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Abstract—Data centers are essential components in the current
digital world. The number and scales of data centers have both
increased a lot in recent years. The distributed data centers
are standing out as a promising solution due to the develop-
ment of modern applications which need a massive amount of
computation resource and strict response requirement. However,
compared to centralized data centers, distributed data centers
are more fragile when the power supply is unstable. Power
constraints or outages because of electrical load shedding or other
reasons will significantly affect the service performance of data
centers and damage the quality of service (QoS) for customers.
Moreover, unlike conventional data centers, distributed data
centers are often unattended, so we need a system that can
automatically calculate the best workload schedule to maximize
profit in such situations. In this paper, we closely investigate the
influence of electrical load shedding in distributed data centers
and construct a physical model to estimate the relationship
among power, heat and workload. We then use queueing theory
to approximate the tasks’ response time and aim to minimize
the overall response time of tasks by migration. Our extensive
evaluations show that our method can improve the response time
with more than 9% reduction.

I. INTRODUCTION

Recent years have witnessed the rapid development of
cloud computing. It brings tremendous and pay-as-you-go
computation resources to fill the gap between the computing
demands of ever-increasing mobile devices and the limited
onboard computation power [1] where data centers (DCs), as
the core component of cloud computing, have become the
brain of nowadays digital world to provide storage, computa-
tion, and management for those inter-connected devices over
the high-speed Internet. On the other hand, many emerging
modern applications, such as autonomous driving, VR/AR,
video analytics, etc., require not only a massive amount of
computation resources but also ultra-low delay to guarantee
the fast response, rendering the conventional centralized DC-
based task offloading ineffective. To this end, distributed data
centers stand out as a promising solution. Distributed DCs are
usually small-scale server clusters deployed at the edge of the
Internet, which handle the various tasks from numerous nearby
sources and provide instant feedbacks with lower operation
cost and delay compared to centralized data centers.

Different from centralized DCs, which are usually installed
with powerful backup batteries or UPSs and well attended
with sophisticated water cooling systems [2], to allow dense
deployment in large regions, distributed DCs often use much
less backup power supply and cheaper air cooling systems
to reduce the operational costs. These factors render a key
challenge lies in the confluence of the ever-changing workload
demand at each distributed DC and the unreliable power
supply therein, particularly due to load shedding (which means
the utilities will cut back the supply voltage when electrical
generation and transmission systems cannot meet the demand
requirements), as well as planned or accidental power outages
[3], which tends to cause severe service delays or even service
interruptions. For example, the government of China limits
the power in several provinces due to the impact of weather
or green energy policy [4]. Power supplies are being cut
to some industrial and commercial customers in Hunan and
Jiangxi provinces, where demand has jumped by at least 18%
over the previous year. Severe winter storm causes power
outages to about 220,000 utility customers in Texas recently
[5]. Load shedding in South Africa has crippled many data
centers and incurs lots of extra costs [6]. It is estimated that
a four-and-a-half-hour load shedding could cost the operator
of a data center 100,000 rand. As such, when power supply
becomes constrained, the server utilization of a DC will be
affected accordingly, usually causing the scale-down of the
task processing capacity, so as to reduce the heat generation
and thus the load of its power-hungry cooling system.

On the other hand, workload migration has been proposed
as an effective solution to maximize the resource efficiency by
scheduling tasks of congested DCs to those light-loaded ones.
And pioneer works have explored many solutions to achieve
this goal with such considerations as different data center
capacities, migration cost, resource efficiency and electricity
price [7] [8]. Different from previous work, in this paper, we
for the first time to carefully consider the impacts of load
shedding on the distributed DCs, especially on their server
utilization as well as the resulting ineffective resource usage
and degraded QoS, and we further propose to use workload
migrations to effectively tackle such power constraint caused
issues therein. To achieve this, we first examine the relation-
ship between the power constraints and the corresponding
server utilization by fully considering the cooling requirement978-0-7381-3207-5/21/$31.00 © 2021 IEEE
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Fig. 1: Overall system model of distributed data centers

in real-world distributed data centers. We then develop a
queuing model for the task service and formulate an opti-
mization problem for workload migration, aiming to minimize
both the service response time and the migration cost. We
have conducted extensive simulations to evaluate our method.
The results demonstrate that when the power supply becomes
constrained, our method can significantly improve the overall
response time with over 9% reduction with minimal cost.

The rest of the paper is organized as follows. Section II
introduces the system model and problem formulation. Section
III proposes our method to reschedule the workload under
electrical load shedding. Section IV shows our simulation
results and analysis. We conclude our work and provide some
discussions in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the overall system model
and then formulate the workload migration problem with the
consideration of constrained power supply.

A. System Model

Fig. 1 shows the overall system model of the distributed
data centers considered in this paper. In particular, a number of
distributed data centers are deployed in a region with different
scales and different power supply conditions. Normally, users
send tasks to their closest data center, and these tasks are
usually scheduled and executed with the first-come-first-serve
(FCFS) policy [9]. Each data center has a single-channel queue
and all the servers in a data center are homogeneous. However,
due to the instability of the power supply, tasks may suffer
from considerable delays, where a long response time will
severely affect the quality of service (QoS).

As each data center has different scales, and the server
utilization will be heterogeneous under different power supply
situations, we first model the relationship between the power

supply and server utilization with the consideration of the
power hungry cooling system. Then we present our model
for task arrival, server service rate and workload migration.

1) Workload, Power and Heat:
To estimate the server utilization under power constraints,

we first construct a physical model of data center. Data center
is an energy-intensive system. There are many devices in
this system which consume lots of energy. Meanwhile, these
devices will generate a large amount of heat. So to protect
these devices, a cooling system is essential in data center.
Similar to [10], we construct a model with several intermediary
data flows and relationships between sub-components in a data
center, which is further illustrated in Fig. 2. The work in
[11] shows that a server’s power consumption has a linear
relationship with its utilization as shown below:

P = Pidle + (Ppeak − Pidle)u (1)

where P is the power consumption of the server and u is
the percentage of its utilization. Pidle and Ppeak are the idle
and peak load power consumption of the server. We use Q
to represent the heat generated by the server, which is also
roughly the heat that should be removed by the cooling system.
Then we have the following convective heat transfer equation:

Q = hA(Toutside − Tinside) (2)

where A is the area of the object, h is the heat transfer
coefficient, Toutside and Tinside are the temperature of the
environment inside and outside the data center. From [12], we
know h is exponentially related to velocity (V ) of the flow,
and the exponent depends on the type of flow. The forced
convection in the server is typically turbulent, which makes
the exponent 4

5 . We thus have:

h ∝ V 4
5 (3)
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Fig. 2: Data flow in the model

To remove more heat generated by the server, the velocity
of airflow should increase at an even greater rate. The fan
laws [13] tell us that this increase is first order, but power
consumption increases to the 3rd power:

V ∝ C3 (4)

where C is the power consumption of cooling system. Com-
bine the Eq. (2), (3) and (4), we can get the relationship
between power consumption C and generated heat Q:

C ∝ Q 5
12 (5)

Next we consider the data center’s server utilization under
power constraints, and the power supply relationship among
different components can be represented like:

P ′ + C ′ +O′ ≤ αS (6)

where α is the percentage of power constraints and S is the
total power consumption. We can easily get the the total server
power consumption P ′ from Eq. (1), and the total power
consumption of other components O′ will not change under
power constraints. Then the only challenge is to get the total
power consumption of the cooling system C ′. From the Eq. (5)
we know that the power consumption of the cooling system has
a relationship with the heat. Based on this, we can estimate
the C ′ if we can know the predicted heat under a specific
situation. If the total amount of generated heat is Qtotal and
Q′total with and without power constraints, respectively, where
we use β to denote the ratio between them, then we have:

Q′total = βQtotal (7)

Combine with Eq. (5), we can get the relationship between
C ′total and Ctotal:

C ′total = β
5
12Ctotal (8)

It is easy to get Ctotal and β in the general situation. So
we can easily get C ′total under power constraints and calculate
the server utilization based on Eq. (1) and (6).

2) Task-Arriving and Server-Service Rates:
Let λi denote the task-arriving rate in data center i, and µi

denote the mean rate at which tasks are finished by a single
server in the data center i, which is directly proportional to
server utilization. The number of servers in the data center i
is represented by si.

Let Wi denote the average waiting time of tasks in data
center i which is determined by the task-arriving rate λi,
server-service rate µi, and the number of servers si. Moreover,
if µi and si do not change, the average waiting time should
decrease when λi decreases. That is the reason why power
constraints can affect the response time of tasks. In next
section, we will propose an approach to approximate this
average waiting time.

3) Workload Migration:
Our model assumes that all data centers can connect to

each other and migrate some workloads to others. When
the workload migration happens between two data centers,
both of their task-arriving rates will change accordingly. In
particular, if data center i migrates some workload to another
data center j, then its task-arriving rate will decrease from λi
to (λi − ∆λij). The task-arriving rate of data center j will
then increase from λj to (λj + ∆λij).

We use Ui and Li to denote the maximum upload and
download capacity allowed for workload migration in data
center i. The migration will also incur some cost, and we
use cij to denote the cost of migrating one unit of workload
from data center i to j.

B. Problem Formulation

If there are some power outages or constraints in some
distributed data centers, the original task schedule will suffer
from low QoS. Tasks in some data centers will have too long
response time while others may still have extra computing
resources. To obtain better QoS and the lower response time,
the original workloads may need to be rescheduled with some
being migrated to other distributed data centers. Let Xij

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 12:06:57 UTC from IEEE Xplore.  Restrictions apply. 



denote the volume of workload migrated from data center i to
j. If Xij is negative, it means data center i receives workload
from j. Let D denote the number of distributed data centers
considered in a region, and then we can get the new task-
arriving rate λi′ in data center i as below:

λi
′ = λi −

D∑
j=1

Xij (9)

Our objective is to minimize the response time of all the
tasks and minimize the migration cost simultaneously. Let Wi

′

denote the new average waiting time after workload migration.
The problem can be formulated as

Min:Response =
D∑
i=1

λi
′Wi
′ (10)

Min:Cost =
D∑
i=1

D∑
j=1

max{Xij , 0}cij (11)

s.t.

Xij = −Xji,∀i, j (12)

λi
′

siµi
< 1,∀i (13)

− Li ≤
D∑

j=1

Xij ≤ Ui,∀i (14)

Here, constraint (13) ensures the model is stable, which
means the queue of tasks will not increase infinitely. Constraint
(14) ensures the migration limitation is not surpassed.

III. SOLUTIONS

In this section, we first use queuing theory to approximate
the tasks’ average response time. Then we transform the
optimization problem into two subproblems and design an
algorithm to solve them efficiently.

A. Approximation of Average Waiting Time
Assume the task-arriving time and server-service time are

both exponentially distributed [8] [14]. All the tasks in a data
center can be modeled as an M/M/c queue. Then we can get
the utilization of the servers in data center i as below:

ρi =
λi
siµi

(15)

where ρi also represents the probability that the server is
busy or the proportion of time that the server is busy. The
probability that no task in queue is

P0i = [

si−1∑
n=0

(siρi)
n

n!
+

(siρi)
s
i

si!(1− ρi)
]−1 (16)

Therefore, the average waiting time of tasks in data center
i can be calculated as

Wi =
P0iρiλ

si−1
i + si!(1− ρi)2µsi−1

i

si!(1− ρi)2µsi
i

(17)

B. Problem Transformation

Recall that our objectives are minimizing both the response
time Eq. (10) and overall migration cost Eq. (11). This opti-
mization problem is actually a multi-objective programming
problem, where the migration variable Xij must be in a
specific range with some constraints, making the problem NP-
hard. Here we transform it into two subproblems and design
an algorithm to solve it efficiently.

The two objectives in our formulated problem are contra-
dictory and thus cannot be optimized simultaneously. Here
we first optimize the response time, because for the providers,
guaranteeing the QoS of users is usually the most important.
As overall response time is only determined by the new
task-arriving rate λ′ and does not depend on the process to
migrate the workload, all the constraints can be transformed
into new forms without variable Xij . Let λi′ become the new
variable instead of Xij , with the same objective (10), the new
constraints can be formulated as:

D∑
i=1

λi
′ =

D∑
i=1

λi (18)

λi − Ui ≤ λi′ ≤ λi + Li,∀i (19)

λi
′ < siµi,∀i (20)

To solve this, we start from the barrier method [15]. We first
introduce a punish function I(u) = −(1/t)log(−u) to remove
the inequality constraints, where t > 0 is a parameter that sets
the accuracy of the approximation. We will replace u in the
punish function with Eq. (19) and Eq. (20) and add them to
the objective. The basic idea here is that the punish function
will be close to zero when constraints are satisfied and very
large when constraints are not satisfied. So the solution of the
new objective will be closer and closer to the origin problem
when t increases. Now the problems becomes

Min:f(~λ′) =
D∑
i=1

{tλi′Wi − log(λi
′ − λi + Ui)−

log(λi + Li − λi′)− log(siµi − λi′)}
(21)

s.t. Eq. (18).
We have transformed the original problem to an equality

constrained minimization problem, and we now develop a
Newton’s method based algorithm [15] to solve it. Unlike
classical Newton’s method, the start point must be feasible
for this problem, and the calculation of the Newton step must
consider the equality constraint. Here we can use the original
task-arriving rate ~λ = {λ1, λ2, ..., λD} as the start point since
it must be feasible. At this feasible point ~λ, we replace the
objective with its second-order Taylor approximation near ~λ,
the objective becomes

Min:f̂(~λ+ ∆~λ) = f(~λ) + f ′(~λ)∆~λ+
1

2
f ′′(~λ)∆~λ

2
(22)
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TABLE I: Server configuration

Item Quantity Configuration
Processor 4 Intel 8158 3.0 GHz 150W 12C/24.75MB Cache/DDR4 2666MHz
Memory 48 128GB DDR4-2666-MHz TSV-RDIMM/PC4-23100/octal

rank/x4/1.2v
Power Supply 4 1600W PSU1
Dedicated Storage
Controller

1 RAID-Cisco 12G SAS Modular Controller 4GB FBWC

Storage 16 480GB 6Gb SATA 2.5-inch SSD Enterprise Value
Adapter 12 GPU-NVIDIA V100 32GB

where ∆~λ denotes the Newton step, and it can be calculated
by the KKT system for the equality constrained quadratic
optimization problem [15]. The optimality conditions are

D∑
i=1

∆λi = 0, f ′′(~λ)∆~λ+ f ′(~λ) +
D∑
i=1

λ̂i = 0 (23)

where λ̂ is the associated optimal dual variable for the
quadratic problem. After we get the ∆~λ, we can use ~λ+ ∆~λ
to approximate the optimal solution for the current t. More
details can be found in [16].

IV. PERFORMANCE EVALUATION

In this section, we will introduce our simulation setup and
present the performance evaluation of our solution.

A. Simulation Setup

We evaluate our solution with extensive simulations, which
include up to 100 distributed data centers in total. The number
of servers in a single distributed data center varies from 2
to 20. The average task-arriving and server-service rates are
generated by uniform distribution, where the former vary from
10 to 15 MB/s and the latter from 15 to 20 MB/s. Here
the server-service rate is higher so as to make sure that the
origin task queue in each data center is stable. The upload
and download limits U and L vary from 5 to 10 MB/s, and
the migration cost c varies from 1 to 5. Finally, each data
center’s power constraints are generated randomly, varying
from 70% to 100%. We use Cisco’s UCS Power Calculator
[17] to generate the server configurations. Taking a Cisco
UCS C480 M5 server as an example, the exact configuration
parameters are illustrated in Table I.

To evaluate the performance of our method, we compare it
with the following baselines:
• Origin: Tasks are processed based on the FCFS policy

without any migration.
• None-power constraint: This one uses the same al-

gorithm as our method to schedule all the tasks, but
assuming the power supply is full all the time.

• Random: This one migrates the workload in a random
way and does not consider the migration cost.

B. Evaluation Results

We first evaluate the response time in different situations.
Fig. 3 (a) shows how the response time changes with different
number of data centers. It is easy to see that our method can

always get lower response time with more than 9% comparing
to the origin approach. Then we check the influence of power
constraints. As illustrated in Fig. 3 (b), we change the average
power constraints from 80% to 98%, and the results show
that our method is more effective when the power supply
percentage is low. Indeed when all the data centers have a
nearly full power supply, our method can still benefit the
response time with the workload migration, performing the
same as the non-power constrain one and much lower than
the origin approach.

Next, we evaluate the migration costs among different
methods, which are presented in Fig. 4. Fig. 4 (a) shows that
the migration cost will increase significantly when the number
of data centers increases. Fig. 4 (b) shows that the percentage
power constraints do not have a significant correlation with the
migration cost. However, all the results show that our method
saves lots of costs than the random migration method.

In general, the evaluation results show that our proposed
method can minimize the response time with a relatively low
migration cost. Different factors have different effects on our
objective, but all the results show that power constraints are
essential for workload scheduling, and our method can sig-
nificantly improve the effectiveness of distributed data centers
under different situations.

V. CONCLUSION

In this paper, we concentrate on enhancing the QoS of
distributed DCs with workload migration under load shed-
ding. We first construct a physical model of a data center
to investigate the effect of power constraints. Then we use
the queueing theory to approximate the response time and
regard this as an objective in the problem formulation. To
get the minimum response time, we need to migrate some of
the workloads to other distributed DCs, so another objective
is to minimize migration costs. Since this multi-objective
optimization problem is NP-hard, we propose a method that
combines the barrier method and modified Newton’s method
to solve it. Our simulation results show that our algorithms
can significantly improve the performance of distributed data
centers under load shedding.
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