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Abstract

Although WiFi was initially designed for provid-
ing local access to the Internet, today’s expansive 
and explosive deployment of WiFi networks has 
enabled nearly ubiquitous access for mobile users 
in many urban areas. However, these WiFi net-
works have been woefully undermeasured and 
underinstrumented during the wild expansion. We 
have closely collaborated with a leading network 
service provider to collect massive information 
about wireless APs and their users in four metrop-
olises. In this article, based on the large-scale data-
set, we attempt to answer the critical questions on 
how the APs are deployed and how they are uti-
lized in urban areas. At the macro level, we depict 
the coverage of WiFi networks and the usage 
patterns, and by carefully classifying the APs, we 
unveil rich geographical features of today’s urban 
WiFi networks. At the micro level, we identify the 
implicit social relationships among WiFi users, and 
uncover the underlying social communities that 
have great potential for network optimization.

Introduction
Modern cities are ever increasingly expanding in 
terms of geographical coverage, residential pop-
ulation, and social and economic functionalities. 
With such speed of urbanization, today’s metrop-
olises are facing significant challenges in informa-
tional, intelligent, and integrated management. 
To build appreciable and measurable smart cities 
with seamless interconnection and interoperabil-
ity, ubiquitous Internet access has become one 
of the underlying fundamentals. While wireless 
local area network (WLAN) technology was ini-
tially designed to provide local access for a limit-
ed number of users, the expansive and explosive 
deployment of 802.11 WiFi networks and the 
universal availability of WiFi interfaces in state-of-
the-art mobile terminals has led to great Internet 
coverage nowadays, especially in urban areas. 
Besides business-oriented restaurants and hotels, 
such public service sectors as universities and 
community centers have deployed WiFi networks 
on tremendous scales as well. Many Internet 
service providers, together with regional govern-
ments, have also initiated plans toward city-wide 
WiFi coverage. Urban users reportedly have reg-
istered WiFi accesses 70 percent of the time [1], 
and are often exposed to multiple access points 
(APs) in one location.

Given that nearly 80 percent of mobile data 
usage is more nomadic than highly mobile [2], 
the massive urban WiFi networks have become 
major carriers, offloading much of the traffic from 
the conventional wired networks and the more 
expensive cellular mobile networks [3]. Consider-
able research efforts have been made on leverag-
ing WiFi networks to balance traffic load, improve 
energy efficiency, and assist content delivery for 
mobile users. However, during this era of wild 
expansion, it remains unclear how the WiFi APs 
are deployed in modern cities, not to mention 
how they are connected and utilized by the mas-
sive number of users, and their dynamics over 
time. Pioneering studies on the deployed WiFi net-
works and the corresponding user access patterns 
have quite limited network scale [4], geographical 
area (e.g., campus only) [5], target application [6], 
and hardware platform [7]. Even though the state-
of-the-art WiFi measurements [7] attempt to pro-
vide relatively comprehensive understanding from 
different layers and aspects, the social implications 
of WiFi users are seldom addressed.

In this article, based on a large-scale dataset 
(about 8 million WiFi APs and 27 million con-
nection records from 6.4 million active users per 
day) collected during a one-month period (March 
12 to April 12, 2015) in four metropolises, we 
attempt to answer the questions of how WiFi net-
works are deployed and how they are utilized in 
urban areas. At the macro level, we depict the 
coverage of WiFi networks and the usage pat-
terns, and by carefully classifying the wireless APs, 
we unveil rich geographical features of today’s 
urban WiFi networks. At the micro level, we iden-
tify the implicit social relationships among WiFi 
users, revealing the underlying social communities 
that have great potential for network optimiza-
tion. In particular, we find that:
•	 Today’s WiFi networks are densely deployed 

in urban areas, which are driven by and natu-
rally reflect the intensity of human social and 
economic activities.

•	 Business and public WiFi networks’ deploy-
ments are more concentrated, whereas 
residential WiFi networks are more evenly 
distributed in urban areas.

•	 A majority of WiFi users have regular access 
patterns during workdays, and most user-AP 
connections have durations that are either 
ultra-short (less than 5 minutes) or quite long 
(longer than 1 hour).
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•	 The WiFi users geographically form a well 
structured small-world network, which has 
never been clearly identified by researchers 
and WiFi users before. 

All these observations suggest that WLANs are 
shifting from a complementary technology for 
wide area access to a primary accessing technol-
ogy for today’s metropolises, although challenges 
remain to be addressed.

Data Collection and Description
We have closely collaborated with Tencent, one 
of the largest Internet companies in China, to 
conduct a nation-wide measurement. Tecent’s 
major products, including QQ, Tencent Weibo, 
and WeChat, have over 1 billion active subscrib-
ers. In a one-month duration (from March 12 
to Aril 12, 2015), we collected the location and 
ownership information of the reported wireless 
APs, as well as the connection records between 
WiFi users and those APs. The data were con-
tributed by the users and business partners of 
Tencent Mobile Manager (http://m.qq.com/), a 
widely used utility software on mobile platforms 
with over 230 million downloads. A key function-
ality of the manager is to facilitate a user smart-
ly selecting the best WiFi network among the 
currently available ones, and for the business 
partners to share networks with individual users. 
A considerable portion of the users also volun-
teer to share known WiFi accesses by providing 
the passwords to the manager and hence other 
users of the manager. To ensure secure access 
to the shared WiFi networks, the users are willing 
to report their connections to Tencent and have 
the traffic monitored. It is worth noting that only 
the related meta data is collected, so none of the 
users’ personal information was traced during 

the collection, nor were the conversation data 
intercepted or stored.

Our collected dataset consists of two parts, 
the data of 8 million wireless APs and the data 
of user-AP connection records from 6.4 mil-
lion daily active users (around 27 million WiFi 
accesses per day). For each reported wireless AP, 
we have the information of the AP’s geograph-
ic location (latitude and longitude), its owner-
ship, the Internet service provider (ISP), and the 
medium access control (MAC) address. With the 
location information, we are able to analyze the 
deployments of wireless APs in four major cities 
in China. Moreover, the ownership information 
allows us to classify the APs into different cat-
egories (i.e., business, residential, and public). 
Each reported user-AP connection includes the 
information of the network’s BSSID, the user IP 
(which was hashed so as not to reveal the real 
user IP), the server IP, the connect time, and the 
connect duration. By identifying and merging 
the records that belong to the same user, we 
are able to analyze the connection activities of 
individual users.

How Are the 
WiFi Access Points Deployed?

AP Distribution and Coverage
We first inspect the locations of deployed wireless 
APs in our dataset, and investigate the current 
deployments of WiFi networks. Figure 1 visual-
izes the deployments of wireless APs in the four 
major cities, Beijing, Shanghai, Guangzhou, and 
Shenzhen, which are representative of today’s 
metropolises in China (with urban populations 
of 21, 24, 20, and 12 million, respectively). As 
shown in Fig. 1, well developed urban regions 
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Figure 1. The deployments of wireless APs in four cities: a) Beijing; b) Shanghai; c) Guangzhou; d) Shen-
zhen.
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have much denser deployments of wireless APs 
than less developed suburban regions. It is not 
surprising that the wireless APs are deployed 
toward the economically well developed and 
highly populated regions. The deployment is also 
confined by natural topography: there is nearly 
no wireless AP deployed in water, mountains, 
and forests. In short, the deployments of WiFi net-
works in today’s metropolises are driven by and 
naturally reflect the intensity of human social and 
economic activities.

To better understand the WiFi networks’ distri-
butions in different areas, we divide the latitude 
and longitude space into 0.0009°  0.0009° lat-
itude/longitude grids (approximately 100 m  
100 m). The reason that we adopt this setting 
is two-fold: first, dividing geographical area into 
blocks allows us to index locations and better 

study the relationship between the APs’ deploy-
ments and locations; second, the APs that are 
located within this range are likely to have over-
lapping coverage, and thus the users in the same 
block probably have opportunities to connect 
to different WiFi networks, and even to estab-
lish device-to-device communications with other 
users. This will help in explaining and utilizing 
the potential social relationships between mobile 
users; for example, early studies discovered that 
people calling while connected to the same cell 
tower (colocation) are good proxies for face-to-
face meetings [8] .

Applying the above settings, our analysis of 
the dataset shows that the distribution of the APs 
is highly skewed: a small number of blocks have 
deployed very large numbers of APs, while oth-
ers have far smaller populations of APs. Taking 
Shenzhen as an example, Fig. 2 shows that about 
30 percent of the blocks have over 1000 APs, 
and around 10 percent of the blocks have more 
than 2000 APs. Despite the fact that there may 
be high-rise buildings in developed urban areas, 
this result suggests that today’s metropolises have 
good coverage of WiFi signals. In fact, many 
urban areas already have more than enough avail-
able APs, and further deployment should be stra-
tegically planned and optimized by examining the 
collective WiFi coverage and possibly removing 
redundant APs.

In contrast, the statistic of our dataset shows 
that only 3.2 percent of the blocks in Shenzhen 
(14.6 percent in Beijing, 9.8 percent in Shang-
hai, 9.5 percent in Guangzhou) have less than 
or equal to 1 wireless AP, which we consider 
insufficient WiFi coverage as few existing com-
mercial APs are powerful enough to cover a 
100 m  100 m block area. After closely exam-
ining the blocks that have limited WiFi coverage 
on the map, we find that these blocks are often 
in regions that have limited population of res-
idents and rare business activities (e.g., water, 
mountains, forests, and suburban areas). Our 

Figure 2. CDF of number of APs per block.
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measurement shows that today’s metropolis-
es already have dense deployments of wireless 
APs, which can collectively provide near-ubiq-
uitous Internet access. The deployments and 
applications of wireless mesh networks [9] 
have been extensively discussed in the litera-
ture, which, however, can hardly be realized on 
a large scale by a sole operator. As more and 
more wireless APs will be deployed on demand, 
we can foresee that in the near future wireless 
mesh networks may be constructed and main-
tained at the metropolis level with the help of 
mobile wireless APs that can be carried by vehi-
cles or whose role can be fulfilled by increasing-
ly capable personal mobile devices.

AP Categories

We next analyze the types of wireless APs. Spe-
cifically, we classify the APs into three categories 
according to the collected ownership informa-
tion: business (e.g., shopping centers, restaurants, 
hotels, entertainment venues, domestic services, 
auto services, banks, and other companies), pub-
lic (e.g., government offices, schools/universities, 
travel sites, public gyms, cultural venues, and 
other infrastructures), and residential. We further 
classify the blocks into these three categories 
based on the dominant type of wireless APs in 
this block. Figure 3 shows the constitutions of the 
APs and location blocks in the four metropolis-
es. In all the cities, residential APs are the largest 
component, and public APs are the smallest one 
(except for Beijing, the capital of China). Existing 
studies on leveraging WiFi networks to offload 
traffic usually focus on public or business wireless 
APs. Our results suggest that there remain great 
opportunities in fully utilizing residential WiFi 
networks, which can provide substantial band-
width resources especially during off-peak hours. 
However, private WiFi network owners may be 
reluctant to share their paid services from ISPs 
with strangers, and thus such incentives as mon-
etary reward should be offered, or the social rela-
tionship among providers and users should be 
explored.

According to Fig. 3b, public blocks take up a 
large portion, especially in Beijing (41 percent) 
and Guangzhou (46 percent). It makes sense 
as today’s metropolises are well developed in 
terms of the infrastructure construction. Note 
that universities play a huge role in modern cit-
ies’ education systems, and their campus WiFi 
networks contribute significantly to the public 
WiFi network coverage. Moreover, we observe 
that business blocks also account for a con-
siderable percentage in all four cities (35 per-
cent in Shenzhen, 38 percent in Guangzhou, 
43 percent in Beijing, 48 percent in Shang-
hai), implying that today’s business operators 
have considered providing WiFi networks as 
one of their top priorities to serve customers. 
Another interesting observation is that residen-
tial APs take up a much larger share than resi-
dence blocks, while business APs have a much 
smaller share than business blocks. This can be 
explained by the fact that business APs usually 
concentrate on certain locations, and residence 
APs are more evenly distributed, which again 
indicates the great potential of exploring resi-
dential APs toward ubiquitous coverage.

How Does the 
Individual User Connect to WiFi?

So far we have focused on the information from 
the wireless APs’ perspective. We now examine 
the data of user-AP connections to study how the 
users utilize the WiFi networks. Figure 4 shows the 
number of active WiFi users during the week from 
March 16 to March 22, 2015. As we can see, 
there are more users accessing WiFi on weekends 
(2015, 03, 21–2015, 03, 22) than on weekdays 
(2015, 03, 16–2015, 03, 20). Our later results 
also show that, for different scales of WiFi users, 
the access patterns are quite similar. We next 
check when each user connects to a WiFi net-
work, and plot the number of user connections in 
the one-day time span in Fig. 5a. The results are 
based on the time when each user-AP connec-
tion is constructed. It is clear that there are three 
daily peaks: around 9 a.m., 1 p.m., and between 
6 p.m. and 7 p.m. Intuitively, most users arrive at 
workplaces at 9 a.m., return from lunch breaks 
at 1 p.m., and get back home before or after 
dinner between 6 p.m. and 7 p.m. Such mobility 
patterns (e.g., the home-work/study-home daily 
routines) for the majority of WiFi users during the 
weekdays certainly help with developing smart 
city applications (e.g., smart office/home applica-
tions). Knowing the users’ mobility routines (even 
partially) can also inspire the design of content 
delivery schemes using device-to-device commu-
nication with relays of wireless APs.

From the dataset, we also observe that more 
than 90 percent of users connect to no more 
than 2 wireless APs in a day. Together with the 
previous observation, this suggests that for most 
users, their WiFi accesses are not highly dynam-
ic and may even be predictable. Revealing WiFi 
access patterns for mobile users can significantly 
enhance media content delivery. For example, 
with today’s powerful smart routers, the providers 
can in-network cache the contents close to the 
APs from which the consumers would demand 

Figure 4. Number of users in each day.
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the media contents. On the other hand, our 
observation implies that the wide WiFi coverage 
in today’s metropolises does not directly impact 
the users’ WiFi access behaviors. If ubiquitous 
WiFi access becomes available in the foreseeable 
future, mobile users would access WiFi much 
more frequently and dynamically, which brings 
both challenges and opportunities in designing 
smart city applications.

We further investigate how long each time 
a user connects to a WiFi network during the 
collection period. Figure 5b shows that the dis-
tribution of the connection durations are high-
ly consistent across weekdays. As can be seen, 
there are mainly two types of user-AP connec-
tions: temporary connections of short duration 
and stable connections of long duration (together 
accounting for over 82 percent of the connec-
tions), among which about 70 percent last for less 
than 5 minutes, while over 12 percent are longer 
than 1 hour. The high percentage of temporary 
connections implies that smart city applications 
are demanded to respond to user requests in a 
timely fashion. On the other hand, the existence 
of stable connections offer opportunities for long-
term use of the corresponding user devices. In 
particular, once the user-AP connection is sus-
tained for 10 minutes, it probably would last for 
much longer, in which case one can infer the user 
is static rather than nomadic, and turn the con-
nected device into a crowd-sensing component in 
the Internet of Things to collectively contribute to 
complex tasks, for example, urban noise monitor-
ing and structural health monitoring.

Revealing Implicit Social Relations
A social network is a social structure defined 
by actors, relationships, and other interactions 
between actors, which widely exists in both the 
human world (e.g., family ties between relatives) 
and the cyber world (e.g., friendships on Face-
book). Upon identifying such social structures, 
social network analysis focuses on patterns of 
relationships between actors and examines 
the availability of resources and the exchange 

of resources between these actors [10]. The 
resources exchanged can be of many types, for 
example, information in a communication con-
text. By studying the social network properties, 
we can understand what kind of information is 
exchanged, between whom, and to what extent. 
Today’s dense WiFi network deployments in 
metropolises and the regular accesses, as we have 
seen, imply that there are certain underlying social 
structures among the massive number of WiFi 
users; if identified, they will certainly help us bet-
ter utilize these WiFi networks. Unlike human or 
cyber social networks, mobile WiFi users do not 
have explicit meaningful relations. Our objective 
in this section is thus to investigate whether WiFi 
users have implicit social relations of which most 
of the users are not aware.

Constructing the Social Network

As mentioned, most WiFi users connect to 
no more than two wireless APs per day, which 
implies that, in practice, only a very small por-
tion of users connect to the same wireless APs. 
Defining social relations between users based on 
sharing common WiFi connections to the same 
APs will result in a very sparse network that can 
hardly be interpretable or have practical mean-
ings. Therefore, we assume that there is a social 
edge between two users if both of them access 
the WiFi networks in the same location block 
within a one-day time span. In other words, the 
social relations between WiFi users are defined 
on their geographical WiFi access patterns. Given 
the 100 m  100 m block size, the WiFi users in 
the same block can have chances for direct com-
munication or can easily be relayed through cer-
tain APs. Accordingly, we have analyzed the 10 
million user-AP connection records in Shenzhen, 
and built the corresponding network of WiFi users 
with 67,264 nodes and 4,274,997 edges.

The constructed network consists of 245 con-
nected components. We extract the subgraph of 
the largest connected component (referred to as 
the WiFi user network for the remainder of this 
article), which contains about 95 percent of the 

Figure 5. User-AP connection time and duration: a) number of user-AP connections in 24 hours; b) CDF of user-AP connection dura-
tions.
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nodes and 99 percent of the edges in the com-
plete graph, and present our analyses based on it 
hereafter. We summarize the basic statistics of the 
extracted subgraph in part 1 of Table 1. Note that 
we do observe some isolated user groups, each 
of which has a very limited population (from 2 to 
100 users). Those isolated WiFi users may live or 
work in certain suburban areas, which are out of 
our focus here.

Small-World Network

The small-world network phenomenon is probably 
the most interesting characteristic of social net-
works. Watts and Strogatz adopted this concept 
to describe networks that are neither completely 
random nor completely regular, but possess char-
acteristics of both [11]. They introduce a measure 
of one of these characteristics, the cliquishness 
of a typical neighborhood, as the clustering coef-
ficient of the graph. They define a small-world 
graph as one in which the clustering coefficient is 
still large, as in regular graphs, but the measure of 
the average distance between nodes (the charac-
teristic path length) is small, as in random graphs.

We compute the two small-world metrics for 
the WiFi user network. The result shows that the 
WiFi user network has definite small-world char-
acteristics. As shown in Table 1, the average clus-
tering coefficient is extremely high (0.91), which 
is very close to 1, the clustering coefficient of a 
regular graph. On the other hand, although the 
WiFi user network has a diameter of 22, the aver-
age shortest path length (the characteristic path 
length) is only 5.9024, and the 90th percentile 
diameter is 8, which nearly follows the famous 
six degrees of separation rule. The observation of 
the small-world network phenomenon confirms 
that the proposed WiFi user network is indeed a 
social network, which has never been identified 
before and is even beyond the awareness of its 
own members, the WiFi users.

Community Detection

We further apply the k-clique clustering algorithm 
to the WiFi user network. A k-clique communi-
ty is the union of all cliques of size k that can be 
reached through adjacent (sharing k – 1 nodes) 
k-cliques. We vary the value of k from 10 to 150, 
and for each k present the number of clusters and 
the average cluster size (the number of nodes in 
the cluster) in part 2 of Table 1. It is clear that, 
whatever the value of k is, a considerable number 
of communities can be detected in the WiFi user 
network. In particular, for k = 10, 20, 50, 100, 
and 150, there are 107.2, 103.8, 92.1, 61.1, and 
32.0 percent of the nodes clustered into different 
communities, respectively. It should be noted that 
there are cases where over 100 percent of nodes 
are clustered. This implies that overlapping com-
munities are detected when k is small.

The result of k-clique clustering indicates that 
the WiFi user network is well structured and highly 
connected, which strongly suggests the existence 
of social communities. Researchers have discussed 
the construction [12] and the incentive mecha-
nism design [13] of wireless community networks 
for years. However, no large-scale wireless com-
munity network with long-term impact has been 
built or observed. For the first time, we observe 
and provide the evidence of such social commu-

nities based on the geographical access patterns 
of WiFi users. This provides great opportunities 
for various aspects of network optimization. For 
instance, social media contents can propagate not 
only in online social networks but also in geograph-
ical WiFi user networks through cascaded physical 
communications relayed by users and APs [14]; the 
communities can help optimize the crowdsourcer 
recruitment for mobile crowdsourced sensing [15].

Conclusion
In this article, we have conducted a large-scale 
measurement study on wireless networks in mod-
ern metropolises. Based on an extensive dataset, 
we have first investigated the coverage of today’s 
WiFi networks, and by classifying wireless APs, we 
uncovered their rich geographical features. We 
further studied the access patterns of the WiFi 
users during weekdays and analyzed the polar-
ization of user-AP connection durations. Finally, 
and most importantly, we identified the existence 
of geographical social networks and community 
structures among WiFi users. To the best of our 
knowledge, this is the first time such autonomous 
wireless communities have been observed in 
large-scale networks. Based on our observations, 
we believe that WLANs are shifting from com-
plementary access technology to primary access 
technology in today’s metropolises and providing 
rich information for the underlying social relations 
among WiFi users.
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