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a b s t r a c t 

In heterogeneous networks (HetNets), dynamics of user requirements across the temporal domain lead 

to the order of magnitude traffic to be processed by macro cells. To achieve high quality of experience 

(QoE) for users and to perform resource allocation for cells intelligently, we first propose a distributed 

traffic-processing framework (SDVTS) for elastic resource partitioning, to accommodate dynamics from 

the user-centric and resource-oriented perspectives respectively. Assisted by a software defined infras- 

tructure, SDVTS fulfills the responsibilities of the request-based and push-based services in an interactive 

loop. Second, we formulate a traffic-processing time model that computes the delay of handling traf- 

fic. The non-convex model is decomposed and a dual evolution algorithm is explored to approximate 

the optimal solution. Furthermore, we introduce a low-complexity reinforcement learning algorithm with 

the personalized QoE profiling. A distributed algorithm in coalition between user and cell is designed 

for seamless connection of an advanced reinforcement learning system (ARLS) components and engines 

embedded in SDVTS. Extensive simulation results with thorough analysis demonstrate that our frame- 

work SDVTS dominates in terms of QoE and cell ′ s system performance when compared with competing 

approaches. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Triggered by the proliferation of mobile Internet service and

nternet of Things, a large number of devices will be connected to

ireless networks with massive new and dynamic traffic produced

y them [1] . Users equipped with content-rich applications (UEs)

xpect more personalized and interactive services with small cells

r macro base stations (MBSs) that are responsible for network

ccessing, resource partitioning and even task offloading towards

enants. These will inevitably introduce an unprecedented surge in

oping with the traffic for cellular system. As illustrated in Fig. 1 ,

he dense small cells are termed as SBSs, as exemplified by pico

ells and femtocells. They are overlaid on the existing MBS. The

BSs and device to device (D2D) connections share the spectrum

esources in an underlay fashion. There exist substantial traffic
� This work was supported by the NSFC Grants ( 61502504 , and 61628209 ), the 

ature Science Foundation of Hubei Province ( 2016CFA030 ), the Technological Inno- 
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equirements from UEs to cells. Consequently, the computation-

ntensive and data-driven tasks are a driving force to explore

fficient techniques that can significantly improve the system

erformance for the cells, making them adapt to the envisioned

ext generation networks with heterogeneity, especially for the

ltra-dense HetNets. A natural, challenging problem is how to

rocess the traffic immediately for better QoE (i.e., satisfying

ser requests or user-originated performance targets) and how to

stablish a smart resource allocation mechanism in MBS. 

To our knowledge, there are mainly four lines of efforts to

ackle the challenge. The first is to explore the small-cell archi-

ecture or the macro-cell one to improve the spatial efficiency

f spectrum [2–4] . The second aims to maximize the resource

tilization such as spectrum efficiency, power control and energy

fficiency [5,6] . The third focuses on offloading cellular traffic

o the other spectrum ranges such as WiFi, 60GHz wireless

and [7] or to the mobile edge cloud [8] . The last is to maximize

adio coverage and meet the QoE requirement by the optical

ber networks [9,10] . None of the existing work, however, has

onsidered the software defined framework with learning-enabled

esource provisioning, facilitating mutual feedback with QoE

rofiling for the request-based and push-based services. 

https://doi.org/10.1016/j.comnet.2019.106904
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Fig. 1. The overview of serving UEs by MBS which is assisted by MEC and SDVTS for service in HetNets. 
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Driven by the availability of big data, mobile edge computing

(MEC) [11] is evolving rapidly. It offers computing service with

low delay for users through edge clouds or fog nodes deployed

on the edge of networks, so as to address the challenge of timely

offloading computation for cells, involving MBS. Furthermore, as

a promising networking paradigm, software defined infrastructure

(SDI) nowadays can decouple the control plane from the data

plane through network function virtualization, achieving logically

centralized control on the distributed UEs [12] . Besides, with

advances in artificial intelligence and machine learning, smart-

ness and automation have been considered as a new trend for

domain-oriented applications. For example, AlphaGo [13] with

deep reinforcement learning technology has brought great change

in the era of artificial intelligence, making it feasible to realize

smart learning which is analogous to human brain. 

Assisted by MEC whose powerful capability of computation

offloading and SDI whose specific capability of decoupling the

signaling from data and control plane, we design a distributed

traffic-processing framework of SDVTS (Software-defined Virtual

Traffic System), where QoE meets learning. Our control plane

consists of control engines responsible for managing communica-

tion, computing and storage resources of SDVTS; while the data

plane incorporates physical radio interface equipments such as

switches [14] . As shown in Fig. 1 , SDVTS also exploits the software

defined services driven by the virtual machine and the advanced

reinforcement learning system (ARL S) components. The ARL S

are developed by using a learning-enabled and low-complexity

algorithm with QoE profiling, achieving resource provisioning

intelligently despite of the explosive growth in network size. 

We make the following contributions in this work. 

• A software-defined framework, SDVTS, is proposed for traffic

processing. SDVTS incorporates scalable ARLS components

and two engines responsible for signal separation of data

and control planes. 

• SDVTS implements request-based and push-based services

from the user-centric and resource-oriented perspectives,
respectively. For the former, we formulate the traffic-

processing time model and intuitively decompose the com-

plex non-convex problem into sub-problems in an extreme

manner, achieving the ultra-low-latency service for user

requests. While, for the latter, we aim at adapting to the

resource partitioning in dynamics via the ARLS components.

• A dual evolution algorithm is explored to approximate the

optimal solver for power allocation, which is combined with

Lagrangian multiplier and dual analysis approach to solve

one of the sub-problems. 

• A linear approximator of Q-learning with credit is intro-

duced, which utilizes eligibility traces to resolve the impact

of the delayed property which occurs in the procedure of

reinforcement learning. Moreover, a factored approach with

the tailored QoE profiling is leveraged to tackle the problem

of the curse of dimensionality, expediting our algorithms

convergence. 

• A distributed algorithm in coalition between user and cell is

devised for the seamless connection of the ARLS and engines

in SDVTS. 

The remainder of this paper is organized as follows.

ection 2 reviews previous research. The SDVTS framework

nd problem formulation are elaborated on in Section 3 . The

ethod of an intuitive decomposition in an extreme fashion is

resented in Section 4 . In Section 5 , we illustrate the learning-

nable algorithm of the ARLS components with QoE profiling, and

he in-depth analysis on simulations is described in Section 6 .

inally, we conclude the paper in Section 7 . 

. Related work 

Substantial attention has been attracted in the macro cell

aradigm, towards fulfilling the challenging mission of resource

rovisioning smartly and effectively. 

In [2] , the authors proposed to deploy small cells in dynamics,

iminishing the voluminous traffic users sent. A new evolved
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Table 1 

Comparison of several traffic-processing schemes. 

Scheme in references Computing resource pool Scheme with learning Task duration QoE profiling 

[15–18] Local Cache No High Low 

[8] Edge Cloud No Medium Medium 

[19–21] Local Cache Yes Medium Medium 

SDVTS Cache and Cloud Yes Low High 

Table 2 

Some notations. 

Notation Description Notation Description 

k u Proportion of computing resource allocated to user by cell S Feasible set of states 

ϑ2 Variance of an additive white Gaussian noise A Feasible set of actions 

p u , b Transmission power of user associated with m on b T Iterative episode 

C Set of clouds for computation, where c ∈ { 1 , 2 , . . . , C} p max 
m Maximal power available 

ℵ u Computing cycles of CPU consumed by edge cloud p need 
u,b 

Needed power 

f u Computing capacity of CPU (cycles per second) r u , b Uplink data rate ̂ ω Weight of Q ( s , a ) for each user-cell pair ρ Convergence threshold of the weight 

e base Basic energy of maintaining communication p all 
m Total transmitting power 

� Set of the non-negative Lagrangian multipliers Q u User ′ s Q function 

c u Size of cloud set for computing the offloaded task user sent W Cell ′ s bandwidth 

w u,b Non-orthogonal spectrum bandwidth E max Maximal energy of battery 

q ( n ) Available energy at time slot n on the user ′ s side e loss ( n ) Consumed energy at n 

D u Required number of CPU (cycles) for each task � G and � E Learning step size 

ϱn Eligibility trace vector for U features about users at n � Set of parameters 

F u , c ( n ) Realization of computing capability f u , c εn Probability of greedy selection 

R The immediate revenue at next time slot β The discount factor and β ∈ [0, 1) 
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acket core (EPC) infrastructure for next generation cellular net-

orks was devised in [3] . The architecture and delay analysis

n 5G networks were investigated from the perspective of cloud

aching in [4] . 

Some recent literature made effort s to enhance resource uti-

ization in [15–18] and [22] , which focused on the Stackelberg

ame theory or matching theory to carry out resource scheduling,

o some extent, achieving effective resource management. The

bove game theory literature often rely on ideal assumptions on

odes in the homogenous environment. Many efforts concentrated

n the existence of Nash-equilibrium solution, which implied to

nd out the optimal solution. Nevertheless, it was not neces-

ary to acquire the optimal system performance combined with

oE profiling. Based on service-driven 5G networks, the authors

n [23] exploited a matching method to handle the non-convex

ptimization of spectrum resource allocation and power control

n non-orthogonal multiple access networks or in HetNets. Sim-

larly, the method of offloading resource with the interference

as proposed in [24] . The authors in [25] formulated resource

llocation as an optimization problem with multiple constraints.

hey split the problem into multiple sub-optimal problems, i.e.,

he Lagrangian dual approach and the method of subgradient

sing genetic algorithm. However, to the best of our knowledge,

hese approaches are not scalable with the explosive growth in

etwork size. A scheme of resource assignment combined with

loud computing was designed in [26] , which is compatible with

he specific application of drones. To be intelligent, the macro

ells have to learn to assign their scarce resources to achieve the

igh-effective resource utilization in dynamics. 

Recent advances in computing (i.e., cloud/fog/edge computing)

as profound impacts on task offloading and resource allocation. A

ask offloading approach with edge cloud was proposed [8] . While

t was not taken into consideration that how to make marco cells

earn resource provisioning smartly regardless of the ever-lasting

rowth in traffic. In [19,20] and [27] , Q-learning approach for the

ynamic resource allocation was adopted to address the problem

f the co-existence between LTE and WIFI. In [20] , the authors

everaged the linear approximator with the actor-critic reinforce-

ent learning method to find out the optimal or suboptimal
olution so that they could schedule and allocate resources effec-

ively. However, there was no description about how to reduce the

imensionality of state-action space. Similarly, a linear and logistic

egression approximator was utilized in [27] . However, the logistic

egression model may constrain the scalability of approximator. 

For the non-linear and non-convex optimization problem, a

ax-min fairness rate control approach using Perron–Frobenius

heory was investigated in [21] . In [28] , a non-linear reinforcement

earning approach with the neural network was employed for the

ehicle networking, which integrated the well-established dual

etwork model in [29] and [30] . 

Considering the MEC and SDI, we devise a SDVTS framework

hat promotes the efficiency of resource utilization in an inter-

ctive loop and in return offers better QoE for users via pushing

he cell ′ s effective resources to user. Further, we formulate the

raffic-processing time model and intuitively decompose the

omplexly non-convex problem into sub-problems in an extreme

anner, achieving the ultra-low-latency service for users ′ requests.

oreover, a factored approach with the customized QoE profiling

s leveraged to tackle the problem of the curse of dimensionality,

xpediting our algorithms convergence. 

A taxonomy of various schemes is provided in Table 1 , where

he QoE profiling is divided into different levels (i.e., low, medium

nd high). The high level of QoE profiling means the user ′ s re-

uests are highly satisfied. 

. SDVTS framework and problem formulation 

In this section, we will elaborate on the system model and

roblem formulation. For ease of reference, notations are summa-

ized in Table 2 . 

.1. SDVTS framework 

A schematic framework of SDVTS that is embedded in MBS

s depicted in Fig. 2 . It incorporates ARLS components and two

ngines. The UEs send requests to cell for service. MBS calls the

ata engine to handle the requested service as soon as possible

ccording to its remaining resources, involving cloud and spectrum
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Fig. 2. The schematic framework of SDVTS in an interactive loop. 
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n  
resources that are analyzed by the ARLS components. The results

of the in-depth analysis, on one hand, realize the resource parti-

tioning for the cell. On the other hand, they are sent to users via

signaling constructed by control engines, pushing them to make a

better choice of requesting resources or traffic, facilitating positive

interaction for the resource utilization. Besides, the learning agent

of the components in SDVTS observes the environmental state and

receives its reward (or penalty). Then it takes certain appropriate

action under certain policy. 

The framework uses the ARLS for an interactive feedback to

cells, which is capable of processing unprecedented growth of

spatio-temporal traffic intelligently. It can be applied to many new

delay-critical and computation-sensitive applications such as the

unmanned aerial vehicle (UAV) [31] , the tactile Internet [32] and

runtime control on robotics [33] . 

3.2. Communication model 

MBS has multiple cloud servers to manage small cells and

users within its coverage. The traffic is mainly to be handled by

macrocells. If necessary, the MBS will decide to offload a portion of

the workload to the clouds according to the result of our proposed

smart learning algorithms. Without loss of generality, the path loss

has been considered and can be calculated. Let g u , b denote channel

gain between the UEs u (u ∈ { 1 , 2 , . . . , U} ) and the virtual channel

b (b ∈ { 1 , 2 , . . . , B } ) . g u , b can be known by the pilot signal sent by

cell when cell is associated with UEs. U and B are allocated by the

cell. B h stands for the set of occupying sub-channels and B h ⊆B .

The other users ′ interference between the user u and the channel

set B h is viewed as 
∑ 

d∈{ B h \{ b}} g u,d p u,d . According to the Shannon

theory [34] , we can obtain the uplink data rate r u , b as follows. 

r u,b = W log 2 (1 + SINR ) (1)

SINR = 

g u,b p u,b ∑ 

d∈{ B h \{ b}} g u,d p u,d + ϑ 

2 
(2)

where SINR in Eq. (2) represents the received signal-to-

interference-plus-noise ratio that has the intra-interference of
he user u associated with cell on the channel b . For simplification,

e assume that the spectrum band W is a constant given by the

ell that has the information about other users ′ power status.

ased on the communication model, we present the following

roblem formulation. 

.3. Problem formulation 

The users send requests for accessing the Internet or uploading

downloading) data to (from) the MBS dynamically. Once con-

ection is established between the user and MBS at certain time

lot, cells tend to cope with the corresponding service as soon

s possible. However, since the caching, computing and spectrum

esources in macro cells are restricted, MBSs are incapable of han-

ling all tasks users sent. They would rather choose to deliver the

art traffic to the MEC than deliver the whole task to them if the

raffic can be offloaded. Because users can timely obtain the part

raffic that is directly dealt with by the MBS. The waiting time of

rocessing traffic will be sharply shortened. This is different from

he existing work [8] where the traffic is handled either entirely

y local processing units or totally by MEC. Nevertheless, how to

ffload the traffic, how much it is offloaded to MEC and whether

t can be offloaded or not are beyond our concerned scope, which

s detailed in [35] . Our focus is that the MBS can still handle the

art traffic, achieving the ultra-low delay for user ′ s experience

ince the whole task for offloading to the MEC needs the waiting

ime which significantly affects the QoE. 

Let M 

n ( Z u , D u ) denote a requested task in certain time instant

 (n ∈ { 1 , 2 , . . . , T } ) , where Z u is the traffic size acquired by the

ser u . The cell judges whether the request can be processed by

tself or not according to its resource status and the computing

apability. If the cell m can completely cope with the task, the de-

ay of tackling traffic is denoted as t u , m 

, i.e., t u,m 

= 

Z u 
r u,b 

. Otherwise,

he delay mainly involves the time t u , m 

produced by the cell for

ata processing and the part time t u , c caused by the cloud which

rocesses the rest of the task user u sent. Namely the totally

raffic-processing time is t all 
u . t all 

u = t u,m 

+ t u,c = 

Z u 
r u,b 

+ 

ℵ u 
k u f u 

, where

he size of traffic that is handled by the cell is Z u . The MEC will

rocess the rest amount of traffic that is denoted as (Z u − Z u ) and

ransform it into the computing amount of CPU denoted as ℵ u .

e hypothesize the time of offloading the remainder of traffic to

he cloud is negligible. The reason is that we anticipate the traffic

ser sent can be entirely processed by cell as possible as it can

o that the user can obtain the feedback timely by our proposed

ramework. Further, the traffic for offloading is the small fraction.

ased on the user-centric principle, we focus on the processing

ime for the traffic users sent. The main consumed resource of the

loud is measured by CPU. We expect to minimize the cell ′ s time

f handling traffic, enhancing the QoE for all users. That is, the

ptimization problem P1 is given as follows. 

1 : min 

Y,X,P,K 

U ∑ 

u =1 

B ∑ 

b=1 

y n u,b [ x u,m 

t u,m 

+ (1 − x u,m 

)(t u,m 

+ t u,c ) ] (3)

.t. C1 

∑ U 
u =1 

∑ B 
b=1 y 

n 
u,b 

p u,b = p all 
m 

∀ u ∈ U, ∀ b ∈ B, ∀ n ∈ T . 

C2 x u,m 

∈ { 0 , 1 } ∀ u ∈ U. 

C3 p u,b ≥ 0 0 ≤ p all 
m 

≤ p max 
m 

. 

C4 

∑ c u 
u =1 k u ≤ 1 ∀ c u ⊆ C. 

C5 y n 
u,b 

∈ { 0 , 1 } ∀ u ∈ U, ∀ b ∈ B, ∀ n ∈ T . 

here the variables of Y , X , P and K represent the corresponding

et respectively, i.e., Y = [ y n 
u,b 

] , X = [ x u,m 

] , K = [ k u ] , P = [ p u,b ] . x u , m

nd y n 
u,b 

are both the indicator function. If y n 
u,b 

= 0 , the user u does

ot occupy the channel b at time instant n . It is one otherwise.
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f x u,m 

= 1 , the traffic the user u sent can be processed by the

ell completely. Otherwise, the task is tackled by cell and clouds

ointly. 

As mentioned above, the objective function is given by 

 (. ) = 

U ∑ 

u =1 

B ∑ 

b=1 

y n u,b 

[
x u,m 

(
Z u 

r u,b 

)
+ ( 1 − x u,m 

) 

(
Z u 

r u,b 

+ 

ℵ u 

k u f u 

)]
(4)

where the function of G (.) is with respect to y n 
u,b 

, x u , m 

, p u , b and

 u . 

Since there exist binary variables, P1 is non-convex, implying

hat it cannot be addressed efficiently by numerical methods sim-

lar to gradient approaches. We decompose the problem in an ex-

reme fashion in Section 4 . 

. Decomposition method 

Owing to the discrete nature of problem P1 , where y n 
u,b 

and

 u , m 

are binary, the cell cannot compute the specific values

n the fly. We decompose the non-convex problem into sub-

roblems in an extreme pattern, which is different from the

iterature in [25] where the authors addressed the problem using

ome given parameters. However, the fixed parameters are not

pplicable to real-world settings without a priori knowledge. 

.1. The solver of y n 
u,b 

= 1 , x u,m 

= 1 

Assuming that the channel b allocated to the user u is occupied

t the time instant n and the cell associated with the user u

an manage the user ′ s task. Namely y n 
u,b 

= 1 , x u,m 

= 1 . The P1 is

ransformed into the following P1-1 . 

1 − 1 : min 

P 

U ∑ 

u =1 

B ∑ 

b=1 

Z u 

r u,b 

(5) 

s.t. C1 & C3 

Substituting Eqs. (1) and (2) into P1-1 , we acquire Eq. (6) as

ollows. 

 1 (p u,b ) = 

U ∑ 

u =1 

B ∑ 

b=1 

Z u 

W log 2 

(
1 + 

g u,b p u,b ∑ 

d∈{ B h \{ b}} g u,d p u,d + ϑ 2 
) (6) 

It is known that r u , b is a monotonically increasing function

ith respect to p u , b . However, it is not necessary to be the convex

unction for Eq. (6) (Proof of convexity is relatively straightforward

nd is left out). Hence, we transform it into its dual problem

ecause of the convexity of the dual issue. 

For simplicity, let ϕ(p u,b ) = W log 2 (1 + τ p u,b ) , where

= 

g u,b ∑ 

d∈{ B h \{ b}} g u,d p u,d + ϑ 2 
. We can pick up the Lagrangian function

f the optimization problem P1-1 about C 1 and C 3 as follows. 

 (P, �) = 

U ∑ 

u =1 

B ∑ 

b=1 

Z u 

ϕ(p u,b ) 
+ 

B ∑ 

b=1 

φb 

( 

U ∑ 

u =1 

p u,b − p max 
m 

) 

(7)

here let φb denote the b th Lagrangian multiplier in the set �. 

Then, the dual function is given by 

 (�) = 

{
min L (P, �) 

s.t. C1 & C3 

(8) 

he dual problem of P1-1 is expressed as max � O (�) . 

Let φ∗ denote one of the optimal Lagrangian multipliers.

amely, φ∗ = arg max � min P L (P, �) . Next, we present the dual

volution algorithm for power provisioning in order to find out

he φ∗. Since p max 
m 

− ∑ U 
u =1 p 

∗
u,b 

(φn ) is one of the subgradients for
he dual problem, we can obtain φ∗ according to the following

onvergence equation. 

(n +1) = 

[ 

φn − αn 

( 

p max 
m 

−
U ∑ 

u =1 

p ∗u,b (φ
n ) 

) ] + 

(9) 

here [ x ] + = max { x, 0 } . αn denotes the iterative step size,

hich satisfies the conditions that αn → 0 as n → ∞ and
 ∞ 

n =1 α
n = ∞ [36] . 

To ensure the cell to adapt to the dynamic environment, it

s necessary to adjust the currently optimally fixed power as-

ignment even if we obtain optimal or near-optimal solution via

lgorithm 1 (lines 1–11). Similar to the work [25] , we utilize the

ann iterative [37] to update the power, making it evolvable (lines

2–20). 

lgorithm 1 Dual Evolution Algorithm for Power Provisioning. 

nput: Initialize p max 
m 

, convergence threshold �. 

utput: p ∗
u,b 

. 

1: while (‖ φ(n +1) − φn ‖ ≥ �) do 

2: if (y n 
u,b 

= 1) then 

3: p ∗
u,b 

= arg min 

p u,b 

(
Z u 

ϕ(p u,b ) 
+ φn p u,b 

)
s.t. 0 ≤ p u,b ≤ p max 

m 

4: p need 
u,b 

= 

∑ U 
u =1 

∑ B 
b=1 p 

∗
u,b 

5: φ(n +1) = 

[
φn − αn (p max 

m 

− p need 
u,b 

) 
]+ 

6: else 

7: Call Algorithm 2 to offer available channels 

8: end if 

9: end while 

10: φ∗ = φ(n +1) 

11: p ∗
u,b 

= arg min 

p u,b 

(
Z u 

ϕ(p u,b ) 
+ φ∗ p u,b 

)
s.t. 0 ≤ p u,b ≤ p max 

m 

12: Update power : p max 
m 

= p max 
m 

− p need 
u,b 

13: for (i = u, n = 0 ; i ≤ U, n < T ; ) do 

14: p (n +1) 
i,b 

= (1 − λn ) p n 
i,b 

+ λn p ∗
u,b 

, where λn = 

n 
2 n +1 [37] 

15: if 

(∑ U 
i =1 

∑ B 
b=1 p 

(n +1) 
i,b 

≤ p max 
m 

)
then 

16: i + + 

17: else 

18: n + + 

19: end if 

0: end for 

It is observed that the optimal value φ∗ is the lower bound of

he primal problem. The bound will be used in the section of per-

ormance evaluation. 

.2. The solver of y n 
u,b 

= 1 , x u,m 

= 0 

Suppose that the channel the cell allocated is occupied by the

orresponding user and that the traffic the user u sent is handled

y the cell and cloud c jointly, i.e., y n 
u,b 

= 1 , x u,m 

= 0 . The P1 is

ecomposed into P1-2 . 

1 − 2 : min 

P,K 

U ∑ 

u =1 

B ∑ 

b=1 

(
Z u 

r u,b 

+ 

ℵ u 

k u f u 

)
s.t. C 1 , C 3 & C 4 (10) 

Substituting Eqs. (1) and (2) into P1-2 , we derive 

 2 (p u,b , k u ) = 

U ∑ 

u =1 

B ∑ 

b=1 

(
Z u 

W log 2 (1 + τ p u,b ) 
+ 

ℵ u 

k u f u 

)
(11)

There exist two variables with respect to P and K . Given P =
 p u,b ] by Algorithm 1 , we can simplify Eq. (11) , yielding G 3 ( k u ) as
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depicted as 

G 3 (k u ) = 

U ∑ 

u =1 

B ∑ 

b=1 

(
C + 

ℵ u 

k u f u 

)
(12)

where let K = [ k u ] denote the set of the proportion about the cloud

resources which are allocated to the user ′ s task. C represents a

constant, which replaces Z u 
r u,m 

in Eq. (10) . Because it is known ac-

cording to the context. 

Lemma 1. The function G 3 ( k u ) is convex when it is subjected to the

condition C 4 in Section 3.3 . 

Proof. please see appendix. �

Hence, we can exploit the Lagrangian approach to solve the

globally optimal solution as follows. 

�(K, �) = 

U ∑ 

u =1 

B ∑ 

b=1 

(
C + 

ℵ u 

k u f u 

)
+ 

B ∑ 

b=1 

θb 

( 

c u ∑ 

u =1 

k u − 1 

) 

(13)

Since the gradient of Eq. (13) is obtained, the constant C, in

essence, does not affect the optimal solution with regard to K . We

prefer to adopt k ∗u = k u . The optimal solution is given by 

k ∗u = 

√ ℵ u ∑ c u 
u =1 

√ ℵ u 

(14)

where c u is not the variable. Once the traffic request is built, the

cell will obtain its value. 

Substitute p ∗
u,b 

obtained by Algorithm 1 and k ∗u in Eq. (14) above

into Eq. (11) . The optimal solution of G 4 (k ∗u , p ∗u,b 
) is calculated as 

G 4 (k ∗u , p 
∗
u,b ) = 

U ∑ 

u =1 

B ∑ 

b=1 

(
Z u 

W log 2 (1 + τ p ∗
u,b 

) 
+ 

ℵ u 

k ∗u f u 

)
= 

U ∑ 

u =1 

B ∑ 

b=1 

(
Z u 

W log 2 (1 + τ p ∗
u,b 

) 
+ 

∑ c u 
u =1 ℵ u 

f u 

)
(15)

5. Double approximated learning algorithm with QoE profiling 

in ARLS components 

As the compensation for the extreme method, a learning-

enabled scheme is designed, making the variables flexible such as

y n 
u,b 

and x u , m 

. To make the MBS intelligent, we develop a double

approximated learning algorithm with the tailored QoE profiling in

an online-offline fashion, which is the main function of the ARLS

in SDVTS. 

5.1. Bellman equation 

It is generally acknowledged that the optimally stochastic

control problem of resource allocation can be constructed as the

discrete time Markov decision process (MDP) with the continuous

spaces concerning state and action [38] . 

The macro cells learn to take next action a 
′ 
(a 

′ ∈ A ) according

to certain policy π at the current state s (s ∈ S) and the current

action a (a ∈ A ) to yield the lower cost (or higher profit) of Q ( s , a )

given by Bellman equations [39] in a recursive manner as follows.

Q(s, a ) = E s ′ 

[ 

R + β
∑ 

s ′ ∈S 
P r(s 

′ | s, a ) min 

a ′ ∈A 
Q 

π ( s 
′ 
, a 

′ | a ) 
] 

(16)

where E [.] refers to the expected rewards in the long term. s 
′ 

is next state. Pr (.) is the transition probability. In other word,

the Q function captures the expectations of cumulative costs (or

rewards) with discount when the system takes the action a at s . 
The objective of Q-learning is to learn how to map environment

tates to the optimal actions under certain policy after gathering

he learning experience by trial and error. The optimal policy π is

btained by π(n +1) (s, a ) = arg min 

a 
Q 

πn (s, a ) for ∀ s ∈ S, ∀ a ∈ A . 

.2. Enhanced Q function 

Due to the time-varying channels during the procedure of serv-

ng users, we construct the communication model as the finite-

tate Markov chains, which is widely accepted to act as an effective

pproach of characterizing the correlation structure of fading pro-

ess [40] . Therefore, the SINR as a parameter is used to measure

he quality of channel. The received SINR for user u on channel

 is viewed as a random variable h u , b whose range can be quan-

ized into the discrete levels with the number of H . Namely, H 0 , if

 0 ≤ h u , b < h 1 ; H 1 , if h 1 ≤ h u , b < h 2 ;...; H H−1 , if h u,b ≥ h H−1 . Each level

orresponds to a state of a Markov chain, forming H -element state

pace which is denoted as S h = { S h 
0 
, S h 

1 
, S h 

H−1 
} . The channel state of

ealization of h u , b at time instant n can be denoted as H u , b ( n ). The

eceived h u , b of SINR varies from one state s h to another s 
′ 
h 

when

ne time slot elapses with the uncertain transition probabilities

f P u,b (n ) at time slot n. The H × H matrix of the state transition

robability for user u occupying the channel b is defined as 

 

pipe 

u,b 
(n ) = 

[
P r(H u,b (n + 1)) = s 

′ 
h | H u,b (n ) = s h 

]
H×H 

(17)

here s h , s 
′ 
h 

∈ S h . Let J (bit per second) denote the wireless com-

unication capacity between the cell m and its all associated

sers. Owing to the interference to the user u from other users

hat are also connected to the cell, the achievable spectrum effi-

iency of the user u connecting to the channel b can be expressed

s k u,b . It can be easily calculated by the cell after the information

xchange with the user. Consequently, the communication rate

 u , b 
pipe for the user u at time slot n can be given by 

 

pipe 

u,b 
(n ) = y u,b (n ) ∗ w u,b (n ) ∗ k u,b (n ) , ∀ u ∈ U, ∀ b ∈ B (18)

The sum rate of all users that are associated with the cell on b

hould satisfy the inequality that 
∑ U 

u =1 

∑ B 
b=1 R 

pipe 

u,b 
(n ) ≤ J . 

Consider let f u , c denote the cell ′ s computational capability

hat is allocated to the user u . f u , c is measured by CPU (cycles

er second). In the wireless networks, different requests have

ifferent com puting speed for the cell. Thus the f u , c can be viewed

s a random variable and divided into discrete levels denoted

y S c = { S c 
0 
, S c 

1 
, . . . , S c 

N−1 
} , where N is the number of states about

omputing capability available. We hypothesize the realization of

he capability for f u , c is represented as F u , c ( n ) at time slot n . Sim-

lar to the channel power allocation, the corresponding transition

robability matrix of the cell m for the user u is defined as 

 

comp 
u,c (n ) = [ P r(F u,c (n + 1)) = s 

′ 
c | F u,c (n ) = s c ] N×N (19)

here s c , s 
′ 
c ∈ S c . The running time of computing the traffic M 

n ( Z u ,

 u ) at the cell can be calculated as t u,c = 

D u 
F u,c (n ) 

. We formulate the

omputing rate (bits computed per second) as 

 

comp 
u,c (n ) = x u,m 

(n ) ∗ y u,b (n ) ∗ Z u 

t u,c 

= x u,m 

(n ) ∗ y u,b (n ) ∗ Z u ∗ F u,c (n ) 

D u 
(20)

here the caching volume of cell should satisfy the inequality of
 U 
u =1 

∑ B 
b=1 y u,b (n ) ∗ Z u ≤ O where O is the total caching volume

or caching user ′ s tasks. 

Furthermore, we define the immediate cost (or payoff) R on the

ell ′ s side as 

 (n ) = R 

pipe 

u,b 
(n ) + R 

comp 
u,c (n ) (21)
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As aforementioned, we present the following definition of Q

unction. 

efinition. Q function of cell: Q m 

(v , A ) = Q m 

(v (n ) , A (n )) , where

 (n ) = [ H 

T 
u,b 

(n ) , F T u,c (n )] T . H 

T 
u,b 

(n ) = [ H 

1 
u,b 

(n ) , H 

2 
u,b 

(n ) , . . . , H 

B 
u,b 

(n )] T ,

ndicating the status of the logical channels for the user

t time slot n in cell, which is described above. F T u,c (n ) =
 F 1 u,c (n ) , F 2 u,c (n ) , . . . , F C u,c (n )] T , indicating the situation of the current

esource about cloud. T is the transpose of a matrix or vector.

 (n ) = [ Y T (n ) , X T (n )] T is a binary matrix that Y (n ) = [ y n 
u,b 

] and

(n ) = [ x u,m 

] for ∀ u ∈ U , ∀ b ∈ B , y u , b ( n ) ∈ {0, 1} and x u , m 

( n ) ∈ {0, 1}. 

efinition. Q function of user: Q u (�, A ) = Q u (ψ(n ) , A (n )) , where

(n ) = [ q n u , l 
n 
u ] 

T . l ( n ) is the priority of handling the traffic, which

s picked up by the fields in the package user sent. q (n ) = E max −
 loss (n ) . 

Combined with the QoE at the user side, we model the ad-

anced Q function as 

(s, a ) � Q u (�, A ) + Q m 

(v , A ) (22)

here we use “� ” to denote “is defined to be equal to” and use

 . ‖ to denote the L 

2 norm in this paper. 

Subsequently, a approximated Q function with eligibility traces

s described in detail. 

.3. Approximated Q function with eligibility traces 

There are many approximators such as the linear and non-

inear ones. Nevertheless, reinforcement learning algorithms tend

o diverge when used with the non-linear function approximators

ike the neural network [28] . Whereas the linear one is a popular

pproach for rendering the Q-learning algorithm applicable to

he real-world settings [20] . To guarantee the fast convergence

nd the stability, we, therefore, develop a novel linear Q-function

pproximator ̂ Q (s, a ) as follows. ̂ 

 (s, a ) = ̂

 ω 

T Q(s, a ) (23)

The temporal difference error (TD error) δ stands for the gap

etween the approximated value of the Q-function at next time

lot and the current value, which is usually estimated as 

n = R 

(n +1) + β ̂ Q (s (n +1) , a (n +1) ) − ̂ Q (s n , a n ) (24)

Reinforcement learning is a method of interaction with en-

ironment, making it have the property of delayed reward (or

enalty). To be specific, the current action may impact the imme-

iate cost (or reward), so do the following ones in all subsequent

ime steps. Consequently, we introduce the eligibility traces that

ffer more efficient weight by assigning the credit to the previous

tates and actions that are experienced and by recording the

istorical value of Q function temporarily. 

The updated equation of the eligibility trace vector [41] is given

y 

 

(n +1) = �β� 

n + Q(s, a ) (25)

here � is the trace-decay parameter and its range is [0,1). If � = 0 ,

t will be updated as the current Q value achieved. Since it accu-

ulates the state-action pair for each step, the eligibility trace in-

reases for the Q value achieved at this step. The trace will decline

radually if the Q value is not achievable, which suggests that the

urrent state-action pair achieved are more eligible for participat-

ng in the learning procedure. Thereby, the non-trivial weight of

he approximated Q function becomes ̂ 

 

n = ξ n δn � 

n (26) 

here ξ is the updated rate of the following Q function and ξ ∈ [0,

). 
The update of Q function proceeds with the iteration as fol-

ows. ̂ Q 

(n +1) (s n , a (n +1) ) = (1 − ξ n ) ̂  Q 

n (s n , a (n +1) ) 

+ ξ n 
[ 

R (s n , a (n +1) ) + β min 

a (n +1) ̂

 Q 

n (s (n +1) , a (n +1) ) 
] 

(27) 

.4. Factored Q-learning algorithm and SDVTS mechanism 

To endow our algorithm not only with the fast convergence but

lso with the scalability, we propose a factored learning approach

ith low complexity subsequently. 

Recall that we have redefined the Q function with QoE profiling.

amely Q(s, a ) � Q u (�, A ) + Q m 

(v , A ) . The first term of Q function

n the user ′ s side is expressed as 

 u (�, A ) � 

U ∑ 

u =1 

ζu � { q n u ≥e base } (28)

here the symbol of the summation represents all the requests

sers sent. The indicator function � { . } takes the value 1 if its argu-

ent holds and 0 otherwise. While ζ u is the average cost of han-

ling the request if the user ′ s energy left is larger than the basic

nergy for transmitters or receivers at time slot n . We can describe

he user ′ s Q function as 

 u (�, A ) = G 

T (q n ) (29)

here G (q n ) = [ ζ (q n 
1 
≥e base ) , ζ (q n 

2 
≥e base ) , . . . , ζ (q n 

U 
≥e base )] T . 

Similarly, The second term of Q function at the cell side is de-

cribed as 

 m 

(v , A ) � 

H−1 ∑ 

g=0 

N−1 ∑ 

f=0 

εg, f � { s h g =1 } � { s c 
f 
=0 } (30)

here it is different from the first term that the symbol of the

ummation represents all the levels of SINR and the utilizable

loud resources which is elaborated on in Section 5.2 ; while εg , f 

aptures the average cost of system if the subchannel is occupied

nd the traffic is dealt with by cell without the help of cloud

ervers who cope with the offloaded traffic. By defining the H × N

atrix with ( g , f ) th entry E = [ εg, f ] , Q m 

(v , A ) is rewritten as 

 m 

(v , A ) = μT (S h g ) E (1 − S c f ) (31)

here μ(S h g ) = [ μ(S h 
0 
) , μ(S h 

1 
) , . . . , μ(S h 

H−1 
)] T . 

Then we define � � { G , E } . The original Q function of

q. (22) can be redefined as 

 �(s, a ) = G 

T (q n ) + μT (S h g ) E (1 − S c f ) (32)

Clearly, the learning function is transformed from the origi-

al Q function Q ( s , a ) to the novel function Q �(s, a ) . The original

q. (23) about Q function is replaced by the double approximators

s follows. ̂ 

 (s, a ) = ̂

 ω 

T Q �(s, a ) (33)

Note that we mainly address the problem about the learning

arameter set �. 

Given the current estimates of parameters { G , E } at n after the

hase of fulfilling the information exchange at next time slot (n +
) , the instantaneous error is calculated by ̂ e (s n , a (n +1) ) � R (s n , a (n +1) ) 

+ β min 

a (n +1) 
Q �n 

(s (n +1) , a (n +1) ) − Q �n 
(s n , a (n +1) ) (34) 

The average value of instantaneous error is defined as 

(s n , a (n +1) ) � 

1 

( ̂  e (s n , a (n +1) )) 2 (35)
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Fig. 3. Impact of ϖ on the normalized loss function of Q-learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Q-learning Algorithm with Tailored QoE Profiling. 

Input: Q(s, a ) ← 0 ; n ← 0 

Output: ̂ Q (s, a ) 

1: while (n < T ) do 

2: 

a (n +1) = 

{
arg max a ∈A Q 

n 
�(s n , a ) w.p. 1 − ε n 

random a ∈ A w.p. ε n 

3: Perform action a (n +1) , obtain R (n ) and s 
′ 

4: Save the tuple (s, a, R (n ) , s 
′ 
) in the replay as the samples of 

the accumulated experience 

5: if (Q function convergence = false) then 

6: Update Q function according to Eq. (27) 

7: else 

8: ̂ ω 

n ← 1 ; Q (s, a ) � [ Q �(s, a )] 

9: ̂ A ← � // U × U matrix 

10: ̂ b ← � // U × 1 vector 

11: Calculate total R by Eqs. (18), (20) and (21) 

12: for all (sample (s, a, R (n ) , s 
′ 
) in the replay) do 

13: Calculate ̂ ω 

n by Eqs. (24)–(27) 

14: ̂ A ← ̂

 A + Q (s, a )(Q (s, a ) − βQ (s 
′ 
, a 

′ 
)) 

15: ̂ b ← ̂

 b + Q (s, a ) R (s, a ) 

16: ̂ ω 

(n +1) ← ̂

 A 

−1 ̂ b 

17: if (‖ ̂  ω 

(n +1) − ̂ ω 

n ‖ < ρ) then 

18: Calculate { G , E } via Eqs. (36) and (37) 

19: Calculate Q � via Eq. (32) 

20: Return 

̂ Q (s, a ) ← ̂

 ω 

(n +1) Q �(s, a ) 

21: else 

22: Update δn and � 

n by Eqs. (24) and (25) 

23: Update Q � according to Eq. (38) 

24: end if 

25: end for 

26: end if 

27: n + + 

28: end while 

t  

F  

u  

t  

t

The updated rule of parameter are obtained by utilizing the it-

erations of the stochastic gradient descent, which is described as 

G 

(n +1) = G 

n − � G ∇η(s n , a (n +1) ) 

= G 

n + � G ̂
 e (s n , a (n +1) ) ∇ G Q �n 

(s n , a (n +1) ) 

= G 

n + � G ̂
 e (s n , a (n +1) ) G 

T (36)

E 

(n +1) = E 

n − � E ∇η(s n , a (n +1) ) 

= E 

n + � E ̂
 e (s n , a (n +1) ) μ(S h g (n ))(� − S c f ) 

T (37)

where � G and � E are both set to 0.005 that are obtained by our

simulation presented in Fig. 3 wherein the ϖ stands for the two pa-

rameters of � G and � E . If the learning step size is set to the large

value, which speeds up the learning procedure. It is easy to miss

the optimal value, which is acquired from Fig. 3 that the normal-

ized loss function is increasing. The function will be supervising

the Q-learning procedure. 

We notice that the updates of Q �(s, a ) as follows is similar to

Eq. (27) . However, the low-complexity approximator of Q function

is Q �(s, a ) instead of the original Q ( s , a ). 

Q �(n +1) 
(s n , a (n +1) ) = (1 − ξ n ) Q �n 

(s n , a (n +1) ) 

+ ξ n 
[ 

R (s n , a (n +1) ) + β min 

a (n +1) 
Q �n 

(s (n +1) , a (n +1) ) 
] 

(38)

The Q-learning algorithm with the tailored QoE profiling is tab-

ulated in Algorithm 2 , where the low-complexity learning proce-

dure occurs in an iterative manner at the online stage (lines 1–6),

which implies the Q function does not converge. Note that line 6 is

the updated process of Q function, which is also the learning pro-

cess online. If the objective function converges, the offline learning

occurs. The QoE profiler is produced in the offline learning phase

(lines 8 to 25). Combined with the eligibility traces, we exploit the

least square method to further adjust the weight, circumventing

the problem of the delayed reward (or penalty) in the reinforce-

ment learning algorithm. Combined with our improved Q function

and the weight, the offline learning is to update the weight and

the other parameters that are needed in the deep convolutional

neural network (DNN). The updated parameters are in return

guiding the selection of next action (line 2), which is at the online

stage. From the perspective of the algorithm complexity, we have

done massive related experiments. Then we confirm that if the

offline learning is revised as the online learning, the results show
he complexity is higher than that with our proposed Algorithm 2 .

urthermore, the delay of feedback is larger, which impact the

ser ′ s QoE. Note that there exist two-fold improvements, namely

he Q function itself and the credit weight with the eligibility

races. 



L. Yu, Z. Li and Y. Zhong et al. / Computer Networks 167 (2020) 106904 9 

 

a  

c  

a  

r  

t  

m  

t  

M  

a  

s  

t  

o

A  

C

 

 

 

 

 

6

 

a  

i

6

 

O  

P

 

p  

Table 3 

Parameters values in experiments. 

Parameters Values 

W 20 MHz 

D u 100 Mcycles 

Z u 1 Mbits 

T 10 −2 s 

β 0.9 

p max 
m 45 dBm 

ϑ2 −100 dBm 

F u , c ( n ) [4,6,8,10,12] GHz [37] 

εn 0.05 
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To exhibit how the SDVTS works, We devise a distributed

lgorithm in coalition between user and cell for the seamless

onnection of the ARLS components and engines as depicted

s Algorithm 3 where we observe that the UEs should make

esponse to MBS according to their energy and the priority of the

raffic-processing urgency. The value of the priority l ( n ) is high,

edium or low, which can be yielded on the user ′ s side. Notice

hat the users’ energy or priority has been received by MBS. The

BS enables to do next action according to algorithms. It may do

ction according to the greedy algorithm [42] to make alternative

uggestions if the users are sending their energy or the priority. In

his case, it is an open problem and we will do further research in

ur future work. 

lgorithm 3 Distributed Algorithm in Coalition between User and

ell. 

Step (1) : On the cell ′ s side 

Control engines : 

1 : Send commands of priority to data engines via the received

traffic commands and user state 

2 : Call Algorithm 1 

3 : Combined with its current state, cell sends commands of

power allocation to data engines 

4 : Call algorithm 2 

5 : Combined with its current state, cell sends commands of re-

source allocation to data engines 

Data engines : 

1 : Perform commands of power allocation received by control

engines 

2 : Perform commands of resource provisioning by control en-

gines 

3 : Calculate G (y n 
u,b 

, x u,m 

, p u,b , k u ) by Eq. (4) 

4 : Return pushed service to user 

Step (2) : On the user ′ s side 

1 : n ← 0 

2 : while ( n < T ) do 

3 : if ( (E max − e loss ) ≥ q (n ) or l(n) is high) then 

4 : if (receiving push-based service) then 

5 : Send the corresponding resource request 

6 : Update energy 

7 : else 

8 : Actively send requested service if needed 

9 : Update energy 

10 : end if 

11 : else 

12 : Send its information of Q function to MBS 

13 : end if 

14 : n + + 

15 : end while 

. Performance evaluation 

Based on the real-world settings, we make an in-depth analysis

bout the performance of our approaches via extensive simulations

n this section. 

.1. Experiment settings 

The main parameters in our simulation are listed in Table 3 .

ther parameters are set in accordance with the 3 rd Generation

artnership Project (3GPP) specifications [43] . 

Since the iterations vary from the network scales in our ex-

eriments as follows, the convergence threshold is dynamic in
lgorithm 1 in Section 4.1 . We need to adjust the iterative thresh-

ld � via the empirical value such as 300. The value was derived

rom the Fig. 4 by extensive simulation, which is the empirical

alue. However, the different network scale will have influence

n it. From Fig. 4 , we observe that the oscillation of the curve

ccurs with the increase of network size. However, the amplitude

f oscillation becomes smaller than before and is approaching to

00. We take the average of iterative threshold � and yield the

mpirical value. 

There are four algorithms for comparison in our simulation: 1)

DVTS: Our proposed algorithms are introduced by SDI and linear

earning approximator with low complexity so as to allocate re-

ource intelligently; 2) ACL: It is the abbreviation of the actor-critic

earning algorithm in [20] , which adopts the linear appximator

ithout taking the curse of dimensionality into account; 3) TOC:

he algorithm [8] leverages the cloud for offloading the traffic

ithout the aid of the learning approaches; 4) SGT: The approach

tilizes the Stackelberg game theory for the resource provisioning

roposed in [15–18] with no assistance of the learning algorithm. 

.2. Performance metrics 

To evaluate the performance of the novel framework SDVTS we

roposed, We employ the following metrics. 

• Delay of dealing with traffic: The MBS processes the requests

users sent. The delay produced by cell has a non-trivial in-

fluence on the quality of experience. From the UEs ′ perspec-

tive, we expect the traffic-handling latency as low as possi-

ble. 

• Average value of SINR for users: We tend to demonstrate

the effect of our learning scheme by exhibiting the values

of SINR which acts as another metric of the QoE. We desire

to receive the high SINR in order to have the high quality of

the received signal. 

• Throughput rate of system: It is a crucial criterion for the

MBS to measure whether it is efficient for the resource

assignment with different algorithms or not. The lower

throughput rate suggests the higher delay of coping with the

traffic, implying that the scheme of the resource provision-

ing is not optimal. 

• Number of iterations: It is a significant measurement to

weigh the efficiency of algorithms. As we all know, the fewer

iterations are, the better the algorithm is. 

• Convergence time: It is a quantified metric for the efficiency

of certain algorithm. It is various in different scenes. It also

weighs the feasibility of algorithm. 

.3. QoE comparison 

As shown in Fig. 5 (a), it shows the impact of the traffic-

rocessing delay on the network size with different schemes. The

rend of SGT almost presents prominently increasing, suggesting
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Fig. 4. Impact of � on the network size. 
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Fig. 5. Impact of the traffic-processing delay on the network size and task amounts. 
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that the delay for dealing with traffic increases with the expanding

of network size. While the curves of ACL and SDVTS rise slowly,

implying the learning algorithms, to some extent, take effect on

the latency especially for the ultra-dense networks. The curve of

ACL is still ascending with the increase of network scale because
he demands is diverse and the space for storing states and actions

s limited. While the trend of curve with SDVTS is almost stop

scending, achieving the ultra-low latency. The reason is that the

DVTS leverages the software defined engines which separate

he data and control signaling and the double approximators of

he learning algorithms with low complexity. In contrast to the

CL, the traffic-processing delay of the SDVTS approach decreases

bout 43%. That is, our proposed framework for processing traffic

utperforms ACL in terms of latency, which enhances the QoE.

evertheless, note that the delay of TOC aided by clouds without

he learning-enable algorithm is rather lower than that of ACL and

DVTS when the network size is small. It reflects that the effect

f using the learning algorithm does not work well in the small

etworks since the learning procedure takes up time and it is

asy to suffer from the problem of oscillation in the first training

hases. Note that the traffic-processing time of SDVTS is becoming

nchanged when the network size is around 970; while the time

f TOC is almost increasing linearly. 

Suppose the requested traffic is subjected to the normal dis-

ribution, we simulate the time of handling task on the cell’s side

ith different schemes under the premise of normal distribution.

s illustrated in Fig. 5 (b), we notice that the traffic-processing time

f SDVTS presents a non-continuous increase when it is compared

ith the time of the other strategies from the global perspective.

owever, SGT and TOC initially perform a little better than the

earning method of ACL and SDVTS. While the ACL is still worse

han the SDVTS with the increasing amount of traffic. Because,

ssisted by SDI, the SDVTS leverages the improved reinforcement

earning algorithm with low complexity, fulfilling the intelligent

esource assignment with the personalized QoE profiling in the

ong run. 

It has described the impact of average value of SINR for users

n the network size with different approaches in Fig. 6 (a). We

onclude that the SDVTS achieves the highest SINR in the other

pproaches. Because its ARLS components works well, which

mploys the double approximators of the learning algorithm with

he tailored QoE profiling. Besides, note that the SINR with SDVTS

trategy, overall, is higher than the threshold of SINR despite of
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Fig. 6. Comparison of SINR and throughput rate with the network size for different 

strategies. 
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Fig. 7. Comparison of iterations for different SBSs with the different amounts of 

UEs under different schemes. 
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he continuous growth in the network size. Further, we notice that

he QoE of the learning-enable algorithms in the aspect of SINR is

etter than that without the learning ones with the network scale

ncreasing. In addition, the curve of SINR with SDVTS reflects that

he dual evolution algorithm we developed achieves the optimal

r near-optimal solution, since we offer the lower bound of power

elated to SINR , which is illustrated in Section 4.1 . 

While, as depicted as Fig. 6 (b), it is observed that the through-

ut rate of the MBS system with the learning algorithm such

s SDVTS and ACL is lower than that without the learning ones

f TOC and SGT at the initial stage. Because the initial learning

lgorithm is easily encountered with the oscillation and instability

ithout the sufficient samples. However, their throughput rate

ecomes higher than that of TOC and SGT as the increase of net-

ork size, suggesting that SDVTS and ACL is more adaptive to the

arger networks that cater to the characteristics of next generation

ireless networks. While our proposed SDVTS dominates in terms

f the cell ′ s throughput rate when in comparison with the ACL

s it is the low-complexity learning algorithm in provisioning the

fficient resources. 

.4. Performance verification 

The comparison of iterations for different SBSs with the differ-

nt amounts of UEs under different schemes is revealed in Fig. 7 (a)

nd (b). We observe that the iterations increase because of the

rowing SBSs. Whereas ACL and SDVTS are faster than TOC and

GT in the convergence time, showing that leveraging the learning-

nable algorithm takes effect. Note that the gap between Fig. 7 (a)

nd (b) is rather distinct when the range of the number of SBSs

s from 15 to 28, and the iterations of SDVTS are the least among

he compared schemes. It is concluded that the SDVTS, which is

ssisted by SDI and the double approximators of reinforcement

earning with low complexity, is adaptable to the large networks. 
The comparison of convergence time with different approaches

s depicted as shown in Fig. 8 (a). We observe that the convergence

ime of SDVTS is the shortest among the other schemes despite of

ncreasing the network scale. Unlike the ACL and SGA approaches,

he SDVTS adopts the double approximators with the online-offline

earning to approximate the optimal policy via the QoE profiling.

hile compared with the SGA and TOC approaches without the

earning algorithm, SDVTS and ACL converge faster than them, sug-

esting the learning-enable algorithm can make the system smart

o adapt to the dynamic environment in the ultra-dense HetNets.

ote that almost all curves except for SDVTS in Fig. 8 (a) have

ndergone two stable changes in convergence time with different

etwork size, which means they is prone to be unstable. Compared

ith them, SDVTS we proposed has advantages over stability. 

In order to evidence that the elaborate framework, SDVTS, has

he generalization ability, the system performance in different

cenarios with different schemes is illustrated in Fig. 8 (b). It is not

asy to quantize the performance for different systems because

f the various demands in different applications. We carry out

xtensive simulations on different scenarios with vehicle networks,

ellular networks, drones networks and even with the HetNets

hybrid networks) respectively. Herein, we adopt the same MBS

nder the different networks to measure the performance of it.

n MBS, we exploit a 2-layer fully-connected feedforward neural

etwork which has 64 and 32 neurons in the first and second layer

espectively. The Leaky Rectifier [44] is acted as the activation

unction before the final output layer which utilizes the softmax

or activation. The activation function is to ensure the sum of

he output values equals one. That is why the range of y-axis of

ig. 8 (b) belongs to [0, 1]. The unit of y-axis is the percentage

f the performance of MBS. According to our results as shown in
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Figs. 6 (a) and 8 (b), we observe that, contrary to ACL and SDVTS

with the learning algorithm, the system performance of SGA and

TOC may strap into the unstable state in the growing network.

Compared with ACL, we notice that the curve of SDVTS changes

less than that of ACL, suggesting that SDVTS approach has a better

compatibility with the different network scenes. Since the problem

of the curse of dimensionality is not taken into consideration, the

system performance of ACL is lower than that of SDVTS in HetNets.

Further, we observe that the ACL suffers from oscillation when

the network scale is enlarging continuously. For example, the size

is set to about 1300. Since the ACL is the pure online learning

algorithm, which is different from the SDVTS that involves the

online-offline learning mechanism. Overall, our proposed SDVTS

exhibits the high stability and scalability. 

7. Conclusion 

The proliferation of mobile devices and data-intensive ap-

plications is driving up a significant demand for services with

the high QoE. In this paper, assisted by SDI, we first propose a

traffic-processing framework SDVTS, which boosts the efficiency of

resource utilization and in return offers better QoE for users in an

interactive loop. Further, we construct the traffic-processing time

model and decompose the non-convex optimization intuitively.

Subsequently, we illustrate the dual evolution algorithm for the

power provisioning to solve one of the sub-problems. Moreover,

we introduce a double approximators of the Q-learning with

credit using the eligibility traces, addressing the problem of the

delayed cost (or delayed reward) which occurs in the reinforce-

ment learning approaches. Besides, a factored approach with the

tailored QoE profiling is developed to tackle the problem of the

curse of dimensionality, expediting the convergence of algorithm.
dditionally, a distributed algorithm in coalition between user and

ell is designed for illustrating how our framework SDVTS works.

inally, compared with the regular counterparts, our approach

utperforms the other schemes in terms of the QoE and the cell ′ s
ystem performance via the massive simulations. 
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ppendix A 

Proof of lemman 1 . 

roof. G 3 ( K ) is a group of functions with respect to k u . Since the

iven premise that y n 
u,b 

= 1 , x u,m 

= 0 , there are B elements of vec-

or K . K is denoted as { k u, 1 , k u, 2 , . . . , k u,B } . Then we can acquire the

essian matrix of functions G 3 ( k u ) as follows: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ 2 G 3 

∂ 2 k u, 1 

∂ 2 G 3 

∂ k u, 1 ∂ k u, 2 

. . . 
∂ 2 G 3 

∂ k u, 1 ∂ k u,B 

∂ 2 G 3 

∂ k u, 2 ∂ k u, 1 

∂ 2 G 3 

∂ 2 k u, 2 

. . . 
∂ 2 G 3 

∂ k u, 2 ∂ k u,B 

. . . 
. . . 

. . . 

∂ 2 G 3 

∂ k u,B ∂ k u, 1 

∂ 2 G 3 

∂ k u,B ∂ k u, 2 

. . . 
∂ 2 G 3 

∂ 2 k u,B 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

here each specific element is calculated as 

∂ 2 G 3 

∂ k u,ı ∂ k u, j
= 

{ 

2 ℵ u 

(k u ) 3 f u 
, I f ı = j , ı ∈ B, j ∈ B 

0 , Otherwise 
(A.1)

It is obvious that 
∂ 2 G 3 

∂ k u,ı ∂ k u, j
≥ 0 because of all positive parame-

ers in Eqn. (A.1) . Hence, all eigenvalues of Hessian matrix I are

ositive numbers and matrix I is a symmetrical positive definite

atrix. It is concluded that the function G 3 ( k u ) is convex accord-

ng to Theorems in [45] . �

eferences 

[1] L. Duan , L. Huang , C. Langbort , A. Pozdnukhov , J. Walrand , L. Zhang , Hu-

man-in-the-loop mobile networks: a survey of recent advancements, IEEE J.
Sel. Areas Commun. 35 (4) (2017) 813–831 . 

[2] S. Cai , Y. Che , L. Duan , J. Wang , S. Zhou , R. Zhang , Green 5G heterogeneous
networks through dynamic small-cell operation, IEEE J. Sel. Areas Commun. 34

(5) (2016) 1103–1115 . 

[3] Z.A. Qazi , M. Walls , A. Panda , V. Sekar , S. Ratnasamy , S. Shenker , A high per-
formance packet core for next generation cellular networks, in: Proceedings

of the Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM, 2017, pp. 348–361 . 

[4] M. Chen , Y. Qian , Y. Hao , Y. Li , J. Song , Data-driven computing and caching in
5G networks: architecture and delay analysis, IEEE Wireless Commun. 25 (1)

(2018) 70–75 . 

[5] H. Zhang , Y. Nie , J. Cheng , V.C.M. Leung , A. Nallanathan , Sensing time optimiza-
tion and power control for energy efficient cognitive small cell with imperfect

hybrid spectrum sensing, IEEE Trans. Wireless Commun. 16 (2) (2017) 730–743 .
[6] H. Yu , M.J. Neely , Learning aided optimization for energy harvesting devices

with outdated state information, in: Processings of International Conference
on Computer Communications, INFOCOM, 2018 . 

[7] F. Rebecchi , M.D. de Amorim , V. Conan , A. Passarella , R. Bruno , M. Conti , Data
offloading techniques in cellular networks: a survey, IEEE Commun. Surv. Tut.

17 (2) (2015) 580–603 . 

[8] M. Chen , Y. Hao , Task offloading for mobile edge computing in software de-
fined ultra-dense network, IEEE J. Sel. Areas Commun. 36 (3) (2018) 587–597 . 

[9] H. Yang , J. Zhang , Y. Ji , Y. Lee , C-RoFn: multi-stratum resources optimization
for cloud-based radio over optical fiber networks, IEEE Commun. Mag. 54 (8)

(2016) 118–125 . 

http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0009


L. Yu, Z. Li and Y. Zhong et al. / Computer Networks 167 (2020) 106904 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

 

 

[  

 

[

[  

 

[  

[  

[  

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

C  

(

[10] H. Yang , A. Yu , X. Zhao , Q. Yao , J. Zhang , Y. Lee , Multi-dimensional resources
allocation based on reconfigurable radio-wavelength selective switch in cloud

radio over fiber networks, Opt. Expr. 26 (26) (2018) 34719–34733 . 
[11] P. Mach , Z. Becvar , Mobile edge computing: a survey on architecture and com-

putation offloading, IEEE Commun. Surv. Tut. 19 (3) (2017) 1628–1656 . 
[12] H. Wu , T. Wang , Z. Yuan , C. Peng , Z.L. et al. , The tick programmable low-latency

SDR system, in: Processings of International Conference on Mobile Computing
& Networking, MOBICOM, 2017, pp. 101–114 . 

[13] D. Silver , J. Schrittwieser , K. Simonyan , I.A. et al. , Mastering the game of go

without human knowledge, Nature 550 (7676) (2017) 354–360 . 
[14] A. Syed , J. Van der Merwe , Proteus: a network service control platform for ser-

vice evolution in a mobile software defined infrastructure, in: Proceedings of
the 22Nd Annual International Conference on Mobile Computing and Network-

ing, MOBICOM, 2016, pp. 257–270 . 
[15] H. Zhang , Y. Zhang , Y. Gu , D. Niyato , Z. Han , A hierarchical game framework

for resource management in fog computing, IEEE Commun. Mag. 55 (8) (2017)

52–57 . 
[16] H. Zhang , Y. Xiao , S. Bu , D. Niyato , F.R. Yu , Z. Han , Computing resource alloca-

tion in three-tier IoT fog networks: a joint optimization approach combining
stackelberg game and matching, IEEE Internet Things J. 4 (5) (2017) 1204–1215 .

[17] T.Z. Oo , N.H. Tran , W. Saad , D. Niyato , Z. Han , C.S. Hong , Offloading in hetnet:
a coordination of interference mitigation, user association, and resource allo-

cation, IEEE Trans. Mob. Comput. 16 (8) (2017) 2276–2291 . 

[18] Z. Zheng , L. Song , D. Niyato , Z. Han , Resource allocation in wireless powered
relay networks: a bargaining game approach, IEEE Trans. Veh. Technol. 66 (7)

(2017) 6310–6323 . 
[19] I. AlQerm , B. Shihada , Energy-efficient power allocation in multitier 5G net-

works using enhanced online learning, IEEE Trans. Veh. Technol. 66 (12) (2017)
11086–11097 . 

20] Y. Wei , F.R. Yu , M. Song , Z. Han , User scheduling and resource allocation in

hetnets with hybrid energy supply: an actor-critic reinforcement learning ap-
proach, IEEE Trans. Wireless Commun. 17 (1) (2018) 680–692 . 

[21] L. Zheng , D.W.H. Cai , C.W. Tan , Max-min fairness rate control in wireless net-
works: optimality and algorithms by perron-frobenius theory, IEEE Trans. Mob.

Comput. 17 (1) (2018) 127–140 . 
22] S. DOro , L. Galluccio , S. Palazzo , G. Schembra , A game theoretic approach for

distributed resource allocation and orchestration of softwarized networks, IEEE

J. Sel. Areas Commun. 35 (3) (2017) 721–735 . 
23] J. Zhao , Y. Liu , K.K. Chai , A. Nallanathan , Y. Chen , Z. Han , Spectrum allocation

and power control for non-orthogonal multiple access in hetnets, IEEE Trans.
Wireless Commun. 16 (9) (2017) 5825–5837 . 

[24] T.Z. Oo , N.H. Tran , W. Saad , D. Niyato , Z. Han , C.S. Hong , Offloading in hetnet:
a coordination of interference mitigation, user association, and resource allo-

cation, IEEE Trans. Mob. Comput. 16 (8) (2017) 2276–2291 . 

25] B. Xu , Y. Chen , J.R. Carrin , T. Zhang , Resource allocation in energy-cooperation
enabled two-tier NOMA HetNets toward green 5G, IEEE J. Sel. Areas Commun.

35 (12) (2017) 2758–2770 . 
26] J. Wang , C. Jiang , Z. Han , Y. Ren , R.G. Maunder , L. Hanzo , Taking drones to

the next level: cooperative distributed unmanned-aerial-vehicular networks
for small and mini drones, IEEE Veh. Technol. Mag. 12 (3) (2017) 73–82 . 

[27] Y. Bao , H. Wu , X. Liu , From prediction to action: improving user experience
with data-driven resource allocation, IEEE J. Sel. Areas Commun. 35 (5) (2017)

1062–1075 . 

28] Y. He , N. Zhao , H. Yin , Integrated networking, caching, and computing for
connected vehicles: a deep reinforcement learning approach, IEEE Trans. Veh.

Technol. 67 (1) (2018) 44–55 . 
29] H.V. Hasselt , A. Guez , D. Silver , Deep reinforcement learning with double

q-learning artificial intelligence, in: Proceedings of the National Conference on
Artificial Intelligence, AAAI, 2016, pp. 2094–2101 . 

30] Z. Wang, N. de Freitas, M. Lanctot, Dueling network architectures for deep re-

inforcement learning, 2015, arXiv: 1511.06581 . 
[31] X. Zhang, L. Duan, Optimal deployment of UAV networks for delivering emer-

gency wireless coverage, 2017. arXiv: 1710.05616v1 . 
32] L. Yu , Z. Wang , X. Nan , B. Zhou , DMGR: a multipath geographic routing strategy

with the on-demand mobile sink in WSN, Ad Hoc Sensor Wireless Netw. 35 (2)
(2017) 1–24 . 

[33] R.J.W. Steven I. Rich , C. Majidi , Untethered soft robotics, Nature Electron. (2018)

102–112 . 
34] X. Huang , X. Yi , W. Tang , S. Hu , M. Zhu , J. Zhang , B. Xu , K. Qiu , Closed-form

solutions for nonlinear shannon limit due to kerr effect in optical fibre trans-
missions with digital backpropagation, Opt. Commun. 436 (2019) 243–247 . 

[35] P. Mach , Z. Becvar , Mobile edge computing: A Survey on architecture and com-
putation offloading, IEEE Commun. Surv. Tut. 19 (3) (2017) 1628–1656 . 

36] J.W. Lee , R.R. Mazumdar , N.B. Shroff, Non-convex optimization and rate control

for multi-class services in the internet, IEEE/ACM Trans. Netw. 13 (4) (2005)
827–840 . 

[37] Soteit , SaharSecci , Stefano , Game theory in wireless and communication net-
works: theory, models, and applications, IEEE Commun. Mag. 50 (10) (2012)

20–30 . 
38] Z. Xu , J. Tang , J. Meng , e. a. Weiyi Zhang , Experience-driven networking. a deep

reinforcement learning based approach, in: Processings of International Con-

ference on Computer Communications, INFOCOM, 2018 . 
39] E. Alpaydin , Reinforcement Learning, MIT Press, 2014 . 

40] D. Altinel , G.K. Kurt , Finite-state markov channel based modeling of rf energy
harvesting systems, IEEE Trans. Veh. Technol. 67 (2) (2018) 1713–1725 . 
[41] L. A. , P. et al. , A constrained optimization perspective on actorccritic algorithms
and application to network routing, Syst. Control Lett. 92 (2016) 46–52 . 

42] C. Jiang , Z. Chen , R. Su , Y.C. Soh , Group greedy method for sensor placement,
IEEE Trans. Signal Process. 67 (9) (2019) 2249–2262 . 

43] 3GPP, Overview of 3GPP, 2014, Release 12. V0.1.4, 3GPP, Sophia Antipolis Cedex,
France. 

44] Y.B. I. Goodfellow, A. Courville, Deep Learning, MIT Press, 2016. http://www.
deeplearningbook.org/ . 

45] T. Chen , Q. Ling , G.B. Giannakis , An online convex optimization approach to

proactive network resource allocation, IEEE Transactions on Signal Processing
65 (24) (2017) 6350–6364 . 

Li Yu received her M.S. degree in Computer Applications
Technology from Zhengzhou University, China in 2016 and

she is currently a Ph.D. candidate in Computer System Ar-
chitecture at Wuhan University. Her research includes re-

inforcement learning, resource management, Internet of

Things, mobile cloud computing and software defined
network. 

Zongpeng Li received his BE in Computer Science from

Tsinghua University in 1999, and his PhD from University
of Toronto in 2005. He has been affiliated with Univer-

sity of Calgary and then Wuhan University. His research

interests are in computer networks, network algorithms,
and cloud computing. Zongpeng received the Outstanding

Young Computer Scientist Prize from the Canadian Asso-
ciation of Computer Science, and a few Best Paper Awards

from conferences in related fields. 

Yucun Zhong will received the B.S. degree from WuHan
University. His major is computer science. He is interested

in next generation wireless networks and machine learn-

ing. He has further done exploration in this direction to-
gether with seniors and researchers in the laboratory. 

Zhenzhou Ji received Ph.D. in Computer Science in 20 0 0

from Harbin Institute of Technology. He is now a profes-
sor in the Harbin Institute of Technology. His research in-

terests include computer architecture, parallel processing 
computer and computer network security. He is the Vice

Chairman of Computer Architecture of China Computer

Federation (CCF). 

Jiangchuan Liu (F ′ 17) received the B.Eng. degree (cum

laude) in computer science from Tsinghua University, Bei-
jing, China, in 1999, and the Ph.D. degree in computer

science from The Hong Kong University of Science and
Technology, in 2003. He is currently a University Professor

with the School of Computing Science, Simon Fraser Uni-

versity, BC, Canada. He is the Steering Committee Chair
of the IEEE/ACM IWQoS, from 2015 to 2017, and the TPC

Co-Chair of the IEEE IC2E 2017 and the IEEE/ACM IWQoS
2014. He serves as an Area Chair for the IEEE INFOCOM,

ACM Multimedia, and the IEEE ICME. He has served on
the Editorial Boards of the IEEE Transactions on Big Data,

the IEEE Transactions on Multimedia, the IEEE Communi-

ations Surveys and Tutorials, the IEEE Access, the IEEE Internet of Things Journal,
omputer Communications, and Wireless Communications and Mobile Computing

Wiley). (Based on document published on 9 December 2018). 

http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0029
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1710.05616v1
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0040
http://www.deeplearningbook.org/
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0045
http://refhub.elsevier.com/S1389-1286(18)31282-9/sbref0045

	When QoE meets learning: A distributed traffic-processing framework for elastic resource provisioning in HetNets
	1 Introduction
	2 Related work
	3 SDVTS framework and problem formulation
	3.1 SDVTS framework
	3.2 Communication model
	3.3 Problem formulation

	4 Decomposition method
	4.1 The solver of  
	4.2 The solver of  

	5 Double approximated learning algorithm with QoE profiling in ARLS components
	5.1 Bellman equation
	5.2 Enhanced Q function
	5.3 Approximated Q function with eligibility traces
	5.4 Factored Q-learning algorithm and SDVTS mechanism

	6 Performance evaluation
	6.1 Experiment settings
	6.2 Performance metrics
	6.3 QoE comparison
	6.4 Performance verification

	7 Conclusion
	Declaration of competing interest
	Appendix A
	References


