
Towards Fully O�loaded Cloud-based AR: Design,
Implementation and Experience

Ryan Shea
Simon Fraser University

Burnaby, British Columbia, Canada
ryan shea@sfu.ca

Andy Sun
Simon Fraser University

Burnaby, British Columbia, Canada
hpsun@sfu.ca

Silvery Fu
Simon Fraser University

Burnaby, British Columbia, Canada
dif@sfu.ca

Jiangchuan Liu
Simon Fraser University

Burnaby, British Columbia, Canada
jcliu@cs.sfu.ca

ABSTRACT
Combining advanced sensors and powerful processing capabilities
smart-phone based augmented reality (AR) is becoming increas-
ingly proli�c. �e increase in prominence of these resource hungry
AR applications poses signi�cant challenges to energy constrained
environments such as mobile-phones.

To that end we present a platform for o�oading AR applica-
tions to powerful cloud servers. We implement this system using a
thin-client design and explore its performance using the real world
application Pokemon Go as a case study. We show that with careful
design a thin client is capable of o�oading much of the AR pro-
cessing to a cloud server, with the results being streamed back. Our
initial experiments show substantial energy savings, low latency
and excellent image quality even at relatively low bit-rates.

CCS CONCEPTS
•Networks → Cloud computing; Mobile networks; •Human-
centered computing→ Mobile phones; Mobile devices; Vir-
tual reality; Ubiquitous and mobile computing design and evalua-
tion methods; Empirical studies in ubiquitous and mobile comput-
ing; •Computer systems organization → Cloud computing;
•Hardware→ Sensor devices and platforms;

KEYWORDS
Augmented Reality, Cloud O�oading, Mobile Gaming

ACM Reference format:
Ryan Shea, Andy Sun, Silvery Fu, and Jiangchuan Liu. 2017. Towards Fully
O�oaded Cloud-based AR: Design, Implementation and Experience. In
Proceedings of MMSys’17, Taipei, Taiwan, June 20-23, 2017, 10 pages.
DOI: h�p://dx.doi.org/10.1145/3083187.3084012

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys’17, Taipei, Taiwan
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5002-0/17/06. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3083187.3084012

1 INTRODUCTION
Integrating powerful sensing capability and unparalleled mobile
communication abilities the smart-phone has led to a plethora of
new and exciting applications. From instant world wide communi-
cation to real-time point by point navigation the smart-phone has
become a near ubiquitous part of modern day life.

�e combination of accurate sensors, cameras, and powerful pro-
cessing capabilities has led to a new wave of applications that aug-
ment the physical world with digital information. �ese augmented
reality (AR) applications allow us to instantly get information about
real-world objects or translate foreign languages. However, with
any new technology there are drawbacks and smart-phone enabled
AR is no exception. �e amount of processing power required to
analyze data from our smart-phones’ many sensors, render the aug-
mented reality elements, and �nally compose the AR scene takes
considerable power from our devices. Moreover, mobile devices are
energy limited due to ba�ery restrictions meaning that a rich AR
application can quickly drain even the largest smart-phone ba�er-
ies. For example, measurements with the popular AR gaming app
Pokemon Go show that the Pokemon uses nearly three times the
amount of ba�ery when compared to browsing social media1. In
Section 2.3, we closely pro�le Pokemon Go and show much of the
energy usage comes from rendering 3D objects.

Based on the previously discussed energy consumption issues
we propose that a complex augmented reality application such as
Pokemon Go could bene�t from cloud o�oading. Many pioneer-
ing works have explored o�oading di�erent aspects of augmented
reality applications. In 2013, researchers explored many poten-
tial improvements that could be made to mobile applications by
gearing them with powerful clouds [9]. In 2014, Huang et al pre-
sented CloudRidAR, a frame work for o�oading some computation
intensive aspects of AR to the cloud [5]. Shi et al explored computa-
tional o�oading guidelines between wearable devices and mobile
devices [14]. Enhancements using cloud based processing and live
object retrieval were presented in [6][7]. Recently, work has been
done on quantify the performance implications of edge computing
on latency sensitive applications such as AR [3][10].

Further, because of the latency sensitive nature of AR o�oad-
ing many similar techniques to the ones found in cloud gaming

1h�ps://www.cnet.com/how-to/pokemon-go-ba�ery-test-data-usage/

https://www.cnet.com/how-to/pokemon-go-battery-test-data-usage/

MMSys’17, June 20-23, 2017, Taipei, Taiwan Ryan Shea, Andy Sun, Silvery Fu, and Jiangchuan Liu

are also relevant. In 2013, researchers explored the existing com-
mercial o�erings of cloud gaming in terms of architecture and
performance [13]. Huang et al released the �rst open source cloud
gaming platform [4]. Finally, the future of cloud gaming was dis-
cussed in a recent article by Cai et al. �e article forecasted changes
in the programing paradigm of gaming applications to facilitate bet-
ter integration between games and cloud o�oading [1]. It is likely
similar advances in the programing paradigms of augmented real-
ity applications could facilitate seamless o�oading for augmented
reality applications.

Despite these pioneering works, to our knowledge no existing
work has been made to fully o�oad an AR application to the cloud.
To this end we develop CloudAR, our prototype thin client based
approach which is capable of producing an AR scene using cloud
o�oading. In one experiment, our client drew up to 65% less energy
in comparison to the representative AR application Pokemon Go.
Further, the client had an average end-to-end interaction delay of
55 ms, which provides a low-latency user experience with respect
to the integration of the virtual and physical scenes. �is end result
is a client that achieves excellent video quality with low interaction
delay, all the while consuming less energy than other popular AR
applications.

�e rest of the paper is organized as follows. In Section 2 we
dissect and pro�le the popular augmented reality game Pokemon
Go to determine possible improvements. In Section 3, we discuss
di�erent visual elements inherent to augmented reality applications.
Section 4 and Section 5 discusses the design and evaluation of
the CloudAR platform. Finally, Section 6 provides some further
discussion and concludes the paper.

2 EXPLORING AR: POKEMON GO AS A CASE
STUDY

Combining augmented reality, edge computing, pervasive smart-
phone use and location based massively multi-player features, Poke-
mon GO exploded onto smart-phones in the summer of 2016. It is
estimated that at the peak of the craze Pokemon GO was installed
by over 10% of smart phone users in the USA2. On the surface
Pokemon GO seems to be li�le more than a simple gaming app,
however under the hood many technological advances are brought
together to make this game a success. While one can not disregard
the marketing and popularity of the Pokemon franchise when dis-
cussing its near meteoric rise to popularity, it is important to point
out that new Pokemon games are released on an almost yearly
schedule, with very few of these releases achieving such initial
success as Pokemon GO. Much of Pokemon GO’s success comes
from its leveraging of many existing technologies in very e�ective
ways.

Pokemon Go can trace its origin back to one of Google’s many
April Fool’s pranks: the Google Maps Pokemon Challenge. In 2014,
Google, in conjunction with Nintendo and �e Pokemon Company,
announced a new job position of “Pokemon Master” and required
applicants to capture all 721 Pokemon before being o�ered the role.
�is harmless video drew in an enormous positive response, and
set in motion a series of events which culminated the creation of
Pokemon Go by Niantic, an internal Google start-up.

2h�ps://www.similarweb.com/blog/pokemon-go-update

Figure 1: PGO Server Selection

Pokemon Go is one of few games that are truly mobile as it forces
the player to physically roam an area by utilizing a mobile device’s
capabilities. �is new genre of gaming creates architectural chal-
lenges and design choices that must be carefully considered. As the
player’s avatar is now a�ached to a physical location, strong game
server scalability becomes a necessity due to the high clustering
seen in human population density. Game client optimization also
becomes a high priority, as the mobile device’s sensors are con-
stantly on and causing drain on the ba�ery. With these in mind,
we begin our analysis by examining the architectural model of
Pokemon Go.

Prior to Pokemon Go, Ingress was among the �rst location based
mobile games that paved the way for the later popularity of loca-
tion based AR games [2]. Cloud computing is the driving force
behind these successes. Both games are powered by the Google
Cloud and the Google edge network to achieve global, high-quality
coverage [15].

2.1 Networking Architecture of Pokemon Go
We observed Pokemon Go to have a logical networking topology
resembling a star topology. Namely, a central URL, pgorelease.
nianticlabs.com/plfe/rpc, directs a client to a regional server which
then proceeds to serve all future requests until the connection is
terminated. To reconnect back to a game server, the client must
contact the central server and wait for a response. �e client is
not guaranteed to connect to the same edge server. It is important
to note that while exploring the network topology we found that
although the connections all appear to route to a single Google
IP located in Mountain View California the connection is actu-
ally being serviced by a server closer to the client. We performed
an investigation using trace-route and RTT analysis, and by in-
specting the autonomous systems our packets traversed. Our dis-
coveries are presented in Figure 1. In our measurements from
servers located in six geo-distributed locations we discovered that
Google handles authentication requests in at least three distinct
locations. Further, regardless of which region we resolve the URL

https://www.similarweb.com/blog/pokemon-go-update
pgorelease.nianticlabs.com/plfe/rpc
pgorelease.nianticlabs.com/plfe/rpc

Towards Fully O�loaded Cloud-based AR: Design, Implementation and Experience MMSys’17, June 20-23, 2017, Taipei, Taiwan

Figure 2: Pokemon Go Architecture

pgorelease.nianticlabs.com/plfe/rpc in our experiments, we are al-
ways given the same IP address corresponding to a location in
Mountain View California. Based on our network analysis we �nd
that it is likely Google uses agreements with major Internet ex-
changes in order to service authentication requests closer to the
clients.

All communications between the client and the server are han-
dled over HTTPS and all data is exchanged in the protobuf format.
�e bulk of network transactions are the retrieval and updating of
map objects from the server, based on the player’s location.

Speci�c API calls are wrapped and sent in the repeated requests
�eld, and the authentication ticket received from the central server
is added verbatim into a auth ticket. �e request hash signature
is generated using xxHash followed by an in-house encryption
algorithm.

2.2 Client Architecture and Data�ow of
Pokemon Go

In Figure 2, we provide an abstracted datapath of the augmented
reality update process in Pokemon Go. �e heart of the application
is the update process to retrieve new Pokemon spawns and other
map entities. We have discovered two processes to update map
entities, a major update and a minor update. �e major update
occurs immediately post-login and retrieves all map entities, i.e.
Pokemon, Pokestops, gyms, and spawn points, over a large area
centered on the player. �e minor update is identical to the major
update, the di�erence being that the minor update receives only
Pokemon, Pokestop, and gym data in a local area, and that it occurs
more frequently than the major process, about once every 6 seconds
as opposed to once every 60 seconds. Figure 2 describes the major
update, where the client requests all map entities around a speci�ed
latitude and longitude. �e request is composed of the player’s
current latitude and longitude coordinates, and a list of S2 cell IDs3

to retrieve Pokestop and gym data for. Once the request is received
by the server, it performs a displacement check between the current
coordinates sent and the last coordinates received. If this displace-
ment exceeds a threshold of what is considered physically possible,

3docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS
jwNVHRPZTTDzXXn6Q/

(a) Power total (b) Power app

Figure 3: Power pro�ling on the mobile device (Total: 3544
mW)

the player is silently temporarily banned from interacting with
game entities for an unknown duration. If the displacement does
not exceed this threshold, a secondary check occurs to determine
if the displacement should be counted as valid for the game me-
chanics of egg incubation and badge credit. To pass this check,
the displacement must not exceed 300 meters per minute. Since
this distance check is not pertinent to producing a server response,
we conjecture that this happens asynchronously while the server
builds a response. To construct the response, the server takes the
latitude and longitude of the request and constructs a list of all
Pokemon currently active within a 200 meter radius of the player.
If a Pokemon is less than 100 meters away from the player, the
exact coordinates and time-to-live in milliseconds of the Pokemon
are included as a�ributes. Otherwise, only the distance in meters
is included as an a�ribute. Simultaneously, the server also takes
the S2 cell IDs sent and constructs a list of all Pokestops, gyms,
and spawn points. Pokestop entities contain an a�ribute for active
modi�ers (currently the only modi�er is a lure module), gyms con-
tain a�ributes for the current prestige, team owner, and the current
highest combat power (CP) pokemon in the gym. Once both lists
are generated, the response is sent to the client.

2.3 Mobile Client Power Consumption
During the initial distribution of Pokemon Go there were many
reports of the app having a deleterious e�ect on the ba�ery life of
mobile devices. Motivated by these reports, we investigated and
quanti�ed the power usage of a smartphone running Pokemon GO,
in order to determine what improvements might be introduced. We
devised a measurement strategy involving a real world Android
device, namely the Moto G 3rd Generation. Our test platform spec-
i�cations include �ad-core 1.4 GHz Cortex-A53 CPU, a Adreno
306 GPU, 2 GB of RAM and 16 GB of internal �ash memory. �e
device’s operating system was updated to latest available Android
version 6.0 (Marshmallow). We used the phone’s built in ba�ery
discharge sensor and the measurement application GSam Ba�ery
Monitor to pro�le the Pokemon Go application. To make a stable
testing environment we ran the Pokemon Go app for 30 minutes
and collected the average ba�ery discharge rate. �e adaptive
brightness se�ing of the screen was disabled to ensure that changes
in the testing environments ambient environment would not e�ect
the measurements.

pgorelease.nianticlabs.com/plfe/rpc
docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/
docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/

MMSys’17, June 20-23, 2017, Taipei, Taiwan Ryan Shea, Andy Sun, Silvery Fu, and Jiangchuan Liu

(a) Menu Scene (b) Game-play Scene (c) AR Scene

Figure 4: Di�erent Scenes in a AR application

We �nd that under our testing conditions Pokemon Go uses a
system wide power consumption of 3544 mW. Figure 3 illustrates
the percent of energy and which subsystem is consuming it as well
as a breakdown of which running apps are consuming power. As
can be seen we have an even split at 49% for both the screen and
apps, and only 2% being consumed by the radio. We �nd that the
device’s screen consumes exactly 1736.71 mW, Pokemon Go app
1169.62 mW, other apps 567.10 mW, and �nally the radio only 70.90
mW. Our results make it clear that the augmented reality app itself
has a very high energy consumption cost.

It is well established in the literature that the screen can be a
large drain on the ba�ery of a smart phone. Why the augmented
reality app Pokemon Go in particular consumes so much power
required further exploration. To that end we further pro�led the
application using the development platform Android Studio. By
pro�ling the app we �nd that over 80% of the CPU cycles are
being used by the function call UnityPlayer.nativeRender, which is
responsible for processing 3D objects for display. We conjecture
that this function call is likely where the in-game and AR objects are
composed for viewing by the user, and that this task is extremely
computationally expensive. Of the approximatively 20% remaining
CPU time, the largest contributer is a function call to the Android
system’s “ContextService”. �e context service is responsible for
gathering data from the sensors such as the GPS, accelerometer,
and gyroscope. Pokemon Go makes heavy use of this service to
feed data from the phone’s sensors to the game engine to update
the game world.

3 AUGMENTED REALITY VISUAL
COMPONENTS

Broadly speaking, all so�ware-based game applications contain at
least two visual components: the menus and the gameplay window.
�e menu allows players to interact with the metacontrols (e.g.,
what type of Pokeball to use) and metagame (e.g., what Pokemon to
send into ba�le), while the gameplay window provides an interface

to the game itself by rendering the game world. If these compo-
nents can be fully decoupled from each other visually they can be
independently o�oaded and rendered on cloud servers potentially
increasing performance and saving ba�ery life.

As we previously discussed, Pokemon Go is a location-based
augmented reality game. It has two fundamental visual components,
the menus and the gameplay window. Additionally, it contains an
additional component not previously discussed, the AR gameplay
window. �e game contains one main menu and six auxilary menus
that can be accessed by tapping the player icon on the bo�om le�
or the pokeball in the bo�om centre. �ese menus mainly load
metagame knowledge such as the user’s unlocked achievements,
a microtransaction shop, purchased/owned items, and the user’s
captured Pokemon. An example of each type of visual component
can be seen in Figure 4. �erefore, they are largely independent
of the game state and engine. As a result, it is possible to factor
out the menus and overlay them on top of the gameplay window.
Conversely, the gameplay is also capable of being independently
drawn without integrating the menus into the game window.

�is is the core principle that our proposed o�oading platform
exploits to transfer the energy and computationally-heavy game
engine to the cloud. �e menus and gameplay window can be
independently rendered by cloud servers and combined back into a
single opaque video stream to the client. Interestingly, the same idea
can be applied to the augmented reality gameplay of Pokemon Go
as well, the physical scene that the virtual world is augmenting or
building upon is independently observed. Virtual objects are placed
relative to a central position, the virtual camera, whose absolute
position is irrelevant with respect to the physical scene. �erefore,
it is possible to remotely generate a transparency-enabled video
stream of the virtual camera, and, locally on the client, combine
the two scenes together to create an immersive experience.

�is type of abstraction can be extended to all GUI-based so�-
ware applications in a similar manner; instead of a gameplay win-
dow, it is an interactive canvas of the application view. For example,
a web browser’s menu would be the URL bar while the canvas

Towards Fully O�loaded Cloud-based AR: Design, Implementation and Experience MMSys’17, June 20-23, 2017, Taipei, Taiwan

would be the displayed web page. Consequently, we propose a new
archetype of cloud-enabled AR applications that o�oad some or all
aspects of client rendering to the cloud. �e computationally-heavy
core logic of the application can be rendered on a cloud server
and streamed back to the client, while the menus can be rendered
natively or streamed alongside the application view. Augmented
reality views can also be generated on a server and sent back to a
client, however it does require the usage of an alpha channel.

4 CLOUDAR: DESIGN AND
IMPLEMENTATION

As shown in the previous sections, AR applications with pervasive
sensing capabilities such as Pokemon Go can consume signi�cant
ba�ery power of mobile devices. Since the Pokemon Go infrastruc-
ture is largely built atop Google’s cloud, there are great opportu-
nities if we can o�oad more heavy li�ing workloads to the cloud
end. In this section, we present our design and implementation of a
video streaming-based, cloud-o�oaded AR platform. �e platform
is motivated by the following observations:

• While AR content rendering consumes the largest amount
of power, due to the pervasiveness of video applications
mobile devices contain power-e�cient hardware chips for
video processing (e.g., decoding and encoding); processing
the AR content video stream can be much more power
e�cient than rendering the AR content locally.

• �e cloud-based framework could signi�cantly reduce the
hardware requirements of the mobile devices. From the
App developers’ perspective, they do not have to deal with
the vast heterogeneity of mobile devices, adapting and
testing the game against di�erent OS platforms.

• Hosting AR content generation in the cloud could substan-
tially reduce the time-to-market of the App. It also reduces
the complexity of applying patches and updates to the app
for the game makers.

O�oading AR content rendering to the cloud is not trivial. First,
given the rendering engine is located in the cloud, we need to send
rendered objects from the cloud to the mobile device in real-time.
In the meantime, we need to cast the user’s input and the device’s
sensor data to the cloud to preserve the user interactivity. We
need a mechanism to compose the rendered scene. Finally, the
additional computation for handling the o�oading at the mobile
devices should consume less energy than the local-render scheme.

4.1 System Overview
Current augmented reality systems are rendered locally on the
same device that contains the necessary sensors. �is is done to
allow the engine direct access to the raw sensor feeds to generate
and project the virtual objects onto a scene. For example, Pokemon
Go’s AR system utilizes a mobile device’s gyroscope and compass
to project virtual Pokemon into the device’s camera feed. How-
ever, this approach has a few drawbacks: it is extremely energy
intensive and requires relatively powerful hardware to support the
computations. We propose an alternate, cloud-based AR system
that eliminates these disadvantages while providing a similar user
experience.

Figure 5: AR Video Overlay

In our system, the mobile device (thin client) provides and sends
sensor data to the cloud, and receives an alpha channel enabled
video stream as a response. �e client is then responsible for render-
ing this stream as an overlay on top of the scene being augmented.
�e only hardware requirements at the client side are the sensors
that are being used and video decoding capability. �is technique
minimizes the energy consumption by o�oading all possible AR
related computations to the cloud.

4.2 Implementation: AR Video Overlay (AVO)
As discussed in the previous section, the GUI presented to the user
can be decomposed into several data-decoupled visual layers. With
augmented reality, the main layers are the physical, underlying
scene and the projection of the virtual world. In our case study
with Pokemon Go, the AR scene shown in Figure 4c can be broken
down into three separate layers:

• Menu/Control - �is layer contains the visual elements
that the user interacts with; it contains the item selection
on the bo�om-right corner and Pokemon metadata label
in the centre of the screen.

• AR Overlay - �e virtual world is projected onto this layer;
it contains the Pokemon itself and the 3D Pokeball at the
bo�om-centre.

• Physical Scene - �is is the captured scene from the camera,
i.e., the base layer for the game scene.

Each of these layers can be rendered independently and with
minimal knowledge of the other layers. Following this intuition, we
constructed a prototype client designed to mimic the AR capabilities
of Pokemon Go while being as unconstrained as possible with
respect to hardware and so�ware limitations. To achieve this, we
designed a browser-based client using only widely available web
technologies: HTML5, JavaScript, and CSS. �e client essentially
rebuilds the 3 layers locally, the physical scene is obtained from
the device camera, the AR layer is abstracted into a video element
(AVO) that is stacked on top of the camera, and any menu elements
can be locally constructed via CSS.

MMSys’17, June 20-23, 2017, Taipei, Taiwan Ryan Shea, Andy Sun, Silvery Fu, and Jiangchuan Liu

Figure 6: Architecture: Cloud and�in-Client

Figure 7: Controlling the virtual camera using CloudAR

By abstracting the AR content into a video overlay, the AVO
achieves four major design goals: AR rendering is decoupled from
the physical device, sensor data collection and processing are de-
coupled from each other, highly optimized video codecs can be
leveraged to reduce data rates, and the device hardware require-
ments are alleviated, allowing for and accommodating wider device
heterogeneity. �e decoupled aspects are then o�oaded entirely
into the cloud, and in exchange, the client receives a rendered AR
scene as shown in Figure 5. Additionally, as the AVO is ultimately
rendered in a controlled server, a greater level of consistency and
reliability in performance is guaranteed due to this decoupling
from the mobile device. In the speci�c case of Pokemon Go, their
minimum Android requirement could be reduced to Android 2.3
(Gingerbread) as opposed to 4.4 (KitKat) by utilizing this approach.

4.3 Implementation: CloudAR Server
In Figure 6, we depict the architecture of our cloud based AR stream-
ing platform, CloudAR.

On the server side, the �rst two modules are the MetaData Proces-
sor (MDP) and the Client Interaction. �ese modules ingest, validate,
and process the client data. In the case of AR, the MDP also per-
forms the role of sensor fusion to predict and reduce noise from the
sensor data. �e Application Logic is essentially the game instance.
It processes the sensor data and client actions from the previous
two modules, and computes the updates to the game world, based

on which, the rendering is then performed by the AR Overlay Ren-
dering module. �e rendered scenes are passed to the Video Encoder
module that contains a video encoder and a discrete framer. �e
video encoder is selectable, consisting of either a so�ware or hard-
ware h264 or VP8 encoder. For scenes such as game-play and menus
h264 encoding can be used. However, VP8 is required for the AR
scenes as it is one of the few video compression formats that fully
support an alpha channel. �e encoded video stream is then encap-
sulated in the webM format and transported using web sockets to
the client.

�e AVO is generated by the Application Logic module as it con-
structs a virtual world using the mobile device’s initial orientation
in 3D space relative to the Earth. A virtual camera is set-up to
mirror the viewing angle of the client and provides the viewpoint
for the AR Overlay Rendering module. �e virtual world’s Y-axis
is de�ned to be the vector pointing towards the magnetic north,
Z-axis is de�ned to be the vector oppositely directed to gravity, and
the X-axis is the cross product of Y and Z (See Figure 74). Using this
coordinate system, entities are then placed relative to the camera
location. Consequently, as everything is relative to the camera, the
relationship between 1 virtual unit to a physical unit is arbitrarily
de�ned by the application and allows for complex, granular scenes
to be constructed.

�e AR Overlay Rendering module then takes the view from the
virtual camera and outputs a sequence of raw RGBA bitmaps. �e
rendering is done through a headless OpenGL context using either
the EGL API or an X server. Since most AR scenes feature few
prominently displayed entities, the majority of what the camera
sees is empty space. �is empty space is removed using the alpha
channel, which results in an image that is completely transparent
in most areas. An interesting consequence is that the encoder can
essentially ignore the RGB values of the majority of the frame, as
the alpha channel is set to 255 for full transparency.

In practice, our implementation of the server utilized a NodeJS
backbone due to having non-blocking I/O for the event-driven na-
ture of incoming data. Communication between the server and
client is handled using the WebRTC protocol, and FFMPEG is used
as the Video Encoder module to transcode the output into a VP8
WebM stream. �is architecture is highly scalable both vertically
and horizontally. It can be scaled vertically by simply storing dif-
ferent virtual scenes and device orientations, while it can be scaled
horizontally by adding more NodeJS servers and routing the data
to the appropriate instance.

4.4 Implementation: CloudAR Mobile Client
Expanding on the implementation of the client mentioned in sec-
tion 4.2, the mobile device’s camera and orientation is accessed via
JavaScript APIs and sent to the CloudAR platform. Once the user
has granted access to the device camera, it is used as an HTML5
video source and displayed in real-time. Concurrently, the browser
a�empts to establish a SRTP connection to the CloudAR platform
while continually updating the server with device orientation. Once
this connection is fully established, a transparent VP8-encoded
video stream is then set to be a second video source that is then
overlayed on top of the existing camera scene. �e alpha channel

4Visual elements from this �gure were composed from: developer.android.com

developer.android.com

Towards Fully O�loaded Cloud-based AR: Design, Implementation and Experience MMSys’17, June 20-23, 2017, Taipei, Taiwan

(a) Pokemon GO AR Scene (b) CloudAR Scene (Cloud Rendered)

Figure 8: Augmented Reality Scene

in the AVO is a requirement since it allows the underlying physical
scene to “punch through” the AR video element. Control elements,
such as the item selection and Pokemon label, can be rendered
locally by the browser as HTML elements on top of the video feeds
since most, if not all, user interactions with these controls will
transition from an AR scene to a menu scene. �e end result is an
AR system that provides the same functionality as our reference
system, Pokemon Go at a lower energy cost. �ese energy savings
are further enhanced in the presence of an enabled hardware de-
coder. By using these features we can enable resource-constrained
(in terms of computation, memory, ba�ery, etc.) mobile clients to
run advanced applications.

�e AR MetaData module is in charge of casting the various
sensor data collected at the mobile device to the cloud server, inter-
faced with MetaData Processor module. Hence, when the video is
received by a mobile client, our client-side Video Processing module
is con�gured to utilize the hardware decoder with real-time opti-
mizations to decode the video and display it on the client device.
�e User Interaction module supports input, which could include
input from touch screens, game-pads, keyboards or mice.

Figure 8, shows a comparison between a AR scene from Pokemon
GO and one rendered remotely using CloudAR. For CloudAR we
designed a 3D spinning globe scene and render it in a speci�c
location using the phone’s sensor data.

5 CLOUD AR EVALUATION
�e selected test system mobile device for game-play and menu
scene o�oading is a Moto G 3rd Generation smart phone which
includes �ad-core 1.4 GHz Cortex-A53 CPU, a Adreno 306 GPU,
2 GB of RAM and 16 GB of internal �ash memory. We updated the
device’s operating system to the latest available Android version
6.0 (Marshmallow). Due to the lack of a gyroscope on the Moto
G, a second test device for the AR o�oading had to be used. �is

0

500

1000

1500

2000

2500

3000

3500

PokemonGO

Cloud-SW
Cloud-SW(1080p)

Cloud-HW
Cloud-HW(1080P)

P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 (

m
W

)

System

Radio
System Apps

PKMN/CloudAR
Screen

Figure 9: Game/Menu Scene O�load: Energy Savings

 0

 1000

 2000

 3000

 4000

 5000

PokemonGO

CloudAR

P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 (

m
W

)

Radio
System Apps

Pokemon/CloudAR
Screen

Figure 10: AR Scene O�load: Energy Savings

MMSys’17, June 20-23, 2017, Taipei, Taiwan Ryan Shea, Andy Sun, Silvery Fu, and Jiangchuan Liu

second device is a Samsung Galaxy S7 on Android 6.0.1, featuring a
dual quad-core CPU (2.3 GHz M1 Mongoose, 1.6 GHz Cortex-A53),
a Mali-T880 GPU, 4 GB RAM, and 32 GB of internal storage. �e
client browser used for the AR scene experiments is Google Chrome
on version 55.0.2883.91.

For our cloud o�oading server we leverage our research plat-
form, SFUcloud, an advanced infrastructure as a service (IaaS) cloud.
Physically SFUcloud is backed by 9000 GB of ram and 1000 logical
CPUs. �is processing power is split over three physical racks, with
switching provided by 10 Gb/s Ethernet. �e cluster is managed us-
ing Apache Cloud Stack and the Xen Hypervisor, which provides us
reliable �ne grained resource control. Our cloud o�oading server
instance was provisioned with 4x2.4 GHz Intel Xeon E5-2665 cores,
16 GB of RAM, and a NVIDIA GRID-K1 GPU. �e GRID’s on-board
hardware video encoder was used to encode the h264 streams and
vp8 encoding was done using FFMPEG on the CPU.

5.1 Mobile Device Power Pro�ling
In our �rst experiment we captured live frames from an instance
of Pokemon Go running on our cloud server. �e client sends
GPS coordinates, which we use to update the player’s location in
Pokemon Go. We encode each frame with h264 and stream back
to the client. We use h264 for this experiment as our test device
supports hardware decoding of h264; this allows us to investigate
the di�erence between hardware and so�ware decoding in terms
of energy consumption. In Figure 9, we depict the power pro�ling
results on the Moto G test device when o�oading menu and game-
play scenes from Pokemon Go. Regardless of which video decoder
is being used, CloudAR is able to substantially reduce the energy
consumption of Pokemon Go. We see slight increases in energy
consumption on the radio, which is due to the increased usage
of radio for video streaming. Another part of the power saving
comes from the screen. CloudAR is able to adjust the Frame Rate
per Second (FPS) based on players’ preference, helping reduce the
energy consumption on the screen when players do not require
high frame rate.

In our second experiment we use the VP8 encoder, as our AR
scenes require an alpha channel to render it at the cloud side. �e
client streams the gyroscope and compass sensor data to our cloud
server. We employ the spinning globe scene from Figure 8b as our
AR scene. Figure 10 shows the results of o�oading augmented re-
ality scenes on the Galaxy S7. Overall, the browser-based CloudAR
client consumed 15% less energy than the Pokemon Go client. �ese
numbers are fairly conservative as there is a non-trivial amount
of energy consumption due to using a browser, as seen in the 6%
increase in the system applications. Consequently, these results
show that even in the worst case, there is still a sizable energy
consumption bene�t to o�oading AR scenes. Further, it is likely
a client implementation using a native app would have a lower
energy consumption than what was observed, as we have consid-
erable overhead due to the use of Chrome. As a future work we
plan to implement a fully native Android application to test this
hypothesis.

 20

 25

 30

 35

 40

 45

 50

1600
800

400

P
S

N
R

Video Bit Rate (Kb/s) 1080p

Menu
Game Play

40.7
39.3

36.8
39.6 38.4

36.2

(a) PSNR 1080p

 0.97

 0.98

 0.99

 1

1600
800

400

S
S

IM

Video Bit Rate (Kb/s) 1080p

Menu
Game Play

0.998 0.997
0.9930.994

0.991

0.986

(b) SSIM 1080p

Figure 11: Menu/Game Play O�load (Image�ality)

BitRate 1600Kb/s 800Kb/s 400Kb/s 200Kb/s
PSNR 47.7 47.0 45.3 43.3
SSIM 0.9997 0.9996 0.9990 0.9982
Table 1: AR O�load VP8 720p (Image�ality)

5.2 Streaming�ality
We describe the streaming quality of CloudAR in Table 1, which
states the image quality and bit-rate of the AR Scene o�oad portion
of CloudAR. We analyze the video using two classical metrics,
namely Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Method (SSIM).

�e PSNR and bit rate of the menu and game-play scene o�oads
are given in Figure 11a, and the SSIM are given in Figure 11b. �e
PSNR method quanti�es the amount of error (noise) in the recon-
structed video, which has been added during compression. �e
SSIM method calculates the structural similarity between the two
video frames. In terms of both metrics, CloudAR is able to a�ain
high streaming quality even at the low bit rate, which allows our
system to be used without excessive bandwidth requirements. Of-
�oading processing tasks to the cloud helps alleviate a key limitation
of the PokemonGO app, namely its reputation for rapidly draining
ba�eries. �is o�oading also frees up resources and ba�ery life for
other tasks such as running advanced sensors.

Finally, in terms of bandwidth usage sending sensor data to
the cloud requires less than 2 KB/s. Consequently, the overall
bandwidth of CloudAR is approximately the chosen video bit rate
with an additional 2 KB/s for sensor meta data.

Towards Fully O�loaded Cloud-based AR: Design, Implementation and Experience MMSys’17, June 20-23, 2017, Taipei, Taiwan

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20
 40

 60
 80

 100
 120

 140

C
D

F

Delay (ms)

Total
Update
Display

Figure 12: Interaction delay

5.3 Interaction Delay
Using the same prototype client, we obtained the total interaction
delay by summing up the server update delay and the client display
delay. We de�ne the server update delay as the delay between sen-
sor data updates and the receiving of the corresponding AR overlay
frame. We de�ne the client display delay as the delay between
receiving the new overlay frame and the next full repaint. We ob-
tained these measurements by using a high-resolution timer that is
accurate to 5 microseconds on the client and half a microsecond on
the server. �e results are plo�ed in a CDF shown in Figure 12. �e
total interaction delay of CloudAR is 55 ms in the 50th percentile
and 96 ms in the 99th percentile. Similarly, the client display delay
and the server update delay had 50th and 99th percentile times of
22 ms/41 ms and 33 ms/54 ms, respectively. Finally, our network
RTT from client to server was stable in the experiments with an
average of 8.4 ms.

�e client display delay is entirely bounded by the frequency of
the browser’s internal repaint frequency, which we found to be 60
Hz or 16.67 ms. �is means that this portion of interaction delay
is largely determined by when a video frame is received relative
to the next browser repaint. �eoretically, if the incoming frames
perfectly align with the browser’s repaint, the client display delay
will e�ectively be reduced to a few milliseconds to process the
incoming pixel data. Practically, the e�ective client display delay
is the browser’s repaint frequency, 16.67 ms, plus the true display
delay, which in our case turns out to be about 5 ms.

On the other side, the server update delay is largely determined
by the networking delays. Rendering a single frame from the vir-
tual camera takes an average time of about 3 ms, while encoding
the frames into a video stream takes about 12 ms. �ese aspects
combined make up for about a third of the observed 41 ms update
delay. Interestingly, this shows that CloudAR is capable of pushing
60 FPS scenes to the client. Finally, like any o�oading technique
our interaction delay is greatly a�ected by the overall network
latency. However, given our measured average interaction delay of
55 ms we conjecture we can support network RTTs of up to 45 ms
with minimal impact on QoE.

6 FURTHER DISCUSSION AND CONCLUSION
We have examined and measured the performance of o�oading
augmented reality scenes in addition to proposing a generic cloud
o�oading framework. �e results show that the potential energy
savings of remotely rendering scenes far outweighs the relatively
small interaction delays. �ese AR o�oading techniques are not
limited to games, but can likely be applied to many applications.
With the increase in ba�ery constrained devices and high quality
network availability, cloud o�oading architectures appears to be a
strong contender for future augmented reality applications.

�ere are many directions for future research in scene-based
cloud o�oading. Investigation and testing is needed on localized
object-recognition based AR use cases. �e AR scenes described
in this paper are geolocation-based and displayed based on an esti-
mated distance from the user’s current geocoordinates. Similarly,
local depth-of-�eld is not being considered while rendering the
virtual entities. An a�ractive avenue of “full” augmented reality is
then possible once object distance and local �eld topology can be
established from the local camera.

Conversely, another direction for further work would be to an-
alyze some of the byproducts of cloud o�oading, such as cheat
protection and digital rights management. Since the core logic of an
application is run on a cloud server, a malicious user is blocked o�
from directly interacting with the application’s memory space and
resources, thereby removing any possibility for so�ware cracking
or bo�ing. Additionally, as we have shown the immense potential
of cloud o�oading, we conjecture there is a strong case towards the
inclusion of this use case in many existing World Wide Web Con-
sortium speci�cations, predominately in the addition of an alpha
channel in WebRTC video streams.

In conclusion, our prototype intelligent thin client is capable of
producing an AR scene that is nearly identical to Pokemon Go. In
one experiment, our client drew considerably less energy in com-
parison to Pokemon Go while presenting an image with a structural
similarity of 99.4% at 1080p using our o�oading techniques. In
another, the client had an average end-to-end interaction delay of
55 ms and provided a low latency user experience with respect to
the integration of the virtual and physical scenes. �e result is a
system that achieves excellent video quality with low interaction
delay, while providing signi�cant energy savings.

ACKNOWLEDGMENTS
�is work was supported by an Industrial Canada Technology
Demonstration Program, an NSERC Discovery Grant, and an NSERC
E.W.R. Steacie Memorial Fellowship.

REFERENCES
[1] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu, Vic-

tor CM Leung, and Cheng-Hsin Hsu. 2016. �e Future of Cloud Gaming [Point
of View]. Proc. IEEE 104, 4 (2016), 687–691.

[2] Hal Hodson. 2012. Google’s Ingress game is a gold mine for augmented reality.
New Scientist 216, 2893 (2012), 19.

[3] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen,
Padmanabhan Pillai, and Mahadev Satyanarayanan. 2016. �antifying the impact
of edge computing on mobile applications. In Proceedings of the 7th ACM SIGOPS
Asia-Paci�c Workshop on Systems. ACM, 5.

[4] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen. 2013.
GamingAnywhere: an open cloud gaming system. In Proceedings of the 4th ACM
multimedia systems conference. ACM, 36–47.

MMSys’17, June 20-23, 2017, Taipei, Taiwan Ryan Shea, Andy Sun, Silvery Fu, and Jiangchuan Liu

[5] Zhanpeng Huang, Weikai Li, Pan Hui, and Christoph Peylo. 2014. CloudRidAR:
A cloud-based architecture for mobile augmented reality. In Proceedings of the
2014 workshop on Mobile augmented reality and robotic technology-based systems.
ACM, 29–34.

[6] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2015. Overlay: Prac-
tical mobile augmented reality. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 331–344.

[7] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2016. Low Bandwidth
O�oad for Mobile AR. In Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies. ACM, 237–251.

[8] Li Lin et al. 2014. Liverender: A cloud gaming system based on compressed
graphics streaming. In Proceedings of the 22nd ACM international conference on
Multimedia. ACM, 347–356.

[9] Fangming Liu, Peng Shu, Hai Jin, Linjie Ding, Jie Yu, Di Niu, and Bo Li. 2013.
Gearing resource-poor mobile devices with powerful clouds: architectures, chal-
lenges, and applications. IEEE Wireless communications 20, 3 (2013), 14–22.

[10] Nayyab Zia Naqvi, Karel Moens, Arun Ramakrishnan, Davy Preuveneers, Danny
Hughes, and Yolande Berbers. 2015. To cloud or not to cloud: a context-aware
deployment perspective of augmented reality mobile applications. In Proceedings
of the 30th Annual ACM Symposium on Applied Computing. ACM, 555–562.

[11] B. Richerzhagen, D. Stingl, R. Hans, C. Gross, and R. Steinmetz. 2014. Bypassing
the cloud: Peer-assisted event dissemination for augmented reality games. In
Proc. IEEE International Conference on Peer-to-Peer Computing (P2P). 1–10.

[12] Mahadev Satyanarayanan. 2015. A brief history of cloud o�oad: A personal
journey from odyssey through cyber foraging to cloudlets. GetMobile: Mobile
Computing and Communications 18, 4 (2015), 19–23.

[13] Ryan Shea, Jiangchuan Liu, Edith C-H Ngai, and Yong Cui. 2013. Cloud gaming:
architecture and performance. IEEE Network 27, 4 (2013), 16–21.

[14] Bowen Shi, Ji Yang, Zhanpeng Huang, and Pan Hui. 2015. O�oading Guidelines
for Augmented Reality Applications on Wearable Devices. In Proceedings of the
23rd ACM international conference on Multimedia. ACM, 1271–1274.

[15] Luke Stone. 2016. Bringing Pokémon GO to life on Google cloud.
h�ps://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-
life-on-Google-Cloud.html. (29 09 2016).

	Abstract
	1 Introduction
	2 Exploring AR: Pokemon Go as a case study
	2.1 Networking Architecture of Pokemon Go
	2.2 Client Architecture and Dataflow of Pokemon Go
	2.3 Mobile Client Power Consumption

	3 Augmented Reality Visual Components
	4 CloudAR: Design and Implementation
	4.1 System Overview
	4.2 Implementation: AR Video Overlay (AVO)
	4.3 Implementation: CloudAR Server
	4.4 Implementation: CloudAR Mobile Client

	5 Cloud AR Evaluation
	5.1 Mobile Device Power Profiling
	5.2 Streaming Quality
	5.3 Interaction Delay

	6 Further Discussion and Conclusion
	Acknowledgments
	References

