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ABSTRACT

In-car human activity recognition is playing a critical role in de-

tecting distracted driving and improving human-car interaction.

Among multiple sensing technologies, WiFi-based in-car activity

recognition exhibits unique advantages since it does not rely on

visible light, avoids privacy leaks and is cost-efficient with inte-

grated WiFi signals in cars. Existing WiFi-based recognition sys-

tems mostly focus on the relatively stable indoor space, which only

yield reasonably good performance in limited situations. Based on

our field studies, the in-car activity recognition, however, is much

more complicated suffering from more impact factors. First, the ex-

ternal moving objects and the surrounding WiFi signals can cause

various disturbances to the in-car activity sensing. Second, consid-

ering the compact in-car space, different car models can also lead to

different multipath distortions. Moreover, different people can also

perform activities in different shapes. Such extraneous information

related to specific driving conditions, car models and human sub-

jects is implicitly contained for training and prediction, inevitably

leading to poor recognition performance for new environment and

people.

In this paper, we consider the impact of different domains includ-

ing driving conditions, car models and human subjects on the in-car

activity recognition with field measurements and experiments. We

present WiCAR, a WiFi-based in-car activity recognition frame-

work that is able to remove domain-specific information in the

received signals while retaining the activity related information to

the maximum extent. A deep learning architecture integrated with

domain adversarial training is applied to domain independent activ-

ity recognition. Specifically, we leverage multi-adversarial domain

adaptation to avoid the discriminative structures mixing up for

different domains. We have implemented WiCAR with commercial-

off-the-shelf WiFi devices. Our extensive evaluations show that

WiCAR can achieve in-car recognition accuracy of around 95% in

untrained domains, where it is only 53% for solutions without do-

main adversarial network and 83% for the state-of-the-art domain

adversarial solution.
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1 INTRODUCTION

Human activity recognition in cars [18] is playing a significant role

in safe driving and human-car interaction. On one hand, it is help-

ful to effectively detect the driver’s distraction behaviors [13, 14],

such as watching cellphone during highway driving and forget-

ting shoulder check before changing lanes. Such detection together

with a realtime warning can help avoid the potential driving ac-

cidents so as to greatly improve the driving safety. On the other

hand, activity-based human-car interaction [19, 36] brings more

possibilities to in-car entertainment. Particularly, in the emerging

AR/VR and autonomous driving scenarios, people can enjoy the

immersive experience with simple gesture-based control.

Many existing sensing technologies use cameras [31, 33], wear-

able sensors [11, 15] and radio-frequency identification (RFID) [5,

26] for activity recognition. However, cameras are limited to visible

light and have privacy leakage concerns. Wearable sensor-based

approaches usually lead to poor experience due to wearing extra de-

vices. RFID-based solutions will introduce extra cost since current

cars are not equipped with RFID devices. The recent WiFi-based

sensing technologies have seen great success in indoor activity

recognition [12, 17, 23–25, 27, 32, 34] and are promising to be ap-

plied in cars as WiFi is replacing Bluetooth for in-car entertain-

ment [30]. The basic idea of WiFi-based recognition is that in-car

activities will affect the surrounding WiFi signals, and the reflected

signals by different activities exhibit distinct characteristics, which

can be further classified by proper learning tools.

While sharing some commonalities with indoor activity recogni-

tion, the in-car situations still have unique challenges, as illustrated

in Fig. 1. First, different from an indoor space that is relatively sta-

ble, a car usually experiences various and fast-changing driving
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Figure 1: An illustration of multiple impacts on in-car activ-

ity recognition.

conditions, which will largely affect the recognition result. On one

hand, the different wireless signals outside the car will interfere

with the sensing signal in the car. For instance, the downtown area

is full of APs and the nearby WiFi signals in the same channel

can conflict with the target signal [20], while in open place the

received signals can be much cleaner with less interference. On the

other hand, external moving objects such as pedestrian and other

cars may also cause signal fluctuations, affecting the in-car activity

recognition accuracy. Second, the interior space, facilities and ma-

terials of different car models are highly heterogeneous and lead to

distinct multipath distortions [22] in WiFi signals, which further

degrade the recognition accuracy differently. At last, people varying

in ages, genders, shapes and habits may affect the WiFi signals in

different ways even when performing the same activity. Therefore,

a well-trained recognition model in one domain-specific situation

(e.g., specific driving condition, car model or human subject) may

not work effectively when the target domain changes. This renders

a practical in-car recognition system deployment infeasible since

there are innumerable domain-specific situations.

To address this problem, we present WiCAR, a WiFi-based in-

Car Activity Recognition framework that is able to remove the

domain-specific information in the received signals while retaining

the activity related information to the maximum extent. In this

way, our recognition model that is trained over several particular

domains can be well applied to other untrained driving conditions,

car models and human subjects. WiCAR mainly consists of three

components: a feature encoder, an activity predictor and a set of

domain discriminators. Given temporally continuous in-car activ-

ities, the feature encoder employs stacked convolutional neural

network (CNN) architectures to extract the characteristics in both

time dimensions and frequency dimensions from WiFi spectro-

grams. The feature encoder cooperates with the activity predictor

to achieve high activity recognition accuracy and simultaneously

prevents the domain discriminators from distinguishing different

domains. The state-of-the-art solutions [10, 35] only consider single-

adversarial domain adaptation in the indoor scenario. The in-car

scenarios, however, are much more complicated, and the discrimi-

native structures of different domains can be easily mixed up under

such solutions [16], leading to false domain discrimination. To this

end, WiCAR leverages multi-adversarial domain adaptation to play

against the feature encoder.

We have implemented WiCAR using Commercial Off-The-Shelf

(COTS) Intel 5300 WiFi cards. With channel monitoring tools [9],

we characterize the activity features by observing corresponding

channel state information (CSI) changes. We have also performed

extensive evaluations on 8 common in-car activities, involving 6

different driving conditions, 6 different car models, 8 volunteers

and over 20,000 activity samples. The results show that WiCAR can

achieve in-car activities accuracy of around 95% for new driving

conditions, car models and human subjects, where it is only 53%

for solutions without domain adversarial network and 83% for the

state-of-the-art single-adversarial domain adaptation solution.

The rest of this paper is organized as follows. Section 2 provides

a basic overview of our WiCAR framework. Section 3 describes our

data preprocessing scheme to convert the raw signals into discrimi-

native input spectrograms. We introduce our domain adversarial

learning model in Section 4 in detail. Section 5 presents extensive

experiments to evaluate the performance of our approach compared

to the state-of-the-art solutions. Section 6 introduces the existing

researches that are related to our work. We conclude this paper in

Section 7.

2 SYSTEM OVERVIEW

In this paper, we present a deep learning-based environment inde-

pendent in-car activity recognition framework named WiCAR. Be-

ing able to remove the domain-specific information in the collected

CSI metrics while retaining as much activity related information

as possible, WiCAR can be easily deployed in different car models

and adapted to different driving conditions and human subjects

after one pre-training process. WiCAR mainly consists of three

components, i.e., CSI measurement, data preprocessing and deep

domain adaptation, as illustrated in Fig. 2.

CSI measurement. We use a pair of WiFi transceiver devices

deployed in cars to collect CSI metrics. For each specific domain

combination (e.g., a person in a car in one particular driving con-

dition), the background CSI is first collected as baseline. We then

collect the CSI metrics when people are performing corresponding

activities, which are required for further model training.

Data preprocessing. The collected raw CSI metrics need to

be processed as feature representations before training. Low-pass

filter and principal component analysis (PCA) are first applied to

remove the high-frequency signal noise and extract the main wave

characteristics from multiple subcarriers, respectively. We then

design an activity detection method to automatically segment the

data belonging to an activity. Short time Fourier transform (STFT)

is further leveraged to generate feature spectrograms on both time

dimension and frequency dimension, which are fed to the activity

recognition component.

Deep domain adaptation network. We design an advanced

deep learning model to effectively identify the discriminative fea-

tures while preventing the impact of underlying domain informa-

tion. In particular, a CNN-based feature encoder and a deep neural
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Figure 2: The framework of WiCAR.

network-based activity predictor cooperate to maximize the activ-

ity recognition accuracy. Besides, a set of domain discriminators

are incorporated in our model to prevent the feature encoder from

extracting domain related information in car. Note that our domain

adaptation approach is able to learn the transferred features from

the source domains to the target domains. In this way, the trained

model can be directly applied to other untrained domains such as

new cars and new drivers for activity recognition.

3 DATA PREPROCESSING

We first introduce the preliminary data preprocessing steps before

the learning model, including CSI denoising, activity segmentation,

and feature representation.

3.1 CSI Extraction and Denoising

When a person is performing activities inside a car, the received

signals actually come through multiple paths, including static paths

and dynamic paths, known as the multipath effect. The static paths

include the line of sight path and those reflected paths by car seats,

mirrors, etc., whose paths keep static during activities. The dynamic

paths consist of those reflected by moving bodies and the objects

outside the car since there exists relative movement when the car

is running. As a result, we represent the CFR as:

H (f , t) = e−j2πΔf t

(
Hs (f ) +

Pd∑
k=1

ak (f , t)e
−j2π f τk (t )

)
(1)

where Hs (f ) denotes the combined CFR of static paths, Pd is the

number of dynamic paths, and ak (f , t) and τk (t) indicate the com-

plex channel attenuation and time of flight for path k , respectively.
Note that the COTS WiFi devices can have carrier frequency offset

(CFO) [7] due to the lack of synchronization, which can induce

unknown phase shift. Like prior works [3, 28], we use the CFR

power (e.g., the multiplication of H (f , t)) to eliminate the phase

noise so that the CFR power frequency and dynamic wave length

change can be correlated.

We use a pair of transceivers deployed in a car to collect raw

CSI metrics when people are performing activities. Modern WiFi

devices that support 802.11n/ac standards have multiple antennas

and can work in multi-input multi-output (MIMO) mode. The chan-

nel between each antenna pairs consists of Ns OFDM subcarriers.

The Intel 5300 NICs used in our system can report CSI metrics of

30 selected OFDM subcarriers according to [9]. Thus, given NT
transmitting antennas and NR receiving antennas, we can obtain a

total of 30 ∗ NT ∗ NR streams, where we call the time-series CFR

value of an OFDM subcarrier as a stream.

The collected raw streams are too noisy and cannot be directly ap-

plied as the input features. As the CFR frequency variance caused by

human activities are mostly low-frequency component, we first use

a low-pass filter (e.g., Butterworth filter) to remove high-frequency

components such as white noise. Given the redundant similar CSI

streams and the correlations therein [28], we then apply principal

component analysis (PCA) to reduce the data dimensionality as well

as extract the common characteristics from multiple subcarriers.

Since the first component contains too much noise [28], we use the

average of the second and third components (denoted as p-stream)

for further processing. Fig. 3(a) and Fig. 3(b) compare a randomly

selected raw CSI stream and the denoised p-stream. We can easily

find that after denoising the p-stream becomes more smooth with

little high-frequency noise. Besides, the fluctuation features in p-

stream are more obvious than the raw stream, which also indicates

that PCA can effectively extract the key features related to human

activities.

3.2 Activity Detection and Segmentation

With the denoised representative feature stream, we need to detect

whether there exists an activity and segment the effective part

from the stream. Since in real in-car recognition scenario different

activities can have various time durations and gaps, a dynamic

detection method is required to enable the adapted and real-time

detection and segmentation. Fig. 3(b) shows the p-stream of three



IWQoS ’19, June 24–25, 2019, Phoenix, USA Fangxin Wang, Jiangchuan Liu, and Wei Gong

0 2 4 6 8 10
Time(s)

-15

-10

-5

0

5

10

15

A
m

pl
itu

de

(a) The CSI pattern of a randomly selected raw stream.
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(b) The CSI pattern of p-stream after low-pass filtering and
PCA process.
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Figure 3: The selected raw signal, PCA processed signal and first order difference signal for data preprocessing.
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(c) The processed spectrogram using STFT.

Figure 4: The feature representations of FFT, DWT and STFT.

“pushing right" activities. We can find that the signal is more volatile

during activity and is more stable in absence of an activity. Such

wave characteristics however are not clean enough for detection

and segmentation with a lot of wave shifts. We therefore calculate

the first order difference of the p-stream (denoted as dp-stream) for

representation.

We denote an original p-stream signal as h = {h1,h2, ...,hn },
where each hi is the value of a sampling point. Then the first order

difference of the p-stream g = {д1,д2, ...,дn } can be calculated as

дi = hi − hi−1. Fig. 3(c) shows the amplitude value of the corre-

sponding dp-stream and we have two key observations for activity

detection. First, when there is an activity, the dp-stream has visu-

ally obvious fluctuation and the wave variance is several orders

of magnitude larger than when there is no activity. Second, the

wave fluctuation lasts a time period rather than a moment, which

is consistent with the duration of the activity. Based on the two

observations, we develop an effective method to detect and segment

an activity automatically. Given a time point t we consider a small

time window [t −T /2, t +T /2] around it. The standard deviation

of t can be calculated as σt =

√
1

K−1

∑t+T /2
τi=t−T /2

(дτi − д̄)2, where

K is the number of sample points within this time window and д̄
is the mean value of them. We first calculate the average standard

deviation σs when there is no activity and the average standard

deviation σa of when there is an activity. A variance threshold δV is

defined as δV = ασs + (1−α)σa , where α is defined as the variance

ratio. We segment an activity sample from the dp-stream based on

the following rules.

Max : tq − tp (2)

s .t . σti > δV and tq − tp ≥ δT ,∀ ti ∈ [tp , tq ] (3)

where δT is the time duration threshold, indicating the shortest

possible time for an activity. Then the p-stream samples within

[tp , tq ] are detected as an activity. As illustrated in Fig. 3(c), our

detection method can effectively segment three real activity sam-

ples and the short pulse will not be detected as an activity. In our

practical experiments, we set T as 0.2 s, α as 0.7 and δT as 1.6 s.

3.3 Feature Representation

The segmented p-stream clearly demonstrates the CSI wave pat-

terns from the correlated multiple CSI streams. Yet this is not a

good feature representation because it only shows the amplitude

over time without exhibiting the frequency characteristics explic-

itly. Meanwhile, the frequency component is a good indicator since

different activities usually have different frequency characteristics.

We therefore seek time-frequency transform tools to reveal the
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Figure 5: The main components of the learning model.

frequency features to feed the learning model. Fourier transform is

the most common used method to obtain the frequency component.

Fig. 4(a) shows the amplitude spectrum of the dp-stream of a sample

signal using fast Fourier transform (FFT). This transform however

loses the information of time dimension, which is not good for

feature representation.

To obtain features on both time dimension and frequency di-

mension, our WiCAR system uses short-time Fourier transform

(STFT) on every segmented p-stream samples to extract the fre-

quency characteristics. Different from most existing systems using

discrete wavelet transform (DWT) [24], STFT converts the time

domain wavelet patterns to the time-frequency domain spectro-

gram, enabling more fine-grained and even resolution on frequency

dimensions. Fig. 4(b) and Fig. 4(c) compare the spectrograms ex-

tracted using DWT and STFT, respectively. We can find that STFT

is able to achieve similar resolution granularity in both time and fre-

quency dimensions, which also benefits the future learning model

with CNN architecture. In our system, we set the sampling rate

of each antenna pair at 500 Hz so that we can detect a maximal

frequency of 250 Hz, which is sufficient for human activities.

4 MULTI-ADVERSARIAL DOMAIN

ADAPTATION MODEL

In this section, we present the methodology of the learning model

of our WiCAR system. Fig. 5 illustrates the main components of our

learning model, including a feature encoder, an activity predictor and

a set of domain discriminators. These components are stacked to-

gether as a deep learning model to achieve the domain independent

activity recognition. The feature encoder tries to only extract the

effective features related to the human activity from the collected

information while filtering out the domain related information. The

activity predictor then maximizes the prediction accuracy based

on the features. Besides, a set of domain discriminators are intro-

duced to discriminate between the source and the target domains.

Recall that our goal is to remove the domain-specific features while

retaining the activity related features. Thus, the final objective is

to minimize the loss of the activity predictor and maximize the

loss of the domain discriminators. Through such a min-max game,

the feature encoder will finally extract the domain-independent

features for in-car activity recognition.

4.1 Feature Encoder

Let xi ∈ X be an input data sample andX is the whole input sample

space. Each input data sample has an activity label yi ∈ Y , where
Y is the label space. Besides, each xi also has its corresponding

domain labels. The domain space D consists of the source domain

space Ds with labels and the target domain space Dt without labels.

The input data are first fed into a feature encoder Gf to map

the original complex high dimensional features to low dimensional

feature representations z. As a popular feature extraction network

model, convolutional neural network (CNN) has exhibited powerful

ability in extracting the spatial relationships from figures. Our input

data samples have similar figure-like structures so that can be well

applied with CNN-based feature extraction network model. Note

that the CNN model requires a uniform input feature representa-

tion. However, the spectrogram converted from each segmented

p-stream samples can have diverse time duration due to different

activity durations. We observe from the collected data samples that

the durations of all the activities are less than 5 seconds. Thus, we

set a fixed time length at 5 seconds for every spectrogram and fill

those short spectrograms with padding zeros. In this way, all the

activity samples are transformed as uniform spectrogram feature

matrices as the input data.

We use two stacked CNN layers to extract features from the input

spectrograms, each followedwith a rectified linear unit (ReLU) layer

as the activation function. Max pooling layers are also applied to

reduce the feature dimensions. As illustrated in Fig. 5, the output

feature from the feature encoder can be represented as

z = Gf (x;θf ) = CNN (x;θf ) (4)

where θf denotes all the parameters of the feature encoding layers.

4.2 Activity Predictor

The activity predictor Gy takes the feature representation z from

the feature encoder as input. In our model, two fully connect layers

with corresponding activation layers are employed to learn the

discriminative features. At last, a softmax layer is used to map the
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features to a latent space with the same size as the activity label

space. In this way, we can represent the predicted activity label

distribution probabilities for input x as

ŷ = Gy (Gf (x;θf );θy ) (5)

where θy denotes all the parameters in the activity predictor.

We therefore have the integrated loss function of Gf and Gy by

calculating the cross-entropy function between the actual labels

and the predicted label predictions as

Ly (Gf ,Gy ) = Ex,y [−loд Gy (Gf (x;θf );θy )]

= −
1

|Ds |

∑
xi ∈Ds

M∑
j=1

yi j loд(Gy (Gf (xi ;θf );θy ))
(6)

where |Ds | is the number of samples belonging to the source do-

mains andM is the number of activities labels. As mentioned, the

target of the feature encoder and the activity predictor is to achieve

a maximized recognition accuracy. Thus, during the training pro-

cess, the feature encoder Gf cooperates with the activity predictor

Gy to minimize the label prediction loss Ly .

4.3 Multiple Domain Discriminators

Domain adaptation has seen success in transfer learning [21] due

to its ability to learn transferable features between source domains

and target domains. For the in-car activity recognition scenario, it

is impossible to collect data samples from every domain for training

since there always exist new driving conditions and new drivers.

Therefore, we consider leveraging unsupervised domain adapta-

tion [6] to train a generic in-car recognition model through filtering

out those domain-specific characteristics even when the target do-

mains are fully unlabeled.

In particular, a recent state-of-the-art indoor activity recognition

model [10] uses single domain discriminator for domain adaptation,

which, however, is not sufficient for in-car activity recognition.

The activity recognition in cars can be affected by multiple impact

factors (classes) such as driving conditions, human subjects and

car models. The underlying features within each particular class

usually exhibit specific structures, indicating the boundaries of

different classes. Besides, the collected data for different classes

can be not evenly distributed. Yet the existing single-adversarial

domain adaptation methods require mixing up the discriminative

structures, which easily leads to false alignment of discriminative

structures and further degrades the domain independent activity

recognition. To address this issue, we for the first time propose

to apply multi-adversarial domain adaptation for in-car activity

recognition.

In ourmodel, we incorporate a set of domain discriminatorsGd =

{G1
d
,G2

d
, ...,GK

d
}, where K is the number of classes. Each domain

discriminator consists of two fully connected layers together with

ReLU activation function. And a softmax layer is also applied at last

to generate the domain distributions for each class. Similarly, the

domain space can be divided intoK classes asD = {D1,D2, ...,DK }.

Each input sample should have a domain label dki for every class

Dk . Each domain discriminator takes as input the concatenation

of the feature representations z from the feature encoder and the

label distributions ŷ from the activity predictor, and predicts the

domain labels distributions d̂k of the corresponding class k as:

d̂k = Gk
d
(z, ŷ;θk

d
) = Gk

d
(Gf (x;θf ),Gy (Gf (x;θf );θy );θ

k
d
) (7)

where θk
d
is the total parameters of the k-th domain discriminator.

Note that the feature encoderGf and the domain discriminatorsGd

play a minimax game to remove the domain-specific characteristics

from the input data to achieve domain-independent activity recog-

nition. To do this, we first compute the integrated loss functions of

the two components as:

Lk
d
(Gf ,Gd ) = Ex,d [−loд G

k
d
(z, ŷ;θk

d
)]

= −
1

|D |

∑
xi ∈D

|Dk |∑
j=1

dki j loд(Gf (xi ;θf ),Gy (Gf (xi ;θf );θy );θ
k
d
)

(8)

where |D | is the number of samples belonging to the whole sam-

ple space, |Dk | is the number of labels for class k and dki j is the

corresponding domain label. Integrating the loss of all the K dis-

criminators together, we get the total loss for discriminators Gd

as

Ld (Gf ,Gd ) =

K∑
k=1

Lk
d
(Gf ,Gd ) (9)

The final goal of our model is to minimize the label predic-

tion loss Ly (Gf ,Gy ) and maximize the domain discrimination loss

Ld (Gf ,Gd ), while these two objectives contradict with each other.

To make these objectives consistent, we introduce the gradient

reversal layer proposed in [6]. Based on Eq. 6, Eq. 8 and Eq. 9, we

have the final joint loss function as follows:

L(Gf ,Gy ,Gd ) = Ly (Gf ,Gy ) − λLd (Gf ,Gd ) (10)

where λ is a hyper-parameter to trade-off the two objectives in

the final optimization. Our learning model tries to minimize the

loss function so as to achieve domain independent in-car activity

recognition.

5 EVALUATION AND DISCUSSION

In this section, we conduct real trace-driven experiments compar-

ing our WiCAR system with state-of-the-art WiFi-based activity

recognition systems with a discussion.

5.1 Implementation and Evaluation Setup

Prototype. We fully implement the WiCAR prototype using the

commercial-off-the-shelf (COTS) devices without hardware or soft-

ware change. Two Dell Latitude D820 laptops both equipped with

an Intel 5300 WiFi card are used as the wireless sender and receiver.

In our experiment, we use 2 antennas in the sender (NT = 2) and

3 antennas in the receiver (NR = 3) because we find that when

using 3× 3 MIMO mode the signal amplitude for each antenna pair

obviously decreases and will further undermine the recognition

accuracy. We select channels in the 5G frequency band rather than

2.4G since the shorter wavelength in 5G leads to higher resolutions

for activity movement.

Data collection. In our experiment, we select a total of 8 com-

mon activities in cars for recognition, including pushing forward

(PF), pushing right (PR), raise hand twice (RT), right shoulder check

(RSC), left shoulder check (LSC), texting message (TM), answering

cellphone (AC) and picking up things (PK). The different activities
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(a) Pushing Forward (b) Pushing Right (c) Raise Hand Twice (d) Right Shoulder Check

(e) Left Shoulder Check (f) Texting Message (g) Answering Cellphone (h) Picking Up

Figure 6: Collecting activity samples in different driving conditions and different cars involving multiple volunteers.

and measurement settings are illustrated in Fig. 6. Each activity

contains about 2500 samples collected in multiple classes, includ-

ing 4 different driving conditions, 4 types of cars, and involving

4 volunteers varying in genders, heights and habits, which corre-

sponds to 64 different domains in total. For each collection, the

WiFi transceivers of our prototype are located at the same position,

i.e., the co-pilot seat, to guarantee the measurement consistency.

For in-car context, people are restricted by the safety belts at their

own seats and will mostly perform activities at specific locations

toward one same direction. Thus, the impact of activity location

and orientation is quite marginal. As to the practical in-car deploy-

ment in the future, the WiFi transceivers can be integrated with

the central control system and will not occupy extra space.

Learning setup. We implement the WiCAR learning model

using tensorflow [1] and train the learning model based on the

collected dataset on a desktop equipped with GTX 1080 Ti GPU

cards, dual Intel I7 3.6 GHz CPU cards and 32GB memory. The

filters of convolutional layers are 5 × 5 and are applied at stride 1.

And the filters of max pooling layers are 2 × 2 with the stride of

2. We set the default neuron numbers in the two fully connected

layers in both activity predictor and domain discriminators as 150

and 80, respectively.

To verify the generality of our learning model, we test WiCAR

using collected data in new target domains that are different from

the source domains. In particular, we ask another 4 volunteers to

perform activities in different driving conditions and different cars,

and collect about 2000 activity samples for testing.

Baseline methods. We compare our approach with several ex-

isting learning models, including Random Forest (RF), WiBot [18]

and EI [10]. WiBot is a state-of-the-art activity recognition system

that uses the traditional learning method without domain adapta-

tion to recognize activities in cars. In its original design, WiBot did

not consider the scenario of multiple driving conditions and car

models. We train this model only considering the activity labels

rather than the domain labels in our experiment. EI is a state-of-the-

art learning framework for WiFi-based indoor activity recognition

that considers single-adversarial domain adaptation. We incorpo-

rate its learning model and apply it in the in-car recognition. RF is

one of the most used classification methods due to its simplicity

even without hyper-parameter tuning. By constructing a multitude

of decision trees and introducing the bagging method at the train-

ing time, RF is able to inhibit the overfitting effect compared with

decision tree. We extract 13 features of both time dimension and

frequency dimension for training RF. Besides the ten features as in

EI, we also extract the maximum, minimum, and the variance of

frequency from the spectrogram.

5.2 General Activity Recognition Performance

We first evaluate the general performance of our WiCAR system.

Fig. 7 and Fig. 8 compares the detailed recognition situations on 8

target activities between WiCAR (with multi-adversarial domain

adaptation) and the state-of-the-art in-car activity recognition sys-

tem WiBot (without domain adaptation). Each cell represents the

probability of recognizing an actual label as a predicted label. We

can find that our WiCAR system achieves an average of 94.3% accu-

racy for all activities even under new domains, while the state-of-

the-art solution only has an average accuracy of 58.2%. Specifically,

the prediction result without domain adaptation seems to be disor-

dered that one activity can be recognized as many other activities.

For example, the texting message (TM) activity was recognized as

all other 7 activities, some even with relatively high probabilities

such as RT and AC. This result is because traditional learn model

will inevitably contain much domain-specific information in the

collected samples. Such extraneous information can blur the bound-

aries of different activities so that the recognition accuracy will

drop dramatically. In contrast, the domain adaptation architecture
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PF PR RT RSC LSC TM AC PK
PF 0.57 0.15 0.02 0 0.06 0.17 0.03 0
PR 0.13 0.66 0 0 0 0.12 0.09 0
RT 0.02 0.03 0.71 0 0 0.09 0.12 0.03
RSC 0.05 0.09 0 0.54 0.13 0.08 0 0.11
LSC 0.04 0.1 0 0.15 0.59 0.07 0 0.05
TM 0.02 0.05 0.14 0.08 0.05 0.51 0.12 0.03
AC 0.04 0 0.13 0.08 0.04 0.08 0.54 0.09
PK 0.03 0.03 0.07 0.19 0.07 0 0.1 0.51

Predicted LabelActual 
Label

Figure 7: The confusionmatrix for recognition accuracy us-

ing the state-of-the-art approach without domain adapta-

tion.

PF PR RT RSC LSC TM AC PK
PF 0.92 0.02 0 0 0 0.04 0.02 0
PR 0 0.95 0 0.02 0 0.01 0.02 0
RT 0 0 0.98 0.02 0 0 0 0
RSC 0 0 0 0.96 0.02 0 0 0.02
LSC 0.04 0 0 0.03 0.91 0 0.02 0
TM 0.01 0 0.02 0 0 0.92 0.05 0
AC 0 0.03 0 0 0 0.03 0.94 0
PK 0 0 0 0.02 0 0.01 0 0.97

Predicted LabelActual 
Label

Figure 8: The confusionmatrix for recognition accuracy us-

ing our WiCAR approach.
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Figure 9: The statistic metrics of activity recognition when

using the state-of-the-art approach without domain adap-

tation.
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Figure 10: The statisticmetrics of activity recognitionwhen

using WiCAR approach.

in our learning model helps the feature encoder to remove such

domain-specific features and only retains the activity related fea-

tures, which finally boost the recognition accuracy even for new

domains.

To comprehensively evaluate the classification result, we also

consider the following metrics used in statistics: 1) False Positive

Rate (FPR) denotes the ratio of falsely labeled activities as another

activity. 2) Precision (PR) is defined as T P
T P+F P , where TP is the ra-

tio of correctly labeled activities, FP is the ratio of falsely labeled

activities as another activity. 3) Recall (RE) is T P
T P+FN , where FN

is the ratio of mislabeled true activities. 4) F1-score (F1) is a com-

bined metric for precision and recall, defined as 2∗PR∗RE
PR+RE . Fig. 9

and Fig. 10 illustrates these metrics for WiBot and WiCAR. We

can find that WiBot can only achieve about 50% for precision and

recall. This result indicates that with traditional learning methods,

a large portion of in-car activity will be misclassified under new do-

mains, which can hardly satisfy the requirement of safety-oriented

activity detection or human-car interaction. In contrast, both the

precision and recall of WiCAR achieve more than 90%, which is a

40% improvement compared with the traditional method.

Fig. 11 demonstrates the general recognition accuracy of our

WiCAR approach and the baseline approaches when we use dif-

ferent training domain settings. The x-axis of k1 ∗ k2 ∗ k3 means

how many domains we use for the training, where ki indicates
the number of domains in the i-th class. We can observe that our

WiCAR approach outperforms all other baseline approaches with

multiple classes. In particular, RF and WiBot keep a relatively low

accuracy under 50% since they never eliminate the impact of the

extraneous domain-specific information in the collected data. The

general accuracy of both the single-adversarial domain adaptation

approach EI and the multi-adversarial domain adaptation approach

WiCAR keep increasing as the number of training domains grows.

When we use enough domains (e.g., 4 ∗ 4 ∗ 4) for training, EI can

only achieve an accuracy of about 83%, while WiCAR can achieve

about 95% recognition accuracy, leading to a 12% improvement.

This comparative experiment shows that our WiCAR approach is

more capable of distinguishing the inherent structures of differ-

ent domains and can remove such domain-specific impacts more

effectively.
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recognition accuracywhen trainingmodelwith different do-

main settings.

6 RELATEDWORK

6.1 WiFi CSI-based Activity Recognition

WiFi CSI-based sensing technology has seen great success in recent

years. The basic rationale is that human movements can affect the

signals between WiFi antennas, and through profiling the CSI pat-

tern changes we can retrieve the corresponding human movement.

WiFi CSI-based sensing enables activity recognition in numerous

application scenarios. Wang et al. [29] propose WiFall that uses the

fine-grained CSI changes to detect only one falling activity. Wang et

al. [28] establish the relationship between human movement ve-

locity and CSI dynamics, and uses such quantitative relationship

for indoor activity recognition. Wang et al. [25] develop WiHear,

which is able to identify the subtle impact of different mouth shapes

on the WiFi signals so as to recognize simple human pronunciation.

Ali et al. [3] present WiKey, which is able to detect the different

CSI changes when fingers are tapping on different keys. Virmani et

al. [24] build up the correlations between CSI features and the lo-

cation as well as orientation of target subject, and translates CSI

measurements to the corresponding virtual samples for recognition.

In-car WiFi-based activity recognition emerges as a hot topic

given its important role in autonomous driving and human-car

interaction. The pioneer research WiBot [18] uses WiFi CSI to

recognize simple gestures in dedicated conditions and car models.

Different from previous researches, our WiCAR approach for the

first time considers removing the extraneous information related

to different driving conditions, human subjects and car models so

as to achieves the environment/subject independent in-car activity

recognition.

6.2 Domain Adversarial Learning

The learning model in WiCAR is related to the domain adversar-

ial network [2]. Adversarial network has been widely used in the

machine learning community toward many applications. The most

representative model is generative adversarial network (GAN) [8],

which utilizes a minimax two-player game to fool the discriminative

model so that the generative model is able to generate high-quality

data. Similar to GAN, the domain adversarial network also employs

a domain discriminative model for adversarial learning. Yet the

difference is that we encourage the model to learn a feature rep-

resentation of the original input, which is discriminative for the

main task in the source domain and invariant with respect to the

shift between domains [6]. Ganin et al. [6] first propose the basic

domain adversarial network and the corresponding backpropaga-

tion training methods. And many approaches [4] have also been

proposed to improve the performance of the adversarial training.

Based on the theory of domain adversarial learning, pioneer

researches have been proposed toward the WiFi-based activity

recognition. Zhao et al. [35] develop a modified domain adversar-

ial network-based model to remove the individual and condition-

specific information during sleeping and utilize the extract features

for accurate sleep stage prediction. Similarly, Jiang et al. [10] pro-

pose an adversarial network-based learning model to remove the

environment and subject-specific information for indoor activity

recognition. They both use single-domain adversarial architecture,

that is, combining the multiple potential feature classes into one

class. Different from the indoor recognition scenario, the in-car

recognition scenario is muchmore complicated and subject to many

impact factors, where the discriminative structures can be easily

mixed up. In this paper, WiCAR incorporates multi-adversarial do-

main adaptation network and integrates them for in-car activity

recognition, achieving a much higher recognition accuracy.

7 CONCLUSION

In this paper, we for the first time present a WiFi-based environ-

ment/subject independent in-car activity recognition framework

named WiCAR. WiCAR employs a data preprocessing scheme to

convert raw collected WiFi signals into effective feature represen-

tations for each activity. Leveraging a multi-adversarial domain

adaptation network model, WiCAR is able to remove the domain-

specific information in the received raw signals while retaining the

activity related information so as to achieve environment/subject in-

dependent in-car activity recognition. Extensive evaluations further

demonstrate the superiority of WiCAR compared to the state-of-

the-art solutions.
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