
CASVA: Configuration-Adaptive Streaming for Live
Video Analytics

Miao Zhang†, Fangxin Wang∗‡, Jiangchuan Liu†
† School of Computing Science, Simon Fraser University, Canada

∗ SSE and FNii, The Chinese University of Hong Kong, Shenzhen, China
‡ Peng Cheng Laboratory, Shenzhen, China

mza94@sfu.ca, wangfangxin@cuhk.edu.cn, jcliu@cs.sfu.ca

Abstract—The advent of high-accuracy and resource-intensive
deep neural networks (DNNs) has fulled the development of live
video analytics, where camera videos need to be streamed over
the network to edge or cloud servers with sufficient computational
resources. Although it is promising to strike a balance between
available bandwidth and server-side DNN inference accuracy
by adjusting video encoding configurations, the influences of
fine-grained network and video content dynamics on config-
uration performance should be addressed. In this paper, we
propose CASVA, a Configuration-Adaptive Streaming framework
designed for live Video Analytics. The design of CASVA is
motivated by our extensive measurements on how video configu-
ration affects its bandwidth requirement and inference accuracy.
To handle the complicated dynamics in live video analytics
streaming, CASVA trains a deep reinforcement learning model
which does not make any assumptions about the environment
but learns to make configuration choices through its experiences.
A variety of real-world network traces are used to drive the
evaluation of CASVA. The results on a multitude of video types
and video analytics tasks show the advantages of CASVA over
state-of-the-art solutions.

I. INTRODUCTION

Human beings are no longer the only consumers of videos.
With the proliferation of live video analytics applications
[1]–[3], an increasing number of videos are consumed by
vision deep neural networks (DNNs) for automated infor-
mation extraction. Although state-of-the-art DNNs can offer
unprecedented accuracy for live video analytics, real-world
cameras capturing the videos are not equipped with the
matched resources to run these expensive DNNs locally for
in-situ analytics [4]. This forces camera videos to be streamed
over the network to seek sufficient computational resources.
Resource-rich edge or cloud servers have become popular
destinations for streaming analytics [1], [3], [5], [6].

Although tremendous video analytics systems have been de-
veloped in recent years, few have paid attention to the network
streaming optimization problem. For example, systems such as
VideoStorm [1], Chameleon [3], and Nexus [7] focus on
efficient computational resources management for large-scale
streaming analytics in a single data center or cloud, while
Mainstream [8] focuses on multi-tenant video processing
on a fixed-resource edge device. All these systems typically

This research is supported by a Canada NSERC Discovery Grant. Fangxin
Wang’s work is supported in part by National Natural Science Foundation of
China with Grant No. 62102342. Fangxin Wang is the corresponding author.

assume that the network resource between cameras and edge
or cloud servers is not the bottleneck, and therefore overlook
its importance. However, network resources deserve more
attention in live video analytics since an increasing number
of cameras stream videos over unstable and scarce wireless
links and public internet [5].

Several strategies, such as frame filtering [9], frame com-
pression [10], [11], DNN model splitting and approxima-
tion [12]–[14], have been proposed to reduce the bandwidth
consumption or edge-cloud data transfer overhead in geo-
distributed video analytics systems. Unfortunately, these strate-
gies are inclined to be application-specific and only optimize
from a particular configuration dimension (e.g., frame rate).
Additionally, they tend to use fixed rules to reduce bandwidth
consumption instead of adapting to the available bandwidth,
which may not achieve strict real-time analytics.

Adapting to the scarce and variable network bandwidth
between camera clients and remote servers [5], [9] remains
a significant challenge in video analytics streaming. To make
things worse, traditional adaptive bitrate streaming (ABR)
protocols [15] are not well-suited for live video analytics
since they are designed to optimize human-perceived quality
of experience (QoE), i.e., enabling humans to watch high-
quality videos without interruptions. By contrast, live video
analytics pursuit the goal of maximizing DNN-perceived QoE,
i.e., maximizing server-side DNN inference accuracy without
analysis lags [6]. Unlike picky human viewers, video analytics
algorithms can tolerant dropped frames, decayed image qual-
ity, or reduced resolution as long as the analytics results are
not affected.

With the changed optimization goals, common encoding
knobs, such as resolution and frame rate, can play a new role
in live video analytics streaming. We refer to a combination
of specific knob values as a configuration. Recent analytics
streaming study [5] has verified the significant influences of
configuration choices on bandwidth requirement and inference
accuracy. Nevertheless, it relies on the profiling-based method
to acquire the relationship between configuration and its per-
formance, which not only incurs prohibitively high profiling
costs, but also fails to capture the configuration’s performance
variation caused by video content dynamics.

In this paper, we present CASVA, an efficient Configuration-
Adaptive Streaming framework for live Video Analytics.

Video Name Source Type Description

STA1 YouTube Live [16] stationary traffic camera A video clip collected on a sunny day
STA2 YouTube Live [17] stationary traffic camera A video clip collected on a rainy morning
STA3 YouTube Live [17] stationary traffic camera A video clip collected on a sunny morning
DASH1 YouTube [18] dashcam Daytime drive in Chicago downtown
DASH2 YouTube [19] dashcam Night drive around downtown London

TABLE I: Video dataset used in this paper.

Through continuously configuration tuning, it tries to maxi-
mize the server-side DNN inference accuracy while adapting
to varying available network bandwidth. In order to motivate
the design of CASVA, we conduct extensive measurements
with different video analytics models on real-world camera
streams. Based on our measurement insights, CASVA trains
a deep reinforcement learning (DRL) model to help cameras
make adaptive configuration choices. In summary, the contri-
butions of this paper are as follows.
• We take two vision tasks (object detection and semantic

segmentation) as case studies to acquire a deep under-
standing of how encoding configuration affects the DNN-
perceived QoE. The results reveal the new opportunities
and challenges of configuration adaptation.

• We propose CASVA and design an actor-critic style DRL
model to select the configuration for each video segment,
which can adapt to the fine-grained network bandwidth
and video content dynamics.

• By using a variety of camera videos and network traces,
we evaluate the performance of CASVA in a trace-driven
way. We compare its performance with two state-of-the-
art solutions to show its superiority in improving DNN
inference accuracy and reducing upload lags.

The rest of this paper is organized as follows. We first
introduce our measurement studies in Section II to motivate
the design of CASVA. Then, we describe the configuration-
adaptive streaming problem and identify its practical chal-
lenges in Section III. We subsequently illustrate the details
of our DRL-based solution in Section IV and evaluate its per-
formance with trace-driven experiments in Section V. Related
work is discussed in Section VI, and the paper is concluded
in Section VII.

II. MEASUREMENT AND MOTIVATION

A. Measurement Setup

Vision Tasks: In this paper, we illustrate the design ideas of
CASVA by two classical vision tasks, object detection (OD)
[20], [21] and semantic segmentation (SS) [22], [23]. They
are both basic building blocks of advanced video analytics
applications. OD is a good representation of bounding boxes-
based vision tasks, while SS is a good representation of pixel-
based vision tasks. By default, we employ two popular DNN
models to execute the two tasks, i.e., Faster R-CNN [20]
for OD and ICNet [23] for SS.
Configuration Knobs: For both OD and SS tasks, we consider
three configuration knobs: frame rate (FR) that controls a
video from the temporal perspective, resolution (RS) that

controls a video from the spatial perspective, and quantization
parameter (QP) that controls the image quality. These three
knobs are typical video configuration knobs in video analytics
systems [5], [24], which can affect both the bitrate and the
inference accuracy. Based on these three knobs, we define a
configuration as a combination of them (FR, QP, RS). In this
paper, we consider a variety of FR ({1, 5, 10, 15, 30}), QP
({23, 28, 33, 38, 43}), and RS ({240, 360, 480, 720, 1080}p)
choices. There are a total of 125 distinct configurations.
Performance Metrics: For a video segment encoded with a
specific configuration, we consider two performance metrics:
the minimum bandwidth required for real-time streaming
(bitrate) and the server-side DNN inference accuracy. Con-
cretely, the bitrate is obtained by encoding frames with H.265
and the specified configuration. Unless otherwise noted, the
default segment length is 2 seconds, which is the recom-
mended length in various segment-based streaming protocols.

Following the best practices in previous studies [3], [5],
[24], instead of human annotations, we regard the DNN out-
puts of the golden configuration (i.e., the most expensive con-
figuration) as the ground truth. In this way, we can minimize
the influences caused by the inaccuracy of the DNN model
itself and focus on the impacts of encoding configurations.
For OD, the accuracy of a configuration is defined as the F1
score of its outputs against the ground-truth results. The true
positive is counted if the Intersection over Union (IoU) of the
corresponding bounding boxes ≥ 50% and the classified object
types match. For SS, we define the accuracy of a configuration
as the Mean of class-wise Intersection over Union (mIoU) [23]
between its outputs and the ground-truth results.

B. Measurement Insights

To identify how video configuration influences video bitrate
and server-side DNN inference accuracy, we conduct exten-
sive measurements on a video dataset (shown in TABLE I)
collected from real-world cameras. The length of all videos in
the dataset is 10 minutes.

We first investigate the influences of decaying one config-
uration dimension and plot the results in Fig. 1. We find that
different configuration knobs have different impacts on bitrate
and accuracy, and such impacts are video-specific and task-
specific. For example, compared with the stationary camera
video (STA3 in the figure), reducing FR has more signifi-
cant impacts on the dashcam video (DASH2 in the figure).
Reducing RS leads to dramatic reductions in SS accuracy;
in comparison, the impacts of decaying image quality (i.e.,
increasing the QP value) on SS accuracy are less significant.

0

25

50

75

100

1 5 10 15 30

Frame Rate (FPS)

STA3

0

25

50

75

100
B

it
ra

te
 /
 A

c
c
u
ra

c
y
 (

%
)

Segment Bitrate OD Accuracy SS Accuracy

DASH2

(a) Tune FR (RS: 1080p, QP: 23).

0

25

50

75

100

23 28 33 38 43

Quantization Parameter

STA3

0

25

50

75

100

B
it
ra

te
 /
 A

c
c
u
ra

c
y
 (

%
)

Segment Bitrate OD Accuracy SS Accuracy

DASH2

(b) Tune QP (RS: 1080p, FR: 30).

0

25

50

75

100

240p 360p 480p 720p 1080p

Resolution

STA3

0

25

50

75

100

B
it
ra

te
 /
 A

c
c
u
ra

c
y
 (

%
)

Segment Bitrate OD Accuracy SS Accuracy

DASH2

(c) Tune RS (FR: 30, QP: 23).

Fig. 1: The impacts of different configuration knobs on performance. For both video clips, the values of bitrate and accuracy
are averaged over all segments and then normalized by that of the golden configuration (FR: 30, QP: 23, RS: 1080p) whose
bitrate and accuracy are 100% in all three subfigures.

0

0.2

0.4

0.6

0.8

1.0

0 1.0 2.0 3.0 4.0 5.0

STA1M
e
a
n
 A

c
c
u
ra

c
y

Mean Bitrate (Mbps)

Fig. 2: Performance of all configurations.
Values are calculated by averaging across
all segments (Task: SS).

0.0

0.7

1.4

2.1

2.8

0 20 40 60 80 100 120
0.6

0.7

0.8

0.9

1.0

B
it
ra

te
 (

M
b
p
s
)

A
c
c
u
ra

c
y

Segment Index

Fig. 3: Performance variations of a single
configuration (FR: 10, QP: 28, RS: 720p,
Task: OD, Video: DASH1).

0.7

0.8

0.9

1.00

0 20 40 60 80 100 120

A
c
c
u
ra

c
y

Segment Index

Profiled Optimal

Fig. 4: Performance variations of the pro-
filed and optimal configurations (Task:
OD, Video: STA2).

Another interesting observation is that the decreases in image
quality and RS dramatically reduce the bitrate with relatively
small effects on inference accuracy for the OD task. For
instance, raising the QP value of the golden configuration to 43
reduces more than 90% of the bitrate, while the OD accuracy
drops less than 26% for both videos. This indicates that,
unlike human viewers, DNNs can be less sensitive to image
quality. This also means that live video analytics opens up new
opportunities for video streaming, and there is considerable
room for further optimization.

We further adjust all configuration knobs together and exam-
ine the bitrate and accuracy distribution of all configurations.
Fig. 2 shows the results of analyzing the STA1 video with
ICNet under various configurations. It can be seen that higher
bitrate does not necessarily lead to higher accuracy, and
configurations with similar bitrates can have very different
accuracies. For example, a good configuration (FR: 5, QP:
33, RS: 1080p) reaches a mean accuracy of 0.631 with the
mean bitrate of 1.009 Mbps, while streaming the same video
with a bad configuration (FR: 10, QP: 23, RS: 480p) requires
at least 1.090 Mbps mean bandwidth but only achieves a
mean accuracy of 0.439. This indicates that configuration
optimization is necessary to achieve the most benefits.

Existing video analytics systems are inclined to ignore the
influences of video content dynamics. Yet, it is interesting to
quantify the influences of the ever-changing video content on
a configuration’s performance. An example of this is in Fig. 3,
which displays the bitrate and accuracy variations of consecu-

tive video segments encoded with a fixed configuration. As can
be seen, video content can affect a configuration’s bitrate and
accuracy in a fine-grained and highly dynamic manner. This
indicates the relationship between configuration and bitrate
(accuracy) is video content-dependent and highly variable.
In addition, we find that the segment bitrate (size) has the
potential to be an indicator of video content dynamics. It
provides helpful information for predicting the corresponding
inference accuracy. For instance, for most cases, an increasing
trend in bitrate means increasing video content dynamics,
which may lead to configuration performance degradation.

Several video analytics systems [1], [5], [12] rely on one-
time offline profiling to obtain resource demands and accuracy
of configurations. Further optimization can be performed based
on the Pareto frontier [1], [5] of the profiling results. This
strategy implicitly assumes that the optimal configuration can
maintain its optimality in a certain time window. We conduct
the following performance extrapolation experiments to verify
the effectiveness of this strategy on our problem.

We first offline acquire the bitrate and accuracy of all
configurations on a representative video segment, e.g., the
first segment. Assume the available bandwidth during a time
window is �. We define the optimal configuration as the most
accurate one whose bitrate is not greater than �. We can obtain
the profiled optimal configuration based on the offline profiling
results once � is determined. We then check its performance
on subsequent segments. Fig. 4 shows an example where � is
1.5 Mbps. As shown, there exists a considerable performance

Edge / Cloud Server

DNN inference

Camera Client

camera buffer

configuration
controller

video codec

 configuration

raw frames

Fig. 5: The framework of configuration-adaptive streaming for
video analytics (CASVA).

gap between the profiled configuration and the ground-truth
optimal configurations. This suggests that profiling-based solu-
tions fail to keep up with the intrinsic dynamics of bandwidth-
accuracy trade-off. They may end up with either prolonged
latency or lower accuracy. As such, continually fine-grained
configuration adaptation is necessary.

III. CASVA DESIGN

A. Problem Description

Fig. 5 illustrates our Configuration-Adaptive Streaming
framework for live Video Analytics (CASVA). In this frame-
work, frames captured by the camera are cached in a buffer.
Then, they are encoded and delivered in segments. Let ; denote
the duration (in seconds) of a segment. We assume that the
camera captures frames in real time and buffers sufficient
frames before uploading the next segment, i.e., the upload
interval is at least ;. With such a design, different segments
can be encoded independently with different configurations to
allow fined-grained (i.e., at a segment level) control.

The configuration controller in the camera client adjusts the
configuration for each segment to achieve both low latency
(i.e., preserving data freshness) and high accuracy (i.e., pre-
serving data fidelity). Formally, the goal of the configuration
controller is to choose a configuration c8 for each segment
8 to maximize its server-side inference accuracy Q(c8) while
minimizing its upload lag L(c8). The upload lag for a video
segment is the time difference between its actual and expected
upload time. The upload lag is non-negative, which means if a
video segment is uploaded before its expected upload time, we
say its upload lag is 0. Assume the start time of a streaming
session is 0. In continuous streaming scenarios, the expected
upload time of segment 8 is 8 × ;.

B. Challenges and Motivations

Despite its simplicity, the configuration-adaptive streaming
problem has no analytical solutions. We next elaborate on this
by discussing several practical challenges.

Low latency and high accuracy are both performance goals
pursued by live video analytics streaming. Unfortunately,
these two goals are inherently conflicting when the network
bandwidth between the camera and the server is dynamic and
scarce. As shown in Fig. 2, given the video content, there exists
a Pareto frontier. All configurations in this frontier indicate a
trade-off between bitrate and accuracy. Higher accuracy only
can be achieved at the expense of increased bitrate. In this

case, choosing a high-accuracy configuration with a bitrate
greater than the available bandwidth may lead to increased
lags. Conversely, selecting a low-latency configuration with a
bitrate smaller than the bandwidth may sacrifice accuracy. Fur-
thermore, different applications may have different preferences
between these two performance goals.

As supported by our measurement results, the DNN infer-
ence accuracy Q(c8) is not fully determined by the configura-
tion c8 . It is affected by fine-grained video content dynamics
as well. Thus, Q(c8) cannot be expressed in a closed form of
c8 . One-time offline profiling does not work since it cannot
capture the variations in configuration performance. Frequent
online profiling may capture the dynamics, but the camera
typically cannot support such profiling due to constrained
resources. The server may have sufficient resources, but the
prohibitively high profiling costs make such profiling schemes
not worthwhile in practice.

To estimate the upload lag L(c8), we first need to know the
upload delay D(c8), i.e., how long it takes to upload the video
segment. Theoretically, the upload delay can be estimated by
I(c8)/=(c8), where I(c8) denotes the video segment size and
=(c8) represents the average network throughput during its
uploading. Unfortunately, affected by specific video content,
the relationship between c8 and I(c8) can hardly be modeled
by an analytical model. There is no way to obtain the exact
value of I(c8) without actually encoding the segment with
configuration c8 . However, encoding the video segment with
all possible configurations is time-consuming and resource-
intensive. On the other hand, the average network throughput
=(c8) is time-variant. It depends on when the camera starts
and completes the uploading of segment 8 and the network
conditions during that particular interval. This indicates that
=(c8) is highly dynamic and difficult to be known beforehand.
Thus, tuning fine-grained configurations to adapt to dynamic
network bandwidth shows significant challenges.

Moreover, in continuous live streaming scenarios, L(c8) is
not only influenced by segment 8’s upload time D(c8), but also
the upload time of previous segments. For example, if the
upload lag of segment 8−1 is already 1 second, L(c8) will be
<0G(0, D(c8) − ; + 1). This means the configuration choice for
a segment can have cascading effects on the camera buffer
size, which will further affect the configuration choices of
subsequent segments. For instance, streaming a segment with
an unnecessarily high-bitrate configuration may increase lags.
As a result, subsequent segments may have to be streamed with
low-bitrate configurations to maintain freshness, which may
sacrifice accuracy. This suggests that the problem is essentially
a sequential decision problem.

IV. SOLUTIONS WITH DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) has achieved great
success in solving sequential decision problems with dynamic
environments. Our problem is within this realm and can be
potentially solved by DRL-based solutions. In this section, we
show how CASVA addresses the aforementioned challenges
of the configuration-adaptive streaming problem, i.e., how

Past network throughput

Past segment upload
time

Camera buffer size

Past segment size

Past content dynamics

Merge

1D CNN1D CNN

1D CNN1D CNN
Flatten

Flatten

Flatten

1D CNN1D CNN

1D CNN1D CNN

Past segment FR
Past segment QP
Past segment RS

1D CNN1D CNN
Flatten

1D CNN

1D CNN

1D CNN

1D CNN

1D CNN

Fully Connected Actor

Critic

FC Layer

Softmax

FC

State

Flatten

Fig. 6: The NN architecture of CASVA.

to convert this problem into a learning task and devise a
DRL-based solution. Different from heuristic solutions that
rely on simple models or offline and online profiling, DRL
learns to make the most beneficial configuration decisions
through the interactions between an agent and its environment.
Specifically, it involves the following key design elements.

A. States: Modeling Environment Dynamics

In DRL, state BC is a set of observable variables that describe
the situations of the environment at the time step C. For
our configuration adaptive streaming problem, the state BC is
defined as

BC = (®=C , ®DC , 1C , ®5C , ®@C , ®AC , ®IC , ®3C) (1)

where ®=C = {=C−: , · · · , =C−1} is the vector of average network
throughput measurements for uploading the past : video
segments, which represents recent network conditions. ®DC =

{DC−: , · · · , DC−1} is the upload delay vector of the past : video
segments, which is determined by the corresponding segment
sizes and network conditions. It has cascading influences on
the buffer size. 1C is the buffer size when the camera starts to
upload the segment C. ®5C , ®@C , and ®AC represent the selected FR,
QP and RS vectors for the past : video segments, respectively.
They provide the configuration information of the past : video
segments. Instead of encoding their combinations as a single
configuration vector, we choose to encode them independently
since they have distinct impacts on the performance goals.
®IC = {IC−: , · · · , IC−1} is the segment size vector for the past :
segments, which is controlled by the configuration choices of
the corresponding segments while affecting their upload delays
and the camera buffer size.

To quantify the video content dynamics, we introduce
the video content dynamics vector ®3C = {3C−: , · · · , 3C−1}.
Motivated by our measurement insights, the video segment
size can be an effective factor in indicating video content
dynamics. Therefore, we define the content dynamics 3C−1 as
(IC−1

C − IC−1)/IC−1, where IC−1 is the size of segment C − 1,
and IC−1

C denotes the size of segment C encoded with the
configuration used by segment C − 1. To obtain the value of
IC−1
C , the camera needs to additionally encode segment C with

segment C −1’s selected configuration. Fortunately, this can be
done very fast with negligible costs.

B. Policy: Adapting Configuration to Varying Environment

For each input state BC , the agent determines which action
0C to take, i.e., encoding segment C with which configuration.
All possible FR, QP, and RS value combinations constitute the
action space. A policy c defines the mapping from states to
actions, specifying the probability distribution of all possible
actions under a particular state. In our problem, the state space
is high-dimensional and infinite since it contains variables that
can obtain continuous real values (e.g., network throughput).
Neural networks (NNs) are powerful function approximators
with high generalization abilities, which are especially useful
when handling large state or action spaces. As such, we use
a NN to represent the policy.

The actor component in Fig. 6 depicts the NN architecture
of the policy. For the time-series input type (e.g., past segment
upload delays), we utilize 1D CNN layers to extract the under-
lying features along the time dimension efficiently. Meanwhile,
we leverage fully connected layers to process the scalar input
type (e.g., current buffer size). Then, all processing results are
flattened if necessary and concatenated to a new layer, which
is further fed to a fully connected layer to learn the complex
relationships between the features. The outputs are finally fed
to one softmax layer to calculate the probability distribution of
actions. By adjusting the parameters \ of the neural network,
the policy c\ can be optimized accordingly.

C. Policy Optimization: Maximizing DNN-perceived QoE

Optimization goal: At each time step C, by feeding the state
BC to the NN, the agent can choose an action 0C based on
the output probability distribution. After applying the chosen
action 0C , the agent will receive a scalar reward AC from the
environment while transiting to the next state BC+1. For our
problem, the immediate reward AC for uploading segment C
includes three parts (details in Section V-A), and it reflects
the quality of the action choice 0C . The goal of DRL is to
maximize the expected return

∑∞
C′=0 W

C′AC+C′ , where W ∈ (0, 1]
is a factor to discount the future rewards. This is consistent
with the goal of configuration controller in Fig. 5, i.e., when
encoding each segment, choosing the configuration that can
maximize the long-term cumulative DNN-perceived QoE dur-
ing a streaming session.
Policy gradient training: We choose policy gradient methods
to train the agent since they do not suffer from the complexity
arising from continuous and uncertain states in our problem.
In policy gradient methods, the agent directly learns a parame-
terized policy c\ based on the gradient of the expected return
with respect to the policy parameters \. The gradient can be
typically estimated by 6C = EC [∇\ log c\ (0C |BC)�c\ (BC , 0C)],
where �c\ (BC , 0C) is the advantage function. It represents
for state BC , the advantages of selecting a specific action 0C
over the average action taken based on current policy c\ .
By following the popular)-step update method [25], [26],
an estimate �̂C (C ∈ [0,)]) of �c\ (BC , 0C) can be calculated
by

�̂C = AC + WAC+1 + · · · + W) −C+\E (B)) −+\E (BC) (2)

where +\E (BC) is an estimate of the value function, which maps
the state BC to a state value that represents the accumulated
return the agent can expect to be in BC by following the policy
c\ . We also use a NN with one linear output layer, corre-
sponding to the critic component in Fig. 6, to approximate
the value function. The actor and critic have the same input,
and following the common practice in [25], we allow them
to share the same backbone layers except for the last hidden
and output layers. The critic merely helps to train the actor
by critiquing the actor’s action choices based on the value
function [27].

Unfortunately, in practice, the policy gradient estimator
6C can lead to destructively large policy updates and poor
sample efficiency [26]. To overcome these challenges, we
resort to a dual-clipped Proximal Policy Optimization (PPO)
[28] method, which instead optimizes the following surrogate
objective that can be considered as a first-order approximation
of the expected return.

!
?>;82H
C (\) = I(�̂C < 0)<0G(2�̂C , ! ?

C (\)) + I(�̂C ≥ 0)! ?
C (\)

!
?
C (\) = ÊC [<8=('C (\) �̂C , 2;8?('C (\), 1 − n, 1 + n) �̂C)]

'C (\) =
c\ (0C |BC)
c\>;3 (0C |BC)

(3)

where I(·) is a binary indicator function. ! ?
C (\) is the clipped

surrogate objective of the vanilla PPO [26]. 'C (\) is the
probability ratio of the new and old policy. All <8=, <0G
and 2;8? operators are used to control the step size of the
policy update, avoiding the new policy too far away from the
old policy. 2 > 1 and n > 0 are hyper-parameters that control
the bounds. By default, we set 2 = 3 and n = 0.2 to align
with the previous work [28]. The policy optimization objective
can be further augmented by a entropy bonus � (c\ (·|BC))
to encourage exploration [26]. Combining these two terms,
during the training process, the policy parameter \ can be
updated as

\ ← \ + [
∑
C

∇\!
?>;82H
C (\) + V∇\� (c\ (·|BC)) (4)

where [is the learning rate of the actor and V controls the
strength of entropy regularization.

Let [′ denote the learning rate of the critic. The optimization
objective of the critic is to reduce the difference between the
predicted and actual state values. It means the critic needs to
minimize a squared-error loss of the difference, which can be
estimated by the square of �̂C . Therefore, during the training
process, the parameter \E of the critic can be updated as

\E ← \E − [′
∑
C

∇\E (�̂C)2 (5)

Training methodology: We implement a distributed version
of the dual-clipped PPO to accelerate the training speed
and enhance the training performance. Following the parallel
training idea in [15], the agent spawns a multitude of workers
to collect experiences (i.e., {state, action, reward} tuples)
under different parallel environments (i.e., different network

traces and camera videos). Every) steps, the collected ex-
periences are sent to the agent, where all of them will be
aggregated to update the policy gradient. Subsequently, the
updated policy parameters are synchronized by all workers,
and a new experience collection iteration starts.

Once the training is complete, CASVA’s configuration con-
troller will apply the generated policy to select the configura-
tion for each video segment during video streaming sessions.
It should be noted that when applying the trained policy for
streaming, no feedback from the server is required for the state
transitions, as all variables in the state can be observed solely
from the camera client side. This prevents the configuration
controller from waiting for server feedback and is beneficial
to latency-sensitive live streaming.

V. PERFORMANCE EVALUATION

A. Methodology

Streaming modes: We consider two upload modes. The
first mode is latency-first. In this mode, the camera client
always uploads the up-to-date ready segment. For example,
after segment 8 has been uploaded, the camera skips segment
8 + 1 and directly uploads segment 8 + 2 if it is the newest
ready segment. This strategy is to prevent the lags from
accumulating and allow the server-side analytics to catch up
with the live scenario for latency-first applications. For this
mode, the reward AC for uploading segment C can be calculated
as follows.

AC = U1QC − U2 <0G(DC − ;, 0) / ; − U3"C (6)

where QC is the server-side DNN inference accuracy of seg-
ment C, which is used to encourage high-accuracy configura-
tion choices. DC = IC / =C is the upload delay of segment C, and
the second term will penalize configuration choices introduc-
ing additional lags. "C is the number of dropped (unuploaded)
segments caused by the upload of segment C, and the third term
will further penalize configuration choices leading to segment
drops. U1, U2, and U3 are positive coefficients to make a trade-
off between these distinct objectives. We set U1 = 5, U2 = 1,
and U3 = 1 in this mode through random search.

The second mode is delivery-first. In this mode, all segments
will be uploaded. As such, the segment lag can be accumulated
to a very large value in poor network conditions. This mode
can be used when reliable delivery is the first concern. The
immediate reward signal AC in this case is defined as

AC = U1QC − U2 <0G(DC − ;, 0) / ;
+ U3 I(1C+1 < 1C) (1C+1 − 1C) / ;

(7)

where the first two terms are the same as those in the latency-
first mode. I is a indicator function that gets 1 when 1C+1 < 1C .
Otherwise, it gets 0. 1C represents the camera buffer size when
starting to upload segment C, which is used to encourage the
agent to choose configurations that are able to catch up with
the lags. In this mode, we set U1 = 2, U2 = 3, and U3 = 1
through random search.
Network trace datasets: In order to evaluate the performance
of CASVA under real-world network conditions, we consider

0.4

0.6

0.8

1.0

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 A
c
c
u

ra
c
y

Videos

ABR-U Offline CASVA

(a) Mean accuracy (task: OD)

0.0

0.3

0.6

0.9

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 L
a

g
 (

s
e

c
o

n
d

s
)

Videos

ABR-U Offline CASVA

(b) Mean lag (task: OD)

0

5

10

15

DASH1 DASH2 STA1 STA2 STA3

L
o

s
s
 R

a
te

 (
%

)

Videos

ABR-U Offline CASVA

(c) Loss rate (task: OD)

0.0

0.25

0.50

0.75

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 A
c
c
u

ra
c
y

Videos

ABR-U Offline CASVA

(d) Mean accuracy (task: SS)

0.0

0.3

0.6

0.9

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 L
a

g
 (

s
e

c
o

n
d

s
)

Videos

ABR-U Offline CASVA

(e) Mean lag (task: SS)

0

5

10

15

DASH1 DASH2 STA1 STA2 STA3

L
o

s
s
 R

a
te

 (
%

)

Videos

ABR-U Offline CASVA

(f) Loss rate (task: SS)

Fig. 7: The performance of different methods on various videos in latency-first mode (network traces: 4G/LTE).

the following two public datasets, which represent the typical
network conditions of networked cameras.
• A fixed broadband dataset provided by FCC [29]. We

randomly select 1, 500 traces from the January 2021
collection, and each trace spans 150 seconds. To match
the network throughput with the video bitrates, only
traces with a minimum throughput above 0.02 Mbps and
an average throughput less than 6 Mbps are considered.

• A 4G/LTE bandwidth dataset [30]. Since the average
bandwidth throughputs of all traces in the dataset excess
the maximum video bitrate, we scale all traces to (0.02, 6)
Mbps while maintaining their variances.

For each dataset, we generate a training set by selecting
80% of all network traces at random, and the remaining 20%
is used as the test set. In total, more than 13 hours of network
traces are used for testing.
Video dataset and vision tasks: We evaluate all videos in
Table I. For each video, we regard the first 80% segments as
the training set, and the remaining 20% segments are used for
testing. Meanwhile, we evaluate two typical video analytics
tasks, OD and SS. Specifically, we will show the results of
the Faster R-CNN model for OD and the results of the
ICNet model for SS.
Experiment setup: We implement a trace-driven simulator to
stream videos segment by segment from a camera client to
a server under different network traces, and the average RTT
between the camera and the server is 80 ms. The DRL agent is
implemented based on a deep learning framework PyTorch
[31], and its hyper-parameters are tuned empirically.

At each time step C, we consider the past 8 video segments,
i.e., : is set to 8. The number of filters for all 1D CNN layers
is 128, and the stride is 1. ®=C , ®DC , ®IC , and ®3C each feed into a
1D CNN layer whose input channel is 1 and kernel size is 4.
The 1D CNN layer for past configuration choices has 3 input

channels (®5C , ®@C , and ®AC), and its kernel size is 1. There are 128
neurons in the each fully connected layer. The actor’s output
dimension is 125, and the critic’s output dimension is 1. By
default, the learning rates of the actor and critic are both 14−4,
and) is 59. The entropy coefficient V is originally set as 0.5
and will gradually decay in the training process.
Evaluation metrics: The evaluation metrics are as follows.

• Mean accuracy. It is the mean of the server-side DNN
inference accuracies of all test video segments. For un-
uploaded segments, we count the accuracy as 0.

• Mean lag. It is the mean of the upload lags of all test
video segments.

• Loss rate. It is the ratio of unuploaded test video segments
to all test video segments.

For the latency-first mode, we consider mean accuracy, mean
lag and loss rate. For the delivery-first mode, we only consider
mean accuracy and mean lag.
Baselines: We compare CASVA with the following baselines,
which collectively represent the state-of-the-art streaming
methods for live video analytics.

1) ABR-U: An upload version of Pensieve [15]. We
implement an upload version of the RL-based adaptive bi-
trate streaming algorithm for live video analytics. With this
method, each video segment will be encoded into one of
five candidate bitrates corresponding to five video resolutions
({240, 360, 480, 720, 1080}p). Unlike human viewers, video
analytics tasks are insensitive to video quality smoothness. As
a result, we also modify the human-perceived QoE metrics in
[15] to make this baseline more suitable for video analytics.
Specifically, we redesign the immediate reward to optimize
bitrate, lag, and loss rate. We leverage this baseline to show
the performance of transferring existing ABR algorithms to
live video analytics.

0.4

0.6

0.8

1.0

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 A
c
c
u

ra
c
y

Videos

ABR-U Offline CASVA

(a) Mean accuracy comparison

0.0

1.5

3.0

4.5

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 L
a

g
 (

s
e

c
o

n
d

s
)

Videos

ABR-U Offline CASVA

(b) Mean lag comparison

0

3

6

9

1 15 30 45 60

S
e

g
m

e
n

t
la

g
 (

s
e

c
o

n
d

s
)

Segment Index

ABR-U Offline CASVA

(c) Lag variations over time

Fig. 8: The performance of different methods on various videos in delivery-first mode (task: OD; network traces: 4G/LTE).

2) Offline: This is a popular method to quantify the rela-
tionship between resource demands (or accuracy) and con-
figurations [1]. We obtain a profile of {configuration, mean
bitrate, mean accruacy} tuples for all configurations by offline
profiling all training video segments. The network throughput
is estimated by calculating the harmonic mean of the network
throughput measures for the past 8 video segments, as de-
scribed in [15]. Then, based on the profiling results obtained
offline, this method selects the most accurate configuration
with a mean bitrate not greater than the currently estimated
network throughput for each test segment.

B. Evaluation Results

Fig. 7 compares the performance of streaming various
videos with different methods for different video analytics
tasks in the latency-first streaming mode. It can be seen
that compared with the ABR-U method, the Offline method
achieves higher mean accuracies but also leads to increased
mean lags and segment loss rates. One possible reason is that
its network throughput estimation strategy is too simple to
handle frequent network throughput fluctuations. Aggressively
choosing the most accurate configuration under the constraint
of inaccurately estimated network throughput can be vulner-
able to the negative influences of configuration performance
drifts caused by video content. In contrast, by consciously
adapting to the dynamic network conditions, ABR-U tends to
have a shorter mean lag and lower loss rate. Nevertheless, it
suffers significant mean accuracy drops.
CASVA overcomes the deficits of both baselines and reaches

the highest mean accuracy on all videos for both tasks.
Specifically, it reduces the Offline’s mean lag by up to 85.96%
and loss rate by up to 76.74%. Meanwhile, it outperforms
ABR-U on all evaluation metrics in almost all cases. We also
note that CASVA shows more stable mean lag and loss rate
values on different videos compared with the baselines. For
the mean accuracy, dashcam videos have lower values than
stationary camera videos. This is because the dashcam videos
have larger bitrates than the stationary camera videos for the
same configuration. As a result, the dashcam videos must
sacrifice higher accuracy to achieve similar lags and loss rates
under the same network conditions.

Fig. 8a and Fig. 8b show the mean accuracy and mean lag
that each method achieves on various videos in the delivery-

first streaming mode. Since all video segments have to be
uploaded in this mode, the mean lags of all methods rise com-
pared with their latency-first counterparts (shown in Fig. 7b).
The Offline method reaches the highest mean accuracy on all
videos at the expense of significant lags. For instance, the
mean segment lags of video DASH1, STA1, and STA3 are
even longer than a segment duration (2 seconds), falling in
an unacceptable range for live video analytics. ABR-U also
experiences considerable lag increases. It struggles to make a
good trade-off between bitrate and lag but ends up with the
lowest analysis accuracy. This shows that the coarse-grained
bitrate control is inadequate for live video analytics scenarios.
Different from these two baselines, CASVA achieves sub-
second mean lags on all videos with relatively high accuracies.
This indicates that it can adapt to all underlying dynamics to
balance analysis accuracy and lags.

As a supplement, Fig. 8c reveals how distinct methods
deal with lags when streaming the video DASH1 for object
detection under a 4G/LTE network trace. As shown, from
segment 42, the segment lag of the Offline method accumulates
to about 8 seconds. This method is unaware of the increasing
lags. It only selects configurations based on indirectly sensed
network bandwidth variations; it does not make up for the
previously made bad decisions. ABR-U can monitor and
mitigate the lag, but the coarse-grained bitrate control tends to
cause significant variances. By contrast, CASVA addresses this
issue gracefully. It cautiously explores the room for accuracy
improvement under the bandwidth constraint with the fine-
grained configuration control. Once the lag accumulates, it
quickly alleviates it by configuration adaptation.

Fig. 9 further illustrates the delivery-first mode results
when steaming videos under the FCC network traces for the
semantic segmentation task. The Offline method maintains its
leading position in mean accuracy. However, all mean lags of
this method exceed a segment duration. It should be noted
that the Y-axis of Fig. 9b is in log-scale, and CASVA achieves
sub-second mean lags for all videos. By comparison, ABR-
U shows abnormal large mean lags. We examine its running
logs and find that this is due to the poor network conditions
involved in the FCC network traces. A considerable part of the
network traces cannot even support the real-time streaming
of 240p videos. For example, Fig. 9c demonstrates the lag
variations when streaming the DASH1 video under an FCC

0.0

0.25

0.50

0.75

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 A
c
c
u

ra
c
y

Videos

ABR-U Offline CASVA

(a) Mean accuracy comparison

0.1

1.0

10

DASH1 DASH2 STA1 STA2 STA3

M
e

a
n

 L
a

g
 (

s
e

c
o

n
d

s
)

Videos

ABR-U Offline CASVA

(b) Mean lag comparison

0

8

16

24

1 15 30 45 60

S
e

g
m

e
n

t
la

g
 (

s
e

c
o

n
d

s
)

Segment Index

ABR-U Offline CASVA

(c) Lag variations over time

Fig. 9: The performance of different methods on various videos in delivery-first mode (task: SS; network traces: FCC).

network trace. The average network throughput of this trace is
lower than the average bitrate of the video. Under this network
trace, ABR-U always selects the lowest bitrate but still cannot
prevent the lag from accumulating. Thanks to the flexibility
of fine-grained configuration choices, CASVA easily gets out
the tight corners and streams the videos in real time.

VI. RELATED WORK

Configuration Optimization for Live Video Analytics. To
meet the tremendous resource demands of high-accuracy live
video analytics, streaming camera videos over the network
to a resource-rich data center or cloud for processing be-
comes popular. Optimizing configurations to balance between
computational resources and inference accuracy is a prevalent
technique used by existing systems [1], [3]. For example,
VideoStorm [1] profiles the computational resource demand
and accuracy of different configuration knob combinations for
each live video query offline. It then adjusts knobs for large-
scale concurrent queries according to their quality and lag
goals online. To adapt to the ever-changing resource demands
caused by video content dynamics, Chameleon [3] dynami-
cally tunes the configuration knobs by frequent profiling and
amortizes the profiling costs over time and across multiple
videos based on the underlying temporal and spatial correla-
tion. These systems typically assume that videos are streamed
to the data center over dedicated network links. Hence, they
focus on computational resources optimization and ignore the
influences of network variations. CASVA instead addresses
the challenges of streaming videos over scarce and dynamic
network conditions, e.g., streaming videos collected by moving
cars to powerful backends for live video analytics.
AWStream [5] is a system for wide-area streaming analyt-

ics, which adjusts the application data rate to match available
bandwidth while maximizing the achievable accuracy. Unfor-
tunately, like the Offline baseline, it harnesses a simple method
to estimate the network throughput and profiling to acquire the
relationship between bandwidth and accuracy under different
configurations. It is thus difficult to capture the fine-grained
dynamics in complex network conditions and video content.
DDS [24] provides a server-driven video streaming method for
DNN inference, where low-quality video segments are con-
tinuously sent to the server for inference, and unsatisfactory
inference outputs can drive the camera to resend high-quality

content to compensate for accuracy. In contrast, CASVA is
specifically designed for live streaming scenarios, so a client-
driven design framework is chosen to avoid the delay of
waiting for feedback from the server.

RL in Video Streaming. Recent years have witnessed the
successful applications of RL in building video streaming
systems. Several on-demand video streaming systems attempt
to maximize human-perceived QoE while adapting to the
underlying network conditions [15], [32], [33]. For instance,
Pensieve trains a DRL model to learn ABR algorithms to
adapt to various environments and QoE metrics based on ex-
periences collected by the client video players. The following
work, Comyco [33], further improves the sample efficiency by
training the policy under the guidance of expert trajectories.
Additionally, RL-based methods also gain popularity in other
video streaming scenarios. For instance, in order to improve
QoE of live viewers, Rldish [34] relies on RL to dynamically
select initial video segment of HTTP live streaming at the
edge content delivery network servers. iView [35] employs
multimodal learning and DRL for user QoE improvements
in multi-viewpoint 360◦ interactive video streaming. Unlike
these systems, to the best of our knowledge, CASVA is the
first video analytics streaming framework that exploits DRL
to maximize DNN-perceived QoE while adapting to video
content and network dynamics.

VII. CONCLUSION

Streaming camera videos for video analytics applications
rather than human viewers has become an important topic.
This paper starts with extensive measurements on real-world
camera videos to investigate the impacts of video config-
urations on bandwidth requirement and analytics accuracy.
We identified the potentials of configuration adaptation in
live video analytics streaming and revealed the fundamental
challenges brought by the intrinsic dynamics in network con-
ditions and video content. We accordingly proposed CASVA,
a configuration-adaptive streaming framework for live video
analytics. Instead of relying on fixed heuristics or inaccurate
performance models, CASVA employs DRL to learn an effi-
cient policy in complicated streaming environments. Our trace-
driven evaluations with various network traces and videos
demonstrated the superiority of CASVA.

REFERENCES

[1] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation
and delay-tolerance,” in Proceeding of the 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017.

[2] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in Proceedings of
the 37th IEEE Conference on Computer Communications (INFOCOM),
2018.

[3] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2018, pp. 253–266.

[4] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,
“Reducto: On-camera filtering for resource-efficient real-time video
analytics,” in Proceedings of the 2020 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM), 2020, pp. 359–
376.

[5] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2018, pp. 236–252.

[6] C. Pakha, A. Chowdhery, and J. Jiang, “Reinventing video streaming
for distributed vision analytics,” in Proceedings of the 10th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), 2018.

[7] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: A gpu cluster engine for accelerating
dnn-based video analysis,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP), 2019, pp. 322–337.

[8] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger, “Main-
stream: Dynamic stem-sharing for multi-tenant video processing,” in
2018 USENIX Annual Technical Conference (ATC), 2018, pp. 29–42.

[9] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-
sky, and S. R. Dulloor, “Scaling video analytics on constrained edge
nodes,” in Proceedings of the 2nd SysML Conference (SysML), 2019.

[10] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the edge-
cloud barrier for real-time advanced vision analytics,” in Proceedings
of the 11th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), 2019.

[11] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, “Enabling
edge-cloud video analytics for robotics applications,” in Proceedings of
the 40th IEEE Conference on Computer Communications (INFOCOM),
2021, pp. 10–13.

[12] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy, “Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints,” in Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2016, pp. 123–136.

[13] J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman,
S. Savarese, and K. Winstein, “Cracking open the dnn black-box: Video
analytics with dnns across the camera-cloud boundary,” in Proceedings
of the 2019 Workshop on Hot Topics in Video Analytics and Intelligent
Edges (HotEdgeVideo), 2019, pp. 27–32.

[14] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,” in
Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges (HotEdgeVideo), 2019, pp. 21–26.

[15] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the 2017 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM), 2017, pp.
197–210.

[16] Y. Live, “Jackson hole wyoming usa town square live cam - seejh.com,”
https://www.youtube.com/watch?v=1EiC9bvVGnk, 2021, [Online; ac-
cessed 28-June-2021].

[17] ——, “La grange, kentucky usa - virtual railfan live,” https://www.
youtube.com/watch?v=WsYtosQta5Y, 2021, [Online; accessed 28-June-
2021].

[18] YouTube, “Driving downtown - chicago 4k - usa,” https://www.youtube.
com/watch?v=kOMWAnxKq58, 2021, [Online; accessed 28-June-2021].

[19] ——, “London 4k - night drive - uk,” https://www.youtube.com/watch?
v=Ujyu8foke60, 2021, [Online; accessed 28-June-2021].

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

[21] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[22] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[23] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time semantic
segmentation on high-resolution images,” in Proceedings of the 15th
European Conference on Computer Vision (ECCV), 2018, pp. 405–420.

[24] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the 2020 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2020, pp. 557–570.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of the 33nd International Con-
ference on Machine Learning (ICML), 2016, pp. 1928–1937.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[27] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
second edition. MIT press, 2018.

[28] D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang et al.,
“Mastering complex control in moba games with deep reinforcement
learning,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), vol. 34, no. 04, 2020, pp. 6672–6679.

[29] FCC, “Measuring broadband raw data releases - fixed,” https://www.fcc.
gov/oet/mba/raw-data-releases, 2021, [Online; accessed 28-June-2021].

[30] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-Based Adaptive Streaming of
HEVC Video Over 4G/LTE Networks,” IEEE Communications Letters,
vol. 20, no. 11, pp. 2177–2180, 2016.

[31] “Pytorch: An open source machine learning framework that accelerates
the path from research prototyping to production deployment,” https:
//pytorch.org/, [Online; accessed 28-June-2021].

[32] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive content-
aware internet video delivery,” in Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2018, pp. 645–661.

[33] T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, and L. Sun, “Comyco:
Quality-aware adaptive video streaming via imitation learning,” in
Proceedings of the 27th ACM International Conference on Multimedia
(MM), 2019, pp. 429–437.

[34] H. Wang, K. Wu, J. Wang, and G. Tang, “Rldish: Edge-assisted qoe
optimization of http live streaming with reinforcement learning,” in
Proceedings of the 39th IEEE Conference on Computer Communications
(INFOCOM), 2020, pp. 706–715.

[35] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards low
latency multi-viewpoint 360° interactive video: A multimodal deep
reinforcement learning approach,” in Proceedings of the 38th IEEE
Conference on Computer Communications (INFOCOM), 2019, pp. 991–
999.

