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Abstract
Cognitive communication and computing have 

seen deep penetration in many networking areas 
in the past decades. With the recent advances in 
big data analysis and deep learning, we have seen 
great potential toward exploring cognitive intel-
ligence for a wide range of applications. A nota-
ble example therein is human activity recognition, 
especially through RFID. Existing RFID activity iden-
tification solutions are mostly designed for static or 
slowly moving targets, rendering them far from sat-
isfactory. More importantly, we observe that they 
suffer serious performance degradation in typical 
indoor environments with multipath interference. 
In this article, we argue that the recent advance 
of deep learning brings new cognitive intelligence 
for human activity identification. We first review 
the literature and research challenges of multipath 
effects in indoor environments. Then we introduce 
an advanced RFID activity identification frame-
work, DeepTag, which uses a deep-learning-based 
approach for activity identification in multipath-rich 
environments. DeepTag gathers massive phase 
information from multiple tags, and preprocesses 
them to extract such key features as pseudospec-
trum and periodogram. We feed the preprocessed 
signal power and angle information into a deep 
learning architecture that combines a convolution-
al neural network and long short-term memory 
(LSTM) network. Our DeepTag framework can 
well adapt to both tag-attached and tag-free activ-
ity identification scenarios. Our extensive experi-
ments further demonstrate its superiority in activity 
identification in multipath-rich environments.

Introduction
In the past decade, cognition has received signif-
icant attention in modern communication, net-
working, and computing systems. State-of-the-art 
solutions (e.g., cognitive radio [1, 2]) have mostly 
focused on the use of cognition to improve the 
utilization of such system resources as wireless 
spectrum. With the recent advances in big data 
analysis and deep learning, we have seen great 
potential toward exploring cognitive intelligence 
from these resources for a wide range of applica-
tions. A notable example therein is human activity 
recognition.

Traditional solutions for human activity recog-
nition rely on sensor- or device-based approaches 
[3], but the required sensors/wireless devices are 
often not negligible in both size and weight, which 
restricts the application scenario. Radio frequen-
cy identification (RFID) is a promising technolo-
gy that can overcome those difficulties, with the 
advantages of low cost, small form size, and the 
batteryless feature. Basically, an RFID system con-
sists of a reader and many tags, where tags can 
be activated and powered by the signal from the 
reader and also send signals back to the reader 
without extra batteries. One single RFID reader 
can operate thousands of tags at a time. For exam-
ple, IKEA Canada has completed a solution that 
enables shoppers to purchase merchandise with 
the tap of a spoon that has a built-in tag, freeing 
shoppers from having to push carts or carry bas-
kets around the store (IKEA Canada Engages Cus-
tomers With RFID at Pop-up Store; HTTP://www.
rfidjournal.com/articles/view?14719). Disney has 
built an RFID gaming system that can sense when 
the player is moving or touching objects attached 
with tags in near real time.

Even though RFID reveals many benefits, the 
information offered by today’s RFID tags is still 
quite limited, and the typical raw data, namely, 
received signal strength indicator (RSSI) and phase 
angle, mostly target stationary reading scenarios. 
As such, existing RFID-based activity identifica-
tion solutions are far from satisfactory. It is well 
known that RSSI readings almost have no change 
with small human activities [3], such as shaking 
hands; and the phase angle, although sensitive 
to activities, is hardly a reliable indicator. More-
over, real-world multipath-rich environments bring 
more challenges for current RFID-based activity 
identification approaches to be applied in reality. 
For example, a person is often occluded by furni-
ture and other persons, resulting in the signals of 
tags possibly being deflected and taking multiple 
paths to arrive at the RFID reader. Therefore, the 
received raw signals are not accurate enough to 
directly reflect the corresponding activity.

However, we argue that multipath indeed 
brings rich information that can be explored 
to identify human activities. Both the backscat-
tered signal power and angle are highly related 
to human activities, impacting multiple paths at 
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diff erent levels. If we can capture these changing 
features of the path, activities could be identifi ed 
with high sensitivity. However, identifying the rel-
evant features can be very time-consuming and 
complicated, and hence so is defining the rules 
for accurate classification of activities. Different 
from conventional solutions that directly rely on 
unreliable raw data, we develop a novel mecha-
nism that jointly considers both pseudospectrum 
[4] and periodogram [5] to take in raw multipath 
signal mixtures and output carefully de-coupled 
angles and powers for different paths. We gath-
er massive angle and power information from 
multiple tags, and preprocess them to extract 
key features. Yet another challenge is that due to 
the received signals being a dynamic mixture of 
multi-path, the features of RFID-based activities 
are hard to pre-select manually, and the rules for 
making correct estimations are hard to pre-de-
fi ned as well.

In this article, we note that the recent 
advance of artificial intelligence brings new 
possibilities for the cognitive ability of RFID 
technology, empowering RFID communications 
with deep intelligence for accurate activity iden-
tifi cation. Specifi cally, deep learning, as a new 
emerging generation of machine learning, can 
well accommodate this aforementioned chal-
lenge, and thus shed new light on the prob-
lem of activity recognition in a multipath-rich 
environment. To this end, we present a deep 
learning architecture, namely, DeepTag, that 
can take advantage of the RFID signal informa-
tion from the pre-processing scheme and jointly 
use a convolutional neural network (CNN) and 
a long short-term memory (LSTM) network to 
solve the activity identification problem. We 
highlight that our DeepTag approach can well 
adapt to both tag-attached and tag-free activ-
ity identification scenarios, where the former 
directly attaches RFID tags to objects (e.g., the 
human body), and the latter only puts tags on 
fixed positions in the environment and thus 

makes objects tag-free. We conduct exten-
sive experiments to evaluate our DeepTag in 
multipath-rich environments and report sig-
nificant performance gains over a number of 
state-of-the-art feature-based approaches. It is 
also worth noting that our DeepTag is readi-
ly deployable using off-the-shelf RFID readers 
(e.g., a single UHF reader with a limited number 
of antennas) and allows reusing existing RFID 
readers for indoor activity identifi cation.

The rest of this article is organized as follows. 
In the following section we present a brief litera-
ture review on activity identifi cation with RFIDs. 
Then we discuss the multipath eff ects and de-cou-
pling multipath signals. Following that, we present 
the design of our deep learning architecture for 
activity identifi cation. Then we discuss the frame-
work implementation details, with its performance 
being evaluated. We conclude this article in the 
fi nal section.

ActIVIty IdentIFIcAtIon wIth rFIds
Figure 1 illustrates the two general approaches 
for activity identification with RFIDs. In tag-at-
tached approaches, an RFID tag is attached 
to the human body, and the activities are then 
captured by a tag reader [6, 7]. Recently, tag-
free approaches  have also been suggested [8]. 
Instead of attaching tags to human bodies, which 
can be inconvenient and considered intrusive, 
multiple stationary tags are deployed in the 
environment as references, whose readings are 
expected to be affected by human activities in 
close proximity. Through analyzing the back-
scattered signals from the reference tags, the 
activities can then be identifi ed. We next briefl y 
review both approaches in the literature, as sum-
marized in Table 1.

tAg-AttAched ApproAch
This approach is the most straightforward, as 
RFID tags are suitable to be attached to objects 
due to their low cost and small size, and the bat-
teryless feature. In activity identification, most 
solutions using this approach exploited the 
change of wireless signals incurred by human 
actions, and accurate localization techniques 
were often used to achieve the goal of activity 
identifi cation.

Early RF-based localization primarily relied 
on RSSI information [3]. The major limitation of 
RSSI-based solutions is unreliability, since RSSI is 
insensitive to small body movement, and thus it 
is diffi  cult to achieve high-precision identifi cation. 
Recently, phase-based localization techniques 
have successfully achieved centimeter accuracy. 
For example, Tagoram [9] leveraged tag mobility 
to construct a virtual antenna array and built a 
diff erential augmented hologram using the phase 
values collected from the antennas. RF-IDraw 
[6] achieved good tracking accuracy with eight 
antennas connected to two RFID readers. FEMO 
[7] used the frequency shifts of movements to 
determine what exercise a user is performing. 
While such advanced solutions as RF-IDraw 
[6], Tagoram [9], and FEMO [7] achieve high 
accuracy through exploring antenna arrays, their 
performance degrades heavily for indoor envi-
ronments, where multi-path refl ections are prev-
alent and strong.

FIGURE 1. Two general approaches for activity identifi cation with RFIDs.
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Tag-Free Approach

The tag-attached approach requires the target to 
be attached to a tag capable of emitting or reflect-
ing RF signals. This, however, makes the approach 
not applicable in some scenarios. For example, 
in intruder detection, the targets will deliberately 
discard any device that can be tracked. In elder 
care, older people are usually reluctant to hold 
mobile devices, wear wearables or be attached 
with RFID tags. These real-life scenarios motivate 
the need for tag-free activity identification, which 
does not require any device to be attached to 
the target. Thus, tag-free activity identification has 
attracted extensive research interest recently.

In a tag-free configuration with stationary RFID 
tags being deployed in the environment as refer-
ences (e.g., on walls or furniture), the communi-
cation link established with fixed readers can be 
disturbed by human activities in close proximity, 
hence changing RSSI or phase readings as well. 
Toward this direction, TASA [8] was proposed to 
rely on RSSI fingerprints, where reference tags are 
deployed in a regular way on a monitoring region 
and training data are generated during the train-
ing phase by requiring a person to act in different 
locations. In the testing phase, the resulting RSSI 
is mapped to the closest fingerprint to identify the 
status of the person. Such fingerprint-based meth-
ods, however, need a large amount of human 
effort to acquire and update the fingerprint data-
base. Changes in the environment, such as the 
movements of furniture, will change the finger-
prints, causing mismatches between the database 
and the new measurements.

Later, angle of arrival (AoA)-based schemes 
became popular with the opportunity of multiple 
antennas attached to a single RFID reader. The 
AoA of an RF source is computed by comparing 
the phases of the received signals at antennas. 
AoA estimation is widely used in RF-based posi-
tioning given the different propagation distances to 
different antennas, and serves as a foundation for 
activity identification [6]. D-Watch [10] efficiently 
utilized both the direct path and reflection paths to 
identify the angle information of the target. Twins 
[12] leveraged the coupling effect caused by inter-
ference among passive tags to detect a single mov-
ing subject. APID [15] was proposed to detect arm 
reaching by analyzing backscatter signals from a 

passive RFID tag. RFIPad [11] transformed a tag 
plane into a virtual touch screen by analyzing the 
induced disturbance of RF signals. However, AoA-
based schemes may still suffer similar performance 
degradation when facing the challenges of the 
multipath-rich environment [14], as is further sum-
marized in the next subsection.

Summary
It is easy to see that although RFID-based activ-
ity identification solutions can be categorized 
into tag-attached and tag-free approaches, 
the core technologies and the corresponding 
challenges are actually similar. For example, in 
real-world indoor scenarios, the received raw 
RFID signals are the dynamic mixture of many 
signals from multiple paths, which, as indicat-
ed in previous research work [13], may not be 
accurate enough to be immediately applied to 
activity identification. Recently, learning-based 
techniques have become a very active research 
area for general activity understanding. Toward 
this direction, i2tag [14] employed a supervised 
learning framework based on a fine-grained 
mobility profile, which can quantify differ-
ent levels of mobility. Li et al. [13] proposed 
to directly apply a deep learning approach 
on collected coarse-grained RSSI readings to 
range about the tag for activity identification. 
Our DeepTag complements these works well 
by demonstrating the necessity and benefits of 
appropriate data preprocessing on mixed multi-
path signals and further proposing a deep learn-
ing architecture that can take full advantage 
of this and maximize the performance gain. In 
particular, we therefore propose to gather mas-
sive angle and power information from multi-
ple tags, and preprocess them for key feature 
extractions. As the features of RFID-based activ-
ities are hard to pre-select manually, and the 
rules for making correct estimations are hard to 
pre-define, we further propose a deep learning 
architecture to handle such dynamics well and 
provide an activity identification framework in a 
multipath-rich environment.

Multipath Preprocessing
In practice, AoA estimation may not work well 
because of the multipath effect, which we address 
in this subsection. It is known that the estimation 

TABLE 1. Recent research on activity identification with RFIDs.

Solutions Categories Approach Data Technical Improvement 

Tagoram [9] Localization-based identification Tag-attached RF phase Leverages the tag mobility to construct a virtual antenna array 

RF-IDraw [6] Localization-based identification Tag-attached RF phase Employs multiple antennas (8) to eliminate this ambiguity 

D-Watch [10] Localization-based identification Tag-free RF phase Utilizes both the direct path and the reflection paths to track targets 

RFIPad [11] Localization-based identification Tag-free RSSI & RF phase Transforms a tag plane into a virtual touch screen

Twins [12] Localization-based identification Tag-free Mutual inductance Utilizes the coupling effect among passive tags

FEMO [7] Direct activity identification Tag-attached RF phase Uses the frequency shifts of the movements

Li et al., [13] Direct activity identification Tag-attached RSSI Presents a deep learning architecture

i2tag [14] Direct activity identification Tag-attached RSSI & RF phase Quantifies different levels of mobility and utilizes supervised learning framework

TASA [8] Direct activity identification Tag-free RSSI Deploys stationary tags as references and uses location-based activity identification

APID [15] Direct activity identification Ttag-free Signal energy Uses energy changes of backscatter signals
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is quite challenging in a multi-path indoor environ-
ment. To this end, we adopt the pseudospectrum 
[4] and periodogram [5] estimation to de-couple 
the signal multipaths.

Our pseudospectrum estimation design is mainly 
based on the Multiple SIgnal Classifi cation (MUSIC) 
algorithm [4], which is one of the high resolution 
subspace AoA algorithms and was originally used 
to estimate the number of received signals by cal-
culating the directions of arriving signals as well as 
their peak amplitudes. Figure 2a shows an exam-
ple where the higher peaks are of great power, and 
each corresponds to an estimated AoA.

We introduce the periodogram [5] to strength-
en pseudospectrum estimates by taking the accu-
rate power information into consideration. In our 
system, we use fast Fourier transform to estimate 
the power distribution. According to Parseval’s 
theorem, the Fourier transform is unitary, that is, 
the sum (or integral) of the square of a function is 
equal to the sum (or integral) of the square of its 
transform. Figure 2b shows an illustration, where 
we have four antennas connected to the RFID 
reader and thus can get four values in the periodo-
gram for the power density distribution.

The multiple signals may also twist with each 
other and sometimes hide behind noises, so the 
relationships to human activities cannot easily be 
identifi ed. All these call for solutions to dynamically 
identify and extract intrinsic features from the mas-
sive spectrum data with high accuracy. We accord-
ingly introduce a deep learning design, which not 
only is effective in uncovering features for com-

mon activities, but also can scale up to identify 
more complex activities.

deep leArnIng desIgn For 
ActIVIty IdentIFIcAtIon

This section describes the main components of 
our DeepTag design. As illustrated in Fig. 3, our 
deep learning design takes the results from data 
preprocessing (i.e., periodogram and pseudospec-
trum) as inputs into our DeepTag network. We 
use an integrated design of a CNN and an LSTM 
network. The CNN has seen great success in the 
computer vision community, and the unique con-
volutional calculation is powerful in extracting the 
implicit spatial relationships in a single spectrum 
frame. LSTM is widely used in the speech recog-
nition field, and it is able to learn dynamic tem-
poral relationships from a sequence of spectrum 
frames. The output is the classifi cation of object 
activities using a softmax layer. We next discuss 
each layer one by one.

The deep learning architecture starts with the 
design of our spectrum frames. The preprocessing 
stage outputs the spectrum for each tag, where we 
utilize the spectrum of all tags to build the spec-
trum frame. Specifi cally, we provide the following 
as input to the architecture:
• Pseudospectrum frames for AoA (as illustrated 

in Fig. 2c)
• Periodogram frames for power spectral density 

(as illustrated in Fig. 2d)
By combining these two types of information, 

FIGURE 2. Illustration of data preprocessing and spectrum frame design: a) pseudospectrum estimation; b) periodogram estimation; 
c) pseudospectrum frames; d) periodogram frames.
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FIGURE 3. DeepTag network architecture.
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the architecture can take into account both the 
angle and power information of signals. The input 
layer then takes all the spectrum outputs from our 
preprocessing stage and builds the correspond-
ing spectrum frame, where a series of spectrum 
frames along the time will further serve as the ini-
tial input for the hidden layer.

The hidden layer integrates a CNN structure 
and an LSTM structure. We construct a CNN to 
take the spectrum frames as input and provide the 
output to be fed into the LSTM structure, where 
the extracted lower dimension features then form 
the input as a sequence to the LSTM structure. 
In this work, we use the fully connected layer to 
merge all the inputs, where these features are 
outputs of rectified linear units. In our design, a 
stacked LSTM fi rst encodes the frames one by one 
from the output of the CNN. LSTM is a subnet that 
allows the context information to easily be mem-
orized for long periods of time in sequential data. 
The LSTM cells are then grouped and organized 
into a deep LSTM architecture. Inside the architec-
ture, the output from one LSTM layer will be the 
input for the next LSTM layer. We use two stacked 
LSTM layers, each with 32 memory cells. Following 
the LSTM layers, a softmax classifi er at the output 
layer is used to make a prediction at every spec-
trum frame, where the outputs from the last hidden 
layer are normalized with the softmax function.

system ImplementAtIon
Our design can be fully implemented based on a 
commercial reader and requires no modifi cations 
on tags. In this section, we further describe the 
key implementation details that are not covered 
in the previous sections.

Our prototype implementation uses an Imp-

inj Speedway R420 reader (https://support.
impinj.com/) without any hardware or firmware 
modification, which has been extensively used in 
the research community. The Impinj Speedway 
R420 reader has four antenna ports and is compat-
ible with the EPC Gen2 standard, where the anten-
nas work in a time-division multiplexing mode. The 
number of RF ports in the reader limits the scale 
of our antenna array, and we can increase the 
antenna number by Impinj antenna hubs. We set 
the typical wavelength  to 0.32 m. We use Impinj 
tags, which are one of the cheapest tags available 
on the market and cost US$0.05 each.

The system employs a typical client-server archi-
tecture. The processes adopt Octane Java SDK with 
LLRP protocol to communicate with the reader, col-
lect the readings, and upload them to the backend 
module. We utilize the multiple threads method, 
where a loop is used to execute the tag reading 
operation and immediately returns a sequence 
of RFID readings to the calling thread. The calling 
thread then uploads the tag readings to the serv-
er. The backend module on the server accepts the 
streaming of tag readings, where the server also 
stores the training data in the database and executes 
our algorithms to identify the activity. CNN and 
LSTM classifiers are implemented in Keras with a 
Tensorfl ow backend on Dual NVIDIA GeForce GTX 
1080 Ti GPUs, and the multiclass classifiers based 
on machine learning tools are implemented based 
on the Scikit-learn library (http://scikit-learn.org/).

eVAluAtIon
In the evaluation, we invite 10 volunteers and use 
three tags for each volunteer.1 To conduct a com-
prehensive evaluation, we test seven scenarios, 
that is, standing, sitting, waving, bowing, walking, 

FIGURE 4. The performance evaluation of DeepTag when comparing with other classifi cation approaches, varying the number of 
antennas, varying the number of tags, and varying learning networks: a) overall performance of DeepTag system; b) impact of num-
ber of antennas (tag-attached); c) impact of number of antennas (tag-free); d) impact of number of tags (tag-attached); e) impact of 
number of tags (tag-free); f) impact of diff erent learning networks.
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running, and working. They are used to evalu-
ate the robustness of DeepTag in tag-attached 
and tag-free scenarios for activity identification, 
respectively. In the tag-attached scenario, tags are 
attached to each person; in the tag-free scenario, 
the volunteers stand between the tags and the 
antenna array in our experiments. To evaluate the 
prediction quality, we run an experiment on the 
real-world data with about 6000 activity exam-
ples. With the training configurations mentioned 
previously, the total training time for the com-
bined CNN and LSTM architecture is about 10 
minutes, and our model can achieve stable accu-
racy with 500 iterations, which is not a large over-
head. Besides, our system leverages a backend 
module to process the streaming data for infer-
ence to achieve real-time identification, which 
only depends on the sliding window size as the 
inference time is negligible.

Figure 4a shows the performance of our Deep-
Tag compared to eight mainstream classifiers, 
including k-Nearest Neighbors, one-vs,-all linear 
support vector machine (SVM), one-vs.-all RBF 
SVM, Gaussian process, decision tree, Random 
Forest, AdaBoost, Bayesian net, and quadratic dis-
criminant analysis (QDA), where all the classifica-
tion methods take the same spectrum frame data 
as input. DeepTag achieves 94 percent accuracy 
of activity identification on average. In the tag-at-
tached scenario, we can see that our DeepTag 
performs the best among all approaches with an 
accuracy of 97 percent on average, which is 20 
percent better than the runner-up (SVM). In con-
trast, the classical machine learning methods (e.g., 
linear SVM) only have an accuracy of 77 percent 
or lower, reaffirming the effectiveness of our deep 
learning scheme. The underlying reason is that the 
deep learning architectures including CNN and 
LSTM are more capable of capturing the intrinsic 
but hidden features related to the activities from 
complicated signals, and distinguish them from 
that unrelated information. The experiments in a 
tag-free scenario show that the performance of 
other classifiers degrades heavily, and DeepTag 
still maintains a high accuracy of 91 percent on 
average. In the next experiments, we use different 
experiment parameters to investigate different 
tag number, antenna number, and deep learning 
architecture in tag-attached and tag-free scenari-
os, respectively.

DeepTag de-couples the multipaths using 
the array of antennas; therefore, the number of 
antennas limits the number of multipaths that 
can be detected by our pre-processing scheme. 
With the information of more signal paths, Deep-
Tag achieves a higher multipath density in the 
area and improves the activity identification 
accuracy. We thus investigate the impact of the 
number of antennas, as shown in Figs. 4b and 
4c for the tag-attached and tag-free scenarios. 
We can see that when the number of antennas 
increases from 2 to 4, more angle and power 
information of multipath can be detected, and 
thus DeepTag can achieve higher accuracy of 
activity identification.

With more tags, more signals will be produced 
to provide more information for activity identifica-
tion. In the experiments, we vary the number of 
tags from 1 to 3 and investigate its impact. The 
results are shown in Figs. 4d and 4e, with respect 

to the tag-attached and tag-free scenarios. We can 
see that more tags are helpful to provide more 
information and improve the activity identification 
accuracy. Since the amount of multipath that our 
data pre-processing scheme can detect for each 
tag is limited by the number of antennas on the 
reader, the number of tags actually is the most 
effective and cheapest method to increase the 
path diversity in the environment.

We compare the results of our DeepTag with 
various combinations of deep learning architec-
tures in both tag-attached and tag-free scenar-
ios, as shown in Fig. 4f. For example, “CNN 
Tag-attach” indicates using a combination of the 
tag-attached sensing approach and the only CNN-
based learning model; LSTM Tag-free indicates 
using a combination of the Tag-free approach and 
only the LSTM-based learning model; and Tag-free 
uses the CNN and LSTM learning architecture. 
The rule applies the same as for other definitions. 
First, we compare the performance of DeepTag 
with CNN networks, and both of them integrate 
the preprocessing scheme of DeepTag. Deep-
Tag can achieve a 34 percent higher accuracy on 
average than CNN networks, which demonstrates 
that the LSTM architecture is necessary for activity 
identification. Then we evaluate DeepTag against 
LSTM networks. It clearly shows that DeepTag 
can achieve 22 percent higher accuracy than the 
LSTM networks on average, illustrating that CNN 
can efficiently extract the features for activity iden-
tification. Compared to the deep learning archi-
tecture that takes the raw phase data as inputs, 
DeepTag can also achieve an accuracy gain of 
45 percent. In summary, the benefits of DeepTag 
come from both the preprocessing scheme and 
the deep learning architecture consisting of both 
LSTM and CNN, which work jointly to harvest the 
rich phase information for activity identification in 
a multipath environment.

Conclusion
RFID-based human activity identification is one of 
the most popular applications for cognitive wire-
less communication and computing. In this article, 
we further explore this topic and introduce Deep-
Tag, a deep-learning-based RFID activity identifica-
tion framework to tackle the challenges brought 
by real-world multipath-rich environments. In 
particular, we adopt the pseudospectrum and 
periodogram estimation to de-couple the signal 
multipaths for extracting the activity key features.

We further develop a deep learning architecture 
that combines the convolutional neural network 
and long short-term memory network to dynam-
ically identify and extract intrinsic features from 
the massive multipath spectrum data for high-ac-
curacy activity identification. Through extensive 
evaluations by our real-world prototype using the 
off-the-shelf Impinj reader and tags, we show the 
superiority of DeepTag on activity identification in 
multipath-rich environments for both tag-attached 
and tag-free scenarios.
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DeepTag de-couples 
the multipaths using 
the array of antennas; 
therefore, the number 
of antennas limits the 
number of multipaths 
that can be detected 
by our pre-process-
ing scheme. With the 
information of more 
signal paths, DeepTag 
achieves a higher mul-
tipath density in the 
area and improves the 
activity identification 
accuracy.
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