
can cover

the entire region of area πa2 [26]. We use a larger coverage
radius b = 2a√

k
to ensure that most of the sensors are within

the coverage radius of at least one aggregator while keeping
the broadcast radius small. In Section V, we report on a set
of experiments to determine how many sensors lie outside the
coverage areas for k aggregators with coverage radius b = 2a√

k
.

IV. HIERARCHICAL AGGREGATION

We now consider a more general framework that organizes
the aggregators in a hierarchy. We begin with all sensors in
level 0 of the hierarchy. From those sensors, we select a subset
as aggregators for level 1. From the level 1 aggregators, we
select a subset to act as level 2 aggregators. Similarly, we select
a subset of the aggregators at each level to act as aggregators
at the next higher level. Finally, the sink (which may not be
an aggregator of any of the other levels) is the only aggregator
of level h+ 1.

Once the aggregation hierarchy is established, sensors col-
lect data and send it to the nearest level 1 aggregator. The level
1 aggregators collect this data from their sensors, aggregate it,
and forward it to the nearest level 2 aggregator. This process
continues until the level h aggregators forward the data to the
sink.

In this section, we modify the method of Section III to
determine the optimal number of aggregators in each level of
the hierarchy. Then we extend EPAS to hEPAS, its hierarchical
version.

A. Optimal numbers of aggregators in the hierarchy

We denote the number of aggregators in level i by ki (i =
0, 1, ..., h+ 1). Note that k0 = n and kh+1 = 1. The data is
sent out of a level i aggregator to its clusterhead at a rate of ri
bits/cycle and r0 = r. As before, the data compression rate is
described by function g(·).We assume that aggregators in each
level are distributed uniformly. That is, a level i aggregator
receives data from ki−1

ki
level (i − 1) aggregators. The data

rate ri can be expressed as:

ri =

{
r if i = 0

g
(
ri−1 × ki−1

ki

)
i = 1, 2, . . . , h.

Let Eai be the total energy consumed by the compression
done by all of the aggregators of each level i in a single cycle.
We have Eai = ki × fa

(
ki−1

ki
× ri−1

)
.

We now consider Eci, the total energy consumed by
transporting data from level i aggregators to level (i + 1)
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aggregators (i = 0, 1, . . . , h) in a single cycle. As be-
fore, a typical level (i + 1) cluster C can be approxi-
mated with a circle of radius ai+1 = a/

√
ki+1, centered

at (xc, yc), and the density of the level i aggregators is
ki
πa2 . The portion of Eci within this cluster is ri × α ×
ki
πa2×

∫∫
(x,y)∈C

√
(x− xc)2 + (y − yc)2 dxdy = 2αakiri

3k
3
2
i+1

.

Therefore, summing over the ki+1 level (i + 1) clusters, we
have Eci = 2αakiri

3k
1
2
i+1

.

Thus, the total energy consumed in a single cycle is

h∑

i=1

Eai +

h∑

i=0

Eci, (5)

which is a function of the ki.
Given values of r, a, α, γ and c for a particular system, the

values of ki minimizing the above total energy consumption
can be calculated. These values can then be used to configure
the aggregator selection protocol.

B. Hierarchical EPAS

Here, we propose a Hierarchical Energy-Efficient Protocol
for Aggregator Selection (hEPAS). We assume that the optimal
number of aggregators in each level i is ki (i = 1, 2, . . . , h) as
calculated above. The protocol selects an expected ki sensors
as the level i aggregators. hEPAS executes for h iterations.
Each iteration is similar to EPAS (Section III-C). During
iteration i, a level (i−1) aggregator chooses to become a level i
aggregator with probability pi ∈ [0, kin ] in the first phase. Each
chosen aggregator has a coverage radius of b = 2a√

ki
. In the

second phase, a level (i− 1) aggregator that is not covered by
any level i aggregator chooses to become a level i aggregator
with probability p2, where p1 and p2 satisfy the condition
described in Theorem 3.2 for k = ki. After the aggregators of
all levels are chosen, each level i aggregator (i = 0, 1, . . . , h)
joins the cluster of the nearest level (i+ 1) aggregator.

V. PERFORMANCE EVALUATION

We evaluate the performance of EPAS and hEPAS through
simulations using our custom simulator. We first investigate
the energy consumption versus the number of aggregators in
the single-level case in order to understand the effectiveness
of EPAS. Then we study the energy saving gained by adding
more levels to the aggregation hierarchy.

In the simulation, we use a network of 10000 sensors
uniformly deployed in a circular region of radius 1000 meters.
The system specifications we use are similar to those used
by Heinzelman, Chandrakasan and Balakrishnan [2] and by
Mhatre and Rosenberg [4] (see Table II). We assume that the
sensors sample the environment every minute. This differs
slightly from the assumptions in these previous paper but
is reasonable for our application. The measured values are
converted to 16-bit digital representations and a single cycle
lasts for 10 minutes. Therefore, the sensor data rate is 160
bits/cycle.

The regions served by the aggregators of each level form a
Voronoi diagram of the overall network region. In the single

TABLE II
SYSTEM SPECIFICATIONS.

Parameter Value

Number of sensors n 10000
Network radius a 1000 m

Communication circuit power α1 5× 10−8 J/bit
Communication antenna power α2 1× 10−10 J/bit/m2

Propagation loss exponent l 2
Characteristic distance dchar 22.36 m

Aggregation energy consumption rate β 5× 10−8 J/bit
Sensor data rate r 160 bits/sec

Data compression ratio γ 25%
Data compression overhead c 32 bits
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Fig. 1. Uncovered sensors vs phase-1 probability.

level EPAS protocol, each aggregator compresses the data
collected from sensors located within its Voronoi cell and
sends it to the sink at the center of the region. To mitigate the
impact of inefficient routing, we assume an idealized routing
protocol, Characteristic Distance Progressive Routing (CDPR),
to approximate straight-line routing [17]. In CDPR, when a
packet intended for node d is at node s with dist(s, d) >
dchar, it is forwarded to an intermediate node v1 that is the
closest to the target point t, a point on the line segment (s, d)
at distance dchar from s. The packet is forwarded one step at
a time until it reaches node vi within distance dchar of d from
which it is forwarded to d directly.

Our next goal is to choose a suitable value of p1, and
thus that of the corresponding p2, that leaves few sensors
uncovered after EPAS. To do this, we fix k and n, select a
coverage radius b, and then, using various appropriate values
of p1, simulate the placement of the sensors and the choice
of aggregators using that value of p1. For each simulation,
we count the number of uncovered sensors. In particular, we
then assume that there are 10000 sensors and we choose the
expected numbers of aggregators k to be 25, 100, 400, or
1600. Having fixed k, we use the coverage radius b = 2×1000√

k
.

For the above values of k, this gives b = 400, 200, 100,
and 50 meters, respectively. We consider each value of p1

such that p1/(k/n) = 0.05i, where i = 0, 1, 2, . . . , 20.
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Fig. 2. Single-level energy consumption.

Figure 1 shows the percentage of sensors not covered by
any aggregator for each choice of p1/(k/n). That is, the
percentage of sensors not covered by any aggregator varies
as p1 does. Moreover, the fewer uncovered sensors, the better
an aggregator’s Voronoi cell can be approximated by a circle.
Thus, choosing p1/(k/n) ∈ [0.7, 0.8] should yield the fewest
uncovered sensors. For subsequent simulations, we use 0.75
as the value for p1/(k/n) and obtain the value of p2 from
Theorem 3.2.

We now measure the energy consumed in a single cycle
of the data collection assuming a single level of aggregation.
We fix the number of aggregators, select them, and then
simulate the collection of data at each sensor, transmission
of the data to the aggregators, aggregation of the data, and
transmission of the aggregated data to the sink. For each
simulation, we compute the maximum energy consumed by
an individual sensor in the network. That is, if the sensor is
not an aggregator, we count the energy needed to transmit its
data to the aggregator and any energy used to forward other
data during the cycle. For aggregators, we also include the
cost of aggregation. In addition to determining the maximum
of these costs, we also compute the total of these costs over
all sensors. In the simulations, we again assume that we
have 10000 sensors. We choose the number of aggregators
to be a value 100j, where j = 1, 2, . . . , 30. Figure 2 shows
the resulting maximum energy consumption and total energy
consumption values. The total energy consumption appears
to be minimized when the number of aggregators is between
800 and 900. Note that the value predicted by Equation (3) is
855. The maximum energy consumption is minimized when
the number of aggregators is between 450 and 500 and is
reasonably small for the range between 300 and 1000. Our
simulations show that these most heavily loaded nodes are
generally located near the aggregators or the sink. Such nodes
are required to transport large amounts of data since the data
is being concentrated at the aggregators and the sink.

We now consider whether additional energy savings can
be achieved by instituting a hierarchical structure for the
aggregators using the hEPAS protocol as described above.
In an h-level hierarchy, we have calculated the number of
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Fig. 3. Hierarchical energy consumption.

aggregators ki at each level i of the hierarchy that minimize
the total energy consumption in an ideal situation. This total
is given by Equation (5) and we can calculate the values of
ki that achieve this minimum. Table III shows the values of
ki for h levels where 1 ≤ h ≤ 10 with a total of 10000
sensors deployed. We performed some simulations for h-level
hierarchies where 1 ≤ h ≤ 10 using the computed values ki
shown in the table. In each simulation, we used the hEPAS
protocol to select ki aggregators at each level i and then
measured the energy consumed by each sensor, recording both
the maximum for any sensor and the total consumed by all
sensors. For each choice of h, we performed 1000 simulations.
The averages of these values over all of the simulations for
each h are shown in the two plots in Figure 3. The ideal values
from Equation (5) are included in the lower plot (which shows
the total energy consumed). From these experimental results,
we conclude that for 10000 sensors, the best choice would
be to use a hierarchical solution with 5 levels. Note that the
experimental results are reasonably close to the ideal values,
which indicates that our ideal scenario is a good model of the
actual situation.

VI. CONCLUSION

In this paper, we studied the energy consumed in wireless
sensor networks in which some sensors can aggregate the
data. In particular, we considered one scenario that allowed a
single level of aggregation assuming a general compressibility
function. we calculated the number of aggregators needed
to minimize the amount of total energy consumed in the
network. A practical Energy-efficient Protocol for Aggregator
Selection (EPAS) was presented to achieve the target number
of aggregators.

We then considered a more general scenario with multiple
levels of aggregation, and extended EPAS to its hierarchical
version, hEPAS. We gave fully distributed algorithms for ag-
gregator selection in the above protocols, which are applicable
to a broad spectrum of state-based data collection applications
in sensor networks.

We performed a series of simulations, measuring energy
consumption in networks with different numbers of levels



IEEE TRANSACTIONS ON VIHECULAR TECHNOLOGY, VOL. X, NO. XX, XXXX 7

TABLE III
NUMBER OF AGGREGATORS.

h k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 Et

1 855.0 1.5174
2 1848.8 369.8 0.6626
3 3210.9 808.4 177.7 0.4134
4 4478.2 1411.2 387.8 93.3 0.3306
5 5281.6 1953.8 659.4 198.3 52.6 0.2999
6 5689.9 2299.2 890.4 321.8 106.0 31.2 0.2878
7 5878.2 2478.7 1033.9 419.4 162.1 58.5 19.3 0.2829
8 5972.7 2565.3 1108.8 477.8 202.9 83.7 33.0 12.2 0.2810
9 5998.3 2600.7 1142.6 506.5 225.3 101.0 43.9 18.9 7.9 0.2804

10 6005.8 2608.4 1149.8 512.8 230.4 107.4 48.2 22.5 10.6 5.1 0.2803

and aggregators at each level. Overall, our simulations show
that both the total energy consumption and the maximum
energy consumption among sensors are significantly reduced
by employing the proposed protocols.

This work can be extended in a number of different ways.
For example, we can better balance the energy consumption
among nodes by the use of mobile aggregators. We may
also consider the problem of aggregator selection for sensor
networks with heterogeneous nodes.
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