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Abstract—Offering the services of real-time tracking and
arrival time prediction is a common welfare for bus riders and
transit agencies, especially in urban environments. On the down
side, the traditional GPS-based solutions work poorly in urban
areas due to urban canyons, while the location systems based on
cellular signal also suffer from inherent limitations. In this paper,
we present a powerful tool named Signal Voronoi Diagram (SVD)
to partition the radio-frequency (RF) signal space of WiFi Access
Points (APs), distributed where a bus travels, into Signal Cells,
and then into fine-grained Signal Tiles, tackling the problem
of noisy received signal strength (RSS) readings and possible AP
dynamics. On top of SVD, we present a novel framework so-called
WiLocator, to track and predict the arrival time of an urban
bus based on the surrounding WiFi information collected by
the commodity off-the-shelf (COTS) smartphones of bus riders,
the mobility constraint of a bus and the temporal consistency
of travel time of buses on the overlapped road segments. We
also show the WiLocator’s power of generating an accurate and
real-time traffic map with the predicted travel time on each road
segment. We implement the prototype of WiLocator and conduct
the in-situ experiment to demonstrate its accuracy.

I. INTRODUCTION

Urban is where most of the important transportations (such

as airports and rail yards, etc.) terminate, making the urban

transit crucial to efficiently support the mobility of people and

freight. For instance, in 2014 alone, American people (most

of them are young) took about 10.8 billion trips on public

transportation, and, around 70% of population of Mexico takes

public transport. As such, the habitual mobility of people gives

rise to the recent observation that the urban productivity highly

depends on the pubic transport system. In this paper we focus

on one type of the pubic transport system, the bus system, as

it covers the majority of the urban road network, compared

with other transport modes such as skytrain or subway. For

instance, in London, about 75% road segments are covered

by bus systems, and 79% in Singapore, and around 85% of

residents have a bus stop within 400 meters of their home in a

metropolitan of North America. It is noted that the bus system

suffers more from traffic jam, especially in rush hours. A long

waiting time for a bus clearly discourages people to take bus

for commute, shopping, etc. The information, if available, of

where the bus is and when it will get the intended stop, no

doubt can cut down the waiting time, and thus increase the

efficiency of bus riders [19], which in turn appeals more and

more people to take bus transportation, and thus benefits the

transit agencies from offering the services of real-time tracking

and arrival time prediction. In summary, offering the services

of real-time tracking and arrival time prediction is a common

welfare for bus riders and transit agencies.

To provide these services, many transit agencies (e.g., TTC1

and CTA2, etc.), or third-party companies (e.g., NextBus3),

have commonly equipped each bus with a GPS-enabled in-

vehicle device (so-called Automatic Vehicle Locator, or AVL

unit). Unfortunately, the adoption of GPS based tracking and

arrival time prediction in real world has been stymied by the

GPS-based device’s well-known limitations on energy con-

sumption, requirement of sky visibility, initial and incurring

costs which prohibit the applicability for small-scale transit

agencies, and so on. An alternative approach relies on cellular

infrastructure [15], [20], [21], [27]–[29]. However, the long

capturing time for a stable Cell-ID sequence, the overlapped

road segments of different routes, low density of cell tower,

etc., make the cellular-based approaches a poor fit for real-time

bus tracking.

WiFi Access Points (APs), on the other hand, are now

distributed densely along the road segments of the urban bus

routes. Fig. 1 gives a glance of WiFi hotspot distribution in

a big city of north America. It’s well-known that the noisy

RSS readings entail substantial challenges for positioning. For

instance, the existing WiFi-based localization systems either

rely on fingerprinting the receive signal strength (RSS) [2], [3],

[5], [9], [10], [16], [17], [24]–[26], or the signal propagation

model [6]. However, the calibration for fingerprint database

requires intensive labors from experts in-house, and also suf-

fers from the dynamics of WiFi APs due to reconfiguration or

replacement, etc., while the radio-frequence (RF) propagation

model-based schemes hurt seriously the positioning accuracy.

Observing that the average RSS rank from an AP sensed

by multiple devices remains relatively stable, in this paper,

we present a powerful tool, named Signal Voronoi Diagram

1http://www.ttc.ca.
2http://www.chicagobus.org/news/bus-tracker-expands-systemwide.
3http://nextbus.cubic.com.
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(SVD), to partition the signal space into coarse-grained Signal

Cells (SCs), within each of which the points receive the

strongest signal from the same AP (referred to as site or

generator), and then into fine-grained Signal Tiles (STs).

Within each ST, the rank of RSS readings remains constant.

On top of SVD, we exploit the mobility constraint of the

bus and temporal consistency of travel time of buses on

overlapped road segments, and design a novel and energy-

efficient framework, so-called WiLocator, to real-time track

and predict the arrival time of the bus in urban environments.

WiLocator consists of three components: (1) WiFi-enabled

commodity off-the-shelf (COTS) smartphones, carried by the

driver and bus riders for crowd sensing. The smartphone

periodically scans the surrounding WiFi information, and

reports it to the server; (2) a back-end server (we shift the

computation burden to the server, including SVD construction

and real-time bus tracking, arrival time prediction, traffic map

generation and anomalies detection); (3) a user interface for

trip plan, such that the real-time bus track and schedule, and

the traffic map, can be readily available for intended bus riders.

The contributions are summarized as follows:

• We propose a powerful tool, the Signal Voronoi Diagram

generated by WiFi APs, to divide a signal space into

coarse-grained Signal Cells and fine-grained Signal Tiles,

tackling the unstable WiFi signals;

• We exploit the SVD, the mobility constraint of a bus, and

the temporal consistency of travel time of the buses on

the overlapped road segments, and design WiLocator, a

WiFi-sensing based framework for real-time bus tracking

and arrival time prediction;

• We present a novel scheme to report anomalies (if any),

and generate the real-time traffic map by analyzing the

statistical behaviors of the travel time on each road

segment, instead of the vehicle velocity subjecting to

different speed limits on different road segments;

• We implement a prototype of WiLocator and conduct the

in-situ experiment to show the efficiency.

The rest of the paper is organized as follows. We present the

background and motivations in Section II, and in Section III,

we present the principle of the signal Voronoi diagram based

bus positioning. Section IV is devoted to the applications for

arrival time prediction and real-time traffic map generation. We

present the prototype implementation and experimental results

in Section V, and in Section VI we briefly introduce the related

work. Finally, we conclude the paper and present the future

work in Section VII.

II. BACKGROUND AND MOTIVATIONS

As mentioned earlier, several transit agencies and third-party

companies offer the services of real-time bus tracking and

arrival time prediction by installing GPS-enabled AVL devices.

However, equipping each bus with an AVL devices potentially

incurs overwhelming initial and recurring costs [19], which

renders this solution prohibitive for practice, especially for

many small transit agencies operating only a few buses. As

such, Biagioni et al. [4] presented EasyTracker, an automatic

Fig. 1: The motivated example on a road segment of a main

street in Metro-Vancouver, Canada. The geo-tagged WiFi APs

(with their latitudes and longitudes marked in Google Maps)

are densely distributed along the road where multiple bus

routes share a few overlapped road segments, and there are

only a small number of cell towers, each of which covers

multiple road segments.

bus tracking and arrival time prediction system on a COTS

smartphone, carried by the driver or installed in the bus. Un-

fortunately, GPS is power-hungry, and the GPS-based tracking

systems including EasyTracker work poorly in urban environ-

ments due to the city geometry (or so-called urban canyons):

the high buildings, or tunnels, will block the line-of-sight

(LOS) paths to the satellites. The existing energy-accuracy

tradeoff triggers the development of lightweight positioning

systems, which either reduces the accuracy requirements down

to an acceptable limit, or turns on and off GPS based on

some clues, or both [7], [13]–[15], [27]–[29]. For instance,

in [15], [27]–[29], the location is computed based on Cell-

ID sequence matching. Though energy-friendly, they can not

efficiently handle the case of overlapped road segments, and

suffer from the low density of cell tower and long capturing

time for a stable Cell-ID sequence for matching.

Nowadays, geo-tagged WiFi APs, with their latitude and

longitude marked in Google Maps, are widely visioned in

modern metropolitans: hotels, restaurants, and so on. As WiFi

network is viable and has already been exploited for data

offloading by mobile operators, we envision that there will be

an increasing trend of WiFi APs deployment covering densely

the majority of road networks in urban areas. Compared with

other approaches, WiFi-based bus positioning is attractive

since, 1) there are already enough WiFi APs with limited

coverage due to the limited transmitted power, in urban areas,

which entails an accurate result based on RSS readings from

surrounding WiFi APs; 2) it only take several seconds to

retrieve the necessary WiFi information, such as SSID, BSSID

and RSS, etc., around the road segments; 3) it does not

suffer from city geometry, and 4) there is no installation or
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maintaining fee for transit agencies. Despite these advantages,

the unstable WiFi signal, AP dynamics, and the complicated

outdoor environments along the road segments, where existing

WiFi-based location systems relying on calibration by experts

in-house or radio-frequency (RF) propagation model are inef-

ficient, entail substantial challenges for bus tracking. In this

paper we propose the powerful tool, named Signal Voronoi

Diagram (SVD), to tackle these challenges.

In addition to the densely distributed WiFi APs in urban

environments, another key observation is that, different bus

routes, e.g., route 9, 14, 16 and a Rapid Line in Fig. 1 may

share a few overlapped road segments connecting adjacent

intersections/terminals. The experimental evidence shows that

the travel pattern (e.g., normal, faster or slower as compared

with the historical travel time) of different bus routes on

the same road segment exhibits high temporal correlation: if

a bus A has just travelled by a road segment at a normal

travel pattern, then the travel time of next bus B, despite its

route, on this road segment will also be normal with high

probability, even though their regular speeds on this segment

may differ. Clearly, the travel time of previous buses on the

shared road segments is most timely and thus capable for

offering an accurate travel time estimation of the upcoming

buses. As such, by leveraging the travel patterns of buses

having just passed by the intended road segment, we can

accurately estimate the travel time of the upcoming buses on

this road segment, and its arrival time at subsequent stops.

Motivated by these facts, in this paper, we aim to track and

predict the arrival time of a bus in urban areas by participatory

crowd-sensing based on WiFi-enabled smartphones, and de-

sign a cost-effective, user-friendly and reliable system, named

WiLocator, requiring the minimum interference of participants,

i.e., zero effort from the bus riders.

III. SIGNAL VORONOI DIAGRAM BASED BUS

POSITIONING

A. Signal Voronoi Diagram

Voronoi diagram (VD), also known as Voronoi tessellation,

is the partition of a plane into regions, called Voronoi cells,

based on the distance to the points (referred to as seeds, sites,

or generators) of a finite set [1]. Formally, given a point set

S = {p1, p2, · · · , pn}, the dominance of pi over pj(i �= j) is

defined as the sub-plane not farther to pi than to pj . Formally,

dom(pi, pj) = {x ∈ R2|d(x, pi) ≤ d(x, pj)} (1)

where d(x, y) denotes the Euclidean distance between x and

y. The Voronoi cell generated by pi, denoted by c(pi), is thus

defined as the sub-plane in the dominance of pi over all other

sites. That is,

c(pi) = ∩j=1,2,··· ,n,j �=idom(pi, pj) (2)

Ties are allowed here and the intersection of two neighboring

cells c(pi), c(pj)(i �= j), where the points are equidistant to pi
and pj , form a Voronoi edge e(pi, pj), and two Voronoi edges

meet at the junction point. The collection of these Voronoi

e a

b

cd

p

q
s

Intersection/Terminal WiFi AP Joint Point Bisector Joint

i.starte ie .end
l

o

Fig. 2: SVD and its application for bus positioning. The WiFi

APs, namely, a, b, c, d and e around the road segment ei
generate the SVD where the solid lines represent SVEs; Signal

Cell SC(b) is partitioned into four STs. Points s, p, q and o
are the intersection of road segment ei with the SV E(b, d),
the tile boundary of ST (b, d) ∩ ST (b, c), tile boundary of

ST (b, c) ∩ ST (b, a) and SV E(b, a), respectively.

cells generated by the sites in S, forms a partition, i.e., the

Voronoi diagram, of the plane, denoted by V D(S).

Definition 1. Given a WiFi AP set P = {p1, p2, · · · , pn} in
a space D, the Signal Voronoi Diagram of D, denoted by
SV D(D), is a partition of D into a set of Signal Cells based
on RSS(x, pi), the signal strength at point x, where each cell
SC(pi)(i = 1, 2, · · · , n) is the dominance of pi over other APs
such that SC(pi) = {x ∈ D|RSS(x, pi) ≥ RSS(x, pj), j =
1, 2, · · · , n, j �= i}. The Signal Voronoi Edge (SVE) between
pi and pj , denoted by SV E(pi, pj), is a point set such that
SV E(pi, pj) = {x ∈ D|RSS(x, pi) = RSS(x, pj)}. We call
the point where two or more SVEs meet as a joint point.

In what follows, we will use interchangeably the term of

AP and site. It can be seen that the SVD differs from the

VD in that the metric here is the RSS of the point from

the APs, instead of the Euclidean distance as in [12], [16],

[18]. As in practice, many factors, such as transmit power, the

environment, etc., affect the RF signal propagation, the SVE

is not necessarily a straight-line, making the VD inefficient for

this case; only in the ideal case where all of these parameters

are equal for all APs will the SVD be the same as the VD.

Therefore, the conventional Voronoi Diagram is just a special

case of SVD. Fig. 2 gives some intuition for SVD.

Note that within each SC, the difference of RSS between

other sites, instead of the site of this SC, is ignored. For

instance, for any x ∈ SC(pi), the relationship, or the rank

order, between RSS(x, pj) and RSS(x, pk)(i �= j �= k) is

unclear. To that end, we can further partition each SC into

fine-grained regions, which we call as the Signal Tiles (STs).

Definition 2. Given the Signal Cell SC(pi) having ni neigh-
boring SCs with sites Pi = {pn1

, pn2
, · · · , pni

}(nj �= i, j =
1, 2, · · · , i) ⊆ P , a Signal Tile ST (pi, pnj

)(j = 1, 2, · · · , i)
of SC(pi) is defined as the dominance of pnj in SC(pi)
over other sites in Pi. That is, ST (pi, pnj ) = {x ∈
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SC(pi)|RSS(x, pnj
) ≥ RSS(x, pnk

), k = 1, 2, · · · , i, k �=
j}, or ST (pi, pnj

) = {x ∈ D|RSS(x, pi) ≥ RSS(x, pnj
) ≥

RSS(x, pnk
), k = 1, 2, · · · , i, k �= j} where at least one

inequality holds as the Signal Tile is not empty. We call the
intersection of two neighboring STs as Tile Boundary, and the
intersection of two or more tile boundaries as a Bisector Joint.

Clearly, the collection of the STs in each SC then form a

finer partition of D, i.e., the second-order SVD, and thus each

ST is also called as a second-order Signal Cell. We can derive

the higher-order SVD by similarly conducting the partition

process for each Signal Tile SC(pi) until it’s decomposed

into ni! finest Signal Tiles ST (pi, pn′1 , pn′2 , · · · , pn′i) which

are no longer dividable based on the available RSS vector,

where (n′1, n
′
2, · · · , n′i) is a permutation of (n1, n2, · · · , ni).

Proposition 1. For any x ∈ ST (pi, pn′1 , pn′2 , · · · , pn′i), the
following inequality holds: RSS(x, pi) ≥ RSS(x, pn′1) ≥
RSS(x, pn′2) ≥ · · · ≥ RSS(x, pn′i). That is, the RSS values
are ordered within each ST.

It’s well-known that the RSS readings are very unstable:

even in a static point it can vary up to more than 10 db, making

the RSS readings less important. However, the ranks of the

RSS from different APs are relatively stable, and according to

Propositon 1, we can easily infer the location range of a mobile

device, i.e., the ST it’s in, based on its collected RSS vector

from the surrounding WiFi APs, and estimate its location as

the centroid of the ST. Note that here no calibration or RF

propagation model is required. Clearly, the accuracy of rank-

based positioning depends on the size of ST that the device

resides in, which is subject to the WiFi AP density, and the

order of SVD. As such, we have the following propositions:

Proposition 2. A higher-order SVD based positioning scheme
will provide a more accurate result.

Proposition 3. The SVD constructed based on more APs will
ofter a higher positioning accuracy.

With these features, next we will apply the constructed SVD

for WiFi-sensing based real-time bus positioning.

B. Signal Voronoi Diagram based Bus Positioning

As mentioned before, there are densely distributed geo-

tagged WiFi APs along the road segments of bus routes, which

are sufficient to construct the SVD with small-sized STs for

an accurate position. However, generally the SVD alone can

not pinpoint the bus position. For instance, in Fig. 2, if the AP

sequence according to the RSS rank list is (b, a, d), then we

infer that the current bus position falls within the Signal Cell

SC(b), or more precisely, the Signal Tile ST (b, a). However,

the ST’s centroid might be far from the ground truth which

should be on the road segment. Note that a bus will follow

a regular route, which can be readily downloaded from the

website of the transit agency. With this mobility constraint,

we can narrow down the bus position estimation to the road

segment in the road network, which is defined as follows.

Definition 3. Road Network. A road network is a directed
graph G(V,E) where V is the set of vertices corresponding
to the intersections and road terminals, and the edge set E
denotes the collection of directed road segments between two
adjacent vertices vi.start and vi.end, 1 ≤ i ≤ |V |.
Definition 4. Bus Route. A bus route R is a sequence of
connected and directed road segments e1 → e2 · · · → en
where the start stop s1 and final stop sn lie on e1 and en,
respectively, and ei.end = ei+1.start, 1 ≤ i < n.

Please see Fig. 3 for some intuition. To derive the bus

position, we define a Tile Mapping4 as follows:

Definition 5. Let ST (pi, pnj
) be the Signal Tile that the

bus currently resides in, and eij be a sub-segment, in
ST (pi, pnj ), of road segment ei. We define the Tile Mapping
F : ST (pi, pnj

)→ eij as F (ST (pi, pnj
)) = pij where pij is

the nearest point of the centroid of ST (pi, pnj
) to eij .

As such, based on the second-order SVD that divides a road

segment into short sub-segments, we first determine which ST

the bus is in, and then map this ST to the road sub-segment

inside the ST to infer the bus position. For instance, in Fig 2,

if the RSS rank list is (b, a, d), then the bus location is inferred

to be a point on the sub-segment between o and q, and between

p and s for the rank list (b, d, c). When there are more APs,

the positioning result will also be more accurate, as each SC

can be decomposed into more STs, and thus the road segment

within each ST can be divided into shorter sub-segments.

On the downside, due to the noisy RSS readings, the bus

might be mistakenly estimated to reside in a ST, e.g., ST (b, e)
in Fig 2, which has no intersection with the road segment.

In this case, we simply map this ST to the nearest point

on the road sub-segment that intersects with the neighboring

ST with the longest tile boundary, and then the bus position

can be inferred accordingly. For instance, the tile boundary

between ST (b, d) and ST (b, e) is the longest among other

tile boundary of ST (b, e), and we thus map ST (b, e) to the

road sub-segment between p and s.

Note that there can be equal ranks of RSS values from

different APs, and in this case the position estimation is much

easier. In Fig. 2, if rank of a (or d) equals to that of b, then o (or

p) will be the estimated position. And if RSS ranks from a, b, c
are equal, theoretically the junction point l, where SV E(a, b)
and SV E(a, c) meet, is the best estimation. However, the

bus must travel on the road segment, therefore we project

the junction point l to the road segment ei, and regard the

projected point as the estimated bus position.

Occasionally, there can be dynamics of WiFi APs, e.g., due

to their being out of function, and replacement, etc., but our

SVD-based positioning algorithm does not suffer from such

dynamics. For instance, in Fig 2, suppose that the AP b is

out of function. The surrounding WiFi APs are now becom-

ing a, c, d and e, and the SVD changes accordingly where

the Signal Voronoi Edges SV E(b, a), SV E(b, c), SV E(b, d)

4In practice, we find that a second-order SVD is enough for a high accuracy.
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Fig. 3: Road network and the bus routes (indicated by the

number).

and SV E(b, e) do no longer exist. Other SVEs, i.e.,

SV E(a, c), SV E(a, e), SV E(c, d) and SV E(c, e), and the

dashed tile boundary of STs in SC(b), together form the new

SVEs with the bisector joint (indicated by the empty rectangle)

as the junction point of the new SVD. We can further construct

the second-order SVD, and in a similar way described above

we can infer the bus position based on the ranks of RSS from

the available APs. One can imagine that the newly estimated

position will not be far away from the true location.

With the estimated bus position and a time stamp indicating

the time of WiFi-sensing, we derive a trajectory of the bus.

Definition 6. Trajectory. A bus trajectory is a sequence of
tuples < lat, long, t > representing the latitude, longitude
and the time stamp, respectively.

IV. BUS ARRIVAL TIME PREDICTION AND REAL-TIME

TRAFFIC MAP GENERATION

In this section, we detail the applications of SVD-based

bus positioning for arrival time prediction and traffic map

generation. Note that the buses with the same consecutive

stops generally share overlapped road segments, while the

buses sharing the same overlapped road segments do not

necessarily have the same stops. As such, our scheme is built

on road segments, with an advantage of leveraging more lately

travel time of buses with the same/different routes to predict

the arrival time, over other solutions [28], [29] that only use the

data of the same route. To that end, we first fetch the historical

and lately travel time on each overlapped road segment of

these bus routes, and then summarize these travel times to

estimate the arrival time of a bus at the subsequent stops.

Let us take Fig. 3 as an example where the current bus

location of route 1 is marked by the empty circle, and the solid

diamonds represent the subsequent stops of the bus route 1.

After locating the bus, we find out whether there are buses

sharing the overlapped road segments between the current

location and the intended stop(s), and estimate the travel time

from current position to the end of current road segment, and

to subsequent road segments, based on the historical and lately

data of these routes (if there are other routes sharing road

segments with route 1). On current road segment e1, where

only buses of route 1 travel, the historical and lately (if any)

data of route 1 is used since there is no bus of other routes

traveling on e1. Later, we find there are two routes, namely,

route 1 and 5 share segment e2; if buses of route 1 and 5 have

just passed by e2, we can use the historical data of route 1 and

5, and their up-to-data travel time to estimate how long the

next bus of route 1 will take to travel along this road segment

e2. Next we only focus our concentration on estimating the

travel time of a bus route on a single road segment.

Specifically, suppose that there are K(> 1) bus routes

R1, R2, · · · , RK sharing the same road segment ei. To predict

the travel time of an upcoming bus, say of route R1, on ei,
we suppose that most recently there are J buses of K′(≤ K)
routes passing by ei. We denote by Th(i, j), Tr(i, j) the histor-

ical and recent travel time of bus j ∈ (1, J), respectively. Note

that many factors affect the travel time: weather condition,

driving style, the number of boarding and alighting passengers,

whether there is a stop on the road segment, and unexpected

accidents, to name a few. Incorporating all these factors into a

model would result in a time-expensive computation of the

model. Instead, we classify them into two categories: bus

route-dependent and environment-related factors. The former

one is related to each bus route, while the latter is shared by all

routes on the same road segment, which is often uncontrollable

by any bus route and thus we model it as a random variable

εi following a Gauss distribution N(μi, σ
2). Thus, the travel

time of route j on ei can be formulated as

Tr(i, j) = μi,j + εi (3)

where μi,j is the mean of the travel time of route Rj on road

segment ei, which can be unbiasedly estimated as Th(i, j),
i.e., E(Th(i, j)) = μi,j where E() denotes the expectation,

for a large number of historical data. Thus, Equation 3 can be

rewritten as

Tr(i, j) = Th(i, j) + ε̂i (4)

where the residual ε̂i is an unbiased estimator of εi, namely,

E(ε̂i) = μi. Then, the travel time of route R1 on road segment

ei in the near future can be estimated as

Tp(i, 1) = Th(i, 1) +

∑
j=1,··· ,J{Tr(i, j)− Th(i, j)}

J
(5)

where the second item in the right side is an estimation of ε̂i.
Typically, there are two significant rush hours in a weekday,

one in morning and one in afternoon, incurring a large

variation σ2 caused by the environment-related factors. Hence,

we can divide a weekday into serval time slots, for instance,

morning non-rush hour, morning rush hour, afternoon non-

rush hour, afternoon rush hour, and otherwise, and estimate the

average historical travel time of each bus route. Then, within

each time slot, we build a prediction model in a similar way.

It is noted that the rush hour may appear at different time

for different node segments. To that end, we need to figure

out for each node segment when the rush hour is based

on the historical data by computing the so-called seasonal
index, a metric to determine whether there is a seasonal

cycle (or, periodicity) of an economic phenomena in statistics.
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Assume that each day is divided into L time slots, e.g.,

each hour is a time slot, and we have an M -day observation

of bus travel time. During each day m, for each bus route

Rj(1 ≤ j ≤ K) on road segment ei(1 ≤ i ≤ n), at time slot

l(1 ≤ l ≤ L), the travel time is denoted by T (i, j,m, l). Let

T̄ (i, ·, ·, l) denote the average travel time of all routes on road

segment ei from time slot 1 to L, and T̄ (i, ·, ·, ·) be the whole

average travel time with respect to the day and time slot. That

is, T̄ (i, ·, ·, l) =
∑

m=1,··· ,M,j=1,2,··· ,K T (i,j,m,l)

MK , T̄ (i, ·, ·, ·) =∑
,j=1,2,··· ,K,m=1,··· ,M,l=1,··· ,L T (i,j,m,l)

MKL . The seasonal index of

time slot l, denoted by SI(i, l) is thus defined as

SI(i, l) =
T̄ (i, ·, ·, l)
T̄ (i, ·, ·, ·) (6)

Clearly, we have
∑

l=1,··· ,L
SI(i, l) = L, SI(i, l) > 0 (7)

If SI(i, l) = 1 for any l ∈ [1,m], there is no periodicity

of travel time; if SI(i, l) 
 1 (e.g., SI(i, l) ≥ 1.6 in our

experiments), showing that the travel time is much longer

compared with the average level, then the time slot l might

be a rush hour. We can group consecutive time slots with

similar seasonal index into a bigger slot such that each day

can be divided into less slots, to increase the sample size for

predicting the arrival time. Then, for any time t of time slot

l, we can rewrite Equation 5 as:

Tp(i, j, t) = Th(i, j, l) +

∑
k=1,··· ,K{Tr(i, k, l)− Th(i, k, l)}

K
(8)

Assume that at a time t within a time slot l, the bus of route

j is currently on position a of segment ei, the arrival time at

stop sn on segment en(n > i+ 1) is estimated as

Te(sj) =
Tp(i, j, t)dr(p, ei.end)

dr(ei.start, ei.end)
+

n−1∑

k=i+1

Tp(i, j, t)

+
Tp(n, j, t)dr(sn, en.end)

dr(en.start, en.end)

(9)

where dr(x, y) denotes the road length between x and y. For

n = i+ 1, the middle term of right side in Equ. 9 is ignored.

When the intended road segment or stop is far away from

current position such that the arrival time might fall in another

time slot, the computation will be separated slot-by-slot.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENT

RESULTS

A. Prototype Implementation

WiLocator consists of three main blocks, namely WiFi-

based bus positioning, arrival time prediction, and traffic

map generation, corresponding to three components for data

sensing, processing and applications, as shown in Fig. 4.

• SVD-based Bus Positioning. We assume that the bus

route can be easily identified, e.g., based on voice recog-

nition of the announcement by riders or text input by

Fig. 4: The implementation diagram of WiLocator.

the driver. The smartphones of the driver and bus riders

then periodically scan available WiFi, and report the WiFi

information to the back-end server. The server then con-

structs the Signal Voronoi Diagram (SVD) according to

the average rank of RSS values from each of surrounding

WiFi APs; by leveraging the mobility constraint of the

bus, the server yields an estimated position.

• Arrival Time Prediction. For each subsequent road

segment of a bus on its route, we leverage the historical

and lately travel time of the buses of the same/different

routes traveling on this segment to estimate the travel time

of next bus on this road segment, and then the arrival time

of the bus at the subsequent stops can be easily computed

based on the estimated travel time on each road segment

where a simple interpolation technique might be needed.

• Traffic Map Generation. Since different road segments

may pose different speed limits, instead of using the

vehicle velocity, we analyze the statistical behavior of the

travel time on each road segment to generate a real-time

traffic map and report the traffic anomalies if any.

Note that in WiLocator, the computation burden is shifted

to the server, and no interference from the driver/riders is

required. Next we will detail the prototype implementation

of WiLocator, followed by the experimental evaluation.

1) Bus Route Identification: The first step of WiLocator

is to identify the bus route. The Cell-ID matching based

scheme [28] can not correctly classify the bus route when

the first few road segments overlapped with other routes,

quite common in urban areas, and thus the arrival time of

the stops on these road segments is hardly available. In fact,

nowadays, when the bus starts, it usually announces the bus

route, including the route and the destination it bounds for.

Thus we can easily extract the route information and where it

bounds for based on the voice recorded by riders’ smartphones.

On the downside, since we assume that each driver carries

a smartphone installed WiLocator, the bus route can also be

supposed to be known; the bus riders, close to the driver

by proximity sensor, have approximately the same trajectory,
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Fig. 5: Identification of intersections.

therefore we can easily determine which bus the riders are on.

2) Real-Time Bus Tracking: The core of WiLocator is

to locate the bus instantly as follows. When the system

starts, the smartphone periodically scans the surrounding WiFi

information, including SSID, BSSID, and RSS, and upload

them, together with a time stamp, to the back-end server. After

receiving the report, the back-end server ranks the RSS values

and then construct the SVD to determine which SC the bus is

in, followed by partitioning the SC into STs. With the route

information and the road map downloaded from the transit

agency and Google maps, respectively, WiLocator maps the

ST which the bus resides in to the road sub-segment of the

bus route, and therefore infers the location accordingly.

3) Arrival Time Prediction: WiLocator has two phases,

namely offline training and online prediction for this task.

Offline training. For each road segment, the server com-

putes the seasonal index based on the historical travel time,

and determine whether there is a periodicity. If so, the server

will divide the day into time-slots, within each of which the

travel time of a bus route on this road segment is assumed to

follow the same probability distribution.

Online Prediction. Based on the estimated position and the

time stamp, the server estimates its arrival time at subsequent

stops. First, it finds how many buses have travelled the

subsequent road segments and computes the travel time of

each bus. To that end, we need to compute when a previous

bus arrived at the start point of the road segment and when

it left, since there might be a gap between the WiFi scanning

time and the arrival time at an intersection. Generally, there

are two cases: 1) the bus stopped at the end point of the last

road segment, e.g., waiting for the traffic light turning green.

For this case, the arrival time at the next road segment can

be easily approximated5; and 2) the bus went straightly from

road segment ei−1 to another road segment ei when the blue

traffic light is on. In this case, we assume that the bus travelled

smoothly, i.e., at a steady speed, and use two locations, say A
on ei−1 and B on ei in Fig. 5, to approximate the arrival time

at the intersection, i.e., ei−1.end of segment ei−1. Specifically,

let the travel time (i.e., the scanning period) between A,B
be t(A,B), and the travel time from A to ei−1.end can

then be approximated as
t(A,B)d(A,ei−1.end)

dr(A,B) . As a result, the

arrival time of each last bus at ei−1.end or ei.start can be

easily estimated. With these lately data on each road segment,

the arrival time of the next bus at subsequent stops can be

estimated according to Equation 9.

5We can also use the built-in accelerometer sensor to trigger a WiFi
scanning and upload the report to the server when the bus stops.

Intersection/Terminal

ei.start ei.end
......

A B

Bus Historical Position

Fig. 6: An illustrative example of anomalies detection.

Fig. 7: The four bus routes (i.e., the Rapid line, 9, 14 and 16)

in Metro-Vancouver, Canada. The terminals of different routes

are marked by different shapes.

4) Real-time Traffic Map Generation: The traditional ap-

proach to generate a traffic map is based on the velocity

of vehicle passing each road segment. However, this method

is somehow problematic since each bus route usually has

different regular speed when traveling the same road segment.

For example, a bus of a rapid transit line (e.g., the Rapid Line

in Fig. 1) usually runs faster than ordinary buses (e.g., Route

9,14, and 16 in Fig. 1); the results based on the data of rapid

transit line or an ordinary bus might be misleading. Besides,

different road segment, e.g., near school zone or not, may pose

different speed limits. As such, WiLocator generates the real-

time traffic map based on the statistics of travel time of a bus

on each road segment, instead of the velocity.

Specifically, for each road segment, we determine the traffic

condition based on the current and historical travel time. If

the current travel time is, say, c1 times the standard deviation

(STD), larger than the mean travel time, we mark this road

segment as very slow; or c2(< c1) times STD larger, then we

mark it as slow; otherwise, the road segment will be marked as

normal. This way, the real-time traffic map can be generated.

When a road segment is marked as slow or very slow,

WiLocator will further detect the root cause and identify the

traffic anomalies in the following way. For each trajectory

(lati, longi, ti)(i = 1, 2, · · · , n) where (lati, longi) denotes

the bus position pi at time stamp ti, if there are two integers

1 < k < m < n such that dr(pi−1, pi) < δ, k < i ≤ m and

dr(pi−1, pi) > δ otherwise, we regard the location between pk
and pm as the anomaly site (e.g., the location between A and

B in Fig. 6) such as road construction, traffic accident, etc. The

system parameter δ is determined based on the historical road

distance during a scanning period on the corresponding road

segment in the similar way as described above for determining

parameter c1 (or c2). Other possible cases causing a false

anomaly, such as the bus waiting for riders’ boarding at a

stop or traffic light turning green at an intersection, can be
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Fig. 8: The CDF of positioning errors (a) and arrival time prediction errors (b), and the mean prediction error against the

number of bus stops.

easily identified based on the bus position.

B. Experiment Results
We implement a prototype of WiLocator on Nexus 5 with

the Android platform, and conduct experiments on the buses

of routes 9, 14, 16 and the Rapid Line, mostly running on

a main street in the Metro-Vancouver, Canada (see Fig. 7),

and collect the real data of 3-week period. Each bus route

shares some overlapped road segments with at least one route.

Please see Table I for the detailed information about the four

routes. The WiFi scanning period is set to be 10 seconds.We

construct the SVD and then infer the position of a bus based

on the recorded RSS readings. We obtain the geo-tags of WiFi

APs from Google Map and Shaw Go WiFi6. During the SVD

construction, the readings from unknown APs (i.e., without

geo-tags) are ignored which has little impact on the results as

there are at least three geo-tagged APs distributed along each

road segment of the main streets, and we simply regard that all

the factors affecting signal propagation are the same for APs,

as the transmitted power of the WiFi APs is often limited and

on-site survey is too expensive.
1) Bus Positioning Accuracy: Fig. 8 (a) shows the cumu-

lative distributed function (CDF) of the positioning errors,

defined as the road length between the estimated position

and the real position, of each route by WiLocator. Despite

the unstable WiFi signals, with sufficient WiFi APs along the

road segments, WiLocator achieves a high accuracy with the

median error less than 3m, showing that the SVD is promising

for real-time bus positioning.
Fig. 9 (a) depicts the average positioning error against the

number of WiFi APs. We observe that with the increasing

of AP number, the positioning error decreases slowly from

3.15m to 2.8m. Even though these positioning results might

not be very accurate for indoor settings, it is sufficient for

predicting the bus arrival time with high accuracy, implying

that in practical, we do not require too many WiFi APs for bus

tracking. In Fig. 9 (b), the positioning error does not change

significantly when the oder of SVD increases, and 2-order

SVD is often enough in our tested scenarios.

6https://www.shaw.ca/wifi/hotspots/.

Route # of Stops Length(km) Overlapped Length(km)
Rapid Line 19 13.7 13

9 65 16.3 13
14 74 20.6 16.2
16 91 18.3 9.5

TABLE I: Information of the four investigated bus routes. The

overlapped length indicates the length of the overlapped road

segments shared with one or more other routes.

(a) (b)

Fig. 9: The positioning error vs. the number of WiFi APs (a)

and the order of SVD (b).

We also conduct an experiment on a road segment in a

campus where the deployment of WiFi AP is almost as dense

as in urban environments. We measure the RSS from the

surrounding WiFi APs (shown in Table II) when the riding

bus passes different locations (please see Fig. 10). We rank

the RSS values and construct the second-order SVD based on

the ranks. The error for location A,B and C is 2m, 2m and

2m respectively, and the average error is thus only 2m.

2) Arrival Time Prediction: We exploit the real data to

compute the seasonal index of travel time on each road

segment, based on which we divide each weekday into 5

Location List of surrounding WiFi APs (RSS in dBm)
A AP10(-70), AP9(-71), AP11(-79)
B AP9(-71), AP10(-74), AP4(-76), AP5(-78), AP11(-79)
C AP4(-50), AP5(-63), AP1(-64), AP2(-66), AP9(-78)

TABLE II: The measured RSSI values from WiFi APs at

different locations.
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Fig. 10: An experiment scenario. The noisy reading by GPS

is mapped to the true location of bus on a one-way road

segment. The WiFi APs are numbered and the lines represent

the Voronoi edges of SVD generated by the APs. The locations

A,B,C are ground truth of the bus position by GPS, and the

estimated locations are marked by the yellow bus shapes.

time slots: <8:00AM, 8:00-10.00 AM (morning rush hours),

10:00AM-6:00PM, 6:00PM-7:00PM (afternoon rush hours),

and>7:00PM. We are most concern the bus arrival time

prediction during rush hours, which is rather challenging.

Fig. 8 (b) gives the CDFs of the arrival time prediction error by

WiLocator and the Transit Agency. We observe that the errors

by WiLocator and the Transit Agency are comparable, except

that the Transit Agency produces the maximal prediction error

about 800 seconds during the rush hours, while the maximum

error by WiLocator is 500 seconds. Fig. 8 (c) presents the

relationship between the average arrival time prediction error

and the number of bus stops in rush hours 7. Note that for

the Rapid line, pairwise stops are separated farther away than

other routes, thus it suffers less from the traffic jam in the

overlapped segments, and achieves the lowest prediction error.

As the farther away the bus stop, the more uncertainty, we

find an increasing trend of the prediction error, but overall the

results are acceptable during rush hours, with the maximum

error of 210 seconds.

3) Traffic Map Generation: First, for each bus route Rj on

the road segment ei, at time slot l, we compute the historical

travel time residual ε̂i,l =
∑

j(Th(i,j)−Tr(i,j))

J , where J is

the number of buses having passed segment ei, to exclude

the impact of route-related factors, and compute the standard

variation of the residual σ(εi,l). Then, when a bus of route

Rj has just travelled a road segment, say ei, we compute the

statistic zij =
εi,l−E(εi,l)

σ(εi,l)
. Based on the Rule of Thumb, if

zij < −1.64, we mark the segment ei as ”very slow” with 95%
confidence, according to the rule of thumb; if zij < −1.00,

we mark the segment ei as ”slow”, otherwise it’s normal.

Fig. 11 shows the traffic map by WiLocator, Transit Agency

and the Google Map. As can be seen, the traffic map by the

7For comparison, here we only show the prediction errors of the first 19
stops since the Rapid line has only 19 stops.

(a)

(b)

(c)

Fig. 11: The traffic maps during a rush hour on W Broadway

by WiLocator (a), the Transit agency (b) and Google Map (c).

Transit Agency has some unconfirmed segments, which is to

our surprise, and the Google Map detects some true anomalies,

such as the accident (leftmost) and traffic jam (shown in

red segments). We find that after zooming in, there are also

unmarked road segments by Google Map. WiLocator also

detects some anomalies, but none road segment is unmarked

as it exploits the temporal constancy to infer the future traffic.

As can be expected, with more historical data, WiLocator can

offer a more accurate real-time traffic map.

VI. RELATED WORK

A. WiFi-Based Localization

An active approach of this line is RF Fingerprinting-

based [3], [9], [10], [10], [11], [17], [24], [25], which re-

quire an offline training phase and online matching phase.

During the offline training phase (so-called calibration), an

on-site survey of RSS measurements is conducted to build a

fingerprint database, such that a mobile device can be localized

by matching the observed RSS measurements against the

fingerprint database. As the calibration is labor-extensive and

time consuming, a body of solutions are proposed to reduce

the effort, such as [8], [10], [14], [22], [23], albeit at the cost of

lower accuracy. Some researchers also propose RF propagation

model based schemes. For instance, Assuming a dense cov-

erage of WiFi, EZ [6] models the constraints of the reported

observation by physics of signal propagation and locate the

mobile user based on the proposed genetic algorithm. Again,

solutions of this line suffer from low accuracy.

B. Real-time Bus Tracking

In literature, there are two major approaches to track the

bus. One is GPS-based, and the other relies on cellular infras-

tructure. The major limitations of GPS-enabled AVL based

tracking system are that they are extremely power-hungry,

costly and suffer from urban canyons. Biagioni et al. [4]
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presented an energy-friendly system, named EasyTracker, for

automatic bus tracking by using COTS smartphones. However,

the inherent nature stemmed from GPS makes it work poorly

in urban environments. An alternative approach is smartphone-

based crowd-sensing via cell-ID sequence matching [15],

[27]–[29]. However, in cities, the coverage of a cell tower

can reach 800m around, and it take several minutes for the bus

rider to capture a stable cell-ID sequence, potentially incurring

a low accuracy. Also the overlapped road segments in urban

environments pose great challenges for real-time bus tracking.

VII. CONCLUSIONS AND FUTURE WORK

We study the issue of real-time bus tracking and arrival

time prediction in urban areas with smartphone-based crowd-

sensing, and design a scheme to leverage the mobility con-

straint of a bus, and the travel time consistency of buses

on the same road segment. We instantly track a bus by

using the scanned WiFi information available for bus riders

to construct a signal Voronoi diagram based on the rank of

RSS measurements from nearby WiFi APs, instead of relying

on fingerprinting the WiFi APs or signal model. Also for each

road segment we compute the seasonal index of the travel

time, and thereon the historical travel time of each time slot.

By incorporating the historical and most recently travel time

of the bus routes shared the same road segment, we obtain a

predicted arrival time of the bus route.

WiLocator is by no means exclusive; it can seemly integrate

with GPS or Cell-ID based location systems. For instance,

when a smartphone scans no WiFi information for a while,

the GPS module is activated so that the system can adaptively

work from WiFi-coverage areas to GPS viable environments.

Other built-in sensors, such as accelerator, etc., can be lever-

aged to improve WiLocator’s performance. In addition to the

applications for bus arrival time prediction and traffic map

generation, we also envision that the proposed SVD has the

potential for facilitating navigation in urban environments

where an inaccurate positioning of the vehicle might lead to

a wrong turn instruction. These will be our future work.
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